xref: /qemu/docs/specs/rocker.txt (revision 67cc32eb)
1Rocker Network Switch Register Programming Guide
2Copyright (c) Scott Feldman <sfeldma@gmail.com>
3Copyright (c) Neil Horman <nhorman@tuxdriver.com>
4Version 0.11, 12/29/2014
5
6LICENSE
7=======
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19SECTION 1: Introduction
20=======================
21
22Overview
23--------
24
25This document describes the hardware/software interface for the Rocker switch
26device.  The intended audience is authors of OS drivers and device emulation
27software.
28
29Notations and Conventions
30-------------------------
31
32o In register descriptions, [n:m] indicates a range from bit n to bit m,
33inclusive.
34o Use of leading 0x indicates a hexadecimal number.
35o Use of leading 0b indicates a binary number.
36o The use of RSVD or Reserved indicates that a bit or field is reserved for
37future use.
38o Field width is in bytes, unless otherwise noted.
39o Register are (R) read-only, (R/W) read/write, (W) write-only, or (COR) clear
40on read
41o TLV values in network-byte-order are designated with (N).
42
43
44SECTION 2: PCI Configuration Registers
45======================================
46
47PCI Configuration Space
48-----------------------
49
50Each switch instance registers as a PCI device with PCI configuration space:
51
52	offset	width	description		value
53	---------------------------------------------
54	0x0	2	Vendor ID		0x1b36
55	0x2	2	Device ID		0x0006
56	0x4	4	Command/Status
57	0x8	1	Revision ID		0x01
58	0x9	3	Class code		0x2800
59	0xC	1	Cache line size
60	0xD	1	Latency timer
61	0xE	1	Header type
62	0xF	1	Built-in self test
63	0x10	4	Base address low
64	0x14	4	Base address high
65	0x18-28		Reserved
66	0x2C	2	Subsystem vendor ID	*
67	0x2E	2	Subsystem ID		*
68	0x30-38		Reserved
69	0x3C	1	Interrupt line
70	0x3D	1	Interrupt pin		0x00
71	0x3E	1	Min grant		0x00
72	0x3D	1	Max latency		0x00
73	0x40	1	TRDY timeout
74	0x41	1	Retry count
75	0x42	2	Reserved
76
77
78* Assigned by sub-system implementation
79
80SECTION 3: Memory-Mapped Register Space
81=======================================
82
83There are two memory-mapped BARs.  BAR0 maps device register space and is
840x2000 in size.  BAR1 maps MSI-X vector and PBA tables and is also 0x2000 in
85size, allowing for 256 MSI-X vectors.
86
87All registers are 4 or 8 bytes long.  It is assumed host software will access 4
88byte registers with one 4-byte access, and 8 byte registers with either two
894-byte accesses or a single 8-byte access.  In the case of two 4-byte accesses,
90access must be lower and then upper 4-bytes, in that order.
91
92BAR0 device register space is organized as follows:
93
94	offset		description
95	------------------------------------------------------
96	0x0000-0x000f	Bogus registers to catch misbehaving
97			drivers.  Writes do nothing.  Reads
98			back as 0xDEADBABE.
99	0x0010-0x00ff	Test registers
100	0x0300-0x03ff	General purpose registers
101	0x1000-0x1fff	Descriptor control
102
103Holes in register space are reserved.  Writes to reserved registers do nothing.
104Reads to reserved registers read back as 0.
105
106No fancy stuff like write-combining is enabled on any of the registers.
107
108BAR1 MSI-X register space is organized as follows:
109
110	offset		description
111	------------------------------------------------------
112	0x0000-0x0fff	MSI-X vector table (256 vectors total)
113	0x1000-0x1fff	MSI-X PBA table
114
115
116SECTION 4: Interrupts, DMA, and Endianness
117==========================================
118
119PCI Interrupts
120--------------
121
122The device supports only MSI-X interrupts.  BAR1 memory-mapped region contains
123the MSI-X vector and PBA tables, with support for up to 256 MSI-X vectors.
124
125The vector assignment is:
126
127	vector		description
128	-----------------------------------------------------
129	0		Command descriptor ring completion
130	1		Event descriptor ring completion
131	2		Test operation completion
132	3		RSVD
133	4-255		Tx and Rx descriptor ring completion
134			  Tx vector is even
135			  Rx vector is odd
136
137A MSI-X vector table entry is 16 bytes:
138
139	field		offset	width	description
140	-------------------------------------------------------------
141	lower_addr	0x0	4	[31:2] message address[31:2]
142					[1:0] Rsvd (4 byte alignment
143						    required)
144	upper_addr	0x4	4	[31:19] Rsvd
145					[14:0] message address[46:32]
146	data		0x8	4	message data[31:0]
147	control		0xc	4	[31:1] Rsvd
148					[0] mask (0 = enable,
149						  1 = masked)
150
151Software should install the Interrupt Service Routine (ISR) before any ports
152are enabled or any commands are issued on the command ring.
153
154DMA Operations
155--------------
156
157DMA operations are used for packet DMA to/from the CPU, command and event
158processing.  Command processing includes statistical counters and table dumps,
159table insertion/deletion, and more.  Event processing provides an async
160notification method for device-originating events.  Each DMA operation has a
161set of control registers to manage a descriptor ring.  The descriptor rings are
162allocated from contiguous host DMA-able memory and registers specify the rings
163base address, size and current head and tail indices.  Software always writes
164the head, and hardware always writes the tail.
