1 /* 2 * QEMU dump 3 * 4 * Copyright Fujitsu, Corp. 2011, 2012 5 * 6 * Authors: 7 * Wen Congyang <wency@cn.fujitsu.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #include "qemu/osdep.h" 15 #include "qemu/cutils.h" 16 #include "elf.h" 17 #include "qemu/bswap.h" 18 #include "exec/target_page.h" 19 #include "monitor/monitor.h" 20 #include "sysemu/dump.h" 21 #include "sysemu/runstate.h" 22 #include "sysemu/cpus.h" 23 #include "qapi/error.h" 24 #include "qapi/qapi-commands-dump.h" 25 #include "qapi/qapi-events-dump.h" 26 #include "qapi/qmp/qerror.h" 27 #include "qemu/main-loop.h" 28 #include "hw/misc/vmcoreinfo.h" 29 #include "migration/blocker.h" 30 #include "hw/core/cpu.h" 31 #include "win_dump.h" 32 33 #include <zlib.h> 34 #ifdef CONFIG_LZO 35 #include <lzo/lzo1x.h> 36 #endif 37 #ifdef CONFIG_SNAPPY 38 #include <snappy-c.h> 39 #endif 40 #ifndef ELF_MACHINE_UNAME 41 #define ELF_MACHINE_UNAME "Unknown" 42 #endif 43 44 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */ 45 46 static Error *dump_migration_blocker; 47 48 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \ 49 ((DIV_ROUND_UP((hdr_size), 4) + \ 50 DIV_ROUND_UP((name_size), 4) + \ 51 DIV_ROUND_UP((desc_size), 4)) * 4) 52 53 static inline bool dump_is_64bit(DumpState *s) 54 { 55 return s->dump_info.d_class == ELFCLASS64; 56 } 57 58 static inline bool dump_has_filter(DumpState *s) 59 { 60 return s->filter_area_length > 0; 61 } 62 63 uint16_t cpu_to_dump16(DumpState *s, uint16_t val) 64 { 65 if (s->dump_info.d_endian == ELFDATA2LSB) { 66 val = cpu_to_le16(val); 67 } else { 68 val = cpu_to_be16(val); 69 } 70 71 return val; 72 } 73 74 uint32_t cpu_to_dump32(DumpState *s, uint32_t val) 75 { 76 if (s->dump_info.d_endian == ELFDATA2LSB) { 77 val = cpu_to_le32(val); 78 } else { 79 val = cpu_to_be32(val); 80 } 81 82 return val; 83 } 84 85 uint64_t cpu_to_dump64(DumpState *s, uint64_t val) 86 { 87 if (s->dump_info.d_endian == ELFDATA2LSB) { 88 val = cpu_to_le64(val); 89 } else { 90 val = cpu_to_be64(val); 91 } 92 93 return val; 94 } 95 96 static int dump_cleanup(DumpState *s) 97 { 98 guest_phys_blocks_free(&s->guest_phys_blocks); 99 memory_mapping_list_free(&s->list); 100 close(s->fd); 101 g_free(s->guest_note); 102 g_array_unref(s->string_table_buf); 103 s->guest_note = NULL; 104 if (s->resume) { 105 if (s->detached) { 106 qemu_mutex_lock_iothread(); 107 } 108 vm_start(); 109 if (s->detached) { 110 qemu_mutex_unlock_iothread(); 111 } 112 } 113 migrate_del_blocker(dump_migration_blocker); 114 115 return 0; 116 } 117 118 static int fd_write_vmcore(const void *buf, size_t size, void *opaque) 119 { 120 DumpState *s = opaque; 121 size_t written_size; 122 123 written_size = qemu_write_full(s->fd, buf, size); 124 if (written_size != size) { 125 return -errno; 126 } 127 128 return 0; 129 } 130 131 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header) 132 { 133 /* 134 * phnum in the elf header is 16 bit, if we have more segments we 135 * set phnum to PN_XNUM and write the real number of segments to a 136 * special section. 137 */ 138 uint16_t phnum = MIN(s->phdr_num, PN_XNUM); 139 140 memset(elf_header, 0, sizeof(Elf64_Ehdr)); 141 memcpy(elf_header, ELFMAG, SELFMAG); 142 elf_header->e_ident[EI_CLASS] = ELFCLASS64; 143 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; 144 elf_header->e_ident[EI_VERSION] = EV_CURRENT; 145 elf_header->e_type = cpu_to_dump16(s, ET_CORE); 146 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 147 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); 148 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 149 elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset); 150 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr)); 151 elf_header->e_phnum = cpu_to_dump16(s, phnum); 152 elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset); 153 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr)); 154 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); 155 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1); 156 } 157 158 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header) 159 { 160 /* 161 * phnum in the elf header is 16 bit, if we have more segments we 162 * set phnum to PN_XNUM and write the real number of segments to a 163 * special section. 164 */ 165 uint16_t phnum = MIN(s->phdr_num, PN_XNUM); 166 167 memset(elf_header, 0, sizeof(Elf32_Ehdr)); 168 memcpy(elf_header, ELFMAG, SELFMAG); 169 elf_header->e_ident[EI_CLASS] = ELFCLASS32; 170 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; 171 elf_header->e_ident[EI_VERSION] = EV_CURRENT; 172 elf_header->e_type = cpu_to_dump16(s, ET_CORE); 173 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 174 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); 175 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 176 elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset); 177 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr)); 178 elf_header->e_phnum = cpu_to_dump16(s, phnum); 179 elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset); 180 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr)); 181 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); 182 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1); 183 } 184 185 static void write_elf_header(DumpState *s, Error **errp) 186 { 187 Elf32_Ehdr elf32_header; 188 Elf64_Ehdr elf64_header; 189 size_t header_size; 190 void *header_ptr; 191 int ret; 192 193 /* The NULL header and the shstrtab are always defined */ 194 assert(s->shdr_num >= 2); 195 if (dump_is_64bit(s)) { 196 prepare_elf64_header(s, &elf64_header); 197 header_size = sizeof(elf64_header); 198 header_ptr = &elf64_header; 199 } else { 200 prepare_elf32_header(s, &elf32_header); 201 header_size = sizeof(elf32_header); 202 header_ptr = &elf32_header; 203 } 204 205 ret = fd_write_vmcore(header_ptr, header_size, s); 206 if (ret < 0) { 207 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 208 } 209 } 210 211 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, 212 int phdr_index, hwaddr offset, 213 hwaddr filesz, Error **errp) 214 { 215 Elf64_Phdr phdr; 216 int ret; 217 218 memset(&phdr, 0, sizeof(Elf64_Phdr)); 219 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 220 phdr.p_offset = cpu_to_dump64(s, offset); 221 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr); 222 phdr.p_filesz = cpu_to_dump64(s, filesz); 223 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length); 224 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 225 226 assert(memory_mapping->length >= filesz); 227 228 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 229 if (ret < 0) { 230 error_setg_errno(errp, -ret, 231 "dump: failed to write program header table"); 232 } 233 } 234 235 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, 236 int phdr_index, hwaddr offset, 237 hwaddr filesz, Error **errp) 238 { 239 Elf32_Phdr phdr; 240 int ret; 241 242 memset(&phdr, 0, sizeof(Elf32_Phdr)); 243 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 244 phdr.p_offset = cpu_to_dump32(s, offset); 245 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr); 246 phdr.p_filesz = cpu_to_dump32(s, filesz); 247 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length); 248 phdr.p_vaddr = 249 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 250 251 assert(memory_mapping->length >= filesz); 252 253 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 254 if (ret < 0) { 255 error_setg_errno(errp, -ret, 256 "dump: failed to write program header table"); 257 } 258 } 259 260 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr) 261 { 262 memset(phdr, 0, sizeof(*phdr)); 263 phdr->p_type = cpu_to_dump32(s, PT_NOTE); 264 phdr->p_offset = cpu_to_dump64(s, s->note_offset); 265 phdr->p_paddr = 0; 266 phdr->p_filesz = cpu_to_dump64(s, s->note_size); 267 phdr->p_memsz = cpu_to_dump64(s, s->note_size); 268 phdr->p_vaddr = 0; 269 } 270 271 static inline int cpu_index(CPUState *cpu) 272 { 273 return cpu->cpu_index + 1; 274 } 275 276 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s, 277 Error **errp) 278 { 279 int ret; 280 281 if (s->guest_note) { 282 ret = f(s->guest_note, s->guest_note_size, s); 283 if (ret < 0) { 284 error_setg(errp, "dump: failed to write guest note"); 285 } 286 } 287 } 288 289 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s, 290 Error **errp) 291 { 292 CPUState *cpu; 293 int ret; 294 int id; 295 296 CPU_FOREACH(cpu) { 297 id = cpu_index(cpu); 298 ret = cpu_write_elf64_note(f, cpu, id, s); 299 if (ret < 0) { 300 error_setg(errp, "dump: failed to write elf notes"); 301 return; 302 } 303 } 304 305 CPU_FOREACH(cpu) { 306 ret = cpu_write_elf64_qemunote(f, cpu, s); 307 if (ret < 0) { 308 error_setg(errp, "dump: failed to write CPU status"); 309 return; 310 } 311 } 312 313 write_guest_note(f, s, errp); 314 } 315 316 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr) 317 { 318 memset(phdr, 0, sizeof(*phdr)); 319 phdr->p_type = cpu_to_dump32(s, PT_NOTE); 320 phdr->p_offset = cpu_to_dump32(s, s->note_offset); 321 phdr->p_paddr = 0; 322 phdr->p_filesz = cpu_to_dump32(s, s->note_size); 323 phdr->p_memsz = cpu_to_dump32(s, s->note_size); 324 phdr->p_vaddr = 0; 325 } 326 327 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s, 328 Error **errp) 329 { 330 CPUState *cpu; 331 int ret; 332 int id; 333 334 CPU_FOREACH(cpu) { 335 id = cpu_index(cpu); 336 ret = cpu_write_elf32_note(f, cpu, id, s); 337 if (ret < 0) { 338 error_setg(errp, "dump: failed to write elf notes"); 339 return; 340 } 341 } 342 343 CPU_FOREACH(cpu) { 344 ret = cpu_write_elf32_qemunote(f, cpu, s); 345 if (ret < 0) { 346 error_setg(errp, "dump: failed to write CPU status"); 347 return; 348 } 349 } 350 351 write_guest_note(f, s, errp); 352 } 353 354 static void write_elf_phdr_note(DumpState *s, Error **errp) 355 { 356 Elf32_Phdr phdr32; 357 Elf64_Phdr phdr64; 358 void *phdr; 359 size_t size; 360 int ret; 361 362 if (dump_is_64bit(s)) { 363 prepare_elf64_phdr_note(s, &phdr64); 364 size = sizeof(phdr64); 365 phdr = &phdr64; 366 } else { 367 prepare_elf32_phdr_note(s, &phdr32); 368 size = sizeof(phdr32); 369 phdr = &phdr32; 370 } 371 372 ret = fd_write_vmcore(phdr, size, s); 373 if (ret < 0) { 374 error_setg_errno(errp, -ret, 375 "dump: failed to write program header table"); 376 } 377 } 378 379 static void prepare_elf_section_hdr_zero(DumpState *s) 380 { 381 if (dump_is_64bit(s)) { 382 Elf64_Shdr *shdr64 = s->elf_section_hdrs; 383 384 shdr64->sh_info = cpu_to_dump32(s, s->phdr_num); 385 } else { 386 Elf32_Shdr *shdr32 = s->elf_section_hdrs; 387 388 shdr32->sh_info = cpu_to_dump32(s, s->phdr_num); 389 } 390 } 391 392 static void prepare_elf_section_hdr_string(DumpState *s, void *buff) 393 { 394 uint64_t index = s->string_table_buf->len; 395 const char strtab[] = ".shstrtab"; 396 Elf32_Shdr shdr32 = {}; 397 Elf64_Shdr shdr64 = {}; 398 int shdr_size; 399 void *shdr; 400 401 g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab)); 402 if (dump_is_64bit(s)) { 403 shdr_size = sizeof(Elf64_Shdr); 404 shdr64.sh_type = SHT_STRTAB; 405 shdr64.sh_offset = s->section_offset + s->elf_section_data_size; 406 shdr64.sh_name = index; 407 shdr64.sh_size = s->string_table_buf->len; 408 shdr = &shdr64; 409 } else { 410 shdr_size = sizeof(Elf32_Shdr); 411 shdr32.sh_type = SHT_STRTAB; 412 shdr32.sh_offset = s->section_offset + s->elf_section_data_size; 413 shdr32.sh_name = index; 414 shdr32.sh_size = s->string_table_buf->len; 415 shdr = &shdr32; 416 } 417 memcpy(buff, shdr, shdr_size); 418 } 419 420 static bool prepare_elf_section_hdrs(DumpState *s, Error **errp) 421 { 422 size_t len, sizeof_shdr; 423 void *buff_hdr; 424 425 /* 426 * Section ordering: 427 * - HDR zero 428 * - Arch section hdrs 429 * - String table hdr 430 */ 431 sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr); 432 len = sizeof_shdr * s->shdr_num; 433 s->elf_section_hdrs = g_malloc0(len); 434 buff_hdr = s->elf_section_hdrs; 435 436 /* 437 * The first section header is ALWAYS a special initial section 438 * header. 439 * 440 * The header should be 0 with one exception being that if 441 * phdr_num is PN_XNUM then the sh_info field contains the real 442 * number of segment entries. 443 * 444 * As we zero allocate the buffer we will only need to modify 445 * sh_info for the PN_XNUM case. 446 */ 447 if (s->phdr_num >= PN_XNUM) { 448 prepare_elf_section_hdr_zero(s); 449 } 450 buff_hdr += sizeof_shdr; 451 452 /* Add architecture defined section headers */ 453 if (s->dump_info.arch_sections_write_hdr_fn 454 && s->shdr_num > 2) { 455 buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr); 456 457 if (s->shdr_num >= SHN_LORESERVE) { 458 error_setg_errno(errp, EINVAL, 459 "dump: too many architecture defined sections"); 460 return false; 461 } 462 } 463 464 /* 465 * String table is the last section since strings are added via 466 * arch_sections_write_hdr(). 467 */ 468 prepare_elf_section_hdr_string(s, buff_hdr); 469 return true; 470 } 471 472 static void write_elf_section_headers(DumpState *s, Error **errp) 473 { 474 size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr); 475 int ret; 476 477 if (!prepare_elf_section_hdrs(s, errp)) { 478 return; 479 } 480 481 ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s); 482 if (ret < 0) { 483 error_setg_errno(errp, -ret, "dump: failed to write section headers"); 484 } 485 486 g_free(s->elf_section_hdrs); 487 } 488 489 static void write_elf_sections(DumpState *s, Error **errp) 490 { 491 int ret; 492 493 if (s->elf_section_data_size) { 494 /* Write architecture section data */ 495 ret = fd_write_vmcore(s->elf_section_data, 496 s->elf_section_data_size, s); 497 if (ret < 0) { 498 error_setg_errno(errp, -ret, 499 "dump: failed to write architecture section data"); 500 return; 501 } 502 } 503 504 /* Write string table */ 505 ret = fd_write_vmcore(s->string_table_buf->data, 506 s->string_table_buf->len, s); 507 if (ret < 0) { 508 error_setg_errno(errp, -ret, "dump: failed to write string table data"); 509 } 510 } 511 512 static void write_data(DumpState *s, void *buf, int length, Error **errp) 513 { 514 int ret; 515 516 ret = fd_write_vmcore(buf, length, s); 517 if (ret < 0) { 518 error_setg_errno(errp, -ret, "dump: failed to save memory"); 519 } else { 520 s->written_size += length; 521 } 522 } 523 524 /* write the memory to vmcore. 1 page per I/O. */ 525 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, 526 int64_t size, Error **errp) 527 { 528 ERRP_GUARD(); 529 int64_t i; 530 531 for (i = 0; i < size / s->dump_info.page_size; i++) { 532 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 533 s->dump_info.page_size, errp); 534 if (*errp) { 535 return; 536 } 537 } 538 539 if ((size % s->dump_info.page_size) != 0) { 540 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 541 size % s->dump_info.page_size, errp); 542 if (*errp) { 543 return; 544 } 545 } 546 } 547 548 /* get the memory's offset and size in the vmcore */ 549 static void get_offset_range(hwaddr phys_addr, 550 ram_addr_t mapping_length, 551 DumpState *s, 552 hwaddr *p_offset, 553 hwaddr *p_filesz) 554 { 555 GuestPhysBlock *block; 556 hwaddr offset = s->memory_offset; 557 int64_t size_in_block, start; 558 559 /* When the memory is not stored into vmcore, offset will be -1 */ 560 *p_offset = -1; 561 *p_filesz = 0; 562 563 if (dump_has_filter(s)) { 564 if (phys_addr < s->filter_area_begin || 565 phys_addr >= s->filter_area_begin + s->filter_area_length) { 566 return; 567 } 568 } 569 570 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 571 if (dump_has_filter(s)) { 572 if (block->target_start >= s->filter_area_begin + s->filter_area_length || 573 block->target_end <= s->filter_area_begin) { 574 /* This block is out of the range */ 575 continue; 576 } 577 578 if (s->filter_area_begin <= block->target_start) { 579 start = block->target_start; 580 } else { 581 start = s->filter_area_begin; 582 } 583 584 size_in_block = block->target_end - start; 585 if (s->filter_area_begin + s->filter_area_length < block->target_end) { 586 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length); 587 } 588 } else { 589 start = block->target_start; 590 size_in_block = block->target_end - block->target_start; 591 } 592 593 if (phys_addr >= start && phys_addr < start + size_in_block) { 594 *p_offset = phys_addr - start + offset; 595 596 /* The offset range mapped from the vmcore file must not spill over 597 * the GuestPhysBlock, clamp it. The rest of the mapping will be 598 * zero-filled in memory at load time; see 599 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. 