xref: /qemu/docs/devel/loads-stores.rst (revision 27a4a30e)
1..
2   Copyright (c) 2017 Linaro Limited
3   Written by Peter Maydell
4
5===================
6Load and Store APIs
7===================
8
9QEMU internally has multiple families of functions for performing
10loads and stores. This document attempts to enumerate them all
11and indicate when to use them. It does not provide detailed
12documentation of each API -- for that you should look at the
13documentation comments in the relevant header files.
14
15
16``ld*_p and st*_p``
17~~~~~~~~~~~~~~~~~~~
18
19These functions operate on a host pointer, and should be used
20when you already have a pointer into host memory (corresponding
21to guest ram or a local buffer). They deal with doing accesses
22with the desired endianness and with correctly handling
23potentially unaligned pointer values.
24
25Function names follow the pattern:
26
27load: ``ld{type}{sign}{size}_{endian}_p(ptr)``
28
29store: ``st{type}{size}_{endian}_p(ptr, val)``
30
31``type``
32 - (empty) : integer access
33 - ``f`` : float access
34
35``sign``
36 - (empty) : for 32 or 64 bit sizes (including floats and doubles)
37 - ``u`` : unsigned
38 - ``s`` : signed
39
40``size``
41 - ``b`` : 8 bits
42 - ``w`` : 16 bits
43 - ``l`` : 32 bits
44 - ``q`` : 64 bits
45
46``endian``
47 - ``he`` : host endian
48 - ``be`` : big endian
49 - ``le`` : little endian
50
51The ``_{endian}`` infix is omitted for target-endian accesses.
52
53The target endian accessors are only available to source
54files which are built per-target.
55
56There are also functions which take the size as an argument:
57
58load: ``ldn{endian}_p(ptr, sz)``
59
60which performs an unsigned load of ``sz`` bytes from ``ptr``
61as an ``{endian}`` order value and returns it in a uint64_t.
62
63store: ``stn{endian}_p(ptr, sz, val)``
64
65which stores ``val`` to ``ptr`` as an ``{endian}`` order value
66of size ``sz`` bytes.
67
68
69Regexes for git grep
70 - ``\<ldf\?[us]\?[bwlq]\(_[hbl]e\)\?_p\>``
71 - ``\<stf\?[bwlq]\(_[hbl]e\)\?_p\>``
72 - ``\<ldn_\([hbl]e\)?_p\>``
73 - ``\<stn_\([hbl]e\)?_p\>``
74
75``cpu_{ld,st}*_mmuidx_ra``
76~~~~~~~~~~~~~~~~~~~~~~~~~~
77
78These functions operate on a guest virtual address plus a context,
79known as a "mmu index" or ``mmuidx``, which controls how that virtual
80address is translated.  The meaning of the indexes are target specific,
81but specifying a particular index might be necessary if, for instance,
82the helper requires an "always as non-privileged" access rather that
83the default access for the current state of the guest CPU.
84
85These functions may cause a guest CPU exception to be taken
86(e.g. for an alignment fault or MMU fault) which will result in
87guest CPU state being updated and control longjmp'ing out of the
88function call.  They should therefore only be used in code that is
89implementing emulation of the guest CPU.
90
91The ``retaddr`` parameter is used to control unwinding of the
92guest CPU state in case of a guest CPU exception.  This is passed
93to ``cpu_restore_state()``.  Therefore the value should either be 0,
94to indicate that the guest CPU state is already synchronized, or
95the result of ``GETPC()`` from the top level ``HELPER(foo)``
96function, which is a return address into the generated code.
97
98Function names follow the pattern:
99
100load: ``cpu_ld{sign}{size}_mmuidx_ra(env, ptr, mmuidx, retaddr)``
101
102store: ``cpu_st{size}_mmuidx_ra(env, ptr, val, mmuidx, retaddr)``
103
104``sign``
105 - (empty) : for 32 or 64 bit sizes
106 - ``u`` : unsigned
107 - ``s`` : signed
108
109``size``
110 - ``b`` : 8 bits
111 - ``w`` : 16 bits
112 - ``l`` : 32 bits
113 - ``q`` : 64 bits
114
115Regexes for git grep:
116 - ``\<cpu_ld[us]\?[bwlq]_mmuidx_ra\>``
117 - ``\<cpu_st[bwlq]_mmuidx_ra\>``
118
119``cpu_{ld,st}*_data_ra``
120~~~~~~~~~~~~~~~~~~~~~~~~
121
122These functions work like the ``cpu_{ld,st}_mmuidx_ra`` functions
123except that the ``mmuidx`` parameter is taken from the current mode
124of the guest CPU, as determined by ``cpu_mmu_index(env, false)``.