165
166The higher-order bit of DMA_DESC_COMP_ERR is used to mark hardware completion
167of a descriptor.  Software will clear this bit when posting a descriptor to the
168ring, and hardware will set this bit when the descriptor is complete.
169
170Descriptor ring sizes must be a power of 2 and range from 2 to 64K entries.
171Descriptor rings' base address must be 8-byte aligned.  Descriptors must be
172packed within ring.  Each descriptor in each ring must also be aligned on an 8
173byte boundary.  Each descriptor ring will have these registers:
174
175	DMA_DESC_xxx_BASE_ADDR, offset 0x1000 + (x * 32), 64-bit, (R/W)
176	DMA_DESC_xxx_SIZE, offset 0x1008 + (x * 32), 32-bit, (R/W)
177	DMA_DESC_xxx_HEAD, offset 0x100c + (x * 32), 32-bit, (R/W)
178	DMA_DESC_xxx_TAIL, offset 0x1010 + (x * 32), 32-bit, (R)
179	DMA_DESC_xxx_CTRL, offset 0x1014 + (x * 32), 32-bit, (W)
180	DMA_DESC_xxx_CREDITS, offset 0x1018 + (x * 32), 32-bit, (R/W)
181	DMA_DESC_xxx_RSVD1, offset 0x101c + (x * 32), 32-bit, (R/W)
182
183Where x is descriptor ring index:
184
185	index		ring
186	--------------------
187	0		CMD
188	1		EVENT
189	2		TX (port 0)
190	3		RX (port 0)
191	4		TX (port 1)
192	5		RX (port 1)
193	.
194	.
195	.
196	124		TX (port 61)
197	125		RX (port 61)
198	126		Resv
199	127		Resv
200
201Writing BASE_ADDR or SIZE will reset HEAD and TAIL to zero.  HEAD cannot be
202written past TAIL.  To do so would wrap the ring.  An empty ring is when HEAD
203== TAIL.  A full ring is when HEAD is one position behind TAIL.  Both HEAD and
204TAIL increment and modulo wrap at the ring size.
205
206CTRL register bits:
207
208	bit	name		description
209	------------------------------------------------------------------------
210	[0]	CTRL_RESET	Reset the descriptor ring
211	[1:31]	Reserved
212
213All descriptor types share some common fields:
214
215	field			width	description
216	-------------------------------------------------------------------
217	DMA_DESC_BUF_ADDR	8	Phys addr of desc payload, 8-byte
218					aligned
219	DMA_DESC_COOKIE		8	Desc cookie for completion matching,
220					upper-most bit is reserved
221	DMA_DESC_BUF_SIZE	2	Desc payload size in bytes
222	DMA_DESC_TLV_SIZE	2	Desc payload total size in bytes
223					used for TLVs.  Must be <=
224					DMA_DESC_BUF_SIZE.
225	DMA_DESC_COMP_ERR	2	Completion status of associated
226					desc payload.  High order bit is
227					clear on new descs, toggled by
228					hw for completed items.
229
230To support forward- and backward-compatibility, descriptor and completion
231payloads are specified in TLV format.  Fields are packed with Type=field name,
232Length=field length, and Value=field value.  Software will ignore unknown fields
233filled in by the switch.  Likewise, the switch will ignore unknown fields
234filled in by software.
235
236Descriptor payload buffer is 8-byte aligned and TLVs are 8-byte aligned.  The
237value within a TLV is also 8-byte aligned.  The (packed, 8 byte) TLV header is:
238
239	field	width	description
240	-----------------------------
241	type	4	TLV type
242	len	2	TLV value length
243	pad	2	Reserved
244
245The alignment requirements for descriptors and TLVs are to avoid unaligned
246access exceptions in software.  Note that the payload for each TLV is also
2478 byte aligned.
248
249Figure 1 shows an example descriptor buffer with two TLVs.
250
251                  <------- 8 bytes ------->
252
253  8-byte  +––––+  +–––––––––––+–––––+–––––+                     +–+
254  align           |   type    | len | pad |    TLV#1 hdr          |
255                  +–––––––––––+–––––+–––––+    (len=22)           |
256                  |                       |                       |
257                  |  value                |    TVL#1 value        |
258                  |                       |    (padded to 8-byte  |
259                  |                 +–––––+     alignment)        |
260                  |                 |/////|                       |
261   8-byte +––––+  +–––––––––––+–––––––––––+                       |
262   align          |   type    | len | pad |    TLV#2 hdr    DESC_BUF_SIZE
263                  +–––––+–––––+–––––+–––––+    (len=2)            |
264                  |value|/////////////////|    TLV#2 value        |
265                  +–––––+/////////////////|                       |
266                  |///////////////////////|                       |
267                  |///////////////////////|                       |
268                  |///////////////////////|                       |
269                  |////////unused/////////|                       |
270                  |////////space//////////|                       |
271                  |///////////////////////|                       |
272                  |///////////////////////|                       |
273                  |///////////////////////|                       |
274                  +–––––––––––––––––––––––+                     +–+
275
276				fig. 1
277
278TLVs can be nested within the NEST TLV type.