600 */ 601 *p_filesz = phys_addr + mapping_length <= start + size_in_block ? 602 mapping_length : 603 size_in_block - (phys_addr - start); 604 return; 605 } 606 607 offset += size_in_block; 608 } 609 } 610 611 static void write_elf_phdr_loads(DumpState *s, Error **errp) 612 { 613 ERRP_GUARD(); 614 hwaddr offset, filesz; 615 MemoryMapping *memory_mapping; 616 uint32_t phdr_index = 1; 617 618 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { 619 get_offset_range(memory_mapping->phys_addr, 620 memory_mapping->length, 621 s, &offset, &filesz); 622 if (dump_is_64bit(s)) { 623 write_elf64_load(s, memory_mapping, phdr_index++, offset, 624 filesz, errp); 625 } else { 626 write_elf32_load(s, memory_mapping, phdr_index++, offset, 627 filesz, errp); 628 } 629 630 if (*errp) { 631 return; 632 } 633 634 if (phdr_index >= s->phdr_num) { 635 break; 636 } 637 } 638 } 639 640 static void write_elf_notes(DumpState *s, Error **errp) 641 { 642 if (dump_is_64bit(s)) { 643 write_elf64_notes(fd_write_vmcore, s, errp); 644 } else { 645 write_elf32_notes(fd_write_vmcore, s, errp); 646 } 647 } 648 649 /* write elf header, PT_NOTE and elf note to vmcore. */ 650 static void dump_begin(DumpState *s, Error **errp) 651 { 652 ERRP_GUARD(); 653 654 /* 655 * the vmcore's format is: 656 * -------------- 657 * | elf header | 658 * -------------- 659 * | sctn_hdr | 660 * -------------- 661 * | PT_NOTE | 662 * -------------- 663 * | PT_LOAD | 664 * -------------- 665 * | ...... | 666 * -------------- 667 * | PT_LOAD | 668 * -------------- 669 * | elf note | 670 * -------------- 671 * | memory | 672 * -------------- 673 * 674 * we only know where the memory is saved after we write elf note into 675 * vmcore. 676 */ 677 678 /* write elf header to vmcore */ 679 write_elf_header(s, errp); 680 if (*errp) { 681 return; 682 } 683 684 /* write section headers to vmcore */ 685 write_elf_section_headers(s, errp); 686 if (*errp) { 687 return; 688 } 689 690 /* write PT_NOTE to vmcore */ 691 write_elf_phdr_note(s, errp); 692 if (*errp) { 693 return; 694 } 695 696 /* write all PT_LOADs to vmcore */ 697 write_elf_phdr_loads(s, errp); 698 if (*errp) { 699 return; 700 } 701 702 /* write notes to vmcore */ 703 write_elf_notes(s, errp); 704 } 705 706 int64_t dump_filtered_memblock_size(GuestPhysBlock *block, 707 int64_t filter_area_start, 708 int64_t filter_area_length) 709 { 710 int64_t size, left, right; 711 712 /* No filter, return full size */ 713 if (!filter_area_length) { 714 return block->target_end - block->target_start; 715 } 716 717 /* calculate the overlapped region. */ 718 left = MAX(filter_area_start, block->target_start); 719 right = MIN(filter_area_start + filter_area_length, block->target_end); 720 size = right - left; 721 size = size > 0 ? size : 0; 722 723 return size; 724 } 725 726 int64_t dump_filtered_memblock_start(GuestPhysBlock *block, 727 int64_t filter_area_start, 728 int64_t filter_area_length) 729 { 730 if (filter_area_length) { 731 /* return -1 if the block is not within filter area */ 732 if (block->target_start >= filter_area_start + filter_area_length || 733 block->target_end <= filter_area_start) { 734 return -1; 735 } 736 737 if (filter_area_start > block->target_start) { 738 return filter_area_start - block->target_start; 739 } 740 } 741 742 return 0; 743 } 744 745 /* write all memory to vmcore */ 746 static void dump_iterate(DumpState *s, Error **errp) 747 { 748 ERRP_GUARD(); 749 GuestPhysBlock *block; 750 int64_t memblock_size, memblock_start; 751 752 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 753 memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length); 754 if (memblock_start == -1) { 755 continue; 756 } 757 758 memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length); 759 760 /* Write the memory to file */ 761 write_memory(s, block, memblock_start, memblock_size, errp); 762 if (*errp) { 763 return; 764 } 765 } 766 } 767 768 static void dump_end(DumpState *s, Error **errp) 769 { 770 int rc; 771 772 if (s->elf_section_data_size) { 773 s->elf_section_data = g_malloc0(s->elf_section_data_size); 774 } 775 776 /* Adds the architecture defined section data to s->elf_section_data */ 777 if (s->dump_info.arch_sections_write_fn && 778 s->elf_section_data_size) { 779 rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data); 780 if (rc) { 781 error_setg_errno(errp, rc, 782 "dump: failed to get arch section data"); 783 g_free(s->elf_section_data); 784 return; 785 } 786 } 787 788 /* write sections to vmcore */ 789 write_elf_sections(s, errp); 790 } 791 792 static void create_vmcore(DumpState *s, Error **errp) 793 { 794 ERRP_GUARD(); 795 796 dump_begin(s, errp); 797 if (*errp) { 798 return; 799 } 800 801 /* Iterate over memory and dump it to file */ 802 dump_iterate(s, errp); 803 if (*errp) { 804 return; 805 } 806 807 /* Write the section data */ 808 dump_end(s, errp); 809 } 810 811 static int write_start_flat_header(int fd) 812 { 813 MakedumpfileHeader *mh; 814 int ret = 0; 815 816 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); 817 mh = g_malloc0(MAX_SIZE_MDF_HEADER); 818 819 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, 820 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); 821 822 mh->type = cpu_to_be64(TYPE_FLAT_HEADER); 823 mh->version = cpu_to_be64(VERSION_FLAT_HEADER); 824 825 size_t written_size; 826 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER); 827 if (written_size != MAX_SIZE_MDF_HEADER) { 828 ret = -1; 829 } 830 831 g_free(mh); 832 return ret; 833 } 834 835 static int write_end_flat_header(int fd) 836 { 837 MakedumpfileDataHeader mdh; 838 839 mdh.offset = END_FLAG_FLAT_HEADER; 840 mdh.buf_size = END_FLAG_FLAT_HEADER; 841 842 size_t written_size; 843 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 844 if (written_size != sizeof(mdh)) { 845 return -1; 846 } 847 848 return 0; 849 } 850 851 static int write_buffer(int fd, off_t offset, const void *buf, size_t size) 852 { 853 size_t written_size; 854 MakedumpfileDataHeader mdh; 855 856 mdh.offset = cpu_to_be64(offset); 857 mdh.buf_size = cpu_to_be64(size); 858 859 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 860 if (written_size != sizeof(mdh)) { 861 return -1; 862 } 863 864 written_size = qemu_write_full(fd, buf, size); 865 if (written_size != size) { 866 return -1; 867 } 868 869 return 0; 870 } 871 872 static int buf_write_note(const void *buf, size_t size, void *opaque) 873 { 874 DumpState *s = opaque; 875 876 /* note_buf is not enough */ 877 if (s->note_buf_offset + size > s->note_size) { 878 return -1; 879 } 880 881 memcpy(s->note_buf + s->note_buf_offset, buf, size); 882 883 s->note_buf_offset += size; 884 885 return 0; 886 } 887 888 /* 889 * This function retrieves various sizes from an elf header. 890 * 891 * @note has to be a valid ELF note. The return sizes are unmodified 892 * (not padded or rounded up to be multiple of 4). 