xref: /qemu/hw/acpi/nvdimm.c (revision 6402cbbb)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
35 
36 static int nvdimm_device_list(Object *obj, void *opaque)
37 {
38     GSList **list = opaque;
39 
40     if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41         *list = g_slist_append(*list, DEVICE(obj));
42     }
43 
44     object_child_foreach(obj, nvdimm_device_list, opaque);
45     return 0;
46 }
47 
48 /*
49  * inquire NVDIMM devices and link them into the list which is
50  * returned to the caller.
51  *
52  * Note: it is the caller's responsibility to free the list to avoid
53  * memory leak.
54  */
55 static GSList *nvdimm_get_device_list(void)
56 {
57     GSList *list = NULL;
58 
59     object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list);
60     return list;
61 }
62 
63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
64    { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
65      (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
66      (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
67 
68 /*
69  * define Byte Addressable Persistent Memory (PM) Region according to
70  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
71  */
72 static const uint8_t nvdimm_nfit_spa_uuid[] =
73       NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
74                      0x18, 0xb7, 0x8c, 0xdb);
75 
76 /*
77  * NVDIMM Firmware Interface Table
78  * @signature: "NFIT"
79  *
80  * It provides information that allows OSPM to enumerate NVDIMM present in
81  * the platform and associate system physical address ranges created by the
82  * NVDIMMs.
83  *
84  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
85  */
86 struct NvdimmNfitHeader {
87     ACPI_TABLE_HEADER_DEF
88     uint32_t reserved;
89 } QEMU_PACKED;
90 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
91 
92 /*
93  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
94  * Interface Table (NFIT).
95  */
96 
97 /*
98  * System Physical Address Range Structure
99  *
100  * It describes the system physical address ranges occupied by NVDIMMs and
101  * the types of the regions.
102  */
103 struct NvdimmNfitSpa {
104     uint16_t type;
105     uint16_t length;
106     uint16_t spa_index;
107     uint16_t flags;
108     uint32_t reserved;
109     uint32_t proximity_domain;
110     uint8_t type_guid[16];
111     uint64_t spa_base;
112     uint64_t spa_length;
113     uint64_t mem_attr;
114 } QEMU_PACKED;
115 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
116 
117 /*
118  * Memory Device to System Physical Address Range Mapping Structure
119  *
120  * It enables identifying each NVDIMM region and the corresponding SPA
121  * describing the memory interleave
122  */
123 struct NvdimmNfitMemDev {
124     uint16_t type;
125     uint16_t length;
126     uint32_t nfit_handle;
127     uint16_t phys_id;
128     uint16_t region_id;
129     uint16_t spa_index;
130     uint16_t dcr_index;
131     uint64_t region_len;
132     uint64_t region_offset;
133     uint64_t region_dpa;
134     uint16_t interleave_index;
135     uint16_t interleave_ways;
136     uint16_t flags;
137     uint16_t reserved;
138 } QEMU_PACKED;
139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
140 
141 /*
142  * NVDIMM Control Region Structure
143  *
144  * It describes the NVDIMM and if applicable, Block Control Window.
145  */
146 struct NvdimmNfitControlRegion {
147     uint16_t type;
148     uint16_t length;
149     uint16_t dcr_index;
150     uint16_t vendor_id;
151     uint16_t device_id;
152     uint16_t revision_id;
153     uint16_t sub_vendor_id;
154     uint16_t sub_device_id;
155     uint16_t sub_revision_id;
156     uint8_t reserved[6];
157     uint32_t serial_number;
158     uint16_t fic;
159     uint16_t num_bcw;
160     uint64_t bcw_size;
161     uint64_t cmd_offset;
162     uint64_t cmd_size;
163     uint64_t status_offset;
164     uint64_t status_size;
165     uint16_t flags;
166     uint8_t reserved2[6];
167 } QEMU_PACKED;
168 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
169 
170 /*
171  * Module serial number is a unique number for each device. We use the
172  * slot id of NVDIMM device to generate this number so that each device
173  * associates with a different number.
174  *
175  * 0x123456 is a magic number we arbitrarily chose.