125
126These are generally the preferred way to do accesses by guest
127virtual address from helper functions, unless the access should
128be performed with a context other than the default.
129
130Function names follow the pattern:
131
132load: ``cpu_ld{sign}{size}_data_ra(env, ptr, ra)``
133
134store: ``cpu_st{size}_data_ra(env, ptr, val, ra)``
135
136``sign``
137 - (empty) : for 32 or 64 bit sizes
138 - ``u`` : unsigned
139 - ``s`` : signed
140
141``size``
142 - ``b`` : 8 bits
143 - ``w`` : 16 bits
144 - ``l`` : 32 bits
145 - ``q`` : 64 bits
146
147Regexes for git grep:
148 - ``\<cpu_ld[us]\?[bwlq]_data_ra\>``
149 - ``\<cpu_st[bwlq]_data_ra\>``
150
151``cpu_{ld,st}*_data``
152~~~~~~~~~~~~~~~~~~~~~
153
154These functions work like the ``cpu_{ld,st}_data_ra`` functions
155except that the ``retaddr`` parameter is 0, and thus does not
156unwind guest CPU state.
157
158This means they must only be used from helper functions where the
159translator has saved all necessary CPU state.  These functions are
160the right choice for calls made from hooks like the CPU ``do_interrupt``
161hook or when you know for certain that the translator had to save all
162the CPU state anyway.
163
164Function names follow the pattern:
165
166load: ``cpu_ld{sign}{size}_data(env, ptr)``
167
168store: ``cpu_st{size}_data(env, ptr, val)``
169
170``sign``
171 - (empty) : for 32 or 64 bit sizes
172 - ``u`` : unsigned
173 - ``s`` : signed
174
175``size``
176 - ``b`` : 8 bits
177 - ``w`` : 16 bits
178 - ``l`` : 32 bits
179 - ``q`` : 64 bits
180
181Regexes for git grep
182 - ``\<cpu_ld[us]\?[bwlq]_data\>``
183 - ``\<cpu_st[bwlq]_data\+\>``
184
185``cpu_ld*_code``
186~~~~~~~~~~~~~~~~
187
188These functions perform a read for instruction execution.  The ``mmuidx``
189parameter is taken from the current mode of the guest CPU, as determined
190by ``cpu_mmu_index(env, true)``.  The ``retaddr`` parameter is 0, and
191thus does not unwind guest CPU state, because CPU state is always
192synchronized while translating instructions.  Any guest CPU exception
193that is raised will indicate an instruction execution fault rather than
194a data read fault.
195
196In general these functions should not be used directly during translation.
197There are wrapper functions that are to be used which also take care of
198plugins for tracing.
199
200Function names follow the pattern:
201
202load: ``cpu_ld{sign}{size}_code(env, ptr)``
203
204``sign``
205 - (empty) : for 32 or 64 bit sizes
206 - ``u`` : unsigned
207 - ``s`` : signed
208
209``size``
210 - ``b`` : 8 bits
211 - ``w`` : 16 bits
212 - ``l`` : 32 bits
213 - ``q`` : 64 bits
214
215Regexes for git grep:
216 - ``\<cpu_ld[us]\?[bwlq]_code\>``
217
218``translator_ld*``
219~~~~~~~~~~~~~~~~~~
220
221These functions are a wrapper for ``cpu_ld*_code`` which also perform
222any actions required by any tracing plugins.  They are only to be
223called during the translator callback ``translate_insn``.
224
225There is a set of functions ending in ``_swap`` which, if the parameter
226is true, returns the value in the endianness that is the reverse of
227the guest native endianness, as determined by ``TARGET_WORDS_BIGENDIAN``.
228
229Function names follow the pattern:
230
231load: ``translator_ld{sign}{size}(env, ptr)``
232
233swap: ``translator_ld{sign}{size}_swap(env, ptr, swap)``
234
235``sign``
236 - (empty) : for 32 or 64 bit sizes
237 - ``u`` : unsigned
238 - ``s`` : signed
239
240``size``
241 - ``b`` : 8 bits
242 - ``w`` : 16 bits
243 - ``l`` : 32 bits
244 - ``q`` : 64 bits
245
246Regexes for git grep
247 - ``\<translator_ld[us]\?[bwlq]\(_swap\)\?\>``
248
249``helper_*_{ld,st}*_mmu``
250~~~~~~~~~~~~~~~~~~~~~~~~~
251
252These functions are intended primarily to be called by the code
253generated by the TCG backend. They may also be called by target
254CPU helper function code. Like the ``cpu_{ld,st}_mmuidx_ra`` functions
255they perform accesses by guest virtual address, with a given ``mmuidx``.