893 */ 894 static void get_note_sizes(DumpState *s, const void *note, 895 uint64_t *note_head_size, 896 uint64_t *name_size, 897 uint64_t *desc_size) 898 { 899 uint64_t note_head_sz; 900 uint64_t name_sz; 901 uint64_t desc_sz; 902 903 if (dump_is_64bit(s)) { 904 const Elf64_Nhdr *hdr = note; 905 note_head_sz = sizeof(Elf64_Nhdr); 906 name_sz = cpu_to_dump64(s, hdr->n_namesz); 907 desc_sz = cpu_to_dump64(s, hdr->n_descsz); 908 } else { 909 const Elf32_Nhdr *hdr = note; 910 note_head_sz = sizeof(Elf32_Nhdr); 911 name_sz = cpu_to_dump32(s, hdr->n_namesz); 912 desc_sz = cpu_to_dump32(s, hdr->n_descsz); 913 } 914 915 if (note_head_size) { 916 *note_head_size = note_head_sz; 917 } 918 if (name_size) { 919 *name_size = name_sz; 920 } 921 if (desc_size) { 922 *desc_size = desc_sz; 923 } 924 } 925 926 static bool note_name_equal(DumpState *s, 927 const uint8_t *note, const char *name) 928 { 929 int len = strlen(name) + 1; 930 uint64_t head_size, name_size; 931 932 get_note_sizes(s, note, &head_size, &name_size, NULL); 933 head_size = ROUND_UP(head_size, 4); 934 935 return name_size == len && memcmp(note + head_size, name, len) == 0; 936 } 937 938 /* write common header, sub header and elf note to vmcore */ 939 static void create_header32(DumpState *s, Error **errp) 940 { 941 ERRP_GUARD(); 942 DiskDumpHeader32 *dh = NULL; 943 KdumpSubHeader32 *kh = NULL; 944 size_t size; 945 uint32_t block_size; 946 uint32_t sub_hdr_size; 947 uint32_t bitmap_blocks; 948 uint32_t status = 0; 949 uint64_t offset_note; 950 951 /* write common header, the version of kdump-compressed format is 6th */ 952 size = sizeof(DiskDumpHeader32); 953 dh = g_malloc0(size); 954 955 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 956 dh->header_version = cpu_to_dump32(s, 6); 957 block_size = s->dump_info.page_size; 958 dh->block_size = cpu_to_dump32(s, block_size); 959 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; 960 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 961 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 962 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 963 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 964 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 965 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 966 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 967 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 968 969 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 970 status |= DUMP_DH_COMPRESSED_ZLIB; 971 } 972 #ifdef CONFIG_LZO 973 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 974 status |= DUMP_DH_COMPRESSED_LZO; 975 } 976 #endif 977 #ifdef CONFIG_SNAPPY 978 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 979 status |= DUMP_DH_COMPRESSED_SNAPPY; 980 } 981 #endif 982 dh->status = cpu_to_dump32(s, status); 983 984 if (write_buffer(s->fd, 0, dh, size) < 0) { 985 error_setg(errp, "dump: failed to write disk dump header"); 986 goto out; 987 } 988 989 /* write sub header */ 990 size = sizeof(KdumpSubHeader32); 991 kh = g_malloc0(size); 992 993 /* 64bit max_mapnr_64 */ 994 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 995 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base); 996 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 997 998 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 999 if (s->guest_note && 1000 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1001 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 1002 1003 get_note_sizes(s, s->guest_note, 1004 &hsize, &name_size, &size_vmcoreinfo_desc); 1005 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 1006 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 1007 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 1008 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc); 1009 } 1010 1011 kh->offset_note = cpu_to_dump64(s, offset_note); 1012 kh->note_size = cpu_to_dump32(s, s->note_size); 1013 1014 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 1015 block_size, kh, size) < 0) { 1016 error_setg(errp, "dump: failed to write kdump sub header"); 1017 goto out; 1018 } 1019 1020 /* write note */ 1021 s->note_buf = g_malloc0(s->note_size); 1022 s->note_buf_offset = 0; 1023 1024 /* use s->note_buf to store notes temporarily */ 1025 write_elf32_notes(buf_write_note, s, errp); 1026 if (*errp) { 1027 goto out; 1028 } 1029 if (write_buffer(s->fd, offset_note, s->note_buf, 1030 s->note_size) < 0) { 1031 error_setg(errp, "dump: failed to write notes"); 1032 goto out; 1033 } 1034 1035 /* get offset of dump_bitmap */ 1036 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 1037 block_size; 1038 1039 /* get offset of page */ 1040 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 1041 block_size; 1042 1043 out: 1044 g_free(dh); 1045 g_free(kh); 1046 g_free(s->note_buf); 1047 } 1048 1049 /* write common header, sub header and elf note to vmcore */ 1050 static void create_header64(DumpState *s, Error **errp) 1051 { 1052 ERRP_GUARD(); 1053 DiskDumpHeader64 *dh = NULL; 1054 KdumpSubHeader64 *kh = NULL; 1055 size_t size; 1056 uint32_t block_size; 1057 uint32_t sub_hdr_size; 1058 uint32_t bitmap_blocks; 1059 uint32_t status = 0; 1060 uint64_t offset_note; 1061 1062 /* write common header, the version of kdump-compressed format is 6th */ 1063 size = sizeof(DiskDumpHeader64); 1064 dh = g_malloc0(size); 1065 1066 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 1067 dh->header_version = cpu_to_dump32(s, 6); 1068 block_size = s->dump_info.page_size; 1069 dh->block_size = cpu_to_dump32(s, block_size); 1070 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; 1071 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 1072 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 1073 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 1074 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 1075 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 1076 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 1077 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 1078 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 1079 1080 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 1081 status |= DUMP_DH_COMPRESSED_ZLIB; 1082 } 1083 #ifdef CONFIG_LZO 1084 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 1085 status |= DUMP_DH_COMPRESSED_LZO; 1086 } 1087 #endif 1088 #ifdef CONFIG_SNAPPY 1089 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 1090 status |= DUMP_DH_COMPRESSED_SNAPPY; 1091 } 1092 #endif 1093 dh->status = cpu_to_dump32(s, status); 1094 1095 if (write_buffer(s->fd, 0, dh, size) < 0) { 1096 error_setg(errp, "dump: failed to write disk dump header"); 1097 goto out; 1098 } 1099 1100 /* write sub header */ 1101 size = sizeof(KdumpSubHeader64); 1102 kh = g_malloc0(size); 1103 1104 /* 64bit max_mapnr_64 */ 1105 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 1106 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base); 1107 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 1108 1109 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 1110 if (s->guest_note && 1111 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1112 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 1113 1114 get_note_sizes(s, s->guest_note, 1115 &hsize, &name_size, &size_vmcoreinfo_desc); 1116 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 1117 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 1118 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 1119 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc); 1120 } 1121 1122 kh->offset_note = cpu_to_dump64(s, offset_note); 1123 kh->note_size = cpu_to_dump64(s, s->note_size); 1124 1125 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 1126 block_size, kh, size) < 0) { 1127 error_setg(errp, "dump: failed to write kdump sub header"); 1128 goto out; 1129 } 1130 1131 /* write note */ 1132 s->note_buf = g_malloc0(s->note_size); 1133 s->note_buf_offset = 0; 1134 1135 /* use s->note_buf to store notes temporarily */ 1136 write_elf64_notes(buf_write_note, s, errp); 1137 if (*errp) { 1138 goto out; 1139 } 1140 1141 if (write_buffer(s->fd, offset_note, s->note_buf, 1142 s->note_size) < 0) { 1143 error_setg(errp, "dump: failed to write notes"); 1144 goto out; 1145 } 1146 1147 /* get offset of dump_bitmap */ 1148 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 1149 block_size; 1150 1151 /* get offset of page */ 1152 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 1153 block_size; 1154 1155 out: 1156 g_free(dh); 1157 g_free(kh); 1158 g_free(s->note_buf); 1159 } 1160 1161 static void write_dump_header(DumpState *s, Error **errp) 1162 { 1163 if (dump_is_64bit(s)) { 1164 create_header64(s, errp); 1165 } else { 1166 create_header32(s, errp); 1167 } 1168 } 1169 1170 static size_t dump_bitmap_get_bufsize(DumpState *s) 1171 { 1172 return s->dump_info.page_size; 1173 } 1174 1175 /* 1176 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be 1177 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. 