176  */
177 static uint32_t nvdimm_slot_to_sn(int slot)
178 {
179     return 0x123456 + slot;
180 }
181 
182 /*
183  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
184  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
185  * by ACPI device _ADR method.
186  *
187  * We generate the handle with the slot id of NVDIMM device and reserve
188  * 0 for NVDIMM root device.
189  */
190 static uint32_t nvdimm_slot_to_handle(int slot)
191 {
192     return slot + 1;
193 }
194 
195 /*
196  * index uniquely identifies the structure, 0 is reserved which indicates
197  * that the structure is not valid or the associated structure is not
198  * present.
199  *
200  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
201  * nfit_dc which are generated by the slot id of NVDIMM device.
202  */
203 static uint16_t nvdimm_slot_to_spa_index(int slot)
204 {
205     return (slot + 1) << 1;
206 }
207 
208 /* See the comments of nvdimm_slot_to_spa_index(). */
209 static uint32_t nvdimm_slot_to_dcr_index(int slot)
210 {
211     return nvdimm_slot_to_spa_index(slot) + 1;
212 }
213 
214 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
215 {
216     NVDIMMDevice *nvdimm = NULL;
217     GSList *list, *device_list = nvdimm_get_device_list();
218 
219     for (list = device_list; list; list = list->next) {
220         NVDIMMDevice *nvd = list->data;
221         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
222                                            NULL);
223 
224         if (nvdimm_slot_to_handle(slot) == handle) {
225             nvdimm = nvd;
226             break;
227         }
228     }
229 
230     g_slist_free(device_list);
231     return nvdimm;
232 }
233 
234 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
235 static void
236 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
237 {
238     NvdimmNfitSpa *nfit_spa;
239     uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
240                                              NULL);
241     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
242                                              NULL);
243     uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
244                                              NULL);
245     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
246                                        NULL);
247 
248     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
249 
250     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
251                                       Structure */);
252     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
253     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
254 
255     /*
256      * Control region is strict as all the device info, such as SN, index,
257      * is associated with slot id.
258      */
259     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
260                                        management during hot add/online
261                                        operation */ |
262                                   2 /* Data in Proximity Domain field is
263                                        valid*/);
264 
265     /* NUMA node. */
266     nfit_spa->proximity_domain = cpu_to_le32(node);
267     /* the region reported as PMEM. */
268     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
269            sizeof(nvdimm_nfit_spa_uuid));
270 
271     nfit_spa->spa_base = cpu_to_le64(addr);
272     nfit_spa->spa_length = cpu_to_le64(size);
273 
274     /* It is the PMEM and can be cached as writeback. */
275     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
276                                      0x8000ULL /* EFI_MEMORY_NV */);
277 }
278 
279 /*
280  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
281  * Structure
282  */
283 static void
284 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
285 {
286     NvdimmNfitMemDev *nfit_memdev;
287     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
288                                              NULL);
289     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
290                                             NULL);
291     uint32_t handle = nvdimm_slot_to_handle(slot);
292 
293     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
294 
295     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
296                                          Range Map Structure*/);
297     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
298     nfit_memdev->nfit_handle = cpu_to_le32(handle);
299 
300     /*
301      * associate memory device with System Physical Address Range
302      * Structure.
303      */
304     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
305     /* associate memory device with Control Region Structure. */
306     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
307 
308     /* The memory region on the device. */
309     nfit_memdev->region_len = cpu_to_le64(size);
310     /* The device address starts from 0. */
311     nfit_memdev->region_dpa = cpu_to_le64(0);
312 
313     /* Only one interleave for PMEM. */
314     nfit_memdev->interleave_ways = cpu_to_le16(1);
315 }
316 
317 /*
318  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
319  */
320 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
321 {
322     NvdimmNfitControlRegion *nfit_dcr;
323     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
324                                        NULL);
325     uint32_t sn = nvdimm_slot_to_sn(slot);
326 
327     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
328 
329     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
330     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
331     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
332 
333     /* vendor: Intel. */
334     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
335     nfit_dcr->device_id = cpu_to_le16(1);
336 
337     /* The _DSM method is following Intel's DSM specification. */
338     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
339                                              in ACPI 6.0 is 1. */);
340     nfit_dcr->serial_number = cpu_to_le32(sn);