279
280Interrupt credits
281^^^^^^^^^^^^^^^^^
282
283MSI-X vectors used for descriptor ring completions use a credit mechanism for
284efficient device, PCIe bus, OS and driver operations.  Each descriptor ring has
285a credit count which represents the number of outstanding descriptors to be
286processed by the driver.  As the device marks descriptors complete, the credit
287count is incremented.  As the driver processes those outstanding descriptors,
288it returns credits back to the device.  This way, the device knows the driver's
289progress and can make decisions about when to fire the next interrupt or not.
290When the credit count is zero, and the first descriptors are posted for the
291driver, a single interrupt is fired.  Once the interrupt is fired, the
292interrupt is disabled (auto-masked*).  In response to the interrupt, the driver
293will process descriptors and PIO write a returned credit value for that
294descriptor ring.  If the driver returns all credits (the driver caught up with
295the device and there is no outstanding work), then the interrupt is unmasked,
296but not fired.  If only partial credits are returned, the interrupt remains
297masked but the device generates an interrupt, signaling the driver that more
298outstanding work is available.
299
300(* this masking is unrelated to the MSI-X interrupt mask register)
301
302Endianness
303----------
304
305Device registers are hard-coded to little-endian (LE).  The driver should
306convert to/from host endianess to LE for device register accesses.
307
308Descriptors are LE.  Descriptor buffer TLVs will have LE type and length
309fields, but the value field can either be LE or network-byte-order, depending
310on context.  TLV values containing network packet data will be in network-byte
311order.  A TLV value containing a field or mask used to compare against network
312packet data is network-byte order.  For example, flow match fields (and masks)
313are network-byte-order since they're matched directly, byte-by-byte, against
314network packet data.  All non-network-packet TLV multi-byte values will be LE.
315
316TLV values in network-byte-order are designated with (N).
317
318
319SECTION 5: Test Registers
320=========================
321
322Rocker has several test registers to support troubleshooting register access,
323interrupt generation, and DMA operations:
324
325	TEST_REG, offset 0x0010, 32-bit (R/W)
326	TEST_REG64, offset 0x0018, 64-bit (R/W)
327	TEST_IRQ, offset 0x0020, 32-bit (R/W)
328	TEST_DMA_ADDR, offset 0x0028, 64-bit (R/W)
329	TEST_DMA_SIZE, offset 0x0030, 32-bit (R/W)
330	TEST_DMA_CTRL, offset 0x0034, 32-bit (R/W)
331
332Reads to TEST_REG and TEST_REG64 will read a value equal to twice the last
333value written to the register.  The 32-bit and 64-bit versions are for testing
33432-bit and 64-bit host accesses.
335
336A vector can be written to TEST_IRQ and the device will generate an interrupt
337for that vector.
338
339To test basic DMA operations, allocate a DMA-able host buffer and put the
340buffer address into TEST_DMA_ADDR and size into TEST_DMA_SIZE.  Then, write to
341TEST_DMA_CTRL to manipulate the buffer contents.  TEST_DMA_CTRL operations are:
342
343	operation		value	description
344	-----------------------------------------------------------
345	TEST_DMA_CTRL_CLEAR	1	clear buffer
346	TEST_DMA_CTRL_FILL	2	fill buffer bytes with 0x96
347	TEST_DMA_CTRL_INVERT	4	invert bytes in buffer
348
349Various buffer address and sizes should be tested to verify no address boundary
350issue exists.  In particular, buffers that start on odd-8-byte boundary and/or
351span multiple PAGE sizes should be tested.
352
353
354SECTION 6: Ports
355================
356
357Physical and Logical Ports
358------------------------------------
359
360The switch supports up to 62 physical (front-panel) ports.  Register
361PORT_PHYS_COUNT returns the actual number of physical ports available:
362
363	PORT_PHYS_COUNT, offset 0x0304, 32-bit, (R)
364
365In addition to front-panel ports, the switch supports logical ports for
366tunnels.
367
368Front-panel ports and logical tunnel ports are mapped into a single 32-bit port
369space.  A special CPU port is assigned port 0.  The front-panel ports are
370mapped to ports 1-62.  A special loopback port is assigned port 63.  Logical
371tunnel ports are assigned ports 0x0001000-0x0001ffff.
372To summarize the port assignments:
373
374	port			mapping
375	-------------------------------------------------------
376	0			CPU port (for packets to/from host CPU)
377	1-62			front-panel physical ports
378	63			loopback port
379	64-0x0000ffff		RSVD
380	0x00010000-0x0001ffff	logical tunnel ports
381	0x00020000-0xffffffff	RSVD
382
383Physical Port Mode
384------------------
385
386Switch front-panel ports operate in a mode.  Currently, the only mode is
387OF-DPA.  OF-DPA[1] mode is based on OpenFlow Data Plane Abstraction (OF-DPA)
388Abstract Switch Specification, Version 1.0, from Broadcom Corporation.  To
389set/get the mode for front-panel ports, see port settings, below.
390
391Port Settings
392-------------
393
394Link status for all front-panel ports is available via PORT_PHYS_LINK_STATUS:
395
396	PORT_PHYS_LINK_STATUS, offset 0x0310, 64-bit, (R)
397
398	Value is port bitmap.  Bits 0 and 63 always read 0.  Bits 1-62
399	read 1 for link UP and 0 for link DOWN for respective front-panel ports.