1178 * set_dump_bitmap will always leave the recently set bit un-sync. And setting 1179 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into 1180 * vmcore, ie. synchronizing un-sync bit into vmcore. 1181 */ 1182 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, 1183 uint8_t *buf, DumpState *s) 1184 { 1185 off_t old_offset, new_offset; 1186 off_t offset_bitmap1, offset_bitmap2; 1187 uint32_t byte, bit; 1188 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1189 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1190 1191 /* should not set the previous place */ 1192 assert(last_pfn <= pfn); 1193 1194 /* 1195 * if the bit needed to be set is not cached in buf, flush the data in buf 1196 * to vmcore firstly. 1197 * making new_offset be bigger than old_offset can also sync remained data 1198 * into vmcore. 1199 */ 1200 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf); 1201 new_offset = bitmap_bufsize * (pfn / bits_per_buf); 1202 1203 while (old_offset < new_offset) { 1204 /* calculate the offset and write dump_bitmap */ 1205 offset_bitmap1 = s->offset_dump_bitmap + old_offset; 1206 if (write_buffer(s->fd, offset_bitmap1, buf, 1207 bitmap_bufsize) < 0) { 1208 return -1; 1209 } 1210 1211 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ 1212 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + 1213 old_offset; 1214 if (write_buffer(s->fd, offset_bitmap2, buf, 1215 bitmap_bufsize) < 0) { 1216 return -1; 1217 } 1218 1219 memset(buf, 0, bitmap_bufsize); 1220 old_offset += bitmap_bufsize; 1221 } 1222 1223 /* get the exact place of the bit in the buf, and set it */ 1224 byte = (pfn % bits_per_buf) / CHAR_BIT; 1225 bit = (pfn % bits_per_buf) % CHAR_BIT; 1226 if (value) { 1227 buf[byte] |= 1u << bit; 1228 } else { 1229 buf[byte] &= ~(1u << bit); 1230 } 1231 1232 return 0; 1233 } 1234 1235 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr) 1236 { 1237 int target_page_shift = ctz32(s->dump_info.page_size); 1238 1239 return (addr >> target_page_shift) - ARCH_PFN_OFFSET; 1240 } 1241 1242 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn) 1243 { 1244 int target_page_shift = ctz32(s->dump_info.page_size); 1245 1246 return (pfn + ARCH_PFN_OFFSET) << target_page_shift; 1247 } 1248 1249 /* 1250 * Return the page frame number and the page content in *bufptr. bufptr can be 1251 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated 1252 * memory. This is not necessarily the memory returned. 1253 */ 1254 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, 1255 uint8_t **bufptr, DumpState *s) 1256 { 1257 GuestPhysBlock *block = *blockptr; 1258 uint32_t page_size = s->dump_info.page_size; 1259 uint8_t *buf = NULL, *hbuf; 1260 hwaddr addr; 1261 1262 /* block == NULL means the start of the iteration */ 1263 if (!block) { 1264 block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1265 *blockptr = block; 1266 addr = block->target_start; 1267 *pfnptr = dump_paddr_to_pfn(s, addr); 1268 } else { 1269 *pfnptr += 1; 1270 addr = dump_pfn_to_paddr(s, *pfnptr); 1271 } 1272 assert(block != NULL); 1273 1274 while (1) { 1275 if (addr >= block->target_start && addr < block->target_end) { 1276 size_t n = MIN(block->target_end - addr, page_size - addr % page_size); 1277 hbuf = block->host_addr + (addr - block->target_start); 1278 if (!buf) { 1279 if (n == page_size) { 1280 /* this is a whole target page, go for it */ 1281 assert(addr % page_size == 0); 1282 buf = hbuf; 1283 break; 1284 } else if (bufptr) { 1285 assert(*bufptr); 1286 buf = *bufptr; 1287 memset(buf, 0, page_size); 1288 } else { 1289 return true; 1290 } 1291 } 1292 1293 memcpy(buf + addr % page_size, hbuf, n); 1294 addr += n; 1295 if (addr % page_size == 0) { 1296 /* we filled up the page */ 1297 break; 1298 } 1299 } else { 1300 /* the next page is in the next block */ 1301 *blockptr = block = QTAILQ_NEXT(block, next); 1302 if (!block) { 1303 break; 1304 } 1305 1306 addr = block->target_start; 1307 /* are we still in the same page? */ 1308 if (dump_paddr_to_pfn(s, addr) != *pfnptr) { 1309 if (buf) { 1310 /* no, but we already filled something earlier, return it */ 1311 break; 1312 } else { 1313 /* else continue from there */ 1314 *pfnptr = dump_paddr_to_pfn(s, addr); 1315 } 1316 } 1317 } 1318 } 1319 1320 if (bufptr) { 1321 *bufptr = buf; 1322 } 1323 1324 return buf != NULL; 1325 } 1326 1327 static void write_dump_bitmap(DumpState *s, Error **errp) 1328 { 1329 int ret = 0; 1330 uint64_t last_pfn, pfn; 1331 void *dump_bitmap_buf; 1332 size_t num_dumpable; 1333 GuestPhysBlock *block_iter = NULL; 1334 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1335 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1336 1337 /* dump_bitmap_buf is used to store dump_bitmap temporarily */ 1338 dump_bitmap_buf = g_malloc0(bitmap_bufsize); 1339 1340 num_dumpable = 0; 1341 last_pfn = 0; 1342 1343 /* 1344 * exam memory page by page, and set the bit in dump_bitmap corresponded 1345 * to the existing page. 1346 */ 1347 while (get_next_page(&block_iter, &pfn, NULL, s)) { 1348 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); 1349 if (ret < 0) { 1350 error_setg(errp, "dump: failed to set dump_bitmap"); 1351 goto out; 1352 } 1353 1354 last_pfn = pfn; 1355 num_dumpable++; 1356 } 1357 1358 /* 1359 * set_dump_bitmap will always leave the recently set bit un-sync. Here we 1360 * set the remaining bits from last_pfn to the end of the bitmap buffer to 1361 * 0. With those set, the un-sync bit will be synchronized into the vmcore. 1362 */ 1363 if (num_dumpable > 0) { 1364 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false, 1365 dump_bitmap_buf, s); 1366 if (ret < 0) { 1367 error_setg(errp, "dump: failed to sync dump_bitmap"); 1368 goto out; 1369 } 1370 } 1371 1372 /* number of dumpable pages that will be dumped later */ 1373 s->num_dumpable = num_dumpable; 1374 1375 out: 1376 g_free(dump_bitmap_buf); 1377 } 1378 1379 static void prepare_data_cache(DataCache *data_cache, DumpState *s, 1380 off_t offset) 1381 { 1382 data_cache->fd = s->fd; 1383 data_cache->data_size = 0; 1384 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s); 1385 data_cache->buf = g_malloc0(data_cache->buf_size); 1386 data_cache->offset = offset; 1387 } 1388 1389 static int write_cache(DataCache *dc, const void *buf, size_t size, 1390 bool flag_sync) 1391 { 1392 /* 1393 * dc->buf_size should not be less than size, otherwise dc will never be 1394 * enough 1395 */ 1396 assert(size <= dc->buf_size); 1397 1398 /* 1399 * if flag_sync is set, synchronize data in dc->buf into vmcore. 