xref: /qemu/bsd-user/qemu.h (revision ffda5db6)
1 /*
2  *  qemu bsd user mode definition
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 #ifndef QEMU_H
18 #define QEMU_H
19 
20 #include "cpu.h"
21 #include "qemu/units.h"
22 #include "exec/cpu_ldst.h"
23 #include "exec/exec-all.h"
24 
25 #undef DEBUG_REMAP
26 
27 #include "exec/user/abitypes.h"
28 
29 extern char **environ;
30 
31 #include "exec/user/thunk.h"
32 #include "target_arch.h"
33 #include "syscall_defs.h"
34 #include "target_syscall.h"
35 #include "target_os_vmparam.h"
36 #include "target_os_signal.h"
37 #include "target.h"
38 #include "exec/gdbstub.h"
39 
40 /*
41  * This struct is used to hold certain information about the image.  Basically,
42  * it replicates in user space what would be certain task_struct fields in the
43  * kernel
44  */
45 struct image_info {
46     abi_ulong load_bias;
47     abi_ulong load_addr;
48     abi_ulong start_code;
49     abi_ulong end_code;
50     abi_ulong start_data;
51     abi_ulong end_data;
52     abi_ulong start_brk;
53     abi_ulong brk;
54     abi_ulong start_mmap;
55     abi_ulong mmap;
56     abi_ulong rss;
57     abi_ulong start_stack;
58     abi_ulong entry;
59     abi_ulong code_offset;
60     abi_ulong data_offset;
61     abi_ulong arg_start;
62     abi_ulong arg_end;
63     uint32_t  elf_flags;
64 };
65 
66 struct emulated_sigtable {
67     int pending; /* true if signal is pending */
68     target_siginfo_t info;
69 };
70 
71 /*
72  * NOTE: we force a big alignment so that the stack stored after is aligned too
73  */
74 typedef struct TaskState {
75     pid_t ts_tid;     /* tid (or pid) of this task */
76 
77     struct TaskState *next;
78     struct bsd_binprm *bprm;
79     struct image_info *info;
80 
81     struct emulated_sigtable sync_signal;
82     /*
83      * TODO: Since we block all signals while returning to the main CPU
84      * loop, this needn't be an array
85      */
86     struct emulated_sigtable sigtab[TARGET_NSIG];
87     /*
88      * Nonzero if process_pending_signals() needs to do something (either
89      * handle a pending signal or unblock signals).
90      * This flag is written from a signal handler so should be accessed via
91      * the qatomic_read() and qatomic_set() functions. (It is not accessed
92      * from multiple threads.)
93      */
94     int signal_pending;
95     /* True if we're leaving a sigsuspend and sigsuspend_mask is valid. */
96     bool in_sigsuspend;
97     /*
98      * This thread's signal mask, as requested by the guest program.
99      * The actual signal mask of this thread may differ:
100      *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
101      *  + sometimes we block all signals to avoid races
102      */
103     sigset_t signal_mask;
104     /*
105      * The signal mask imposed by a guest sigsuspend syscall, if we are
106      * currently in the middle of such a syscall
107      */
108     sigset_t sigsuspend_mask;
109 
110     /* This thread's sigaltstack, if it has one */
111     struct target_sigaltstack sigaltstack_used;
112 } __attribute__((aligned(16))) TaskState;
113 
114 void stop_all_tasks(void);
115 extern const char *qemu_uname_release;
116 
117 /*
118  * TARGET_ARG_MAX defines the number of bytes allocated for arguments
119  * and envelope for the new program. 256k should suffice for a reasonable
120  * maxiumum env+arg in 32-bit environments, bump it up to 512k for !ILP32
121  * platforms.
122  */
123 #if TARGET_ABI_BITS > 32
124 #define TARGET_ARG_MAX (512 * KiB)
125 #else
126 #define TARGET_ARG_MAX (256 * KiB)
127 #endif
128 #define MAX_ARG_PAGES (TARGET_ARG_MAX / TARGET_PAGE_SIZE)
129 
130 /*
131  * This structure is used to hold the arguments that are
132  * used when loading binaries.