341     nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
342                                          Byte addressable, no energy backed.
343                                          See ACPI 6.2, sect 5.2.25.6 and
344                                          JEDEC Annex L Release 3. */);
345 }
346 
347 static GArray *nvdimm_build_device_structure(void)
348 {
349     GSList *device_list = nvdimm_get_device_list();
350     GArray *structures = g_array_new(false, true /* clear */, 1);
351 
352     for (; device_list; device_list = device_list->next) {
353         DeviceState *dev = device_list->data;
354 
355         /* build System Physical Address Range Structure. */
356         nvdimm_build_structure_spa(structures, dev);
357 
358         /*
359          * build Memory Device to System Physical Address Range Mapping
360          * Structure.
361          */
362         nvdimm_build_structure_memdev(structures, dev);
363 
364         /* build NVDIMM Control Region Structure. */
365         nvdimm_build_structure_dcr(structures, dev);
366     }
367     g_slist_free(device_list);
368 
369     return structures;
370 }
371 
372 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
373 {
374     fit_buf->fit = g_array_new(false, true /* clear */, 1);
375 }
376 
377 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
378 {
379     g_array_free(fit_buf->fit, true);
380     fit_buf->fit = nvdimm_build_device_structure();
381     fit_buf->dirty = true;
382 }
383 
384 void nvdimm_plug(AcpiNVDIMMState *state)
385 {
386     nvdimm_build_fit_buffer(&state->fit_buf);
387 }
388 
389 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
390                               GArray *table_data, BIOSLinker *linker)
391 {
392     NvdimmFitBuffer *fit_buf = &state->fit_buf;
393     unsigned int header;
394 
395     acpi_add_table(table_offsets, table_data);
396 
397     /* NFIT header. */
398     header = table_data->len;
399     acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
400     /* NVDIMM device structures. */
401     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
402 
403     build_header(linker, table_data,
404                  (void *)(table_data->data + header), "NFIT",
405                  sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
406 }
407 
408 #define NVDIMM_DSM_MEMORY_SIZE      4096
409 
410 struct NvdimmDsmIn {
411     uint32_t handle;
412     uint32_t revision;
413     uint32_t function;
414     /* the remaining size in the page is used by arg3. */
415     union {
416         uint8_t arg3[4084];
417     };
418 } QEMU_PACKED;
419 typedef struct NvdimmDsmIn NvdimmDsmIn;
420 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
421 
422 struct NvdimmDsmOut {
423     /* the size of buffer filled by QEMU. */
424     uint32_t len;
425     uint8_t data[4092];
426 } QEMU_PACKED;
427 typedef struct NvdimmDsmOut NvdimmDsmOut;
428 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
429 
430 struct NvdimmDsmFunc0Out {
431     /* the size of buffer filled by QEMU. */
432      uint32_t len;
433      uint32_t supported_func;
434 } QEMU_PACKED;
435 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
436 
437 struct NvdimmDsmFuncNoPayloadOut {
438     /* the size of buffer filled by QEMU. */
439      uint32_t len;
440      uint32_t func_ret_status;
441 } QEMU_PACKED;
442 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
443 
444 struct NvdimmFuncGetLabelSizeOut {
445     /* the size of buffer filled by QEMU. */
446     uint32_t len;
447     uint32_t func_ret_status; /* return status code. */
448     uint32_t label_size; /* the size of label data area. */
449     /*
450      * Maximum size of the namespace label data length supported by
451      * the platform in Get/Set Namespace Label Data functions.