1400 * otherwise check if the space is enough for caching data in buf, if not, 1401 * write the data in dc->buf to dc->fd and reset dc->buf 1402 */ 1403 if ((!flag_sync && dc->data_size + size > dc->buf_size) || 1404 (flag_sync && dc->data_size > 0)) { 1405 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) { 1406 return -1; 1407 } 1408 1409 dc->offset += dc->data_size; 1410 dc->data_size = 0; 1411 } 1412 1413 if (!flag_sync) { 1414 memcpy(dc->buf + dc->data_size, buf, size); 1415 dc->data_size += size; 1416 } 1417 1418 return 0; 1419 } 1420 1421 static void free_data_cache(DataCache *data_cache) 1422 { 1423 g_free(data_cache->buf); 1424 } 1425 1426 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) 1427 { 1428 switch (flag_compress) { 1429 case DUMP_DH_COMPRESSED_ZLIB: 1430 return compressBound(page_size); 1431 1432 case DUMP_DH_COMPRESSED_LZO: 1433 /* 1434 * LZO will expand incompressible data by a little amount. Please check 1435 * the following URL to see the expansion calculation: 1436 * http://www.oberhumer.com/opensource/lzo/lzofaq.php 1437 */ 1438 return page_size + page_size / 16 + 64 + 3; 1439 1440 #ifdef CONFIG_SNAPPY 1441 case DUMP_DH_COMPRESSED_SNAPPY: 1442 return snappy_max_compressed_length(page_size); 1443 #endif 1444 } 1445 return 0; 1446 } 1447 1448 static void write_dump_pages(DumpState *s, Error **errp) 1449 { 1450 int ret = 0; 1451 DataCache page_desc, page_data; 1452 size_t len_buf_out, size_out; 1453 #ifdef CONFIG_LZO 1454 lzo_bytep wrkmem = NULL; 1455 #endif 1456 uint8_t *buf_out = NULL; 1457 off_t offset_desc, offset_data; 1458 PageDescriptor pd, pd_zero; 1459 uint8_t *buf; 1460 GuestPhysBlock *block_iter = NULL; 1461 uint64_t pfn_iter; 1462 g_autofree uint8_t *page = NULL; 1463 1464 /* get offset of page_desc and page_data in dump file */ 1465 offset_desc = s->offset_page; 1466 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; 1467 1468 prepare_data_cache(&page_desc, s, offset_desc); 1469 prepare_data_cache(&page_data, s, offset_data); 1470 1471 /* prepare buffer to store compressed data */ 1472 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress); 1473 assert(len_buf_out != 0); 1474 1475 #ifdef CONFIG_LZO 1476 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); 1477 #endif 1478 1479 buf_out = g_malloc(len_buf_out); 1480 1481 /* 1482 * init zero page's page_desc and page_data, because every zero page 1483 * uses the same page_data 1484 */ 1485 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size); 1486 pd_zero.flags = cpu_to_dump32(s, 0); 1487 pd_zero.offset = cpu_to_dump64(s, offset_data); 1488 pd_zero.page_flags = cpu_to_dump64(s, 0); 1489 buf = g_malloc0(s->dump_info.page_size); 1490 ret = write_cache(&page_data, buf, s->dump_info.page_size, false); 1491 g_free(buf); 1492 if (ret < 0) { 1493 error_setg(errp, "dump: failed to write page data (zero page)"); 1494 goto out; 1495 } 1496 1497 offset_data += s->dump_info.page_size; 1498 page = g_malloc(s->dump_info.page_size); 1499 1500 /* 1501 * dump memory to vmcore page by page. zero page will all be resided in the 1502 * first page of page section 1503 */ 1504 for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) { 1505 /* check zero page */ 1506 if (buffer_is_zero(buf, s->dump_info.page_size)) { 1507 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), 1508 false); 1509 if (ret < 0) { 1510 error_setg(errp, "dump: failed to write page desc"); 1511 goto out; 1512 } 1513 } else { 1514 /* 1515 * not zero page, then: 1516 * 1. compress the page 1517 * 2. write the compressed page into the cache of page_data 1518 * 3. get page desc of the compressed page and write it into the 1519 * cache of page_desc 1520 * 1521 * only one compression format will be used here, for 1522 * s->flag_compress is set. But when compression fails to work, 1523 * we fall back to save in plaintext. 1524 */ 1525 size_out = len_buf_out; 1526 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && 1527 (compress2(buf_out, (uLongf *)&size_out, buf, 1528 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) && 1529 (size_out < s->dump_info.page_size)) { 1530 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB); 1531 pd.size = cpu_to_dump32(s, size_out); 1532 1533 ret = write_cache(&page_data, buf_out, size_out, false); 1534 if (ret < 0) { 1535 error_setg(errp, "dump: failed to write page data"); 1536 goto out; 1537 } 1538 #ifdef CONFIG_LZO 1539 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && 1540 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out, 1541 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && 1542 (size_out < s->dump_info.page_size)) { 1543 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO); 1544 pd.size = cpu_to_dump32(s, size_out); 1545 1546 ret = write_cache(&page_data, buf_out, size_out, false); 1547 if (ret < 0) { 1548 error_setg(errp, "dump: failed to write page data"); 1549 goto out; 1550 } 1551 #endif 1552 #ifdef CONFIG_SNAPPY 1553 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && 1554 (snappy_compress((char *)buf, s->dump_info.page_size, 1555 (char *)buf_out, &size_out) == SNAPPY_OK) && 1556 (size_out < s->dump_info.page_size)) { 1557 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY); 1558 pd.size = cpu_to_dump32(s, size_out); 1559 1560 ret = write_cache(&page_data, buf_out, size_out, false); 1561 if (ret < 0) { 1562 error_setg(errp, "dump: failed to write page data"); 1563 goto out; 1564 } 1565 #endif 1566 } else { 1567 /* 1568 * fall back to save in plaintext, size_out should be 1569 * assigned the target's page size 1570 */ 1571 pd.flags = cpu_to_dump32(s, 0); 1572 size_out = s->dump_info.page_size; 1573 pd.size = cpu_to_dump32(s, size_out); 1574 1575 ret = write_cache(&page_data, buf, 1576 s->dump_info.page_size, false); 1577 if (ret < 0) { 1578 error_setg(errp, "dump: failed to write page data"); 1579 goto out; 1580 } 1581 } 1582 1583 /* get and write page desc here */ 1584 pd.page_flags = cpu_to_dump64(s, 0); 1585 pd.offset = cpu_to_dump64(s, offset_data); 1586 offset_data += size_out; 1587 1588 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); 1589 if (ret < 0) { 1590 error_setg(errp, "dump: failed to write page desc"); 1591 goto out; 1592 } 1593 } 1594 s->written_size += s->dump_info.page_size; 1595 } 1596 1597 ret = write_cache(&page_desc, NULL, 0, true); 1598 if (ret < 0) { 1599 error_setg(errp, "dump: failed to sync cache for page_desc"); 1600 goto out; 1601 } 1602 ret = write_cache(&page_data, NULL, 0, true); 1603 if (ret < 0) { 1604 error_setg(errp, "dump: failed to sync cache for page_data"); 1605 goto out; 1606 } 1607 1608 out: 1609 free_data_cache(&page_desc); 1610 free_data_cache(&page_data); 1611 1612 #ifdef CONFIG_LZO 1613 g_free(wrkmem); 1614 #endif 1615 1616 g_free(buf_out); 1617 } 1618 1619 static void create_kdump_vmcore(DumpState *s, Error **errp) 1620 { 1621 ERRP_GUARD(); 1622 int ret; 1623 1624 /* 1625 * the kdump-compressed format is: 1626 * File offset 1627 * +------------------------------------------+ 0x0 1628 * | main header (struct disk_dump_header) | 1629 * |------------------------------------------+ block 1 1630 * | sub header (struct kdump_sub_header) | 1631 * |------------------------------------------+ block 2 1632 * | 1st-dump_bitmap | 1633 * |------------------------------------------+ block 2 + X blocks 1634 * | 2nd-dump_bitmap | (aligned by block) 1635 * |------------------------------------------+ block 2 + 2 * X blocks 1636 * | page desc for pfn 0 (struct page_desc) | (aligned by block) 1637 * | page desc for pfn 1 (struct page_desc) | 1638 * | : | 1639 * |------------------------------------------| (not aligned by block) 1640 * | page data (pfn 0) | 1641 * | page data (pfn 1) | 1642 * | : | 1643 * +------------------------------------------+ 1644 */ 1645 1646 ret = write_start_flat_header(s->fd); 1647 if (ret < 0) { 1648 error_setg(errp, "dump: failed to write start flat header"); 1649 return; 1650 } 1651 1652 write_dump_header(s, errp); 1653 if (*errp) { 1654 return; 1655 } 1656 1657 write_dump_bitmap(s, errp); 1658 if (*errp) { 1659 return; 1660 } 1661 1662 write_dump_pages(s, errp); 1663 if (*errp) { 1664 return; 1665 } 1666 1667 ret = write_end_flat_header(s->fd); 