400
401Other properties for front-panel ports are available via DMA CMD descriptors:
402
403	Get PORT_SETTINGS descriptor:
404
405		field		width	description
406		----------------------------------------------
407		PORT_SETTINGS	2	CMD_GET
408		PPORT		4	Physical port #
409
410	Get PORT_SETTINGS completion:
411
412		field		width	description
413		----------------------------------------------
414		PPORT		4	Physical port #
415		SPEED		4	Current port interface speed, in Mbps
416		DUPLEX		1	1 = Full, 0 = Half
417		AUTONEG		1	1 = enabled, 0 = disabled
418		MACADDR		6	Port MAC address
419		MODE		1	0 = OF-DPA
420		LEARNING	1	MAC address learning on port
421						1 = enabled
422						0 = disabled
423		PHYS_NAME	<var>	Physical port name (string)
424
425	Set PORT_SETTINGS descriptor:
426
427		field		width	description
428		----------------------------------------------
429		PORT_SETTINGS	2	CMD_SET
430		PPORT		4	Physical port #
431		SPEED		4	Port interface speed, in Mbps
432		DUPLEX		1	1 = Full, 0 = Half
433		AUTONEG		1	1 = enabled, 0 = disabled
434		MACADDR		6	Port MAC address
435		MODE		1	0 = OF-DPA
436
437Port Enable
438-----------
439
440Front-panel ports are initially disabled, which means port ingress and egress
441packets will be dropped.  To enable or disable a port, use PORT_PHYS_ENABLE:
442
443	PORT_PHYS_ENABLE: offset 0x0318, 64-bit, (R/W)
444
445	Value is bitmap of first 64 ports.  Bits 0 and 63 are ignored
446	and always read as 0.  Write 1 to enable port; write 0 to disable it.
447	Default is 0.
448
449
450SECTION 7: Switch Control
451=========================
452
453This section covers switch-wide register settings.
454
455Control
456-------
457
458This register is used for low level control of the switch.
459
460	CONTROL: offset 0x0300, 32-bit, (W)
461
462	bit	name		description
463	------------------------------------------------------------------------
464	[0]	CONTROL_RESET	If set, device will perform reset
465	[1:31]	Reserved
466
467Switch ID
468---------
469
470The switch has a SWITCH_ID to be used by software to uniquely identify the
471switch:
472
473	SWITCH_ID: offset 0x0320, 64-bit, (R)
474
475	Value is opaque to switch software and no special encoding is implied.
476
477
478SECTION 8: Events
479=================
480
481Non-I/O asynchronous events from the device are notified to the host using the
482event ring.  The TLV structure for events is:
483
484	field		width	description
485	---------------------------------------------------
486	TYPE		4	Event type, one of:
487					1: LINK_CHANGED
488					2: MAC_VLAN_SEEN
489	INFO		<nest>	Event info (details below)
490
491Link Changed Event
492------------------
493
494When link status changes on a physical port, this event is generated.
495
496	field		width	description
497	---------------------------------------------------
498	INFO		<nest>
499	  PPORT		4	Physical port
500	  LINKUP	1	Link status:
501					0: down
502					1: up
503
504MAC VLAN Seen Event
505-------------------
506
507When a packet ingresses on a port and the source MAC/VLAN isn't known to the
508device, the device will generate this event.  In response to the event, the
509driver should install to the device the MAC/VLAN on the port into the bridge
510table.  Once installed, the MAC/VLAN is known on the port and this event will
511no longer be generated.
512
513	field		width	description
514	---------------------------------------------------
515	INFO		<nest>
516	  PPORT		4	Physical port
517	  MAC		6	MAC address
518	  VLAN		2	VLAN ID
519
520
521SECTION 9: CPU Packet Processing
522================================
523
524Ingress packets directed to the host CPU for further processing are delivered
525in the DMA RX ring.  Likewise, host CPU originating packets destined to egress
526on switch ports are scheduled by software using the DMA TX ring.
527
528Tx Packet Processing
529--------------------
530
531Software schedules packets for egress on switch ports using the DMA TX ring.  A
532TX descriptor buffer describes the packet location and size in host DMA-able
533memory, the destination port, and any hardware-offload functions (such as L3
534payload checksum offload).  Software then bumps the descriptor head to signal
535hardware of new Tx work.  In response, hardware will DMA read Tx descriptors up
536to head, DMA read descriptor buffer and packet data, perform offloading
537functions, and finally frame packet on wire (network).  Once packet processing
538is complete, hardware will writeback status to descriptor(s) to signal to
539software that Tx is complete and software resources (e.g. skb) backing packet
540can be released.
541
542Figure 2 shows an example 3-fragment packet queued with one Tx descriptor.  A
543TLV is used for each packet fragment.