452      */
453     uint32_t max_xfer;
454 } QEMU_PACKED;
455 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
456 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
457 
458 struct NvdimmFuncGetLabelDataIn {
459     uint32_t offset; /* the offset in the namespace label data area. */
460     uint32_t length; /* the size of data is to be read via the function. */
461 } QEMU_PACKED;
462 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
463 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
464                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
465 
466 struct NvdimmFuncGetLabelDataOut {
467     /* the size of buffer filled by QEMU. */
468     uint32_t len;
469     uint32_t func_ret_status; /* return status code. */
470     uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
471 } QEMU_PACKED;
472 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
474 
475 struct NvdimmFuncSetLabelDataIn {
476     uint32_t offset; /* the offset in the namespace label data area. */
477     uint32_t length; /* the size of data is to be written via the function. */
478     uint8_t in_buf[0]; /* the data written to label data area. */
479 } QEMU_PACKED;
480 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
481 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
482                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
483 
484 struct NvdimmFuncReadFITIn {
485     uint32_t offset; /* the offset into FIT buffer. */
486 } QEMU_PACKED;
487 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
488 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
489                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
490 
491 struct NvdimmFuncReadFITOut {
492     /* the size of buffer filled by QEMU. */
493     uint32_t len;
494     uint32_t func_ret_status; /* return status code. */
495     uint8_t fit[0]; /* the FIT data. */
496 } QEMU_PACKED;
497 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
499 
500 static void
501 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
502 {
503     NvdimmDsmFunc0Out func0 = {
504         .len = cpu_to_le32(sizeof(func0)),
505         .supported_func = cpu_to_le32(supported_func),
506     };
507     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
508 }
509 
510 static void
511 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
512 {
513     NvdimmDsmFuncNoPayloadOut out = {
514         .len = cpu_to_le32(sizeof(out)),
515         .func_ret_status = cpu_to_le32(func_ret_status),
516     };
517     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
518 }
519 
520 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
521 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
522 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
523 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
524 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
525 
526 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
527 
528 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
529 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
530                                      hwaddr dsm_mem_addr)
531 {
532     NvdimmFitBuffer *fit_buf = &state->fit_buf;
533     NvdimmFuncReadFITIn *read_fit;
534     NvdimmFuncReadFITOut *read_fit_out;
535     GArray *fit;
536     uint32_t read_len = 0, func_ret_status;
537     int size;
538 
539     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
540     le32_to_cpus(&read_fit->offset);
541 
542     fit = fit_buf->fit;
543 
544     nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
545                  read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
546 
547     if (read_fit->offset > fit->len) {
548         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
549         goto exit;
550     }
551 
552     /* It is the first time to read FIT. */
553     if (!read_fit->offset) {
554         fit_buf->dirty = false;
555     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
556         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
557         goto exit;
558     }
559 
560     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
561     read_len = MIN(fit->len - read_fit->offset,
562                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
563 
564 exit:
565     size = sizeof(NvdimmFuncReadFITOut) + read_len;
566     read_fit_out = g_malloc(size);
567 
568     read_fit_out->len = cpu_to_le32(size);
569     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
570     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
571 
572     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
573 
574     g_free(read_fit_out);
575 }
576 
577 static void
578 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state,
579                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
580 {
581     switch (in->function) {
582     case 0x0:
583         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
584         return;
585     case 0x1 /* Read FIT */:
586         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
587         return;
588     }
589 
590     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
591 }
592 
593 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
594 {
595     /*
596      * function 0 is called to inquire which functions are supported by
597      * OSPM
598      */
599     if (!in->function) {
600         nvdimm_dsm_function0(0 /* No function supported other than
601                                   function 0 */, dsm_mem_addr);
602         return;
603     }
604 
605     /* No function except function 0 is supported yet. */
606     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
607 }
608 
609 /*
610  * the max transfer size is the max size transferred by both a
611  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
612  * function.
613  */
614 static uint32_t nvdimm_get_max_xfer_label_size(void)
615 {
616     uint32_t max_get_size, max_set_size, dsm_memory_size;
617 
618     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
619 
620     /*
621      * the max data ACPI can read one time which is transferred by
622      * the response of 'Get Namespace Label Data' function.
623      */
624     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
625 
626     /*
627      * the max data ACPI can write one time which is transferred by
628      * 'Set Namespace Label Data' function.
629      */
630     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
631                    sizeof(NvdimmFuncSetLabelDataIn);
632 
633     return MIN(max_get_size, max_set_size);
634 }
635 
636 /*
637  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
638  *
639  * It gets the size of Namespace Label data area and the max data size
640  * that Get/Set Namespace Label Data functions can transfer.