1668 if (ret < 0) { 1669 error_setg(errp, "dump: failed to write end flat header"); 1670 return; 1671 } 1672 } 1673 1674 static int validate_start_block(DumpState *s) 1675 { 1676 GuestPhysBlock *block; 1677 1678 if (!dump_has_filter(s)) { 1679 return 0; 1680 } 1681 1682 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1683 /* This block is out of the range */ 1684 if (block->target_start >= s->filter_area_begin + s->filter_area_length || 1685 block->target_end <= s->filter_area_begin) { 1686 continue; 1687 } 1688 return 0; 1689 } 1690 1691 return -1; 1692 } 1693 1694 static void get_max_mapnr(DumpState *s) 1695 { 1696 GuestPhysBlock *last_block; 1697 1698 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head); 1699 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end); 1700 } 1701 1702 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE }; 1703 1704 static void dump_state_prepare(DumpState *s) 1705 { 1706 /* zero the struct, setting status to active */ 1707 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE }; 1708 } 1709 1710 bool qemu_system_dump_in_progress(void) 1711 { 1712 DumpState *state = &dump_state_global; 1713 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE); 1714 } 1715 1716 /* 1717 * calculate total size of memory to be dumped (taking filter into 1718 * account.) 1719 */ 1720 static int64_t dump_calculate_size(DumpState *s) 1721 { 1722 GuestPhysBlock *block; 1723 int64_t total = 0; 1724 1725 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1726 total += dump_filtered_memblock_size(block, 1727 s->filter_area_begin, 1728 s->filter_area_length); 1729 } 1730 1731 return total; 1732 } 1733 1734 static void vmcoreinfo_update_phys_base(DumpState *s) 1735 { 1736 uint64_t size, note_head_size, name_size, phys_base; 1737 char **lines; 1738 uint8_t *vmci; 1739 size_t i; 1740 1741 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1742 return; 1743 } 1744 1745 get_note_sizes(s, s->guest_note, ¬e_head_size, &name_size, &size); 1746 note_head_size = ROUND_UP(note_head_size, 4); 1747 1748 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4); 1749 *(vmci + size) = '\0'; 1750 1751 lines = g_strsplit((char *)vmci, "\n", -1); 1752 for (i = 0; lines[i]; i++) { 1753 const char *prefix = NULL; 1754 1755 if (s->dump_info.d_machine == EM_X86_64) { 1756 prefix = "NUMBER(phys_base)="; 1757 } else if (s->dump_info.d_machine == EM_AARCH64) { 1758 prefix = "NUMBER(PHYS_OFFSET)="; 1759 } 1760 1761 if (prefix && g_str_has_prefix(lines[i], prefix)) { 1762 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16, 1763 &phys_base) < 0) { 1764 warn_report("Failed to read %s", prefix); 1765 } else { 1766 s->dump_info.phys_base = phys_base; 1767 } 1768 break; 1769 } 1770 } 1771 1772 g_strfreev(lines); 1773 } 1774 1775 static void dump_init(DumpState *s, int fd, bool has_format, 1776 DumpGuestMemoryFormat format, bool paging, bool has_filter, 1777 int64_t begin, int64_t length, Error **errp) 1778 { 1779 ERRP_GUARD(); 1780 VMCoreInfoState *vmci = vmcoreinfo_find(); 1781 CPUState *cpu; 1782 int nr_cpus; 1783 int ret; 1784 1785 s->has_format = has_format; 1786 s->format = format; 1787 s->written_size = 0; 1788 1789 /* kdump-compressed is conflict with paging and filter */ 1790 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1791 assert(!paging && !has_filter); 1792 } 1793 1794 if (runstate_is_running()) { 1795 vm_stop(RUN_STATE_SAVE_VM); 1796 s->resume = true; 1797 } else { 1798 s->resume = false; 1799 } 1800 1801 /* If we use KVM, we should synchronize the registers before we get dump 1802 * info or physmap info. 1803 */ 1804 cpu_synchronize_all_states(); 1805 nr_cpus = 0; 1806 CPU_FOREACH(cpu) { 1807 nr_cpus++; 1808 } 1809 1810 s->fd = fd; 1811 if (has_filter && !length) { 1812 error_setg(errp, QERR_INVALID_PARAMETER, "length"); 1813 goto cleanup; 1814 } 1815 s->filter_area_begin = begin; 1816 s->filter_area_length = length; 1817 1818 /* First index is 0, it's the special null name */ 1819 s->string_table_buf = g_array_new(FALSE, TRUE, 1); 1820 /* 1821 * Allocate the null name, due to the clearing option set to true 1822 * it will be 0. 1823 */ 1824 g_array_set_size(s->string_table_buf, 1); 1825 1826 memory_mapping_list_init(&s->list); 1827 1828 guest_phys_blocks_init(&s->guest_phys_blocks); 1829 guest_phys_blocks_append(&s->guest_phys_blocks); 1830 s->total_size = dump_calculate_size(s); 1831 #ifdef DEBUG_DUMP_GUEST_MEMORY 1832 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size); 1833 #endif 1834 1835 /* it does not make sense to dump non-existent memory */ 1836 if (!s->total_size) { 1837 error_setg(errp, "dump: no guest memory to dump"); 1838 goto cleanup; 1839 } 1840 1841 /* Is the filter filtering everything? */ 1842 if (validate_start_block(s) == -1) { 1843 error_setg(errp, QERR_INVALID_PARAMETER, "begin"); 1844 goto cleanup; 1845 } 1846 1847 /* get dump info: endian, class and architecture. 1848 * If the target architecture is not supported, cpu_get_dump_info() will 1849 * return -1. 1850 */ 1851 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); 1852 if (ret < 0) { 1853 error_setg(errp, 1854 "dumping guest memory is not supported on this target"); 1855 goto cleanup; 1856 } 1857 1858 if (!s->dump_info.page_size) { 1859 s->dump_info.page_size = qemu_target_page_size(); 1860 } 1861 1862 s->note_size = cpu_get_note_size(s->dump_info.d_class, 1863 s->dump_info.d_machine, nr_cpus); 1864 assert(s->note_size >= 0); 1865 1866 /* 1867 * The goal of this block is to (a) update the previously guessed 1868 * phys_base, (b) copy the guest note out of the guest. 1869 * Failure to do so is not fatal for dumping. 1870 */ 1871 if (vmci) { 1872 uint64_t addr, note_head_size, name_size, desc_size; 1873 uint32_t size; 1874 uint16_t format; 1875 1876 note_head_size = dump_is_64bit(s) ? 1877 sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr); 1878 1879 format = le16_to_cpu(vmci->vmcoreinfo.guest_format); 1880 size = le32_to_cpu(vmci->vmcoreinfo.size); 1881 addr = le64_to_cpu(vmci->vmcoreinfo.paddr); 1882 if (!vmci->has_vmcoreinfo) { 1883 warn_report("guest note is not present"); 1884 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) { 1885 warn_report("guest note size is invalid: %" PRIu32, size); 1886 } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) { 1887 warn_report("guest note format is unsupported: %" PRIu16, format); 1888 } else { 1889 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */ 1890 cpu_physical_memory_read(addr, s->guest_note, size); 1891 1892 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size); 1893 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size, 1894 desc_size); 1895 if (name_size > MAX_GUEST_NOTE_SIZE || 1896 desc_size > MAX_GUEST_NOTE_SIZE || 1897 s->guest_note_size > size) { 1898 warn_report("Invalid guest note header"); 1899 g_free(s->guest_note); 1900 s->guest_note = NULL; 1901 } else { 1902 vmcoreinfo_update_phys_base(s); 1903 s->note_size += s->guest_note_size; 1904 } 1905 } 1906 } 1907 1908 /* get memory mapping */ 1909 if (paging) { 1910 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp); 1911 if (*errp) { 1912 goto cleanup; 1913 } 1914 } else { 1915 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); 1916 } 1917 1918 s->nr_cpus = nr_cpus; 1919 1920 get_max_mapnr(s); 1921 1922 uint64_t tmp; 1923 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), 1924 s->dump_info.page_size); 1925 s->len_dump_bitmap = tmp * s->dump_info.page_size; 1926 1927 /* init for kdump-compressed format */ 1928 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1929 switch (format) { 1930 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: 1931 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; 1932 break; 1933 1934 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: 1935 #ifdef CONFIG_LZO 1936 if (lzo_init() != LZO_E_OK) { 1937 error_setg(errp, "failed to initialize the LZO library"); 1938 goto cleanup; 1939 } 1940 #endif 1941 s->flag_compress = DUMP_DH_COMPRESSED_LZO; 1942 break; 1943 1944 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: 1945 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; 1946 break; 1947 1948 default: 1949 s->flag_compress = 0; 1950 } 1951 1952 return; 1953 } 1954 1955 if (dump_has_filter(s)) { 1956 memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length); 1957 } 1958 1959 /* 1960 * The first section header is always a special one in which most 1961 * fields are 0. The section header string table is also always 1962 * set. 1963 */ 1964 s->shdr_num = 2; 1965 1966 /* 1967 * Adds the number of architecture sections to shdr_num and sets 1968 * elf_section_data_size so we know the offsets and sizes of all 1969 * parts. 