544
545	                                           pkt frag 1
546	                                           +–––––––+  +–+
547	                                       +–––+       |    |
548	                         desc buf      |   |       |    |
549	                        +––––––––+     |   |       |    |
550	        Tx ring     +–––+        +–––––+   |       |    |
551	      +–––––––––+   |   |  TLVs  |         +–––––––+    |
552	      |         +–––+   +––––––––+         pkt frag 2   |
553	      | desc 0  |       |        +–––––+   +–––––––+    |
554	      +–––––––––+       |  TLVs  |     +–––+       |    |
555	head+–+         |       +––––––––+         |       |    |
556	      | desc 1  |       |        +–––––+   +–––––––+    |pkt
557	      +–––––––––+       |  TLVs  |     |                |
558	      |         |       +––––––––+     |   pkt frag 3   |
559	      |         |                      |   +–––––––+    |
560	      +–––––––––+                      +–––+       |    |
561	      |         |                          |       |    |
562	      |         |                          |       |    |
563	      +–––––––––+                          |       |    |
564	      |         |                          |       |    |
565	      |         |                          |       |    |
566	      +–––––––––+                          |       |    |
567	      |         |                          +–––––––+  +–+
568	      |         |
569	      +–––––––––+
570
571				fig 2.
572
573The TLVs for Tx descriptor buffer are:
574
575	field			width	description
576	---------------------------------------------------------------------
577	PPORT			4	Destination physical port #
578	TX_OFFLOAD		1	Hardware offload modes:
579					  0: no offload
580					  1: insert IP csum (ipv4 only)
581					  2: insert TCP/UDP csum
582					  3: L3 csum calc and insert
583                        	             into csum offset (TX_L3_CSUM_OFF)
584                 	                    16-bit 1's complement csum value.
585                                	     IPv4 pseudo-header and IP
586                        	             already calculated by OS
587                  	                   and inserted.
588					  4: TSO (TCP Segmentation Offload)
589	TX_L3_CSUM_OFF		2	For L3 csum offload mode, the offset,
590					from the beginning of the packet,
591					of the csum field in the L3 header
592	TX_TSO_MSS		2	For TSO offload mode, the
593					Maximum Segment Size in bytes
594        TX_TSO_HDR_LEN		2	For TSO offload mode, the
595					length of ethernet, IP, and
596					TCP/UDP headers, including IP
597					and TCP options.
598	TX_FRAGS		<array>	Packet fragments
599	  TX_FRAG		<nest>	Packet fragment
600	    TX_FRAG_ADDR	8	DMA address of packet fragment
601	    TX_FRAG_LEN		2	Packet fragment length
602
603Possible status return codes in descriptor on completion are:
604
605	DESC_COMP_ERR	reason
606	--------------------------------------------------------------------
607	0		OK
608	-ROCKER_ENXIO	address or data read err on desc buf or packet
609			fragment
610	-ROCKER_EINVAL	bad pport or TSO or csum offloading error
611	-ROCKER_ENOMEM	no memory for internal staging tx fragment
612
613Rx Packet Processing
614--------------------
615
616For packets ingressing on switch ports that are not forwarded by the switch but
617rather directed to the host CPU for further processing are delivered in the DMA
618RX ring.  Rx descriptor buffers are allocated by software and placed on the
619ring.  Hardware will fill Rx descriptor buffers with packet data, write the
620completion, and signal to software that a new packet is ready.  Since Rx packet
621size is not known a-priori, the Rx descriptor buffer must be allocated for
622worst-case packet size.  A single Rx descriptor will contain the entire Rx
623packet data in one RX_FRAG.  Other Rx TLVs describe and hardware offloads
624performed on the packet, such as checksum validation.
625
626The TLVs for Rx descriptor buffer are:
627
628	field		width	description
629	---------------------------------------------------
630	PPORT		4	Source physical port #
631	RX_FLAGS	2	Packet parsing flags:
632				  (1 << 0): IPv4 packet
633				  (1 << 1): IPv6 packet
634				  (1 << 2): csum calculated
635				  (1 << 3): IPv4 csum good
636				  (1 << 4): IP fragment
637				  (1 << 5): TCP packet
638				  (1 << 6): UDP packet
639				  (1 << 7): TCP/UDP csum good
640				  (1 << 8): Offload forward
641	RX_CSUM		2	IP calculated checksum:
642				  IPv4: IP payload csum
643				  IPv6: header and payload csum
644				(Only valid is RX_FLAGS:csum calc is set)
645	RX_FRAG_ADDR	8	DMA address of packet fragment
646	RX_FRAG_MAX_LEN	2	Packet maximum fragment length
647	RX_FRAG_LEN	2	Actual packet fragment length after receive
648
649Offload forward RX_FLAG indicates the device has already forwarded the packet
650so the host CPU should not also forward the packet.
651
652Possible status return codes in descriptor on completion are:
653
654	DESC_COMP_ERR	reason
655	--------------------------------------------------------------------
656	0		OK
657	-ROCKER_ENXIO	address or data read err on desc buf
658	-ROCKER_ENOMEM	no memory for internal staging desc buf
659	-ROCKER_EMSGSIZE Rx descriptor buffer wasn't big enough to contain
660			packet data TLV and other TLVs.
661
662
663SECTION 10: OF-DPA Mode
664======================
665
666OF-DPA mode allows the switch to offload flow packet processing functions to
667hardware.  An OpenFlow controller would communicate with an OpenFlow agent
668installed on the switch.  The OpenFlow agent would (directly or indirectly)
669communicate with the Rocker switch driver, which in turn would program switch
670hardware with flow functionality, as defined in OF-DPA.  The block diagram is:
671
672		+–––––––––––––––----–––+
673		|        OF            |
674		|  Remote Controller   |
675		+––––––––+––----–––––––+
676		         |
677		         |
678		+––––––––+–––––––––+
679		|       OF         |
680		|   Local Agent    |
681		+––––––––––––––––––+
682		|                  |
683		|   Rocker Driver  |
684		+––––––––––––––––––+
685		    <this spec>
686		+––––––––––––––––––+
687		|                  |
688		|   Rocker Switch  |
689		+––––––––––––––––––+
690
691To participate in flow functions, ports must be configure for OF-DPA mode
692during switch initialization.