641  */
642 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
643 {
644     NvdimmFuncGetLabelSizeOut label_size_out = {
645         .len = cpu_to_le32(sizeof(label_size_out)),
646     };
647     uint32_t label_size, mxfer;
648 
649     label_size = nvdimm->label_size;
650     mxfer = nvdimm_get_max_xfer_label_size();
651 
652     nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
653 
654     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
655     label_size_out.label_size = cpu_to_le32(label_size);
656     label_size_out.max_xfer = cpu_to_le32(mxfer);
657 
658     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
659                               sizeof(label_size_out));
660 }
661 
662 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
663                                            uint32_t offset, uint32_t length)
664 {
665     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
666 
667     if (offset + length < offset) {
668         nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
669                      length);
670         return ret;
671     }
672 
673     if (nvdimm->label_size < offset + length) {
674         nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
675                      offset + length, nvdimm->label_size);
676         return ret;
677     }
678 
679     if (length > nvdimm_get_max_xfer_label_size()) {
680         nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
681                      length, nvdimm_get_max_xfer_label_size());
682         return ret;
683     }
684 
685     return NVDIMM_DSM_RET_STATUS_SUCCESS;
686 }
687 
688 /*
689  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
690  */
691 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
692                                       hwaddr dsm_mem_addr)
693 {
694     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
695     NvdimmFuncGetLabelDataIn *get_label_data;
696     NvdimmFuncGetLabelDataOut *get_label_data_out;
697     uint32_t status;
698     int size;
699 
700     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
701     le32_to_cpus(&get_label_data->offset);
702     le32_to_cpus(&get_label_data->length);
703 
704     nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
705                  get_label_data->offset, get_label_data->length);
706 
707     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
708                                         get_label_data->length);
709     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
710         nvdimm_dsm_no_payload(status, dsm_mem_addr);
711         return;
712     }
713 
714     size = sizeof(*get_label_data_out) + get_label_data->length;
715     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
716     get_label_data_out = g_malloc(size);
717 
718     get_label_data_out->len = cpu_to_le32(size);
719     get_label_data_out->func_ret_status =
720                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
721     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
722                          get_label_data->length, get_label_data->offset);
723 
724     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
725     g_free(get_label_data_out);
726 }
727 
728 /*
729  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
730  */
731 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
732                                       hwaddr dsm_mem_addr)
733 {
734     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
735     NvdimmFuncSetLabelDataIn *set_label_data;
736     uint32_t status;
737 
738     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
739 
740     le32_to_cpus(&set_label_data->offset);
741     le32_to_cpus(&set_label_data->length);
742 
743     nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
744                  set_label_data->offset, set_label_data->length);
745 
746     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
747                                         set_label_data->length);
748     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
749         nvdimm_dsm_no_payload(status, dsm_mem_addr);
750         return;
751     }
752 
753     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
754                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
755 
756     nvc->write_label_data(nvdimm, set_label_data->in_buf,
757                           set_label_data->length, set_label_data->offset);
758     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
759 }
760 
761 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
762 {
763     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
764 
765     /* See the comments in nvdimm_dsm_root(). */
766     if (!in->function) {
767         uint32_t supported_func = 0;
768 
769         if (nvdimm && nvdimm->label_size) {
770             supported_func |= 0x1 /* Bit 0 indicates whether there is
771                                      support for any functions other
772                                      than function 0. */ |
773                               1 << 4 /* Get Namespace Label Size */ |
774                               1 << 5 /* Get Namespace Label Data */ |
775                               1 << 6 /* Set Namespace Label Data */;
776         }
777         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
778         return;
779     }
780 
781     if (!nvdimm) {
782         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
783                               dsm_mem_addr);
784         return;
785     }
786 
787     /* Encode DSM function according to DSM Spec Rev1. */
788     switch (in->function) {
789     case 4 /* Get Namespace Label Size */:
790         if (nvdimm->label_size) {
791             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
792             return;
793         }
794         break;
795     case 5 /* Get Namespace Label Data */:
796         if (nvdimm->label_size) {
797             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
798             return;
799         }
800         break;
801     case 0x6 /* Set Namespace Label Data */:
802         if (nvdimm->label_size) {
803             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
804             return;
805         }
806         break;
807     }
808 
809     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
810 }
811 
812 static uint64_t
813 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
814 {
815     nvdimm_debug("BUG: we never read _DSM IO Port.\n");
816     return 0;
817 }
818 
819 static void
820 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
821 {
822     AcpiNVDIMMState *state = opaque;
823     NvdimmDsmIn *in;
824     hwaddr dsm_mem_addr = val;
825 
826     nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
827 
828     /*
829      * The DSM memory is mapped to guest address space so an evil guest
830      * can change its content while we are doing DSM emulation. Avoid
831      * this by copying DSM memory to QEMU local memory.