1970 */ 1971 if (s->dump_info.arch_sections_add_fn) { 1972 s->dump_info.arch_sections_add_fn(s); 1973 } 1974 1975 /* 1976 * calculate shdr_num so we know the offsets and sizes of all 1977 * parts. 1978 * Calculate phdr_num 1979 * 1980 * The absolute maximum amount of phdrs is UINT32_MAX - 1 as 1981 * sh_info is 32 bit. There's special handling once we go over 1982 * UINT16_MAX - 1 but that is handled in the ehdr and section 1983 * code. 1984 */ 1985 s->phdr_num = 1; /* Reserve PT_NOTE */ 1986 if (s->list.num <= UINT32_MAX - 1) { 1987 s->phdr_num += s->list.num; 1988 } else { 1989 s->phdr_num = UINT32_MAX; 1990 } 1991 1992 /* 1993 * Now that the number of section and program headers is known we 1994 * can calculate the offsets of the headers and data. 1995 */ 1996 if (dump_is_64bit(s)) { 1997 s->shdr_offset = sizeof(Elf64_Ehdr); 1998 s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num; 1999 s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num; 2000 } else { 2001 s->shdr_offset = sizeof(Elf32_Ehdr); 2002 s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num; 2003 s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num; 2004 } 2005 s->memory_offset = s->note_offset + s->note_size; 2006 s->section_offset = s->memory_offset + s->total_size; 2007 2008 return; 2009 2010 cleanup: 2011 dump_cleanup(s); 2012 } 2013 2014 /* this operation might be time consuming. */ 2015 static void dump_process(DumpState *s, Error **errp) 2016 { 2017 ERRP_GUARD(); 2018 DumpQueryResult *result = NULL; 2019 2020 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 2021 create_win_dump(s, errp); 2022 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 2023 create_kdump_vmcore(s, errp); 2024 } else { 2025 create_vmcore(s, errp); 2026 } 2027 2028 /* make sure status is written after written_size updates */ 2029 smp_wmb(); 2030 qatomic_set(&s->status, 2031 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED)); 2032 2033 /* send DUMP_COMPLETED message (unconditionally) */ 2034 result = qmp_query_dump(NULL); 2035 /* should never fail */ 2036 assert(result); 2037 qapi_event_send_dump_completed(result, 2038 *errp ? error_get_pretty(*errp) : NULL); 2039 qapi_free_DumpQueryResult(result); 2040 2041 dump_cleanup(s); 2042 } 2043 2044 static void *dump_thread(void *data) 2045 { 2046 DumpState *s = (DumpState *)data; 2047 dump_process(s, NULL); 2048 return NULL; 2049 } 2050 2051 DumpQueryResult *qmp_query_dump(Error **errp) 2052 { 2053 DumpQueryResult *result = g_new(DumpQueryResult, 1); 2054 DumpState *state = &dump_state_global; 2055 result->status = qatomic_read(&state->status); 2056 /* make sure we are reading status and written_size in order */ 2057 smp_rmb(); 2058 result->completed = state->written_size; 2059 result->total = state->total_size; 2060 return result; 2061 } 2062 2063 void qmp_dump_guest_memory(bool paging, const char *file, 2064 bool has_detach, bool detach, 2065 bool has_begin, int64_t begin, bool has_length, 2066 int64_t length, bool has_format, 2067 DumpGuestMemoryFormat format, Error **errp) 2068 { 2069 ERRP_GUARD(); 2070 const char *p; 2071 int fd = -1; 2072 DumpState *s; 2073 bool detach_p = false; 2074 2075 if (runstate_check(RUN_STATE_INMIGRATE)) { 2076 error_setg(errp, "Dump not allowed during incoming migration."); 2077 return; 2078 } 2079 2080 /* if there is a dump in background, we should wait until the dump 2081 * finished */ 2082 if (qemu_system_dump_in_progress()) { 2083 error_setg(errp, "There is a dump in process, please wait."); 2084 return; 2085 } 2086 2087 /* 2088 * kdump-compressed format need the whole memory dumped, so paging or 2089 * filter is not supported here. 2090 */ 2091 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && 2092 (paging || has_begin || has_length)) { 2093 error_setg(errp, "kdump-compressed format doesn't support paging or " 2094 "filter"); 2095 return; 2096 } 2097 if (has_begin && !has_length) { 2098 error_setg(errp, QERR_MISSING_PARAMETER, "length"); 2099 return; 2100 } 2101 if (!has_begin && has_length) { 2102 error_setg(errp, QERR_MISSING_PARAMETER, "begin"); 2103 return; 2104 } 2105 if (has_detach) { 2106 detach_p = detach; 2107 } 2108 2109 /* check whether lzo/snappy is supported */ 2110 #ifndef CONFIG_LZO 2111 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { 2112 error_setg(errp, "kdump-lzo is not available now"); 2113 return; 2114 } 2115 #endif 2116 2117 #ifndef CONFIG_SNAPPY 2118 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { 2119 error_setg(errp, "kdump-snappy is not available now"); 2120 return; 2121 } 2122 #endif 2123 2124 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP 2125 && !win_dump_available(errp)) { 2126 return; 2127 } 2128 2129 #if !defined(WIN32) 2130 if (strstart(file, "fd:", &p)) { 2131 fd = monitor_get_fd(monitor_cur(), p, errp); 2132 if (fd == -1) { 2133 return; 2134 } 2135 } 2136 #endif 2137 2138 if (strstart(file, "file:", &p)) { 2139 fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); 2140 if (fd < 0) { 2141 error_setg_file_open(errp, errno, p); 2142 return; 2143 } 2144 } 2145 2146 if (fd == -1) { 2147 error_setg(errp, QERR_INVALID_PARAMETER, "protocol"); 2148 return; 2149 } 2150 2151 if (!dump_migration_blocker) { 2152 error_setg(&dump_migration_blocker, 2153 "Live migration disabled: dump-guest-memory in progress"); 2154 } 2155 2156 /* 2157 * Allows even for -only-migratable, but forbid migration during the 2158 * process of dump guest memory. 2159 */ 2160 if (migrate_add_blocker_internal(dump_migration_blocker, errp)) { 2161 /* Remember to release the fd before passing it over to dump state */ 2162 close(fd); 2163 return; 2164 } 2165 2166 s = &dump_state_global; 2167 dump_state_prepare(s); 2168 2169 dump_init(s, fd, has_format, format, paging, has_begin, 2170 begin, length, errp); 2171 if (*errp) { 2172 qatomic_set(&s->status, DUMP_STATUS_FAILED); 2173 return; 2174 } 2175 2176 if (detach_p) { 2177 /* detached dump */ 2178 s->detached = true; 2179 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread, 2180 s, QEMU_THREAD_DETACHED); 2181 } else { 2182 /* sync dump */ 2183 dump_process(s, errp); 2184 } 2185 } 2186 2187 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) 2188 { 2189 DumpGuestMemoryCapability *cap = 2190 g_new0(DumpGuestMemoryCapability, 1); 2191 DumpGuestMemoryFormatList **tail = &cap->formats; 2192 2193 /* elf is always available */ 2194 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF); 2195 2196 /* kdump-zlib is always available */ 2197 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB); 2198 2199 /* add new item if kdump-lzo is available */ 2200 #ifdef CONFIG_LZO 2201 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO); 2202 #endif 2203 2204 /* add new item if kdump-snappy is available */ 2205 #ifdef CONFIG_SNAPPY 2206 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY); 2207 #endif 2208 2209 if (win_dump_available(NULL)) { 2210 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP); 2211 } 2212 2213 return cap; 2214 } 2215