133  */
134 struct bsd_binprm {
135         char buf[128];
136         void *page[MAX_ARG_PAGES];
137         abi_ulong p;
138         abi_ulong stringp;
139         int fd;
140         int e_uid, e_gid;
141         int argc, envc;
142         char **argv;
143         char **envp;
144         char *filename;         /* (Given) Name of binary */
145         char *fullpath;         /* Full path of binary */
146         int (*core_dump)(int, CPUArchState *);
147 };
148 
149 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
150 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
151                               abi_ulong stringp);
152 int loader_exec(const char *filename, char **argv, char **envp,
153                 struct target_pt_regs *regs, struct image_info *infop,
154                 struct bsd_binprm *bprm);
155 
156 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
157                     struct image_info *info);
158 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
159                     struct image_info *info);
160 int is_target_elf_binary(int fd);
161 
162 abi_long memcpy_to_target(abi_ulong dest, const void *src,
163                           unsigned long len);
164 void target_set_brk(abi_ulong new_brk);
165 abi_long do_brk(abi_ulong new_brk);
166 void syscall_init(void);
167 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
168                             abi_long arg2, abi_long arg3, abi_long arg4,
169                             abi_long arg5, abi_long arg6, abi_long arg7,
170                             abi_long arg8);
171 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
172                            abi_long arg2, abi_long arg3, abi_long arg4,
173                            abi_long arg5, abi_long arg6);
174 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
175                             abi_long arg2, abi_long arg3, abi_long arg4,
176                             abi_long arg5, abi_long arg6);
177 void gemu_log(const char *fmt, ...) G_GNUC_PRINTF(1, 2);
178 extern __thread CPUState *thread_cpu;
179 void cpu_loop(CPUArchState *env);
180 char *target_strerror(int err);
181 int get_osversion(void);
182 void fork_start(void);
183 void fork_end(int child);
184 
185 #include "qemu/log.h"
186 
187 /* strace.c */
188 struct syscallname {
189     int nr;
190     const char *name;
191     const char *format;
192     void (*call)(const struct syscallname *,
193                  abi_long, abi_long, abi_long,
194                  abi_long, abi_long, abi_long);
195     void (*result)(const struct syscallname *, abi_long);
196 };
197 
198 void
199 print_freebsd_syscall(int num,
200                       abi_long arg1, abi_long arg2, abi_long arg3,
201                       abi_long arg4, abi_long arg5, abi_long arg6);
202 void print_freebsd_syscall_ret(int num, abi_long ret);
203 void
204 print_netbsd_syscall(int num,
205                      abi_long arg1, abi_long arg2, abi_long arg3,
206                      abi_long arg4, abi_long arg5, abi_long arg6);
207 void print_netbsd_syscall_ret(int num, abi_long ret);
208 void
209 print_openbsd_syscall(int num,
210                       abi_long arg1, abi_long arg2, abi_long arg3,
211                       abi_long arg4, abi_long arg5, abi_long arg6);
212 void print_openbsd_syscall_ret(int num, abi_long ret);
213 /**
214  * print_taken_signal:
215  * @target_signum: target signal being taken
216  * @tinfo: target_siginfo_t which will be passed to the guest for the signal
217  *
218  * Print strace output indicating that this signal is being taken by the guest,
219  * in a format similar to:
220  * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
221  */
222 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
223 extern int do_strace;
224 
225 /* mmap.c */
226 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
227 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
228                      int flags, int fd, off_t offset);
229 int target_munmap(abi_ulong start, abi_ulong len);
230 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
231                        abi_ulong new_size, unsigned long flags,
232                        abi_ulong new_addr);
233 int target_msync(abi_ulong start, abi_ulong len, int flags);
234 extern unsigned long last_brk;
235 extern abi_ulong mmap_next_start;
236 abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size);
237 void mmap_fork_start(void);
238 void mmap_fork_end(int child);
239 
240 /* main.c */
241 extern char qemu_proc_pathname[];
242 extern unsigned long target_maxtsiz;
243 extern unsigned long target_dfldsiz;
244 extern unsigned long target_maxdsiz;
245 extern unsigned long target_dflssiz;
246 extern unsigned long target_maxssiz;
247 extern unsigned long target_sgrowsiz;
248 
249 /* os-syscall.c */
250 abi_long get_errno(abi_long ret);
251 bool is_error(abi_long ret);
252 int host_to_target_errno(int err);
253 
254 /* os-sys.c */
255 abi_long do_freebsd_sysarch(void *cpu_env, abi_long arg1, abi_long arg2);
256 
257 /* user access */
258 
259 #define VERIFY_READ  PAGE_READ
260 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
261 
262 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size)
263 {
264     return page_check_range((target_ulong)addr, size, type) == 0;
265 }
266 
267 /*
268  * NOTE __get_user and __put_user use host pointers and don't check access.
269  *
270  * These are usually used to access struct data members once the struct has been
271  * locked - usually with lock_user_struct().
272  */
273 #define __put_user(x, hptr)\
274 ({\
275     int size = sizeof(*hptr);\
276     switch (size) {\
277     case 1:\
278         *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
279         break;\
280     case 2:\
281         *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
282         break;\
283     case 4:\
284         *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
285         break;\
286     case 8:\
287         *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
288         break;\
289     default:\
290         abort();\
291     } \
292     0;\
293 })
294 
295 #define __get_user(x, hptr) \
296 ({\
297     int size = sizeof(*hptr);\
298     switch (size) {\
299     case 1:\
300         x = (typeof(*hptr))*(uint8_t *)(hptr);\
301         break;\
302     case 2:\
303         x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
304         break;\
305     case 4:\
306         x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
307         break;\
308     case 8:\
309         x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
310         break;\
311     default:\
312         x = 0;\
313         abort();\
314     } \
315     0;\
316 })
317 
318 /*
319  * put_user()/get_user() take a guest address and check access
320  *
321  * These are usually used to access an atomic data type, such as an int, that
322  * has been passed by address.  These internally perform locking and unlocking
323  * on the data type.