256
257These functions specify an ``opindex`` parameter which encodes
258(among other things) the mmu index to use for the access.  This parameter
259should be created by calling ``make_memop_idx()``.
260
261The ``retaddr`` parameter should be the result of GETPC() called directly
262from the top level HELPER(foo) function (or 0 if no guest CPU state
263unwinding is required).
264
265**TODO** The names of these functions are a bit odd for historical
266reasons because they were originally expected to be called only from
267within generated code. We should rename them to bring them more in
268line with the other memory access functions. The explicit endianness
269is the only feature they have beyond ``*_mmuidx_ra``.
270
271load: ``helper_{endian}_ld{sign}{size}_mmu(env, addr, opindex, retaddr)``
272
273store: ``helper_{endian}_st{size}_mmu(env, addr, val, opindex, retaddr)``
274
275``sign``
276 - (empty) : for 32 or 64 bit sizes
277 - ``u`` : unsigned
278 - ``s`` : signed
279
280``size``
281 - ``b`` : 8 bits
282 - ``w`` : 16 bits
283 - ``l`` : 32 bits
284 - ``q`` : 64 bits
285
286``endian``
287 - ``le`` : little endian
288 - ``be`` : big endian
289 - ``ret`` : target endianness
290
291Regexes for git grep
292 - ``\<helper_\(le\|be\|ret\)_ld[us]\?[bwlq]_mmu\>``
293 - ``\<helper_\(le\|be\|ret\)_st[bwlq]_mmu\>``
294
295``address_space_*``
296~~~~~~~~~~~~~~~~~~~
297
298These functions are the primary ones to use when emulating CPU
299or device memory accesses. They take an AddressSpace, which is the
300way QEMU defines the view of memory that a device or CPU has.
301(They generally correspond to being the "master" end of a hardware bus
302or bus fabric.)
303
304Each CPU has an AddressSpace. Some kinds of CPU have more than
305one AddressSpace (for instance Arm guest CPUs have an AddressSpace
306for the Secure world and one for NonSecure if they implement TrustZone).
307Devices which can do DMA-type operations should generally have an
308AddressSpace. There is also a "system address space" which typically
309has all the devices and memory that all CPUs can see. (Some older
310device models use the "system address space" rather than properly
311modelling that they have an AddressSpace of their own.)
312
313Functions are provided for doing byte-buffer reads and writes,
314and also for doing one-data-item loads and stores.
315
316In all cases the caller provides a MemTxAttrs to specify bus
317transaction attributes, and can check whether the memory transaction
318succeeded using a MemTxResult return code.
319
320``address_space_read(address_space, addr, attrs, buf, len)``
321
322``address_space_write(address_space, addr, attrs, buf, len)``
323
324``address_space_rw(address_space, addr, attrs, buf, len, is_write)``
325
326``address_space_ld{sign}{size}_{endian}(address_space, addr, attrs, txresult)``
327
328``address_space_st{size}_{endian}(address_space, addr, val, attrs, txresult)``
329
330``sign``
331 - (empty) : for 32 or 64 bit sizes
332 - ``u`` : unsigned
333
334(No signed load operations are provided.)
335
336``size``
337 - ``b`` : 8 bits
338 - ``w`` : 16 bits
339 - ``l`` : 32 bits
340 - ``q`` : 64 bits
341
342``endian``
343 - ``le`` : little endian
344 - ``be`` : big endian
345
346The ``_{endian}`` suffix is omitted for byte accesses.
347
348Regexes for git grep
349 - ``\<address_space_\(read\|write\|rw\)\>``
350 - ``\<address_space_ldu\?[bwql]\(_[lb]e\)\?\>``
351 - ``\<address_space_st[bwql]\(_[lb]e\)\?\>``
352
353``address_space_write_rom``
354~~~~~~~~~~~~~~~~~~~~~~~~~~~
355
356This function performs a write by physical address like
357``address_space_write``, except that if the write is to a ROM then
358the ROM contents will be modified, even though a write by the guest
359CPU to the ROM would be ignored. This is used for non-guest writes
360like writes from the gdb debug stub or initial loading of ROM contents.
361
362Note that portions of the write which attempt to write data to a
363device will be silently ignored -- only real RAM and ROM will
364be written to.