693
694OF-DPA Flow Table Interface
695---------------------------
696
697There are commands to add, modify, delete, and get stats of flow table entries.
698The commands are issued using the DMA CMD descriptor ring.  The following
699commands are defined:
700
701	CMD_ADD:		add an entry to flow table
702	CMD_MOD:		modify an entry in flow table
703	CMD_DEL:		delete an entry from flow table
704	CMD_GET_STATS:		get stats for flow entry
705
706TLVs for add and modify commands are:
707
708	field			width	description
709	----------------------------------------------------
710	OF_DPA_CMD		2	CMD_[ADD|MOD]
711	OF_DPA_TBL		2	Flow table ID
712					  0: ingress port
713					  10: vlan
714					  20: termination mac
715					  30: unicast routing
716					  40: multicast routing
717					  50: bridging
718					  60: ACL policy
719	OF_DPA_PRIORITY		4	Flow priority
720	OF_DPA_HARDTIME		4	Hard timeout for flow
721	OF_DPA_IDLETIME		4	Idle timeout for flow
722	OF_DPA_COOKIE		8	Cookie
723
724Additional TLVs based on flow table ID:
725
726Table ID 0: ingress port
727
728	field			width	description
729	----------------------------------------------------
730	OF_DPA_IN_PPORT		4	ingress physical port number
731	OF_DPA_GOTO_TBL		2	goto table ID; zero to drop
732
733Table ID 10: vlan
734
735	field			width	description
736	----------------------------------------------------
737	OF_DPA_IN_PPORT		4	ingress physical port number
738	OF_DPA_VLAN_ID		2 (N)	vlan ID
739	OF_DPA_VLAN_ID_MASK	2 (N)	vlan ID mask
740	OF_DPA_GOTO_TBL		2	goto table ID; zero to drop
741	OF_DPA_NEW_VLAN_ID	2 (N)	new vlan ID
742
743Table ID 20: termination mac
744
745	field			width	description
746	----------------------------------------------------
747	OF_DPA_IN_PPORT		4	ingress physical port number
748	OF_DPA_IN_PPORT_MASK	4	ingress physical port number mask
749	OF_DPA_ETHERTYPE	2 (N)	must be either 0x0800 or 0x86dd
750	OF_DPA_DST_MAC		6 (N)	destination MAC
751	OF_DPA_DST_MAC_MASK	6 (N)	destination MAC mask
752	OF_DPA_VLAN_ID		2 (N)	vlan ID
753	OF_DPA_VLAN_ID_MASK	2 (N)	vlan ID mask
754	OF_DPA_GOTO_TBL		2	only acceptable values are
755					unicast or multicast routing
756					table IDs
757	OF_DPA_OUT_PPORT	2	if specified, must be
758					controller, set zero otherwise
759
760Table ID 30: unicast routing
761
762	field			width	description
763	----------------------------------------------------
764	OF_DPA_ETHERTYPE	2 (N)	must be either 0x0800 or 0x86dd
765	OF_DPA_DST_IP		4 (N)	destination IPv4 address.
766					Must be unicast address
767	OF_DPA_DST_IP_MASK	4 (N)	IP mask.  Must be prefix mask
768	OF_DPA_DST_IPV6		16 (N)	destination IPv6 address.
769					Must be unicast address
770	OF_DPA_DST_IPV6_MASK	16 (N)	IPv6 mask. Must be prefix mask
771	OF_DPA_GOTO_TBL		2	goto table ID; zero to drop
772	OF_DPA_GROUP_ID		4	data for GROUP action must
773					be an L3 Unicast group entry
774
775Table ID 40: multicast routing
776
777	field			width	description
778	----------------------------------------------------
779	OF_DPA_ETHERTYPE	2 (N)	must be either 0x0800 or 0x86dd
780	OF_DPA_VLAN_ID		2 (N)	vlan ID
781	OF_DPA_SRC_IP		4 (N)	source IPv4. Optional,
782					can contain IPv4 address,
783					must be completely masked
784					if not used
785	OF_DPA_SRC_IP_MASK	4 (N)	IP Mask
786	OF_DPA_DST_IP		4 (N)	destination IPv4 address.
787					Must be multicast address
788	OF_DPA_SRC_IPV6		16 (N)	source IPv6 Address. Optional.
789					Can contain IPv6 address,
790					must be completely masked
791					if not used
792	OF_DPA_SRC_IPV6_MASK	16 (N)	IPv6 mask.