324  */
325 #define put_user(x, gaddr, target_type)                                 \
326 ({                                                                      \
327     abi_ulong __gaddr = (gaddr);                                        \
328     target_type *__hptr;                                                \
329     abi_long __ret;                                                     \
330     __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0);  \
331     if (__hptr) {                                                       \
332         __ret = __put_user((x), __hptr);                                \
333         unlock_user(__hptr, __gaddr, sizeof(target_type));              \
334     } else                                                              \
335         __ret = -TARGET_EFAULT;                                         \
336     __ret;                                                              \
337 })
338 
339 #define get_user(x, gaddr, target_type)                                 \
340 ({                                                                      \
341     abi_ulong __gaddr = (gaddr);                                        \
342     target_type *__hptr;                                                \
343     abi_long __ret;                                                     \
344     __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1);   \
345     if (__hptr) {                                                       \
346         __ret = __get_user((x), __hptr);                                \
347         unlock_user(__hptr, __gaddr, 0);                                \
348     } else {                                                            \
349         (x) = 0;                                                        \
350         __ret = -TARGET_EFAULT;                                         \
351     }                                                                   \
352     __ret;                                                              \
353 })
354 
355 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
356 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
357 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
358 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
359 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
360 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
361 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
362 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
363 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
364 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
365 
366 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
367 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
368 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
369 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
370 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
371 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
372 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
373 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
374 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
375 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
376 
377 /*
378  * copy_from_user() and copy_to_user() are usually used to copy data
379  * buffers between the target and host.  These internally perform
380  * locking/unlocking of the memory.
381  */
382 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
383 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
384 
385 /*
386  * Functions for accessing guest memory.  The tget and tput functions
387  * read/write single values, byteswapping as necessary.  The lock_user function
388  * gets a pointer to a contiguous area of guest memory, but does not perform
389  * any byteswapping.  lock_user may return either a pointer to the guest
390  * memory, or a temporary buffer.
391  */
392 
393 /*
394  * Lock an area of guest memory into the host.  If copy is true then the
395  * host area will have the same contents as the guest.
396  */
397 static inline void *lock_user(int type, abi_ulong guest_addr, long len,
398                               int copy)
399 {
400     if (!access_ok(type, guest_addr, len)) {
401         return NULL;
402     }
403 #ifdef DEBUG_REMAP
404     {
405         void *addr;
406         addr = g_malloc(len);
407         if (copy) {
408             memcpy(addr, g2h_untagged(guest_addr), len);
409         } else {
410             memset(addr, 0, len);
411         }
412         return addr;
413     }
414 #else
415     return g2h_untagged(guest_addr);
416 #endif
417 }
418 
419 /*
420  * Unlock an area of guest memory.  The first LEN bytes must be flushed back to
421  * guest memory. host_ptr = NULL is explicitly allowed and does nothing.
422  */
423 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
424                                long len)
425 {
426 
427 #ifdef DEBUG_REMAP
428     if (!host_ptr) {
429         return;
430     }
431     if (host_ptr == g2h_untagged(guest_addr)) {
432         return;
433     }
434     if (len > 0) {
435         memcpy(g2h_untagged(guest_addr), host_ptr, len);
436     }
437     g_free(host_ptr);
438 #endif
439 }
440 
441 /*
442  * Return the length of a string in target memory or -TARGET_EFAULT if access
443  * error.
444  */
445 abi_long target_strlen(abi_ulong gaddr);
446 
447 /* Like lock_user but for null terminated strings.  */
448 static inline void *lock_user_string(abi_ulong guest_addr)
449 {
450     abi_long len;
451     len = target_strlen(guest_addr);
452     if (len < 0) {
453         return NULL;
454     }
455     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
456 }
457 
458 /* Helper macros for locking/unlocking a target struct.  */
459 #define lock_user_struct(type, host_ptr, guest_addr, copy)      \
460     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
461 #define unlock_user_struct(host_ptr, guest_addr, copy)          \
462     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
463 
464 static inline uint64_t target_arg64(uint32_t word0, uint32_t word1)
465 {
466 #if TARGET_ABI_BITS == 32
467 #if TARGET_BIG_ENDIAN
468     return ((uint64_t)word0 << 32) | word1;
469 #else
470     return ((uint64_t)word1 << 32) | word0;
471 #endif
472 #else /* TARGET_ABI_BITS != 32 */
473     return word0;
474 #endif /* TARGET_ABI_BITS != 32 */
475 }
476 
477 #include <pthread.h>
478 
479 #include "user/safe-syscall.h"
480 
481 #endif /* QEMU_H */
482