832      */
833     in = g_new(NvdimmDsmIn, 1);
834     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
835 
836     le32_to_cpus(&in->revision);
837     le32_to_cpus(&in->function);
838     le32_to_cpus(&in->handle);
839 
840     nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
841                  in->handle, in->function);
842 
843     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
844         nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
845                      in->revision, 0x1);
846         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
847         goto exit;
848     }
849 
850     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
851         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
852         goto exit;
853     }
854 
855      /* Handle 0 is reserved for NVDIMM Root Device. */
856     if (!in->handle) {
857         nvdimm_dsm_root(in, dsm_mem_addr);
858         goto exit;
859     }
860 
861     nvdimm_dsm_device(in, dsm_mem_addr);
862 
863 exit:
864     g_free(in);
865 }
866 
867 static const MemoryRegionOps nvdimm_dsm_ops = {
868     .read = nvdimm_dsm_read,
869     .write = nvdimm_dsm_write,
870     .endianness = DEVICE_LITTLE_ENDIAN,
871     .valid = {
872         .min_access_size = 4,
873         .max_access_size = 4,
874     },
875 };
876 
877 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
878 {
879     if (dev->hotplugged) {
880         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
881     }
882 }
883 
884 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
885                             FWCfgState *fw_cfg, Object *owner)
886 {
887     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
888                           "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
889     memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
890 
891     state->dsm_mem = g_array_new(false, true /* clear */, 1);
892     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
893     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
894                     state->dsm_mem->len);
895 
896     nvdimm_init_fit_buffer(&state->fit_buf);
897 }
898 
899 #define NVDIMM_COMMON_DSM       "NCAL"
900 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
901 
902 #define NVDIMM_DSM_MEMORY       "NRAM"
903 #define NVDIMM_DSM_IOPORT       "NPIO"
904 
905 #define NVDIMM_DSM_NOTIFY       "NTFI"
906 #define NVDIMM_DSM_HANDLE       "HDLE"
907 #define NVDIMM_DSM_REVISION     "REVS"
908 #define NVDIMM_DSM_FUNCTION     "FUNC"
909 #define NVDIMM_DSM_ARG3         "FARG"
910 
911 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
912 #define NVDIMM_DSM_OUT_BUF      "ODAT"
913 
914 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
915 
916 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
917 
918 static void nvdimm_build_common_dsm(Aml *dev)
919 {
920     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
921     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
922     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
923     uint8_t byte_list[1];
924 
925     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
926     uuid = aml_arg(0);
927     function = aml_arg(2);
928     handle = aml_arg(4);
929     dsm_mem = aml_local(6);
930     dsm_out_buf = aml_local(7);
931 
932     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
933 
934     /* map DSM memory and IO into ACPI namespace. */
935     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
936                aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
937     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
938                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
939 
940     /*
941      * DSM notifier:
942      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
943      *                    emulate the access.
944      *
945      * It is the IO port so that accessing them will cause VM-exit, the
946      * control will be transferred to QEMU.
947      */
948     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
949                       AML_PRESERVE);
950     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
951                sizeof(uint32_t) * BITS_PER_BYTE));
952     aml_append(method, field);
953 
954     /*
955      * DSM input:
956      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
957      *                    happens on NVDIMM Root Device.
958      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
959      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
960      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
961      *                  containing function-specific arguments.
962      *
963      * They are RAM mapping on host so that these accesses never cause
964      * VM-EXIT.