365
366Regexes for git grep
367 - ``address_space_write_rom``
368
369``{ld,st}*_phys``
370~~~~~~~~~~~~~~~~~
371
372These are functions which are identical to
373``address_space_{ld,st}*``, except that they always pass
374``MEMTXATTRS_UNSPECIFIED`` for the transaction attributes, and ignore
375whether the transaction succeeded or failed.
376
377The fact that they ignore whether the transaction succeeded means
378they should not be used in new code, unless you know for certain
379that your code will only be used in a context where the CPU or
380device doing the access has no way to report such an error.
381
382``load: ld{sign}{size}_{endian}_phys``
383
384``store: st{size}_{endian}_phys``
385
386``sign``
387 - (empty) : for 32 or 64 bit sizes
388 - ``u`` : unsigned
389
390(No signed load operations are provided.)
391
392``size``
393 - ``b`` : 8 bits
394 - ``w`` : 16 bits
395 - ``l`` : 32 bits
396 - ``q`` : 64 bits
397
398``endian``
399 - ``le`` : little endian
400 - ``be`` : big endian
401
402The ``_{endian}_`` infix is omitted for byte accesses.
403
404Regexes for git grep
405 - ``\<ldu\?[bwlq]\(_[bl]e\)\?_phys\>``
406 - ``\<st[bwlq]\(_[bl]e\)\?_phys\>``
407
408``cpu_physical_memory_*``
409~~~~~~~~~~~~~~~~~~~~~~~~~
410
411These are convenience functions which are identical to
412``address_space_*`` but operate specifically on the system address space,
413always pass a ``MEMTXATTRS_UNSPECIFIED`` set of memory attributes and
414ignore whether the memory transaction succeeded or failed.
415For new code they are better avoided:
416
417* there is likely to be behaviour you need to model correctly for a
418  failed read or write operation
419* a device should usually perform operations on its own AddressSpace
420  rather than using the system address space
421
422``cpu_physical_memory_read``
423
424``cpu_physical_memory_write``
425
426``cpu_physical_memory_rw``
427
428Regexes for git grep
429 - ``\<cpu_physical_memory_\(read\|write\|rw\)\>``
430
431``cpu_memory_rw_debug``
432~~~~~~~~~~~~~~~~~~~~~~~
433
434Access CPU memory by virtual address for debug purposes.
435
436This function is intended for use by the GDB stub and similar code.
437It takes a virtual address, converts it to a physical address via
438an MMU lookup using the current settings of the specified CPU,
439and then performs the access (using ``address_space_rw`` for
440reads or ``cpu_physical_memory_write_rom`` for writes).
441This means that if the access is a write to a ROM then this
442function will modify the contents (whereas a normal guest CPU access
443would ignore the write attempt).
444
445``cpu_memory_rw_debug``
446
447``dma_memory_*``
448~~~~~~~~~~~~~~~~
449
450These behave like ``address_space_*``, except that they perform a DMA
451barrier operation first.
452
453**TODO**: We should provide guidance on when you need the DMA
454barrier operation and when it's OK to use ``address_space_*``, and
455make sure our existing code is doing things correctly.
456
457``dma_memory_read``
458
459``dma_memory_write``
460
461``dma_memory_rw``
462
463Regexes for git grep
464 - ``\<dma_memory_\(read\|write\|rw\)\>``
465
466``pci_dma_*`` and ``{ld,st}*_pci_dma``
467~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
468
469These functions are specifically for PCI device models which need to
470perform accesses where the PCI device is a bus master. You pass them a
471``PCIDevice *`` and they will do ``dma_memory_*`` operations on the
472correct address space for that device.
473
474``pci_dma_read``
475
476``pci_dma_write``
477
478``pci_dma_rw``
479
480``load: ld{sign}{size}_{endian}_pci_dma``
481
482``store: st{size}_{endian}_pci_dma``
483
484``sign``
485 - (empty) : for 32 or 64 bit sizes
486 - ``u`` : unsigned
487
488(No signed load operations are provided.)
489
490``size``
491 - ``b`` : 8 bits
492 - ``w`` : 16 bits
493 - ``l`` : 32 bits
494 - ``q`` : 64 bits
495
496``endian``
497 - ``le`` : little endian
498 - ``be`` : big endian
499
500The ``_{endian}_`` infix is omitted for byte accesses.
501
502Regexes for git grep
503 - ``\<pci_dma_\(read\|write\|rw\)\>``
504 - ``\<ldu\?[bwlq]\(_[bl]e\)\?_pci_dma\>``
505 - ``\<st[bwlq]\(_[bl]e\)\?_pci_dma\>``
506