793	OF_DPA_DST_IPV6		16 (N)	destination IPv6 Address. Must
794					be multicast address
795					Must be multicast address
796	OF_DPA_GOTO_TBL		2	goto table ID; zero to drop
797	OF_DPA_GROUP_ID		4	data for GROUP action must
798					be an L3 multicast group entry
799
800Table ID 50: bridging
801
802	field			width	description
803	----------------------------------------------------
804	OF_DPA_VLAN_ID		2 (N)	vlan ID
805	OF_DPA_TUNNEL_ID	4	tunnel ID
806	OF_DPA_DST_MAC		6 (N)	destination MAC
807	OF_DPA_DST_MAC_MASK	6 (N)	destination MAC mask
808	OF_DPA_GOTO_TBL		2	goto table ID; zero to drop
809	OF_DPA_GROUP_ID		4	data for GROUP action must
810					be a L2 Interface, L2
811					Multicast, L2 Flood,
812					or L2 Overlay group entry
813					as appropriate
814	OF_DPA_TUNNEL_LPORT	4	unicast Tenant Bridging
815					flows specify a tunnel
816					logical port ID
817	OF_DPA_OUT_PPORT	2	data for OUTPUT action,
818					restricted to CONTROLLER,
819					set to 0 otherwise
820
821Table ID 60: acl policy
822
823	field			width	description
824	----------------------------------------------------
825	OF_DPA_IN_PPORT		4	ingress physical port number
826	OF_DPA_IN_PPORT_MASK	4	ingress physical port number mask
827	OF_DPA_ETHERTYPE	2 (N)	ethertype
828	OF_DPA_VLAN_ID		2 (N)	vlan ID
829	OF_DPA_VLAN_ID_MASK	2 (N)	vlan ID mask
830	OF_DPA_VLAN_PCP		2 (N)	vlan Priority Code Point
831	OF_DPA_VLAN_PCP_MASK	2 (N)	vlan Priority Code Point mask
832	OF_DPA_SRC_MAC		6 (N)	source MAC
833	OF_DPA_SRC_MAC_MASK	6 (N)	source MAC mask
834	OF_DPA_DST_MAC		6 (N)	destination MAC
835	OF_DPA_DST_MAC_MASK	6 (N)	destination MAC mask
836	OF_DPA_TUNNEL_ID	4	tunnel ID
837	OF_DPA_SRC_IP		4 (N)	source IPv4. Optional,
838					can contain IPv4 address,
839					must be completely masked
840					if not used
841	OF_DPA_SRC_IP_MASK	4 (N)	IP Mask
842	OF_DPA_DST_IP		4 (N)	destination IPv4 address.
843					Must be multicast address
844	OF_DPA_DST_IP_MASK	4 (N)	IP Mask
845	OF_DPA_SRC_IPV6		16 (N)	source IPv6 Address. Optional.
846					Can contain IPv6 address,
847					must be completely masked
848					if not used
849	OF_DPA_SRC_IPV6_MASK	16 (N)	IPv6 mask
850	OF_DPA_DST_IPV6		16 (N)	destination IPv6 Address. Must
851					be multicast address.
852	OF_DPA_DST_IPV6_MASK	16 (N)	IPv6 mask
853	OF_DPA_SRC_ARP_IP	4 (N)	source IPv4 address in the ARP
854					payload.  Only used if ethertype
855					== 0x0806.
856	OF_DPA_SRC_ARP_IP_MASK	4 (N)	IP Mask
857	OF_DPA_IP_PROTO		1	IP protocol
858	OF_DPA_IP_PROTO_MASK	1	IP protocol mask
859	OF_DPA_IP_DSCP		1	DSCP
860	OF_DPA_IP_DSCP_MASK	1	DSCP mask
861	OF_DPA_IP_ECN		1	ECN
862	OF_DPA_IP_ECN_MASK		1	ECN mask
863	OF_DPA_L4_SRC_PORT	2 (N)	L4 source port, only for
864					TCP, UDP, or SCTP
865	OF_DPA_L4_SRC_PORT_MASK	2 (N)	L4 source port mask
866	OF_DPA_L4_DST_PORT	2 (N)	L4 source port, only for
867					TCP, UDP, or SCTP
868	OF_DPA_L4_DST_PORT_MASK	2 (N)	L4 source port mask
869	OF_DPA_ICMP_TYPE	1	ICMP type, only if IP
870					protocol is 1
871	OF_DPA_ICMP_TYPE_MASK	1	ICMP type mask
872	OF_DPA_ICMP_CODE	1	ICMP code
873	OF_DPA_ICMP_CODE_MASK	1	ICMP code mask
874	OF_DPA_IPV6_LABEL	4 (N)	IPv6 flow label
875	OF_DPA_IPV6_LABEL_MASK	4 (N)	IPv6 flow label mask
876	OF_DPA_GROUP_ID		4	data for GROUP action
877	OF_DPA_QUEUE_ID_ACTION	1	write the queue ID
878	OF_DPA_NEW_QUEUE_ID	1	queue ID
879	OF_DPA_VLAN_PCP_ACTION	1	write the VLAN priority
880	OF_DPA_NEW_VLAN_PCP	1	VLAN priority
881	OF_DPA_IP_DSCP_ACTION	1	write the DSCP
882	OF_DPA_NEW_IP_DSCP	1	new DSCP
883	OF_DPA_TUNNEL_LPORT	4	restrct to valid tunnel
884					logical port, set to 0
885					otherwise.