965      */
966     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
967                       AML_PRESERVE);
968     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
969                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
970     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
971                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
972     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
973                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
974     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
975          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
976     aml_append(method, field);
977 
978     /*
979      * DSM output:
980      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
981      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
982      *
983      * Since the page is reused by both input and out, the input data
984      * will be lost after storing new result into ODAT so we should fetch
985      * all the input data before writing the result.
986      */
987     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
988                       AML_PRESERVE);
989     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
990                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
991     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
992        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
993     aml_append(method, field);
994 
995     /*
996      * do not support any method if DSM memory address has not been
997      * patched.
998      */
999     unpatched = aml_equal(dsm_mem, aml_int(0x0));
1000 
1001     expected_uuid = aml_local(0);
1002 
1003     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1004     aml_append(ifctx, aml_store(
1005                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1006                /* UUID for NVDIMM Root Device */, expected_uuid));
1007     aml_append(method, ifctx);
1008     elsectx = aml_else();
1009     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1010     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1011                /* UUID for QEMU internal use */), expected_uuid));
1012     aml_append(elsectx, ifctx);
1013     elsectx2 = aml_else();
1014     aml_append(elsectx2, aml_store(
1015                aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1016                /* UUID for NVDIMM Devices */, expected_uuid));
1017     aml_append(elsectx, elsectx2);
1018     aml_append(method, elsectx);
1019 
1020     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1021 
1022     unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1023 
1024     /*
1025      * function 0 is called to inquire what functions are supported by
1026      * OSPM
1027      */
1028     ifctx = aml_if(aml_equal(function, aml_int(0)));
1029     byte_list[0] = 0 /* No function Supported */;
1030     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1031     aml_append(unsupport, ifctx);
1032 
1033     /* No function is supported yet. */
1034     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1035     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1036     aml_append(method, unsupport);
1037 
1038     /*
1039      * The HDLE indicates the DSM function is issued from which device,
1040      * it reserves 0 for root device and is the handle for NVDIMM devices.
1041      * See the comments in nvdimm_slot_to_handle().
1042      */
1043     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1044     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1045     aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1046 
1047     /*
1048      * The fourth parameter (Arg3) of _DSM is a package which contains
1049      * a buffer, the layout of the buffer is specified by UUID (Arg0),
1050      * Revision ID (Arg1) and Function Index (Arg2) which are documented
1051      * in the DSM Spec.
1052      */
1053     pckg = aml_arg(3);
1054     ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1055                    aml_int(4 /* Package */)) /* It is a Package? */,
1056                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1057                    NULL));
1058 
1059     pckg_index = aml_local(2);
1060     pckg_buf = aml_local(3);
1061     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1062     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1063     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1064     aml_append(method, ifctx);
1065 
1066     /*
1067      * tell QEMU about the real address of DSM memory, then QEMU
1068      * gets the control and fills the result in DSM memory.
1069      */
1070     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1071 
1072     dsm_out_buf_size = aml_local(1);
1073     /* RLEN is not included in the payload returned to guest. */
1074     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1075                aml_int(4), dsm_out_buf_size));
1076     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1077                                  dsm_out_buf_size));
1078     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1079                aml_int(0), dsm_out_buf_size, "OBUF"));
1080     aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1081                                        dsm_out_buf));
1082     aml_append(method, aml_return(dsm_out_buf));
1083     aml_append(dev, method);
1084 }
1085 
1086 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1087 {
1088     Aml *method;
1089 
1090     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1091     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1092                                   aml_arg(1), aml_arg(2), aml_arg(3),