886	OF_DPA_OUT_PPORT	2	data for OUTPUT action,
887					restricted to CONTROLLER,
888					set to 0 otherwise
889	OF_DPA_CLEAR_ACTIONS	4	if 1 packets matching flow are
890					dropped (all other instructions
891					ignored)
892
893TLVs for flow delete and get stats command are:
894
895	field			width	description
896	---------------------------------------------------
897	OF_DPA_CMD		2	CMD_[DEL|GET_STATS]
898	OF_DPA_COOKIE		8	Cookie
899
900On completion of get stats command, the descriptor buffer is written back with
901the following TLVs:
902
903	field			width	description
904	---------------------------------------------------
905	OF_DPA_STAT_DURATION	4	Flow duration
906	OF_DPA_STAT_RX_PKTS	8	Received packets
907	OF_DPA_STAT_TX_PKTS	8	Transmit packets
908
909Possible status return codes in descriptor on completion are:
910
911	DESC_COMP_ERR	command			reason
912	--------------------------------------------------------------------
913	0		all			OK
914	-ROCKER_EFAULT	all			head or tail index outside
915						of ring
916	-ROCKER_ENXIO	all			address or data read err on
917						desc buf
918	-ROCKER_EMSGSIZE GET_STATS		cmd descriptor buffer wasn't
919						big enough to contain write-back
920						TLVs
921	-ROCKER_EINVAL	all			invalid parameters passed in
922	-ROCKER_EEXIST	ADD			entry already exists
923	-ROCKER_ENOSPC	ADD			no space left in flow table
924	-ROCKER_ENOENT	MOD|DEL|GET_STATS	cookie invalid
925
926Group Table Interface
927---------------------
928
929There are commands to add, modify, delete, and get stats of group table
930entries.  The commands are issued using the DMA CMD descriptor ring.  The
931following commands are defined:
932
933	CMD_ADD:		add an entry to group table
934	CMD_MOD:		modify an entry in group table
935	CMD_DEL:		delete an entry from group table
936	CMD_GET_STATS:		get stats for group entry
937
938TLVs for add and modify commands are:
939
940	field			width	description
941	-----------------------------------------------------------
942	FLOW_GROUP_CMD		2	CMD_[ADD|MOD]
943	FLOW_GROUP_ID		2	Flow group ID
944	FLOW_GROUP_TYPE		1	Group type:
945					  0: L2 interface
946					  1: L2 rewrite
947					  2: L3 unicast
948					  3: L2 multicast
949					  4: L2 flood
950					  5: L3 interface
951					  6: L3 multicast
952					  7: L3 ECMP
953					  8: L2 overlay
954	FLOW_VLAN_ID		2	Vlan ID (types 0, 3, 4, 6)
955	FLOW_L2_PORT		2	Port (types 0)
956	FLOW_INDEX		4	Index (all types but 0)
957	FLOW_OVERLAY_TYPE	1	Overlay sub-type (type 8):
958					  0: Flood unicast tunnel
959					  1: Flood multicast tunnel
960					  2: Multicast unicast tunnel
961					  3: Multicast multicast tunnel
962	FLOW_GROUP_ACTION		nest
963	  FLOW_GROUP_ID		2	next group ID in chain (all
964					types except 0)
965	  FLOW_OUT_PORT		4	egress port (types 0, 8)
966	  FLOW_POP_VLAN_TAG	1	strip outer VLAN tag (type 1
967					only)
968	  FLOW_VLAN_ID		2	(types 1, 5)
969	  FLOW_SRC_MAC		6	(types 1, 2, 5)
970	  FLOW_DST_MAC		6	(types 1, 2)
971
972TLVs for flow delete and get stats command are:
973
974	field			width	description
975	-----------------------------------------------------------
976	FLOW_GROUP_CMD		2	CMD_[DEL|GET_STATS]
977	FLOW_GROUP_ID		2	Flow group ID
978
979On completion of get stats command, the descriptor buffer is written back with
980the following TLVs:
981
982	field			width	description
983	---------------------------------------------------
984	FLOW_GROUP_ID		2	Flow group ID
985	FLOW_STAT_DURATION	4	Flow duration
986	FLOW_STAT_REF_COUNT	4	Flow reference count
987	FLOW_STAT_BUCKET_COUNT	4	Flow bucket count
988
989Possible status return codes in descriptor on completion are:
990
991	DESC_COMP_ERR	command			reason
992	--------------------------------------------------------------------
993	0		all			OK
994	-ROCKER_EFAULT	all			head or tail index outside
995						of ring
996	-ROCKER_ENXIO	all			address or data read err on
997						desc buf
998	-ROCKER_ENOSPC	GET_STATS		cmd descriptor buffer wasn't
999						big enough to contain write-back
1000						TLVs
1001	-ROCKER_EINVAL	ADD|MOD			invalid parameters passed in
1002	-ROCKER_EEXIST	ADD			entry already exists
1003	-ROCKER_ENOSPC	ADD			no space left in flow table
1004	-ROCKER_ENOENT	MOD|DEL|GET_STATS	group ID invalid
1005	-ROCKER_EBUSY	DEL			group reference count non-zero
1006	-ROCKER_ENODEV	ADD			next group ID doesn't exist
1007
1008
1009
1010References
1011==========
1012
1013[1] OpenFlow Data Plane Abstraction (OF-DPA) Abstract Switch Specification,
1014Version 1.0, from Broadcom Corporation, February 21, 2014.
1015