1093                                   aml_int(handle))));
1094     aml_append(dev, method);
1095 }
1096 
1097 static void nvdimm_build_fit(Aml *dev)
1098 {
1099     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1100     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1101 
1102     buf = aml_local(0);
1103     buf_size = aml_local(1);
1104     fit = aml_local(2);
1105 
1106     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1107 
1108     /* build helper function, RFIT. */
1109     method = aml_method("RFIT", 1, AML_SERIALIZED);
1110     aml_append(method, aml_name_decl("OFST", aml_int(0)));
1111 
1112     /* prepare input package. */
1113     pkg = aml_package(1);
1114     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1115     aml_append(pkg, aml_name("OFST"));
1116 
1117     /* call Read_FIT function. */
1118     call_result = aml_call5(NVDIMM_COMMON_DSM,
1119                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1120                             aml_int(1) /* Revision 1 */,
1121                             aml_int(0x1) /* Read FIT */,
1122                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1123     aml_append(method, aml_store(call_result, buf));
1124 
1125     /* handle _DSM result. */
1126     aml_append(method, aml_create_dword_field(buf,
1127                aml_int(0) /* offset at byte 0 */, "STAU"));
1128 
1129     aml_append(method, aml_store(aml_name("STAU"),
1130                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
1131 
1132      /* if something is wrong during _DSM. */
1133     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1134                        aml_name("STAU"));
1135     ifctx = aml_if(aml_lnot(ifcond));
1136     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1137     aml_append(method, ifctx);
1138 
1139     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1140     aml_append(method, aml_subtract(buf_size,
1141                                     aml_int(4) /* the size of "STAU" */,
1142                                     buf_size));
1143 
1144     /* if we read the end of fit. */
1145     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1146     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1147     aml_append(method, ifctx);
1148 
1149     aml_append(method, aml_create_field(buf,
1150                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1151                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1152     aml_append(method, aml_return(aml_name("BUFF")));
1153     aml_append(dev, method);
1154 
1155     /* build _FIT. */
1156     method = aml_method("_FIT", 0, AML_SERIALIZED);
1157     offset = aml_local(3);
1158 
1159     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1160     aml_append(method, aml_store(aml_int(0), offset));
1161 
1162     whilectx = aml_while(aml_int(1));
1163     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1164     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1165 
1166     /*
1167      * if fit buffer was changed during RFIT, read from the beginning
1168      * again.
1169      */
1170     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1171                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1172     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1173     aml_append(ifctx, aml_store(aml_int(0), offset));
1174     aml_append(whilectx, ifctx);
1175 
1176     elsectx = aml_else();
1177 
1178     /* finish fit read if no data is read out. */
1179     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1180     aml_append(ifctx, aml_return(fit));
1181     aml_append(elsectx, ifctx);
1182 
1183     /* update the offset. */
1184     aml_append(elsectx, aml_add(offset, buf_size, offset));
1185     /* append the data we read out to the fit buffer. */
1186     aml_append(elsectx, aml_concatenate(fit, buf, fit));
1187     aml_append(whilectx, elsectx);
1188     aml_append(method, whilectx);
1189 
1190     aml_append(dev, method);
1191 }
1192 
1193 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1194 {
1195     uint32_t slot;
1196 
1197     for (slot = 0; slot < ram_slots; slot++) {
1198         uint32_t handle = nvdimm_slot_to_handle(slot);
1199         Aml *nvdimm_dev;
1200 
1201         nvdimm_dev = aml_device("NV%02X", slot);
1202 
1203         /*
1204          * ACPI 6.0: 9.20 NVDIMM Devices:
1205          *
1206          * _ADR object that is used to supply OSPM with unique address
1207          * of the NVDIMM device. This is done by returning the NFIT Device
1208          * handle that is used to identify the associated entries in ACPI
1209          * table NFIT or _FIT.
1210          */
1211         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1212 
1213         nvdimm_build_device_dsm(nvdimm_dev, handle);
1214         aml_append(root_dev, nvdimm_dev);
1215     }
1216 }
1217 
1218 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1219                               BIOSLinker *linker, GArray *dsm_dma_arrea,
1220                               uint32_t ram_slots)
1221 {
1222     Aml *ssdt, *sb_scope, *dev;
1223     int mem_addr_offset, nvdimm_ssdt;
1224 
1225     acpi_add_table(table_offsets, table_data);
1226 
1227     ssdt = init_aml_allocator();
1228     acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1229 
1230     sb_scope = aml_scope("\\_SB");
1231 
1232     dev = aml_device("NVDR");
1233 
1234     /*
1235      * ACPI 6.0: 9.20 NVDIMM Devices:
1236      *
1237      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1238      * NVDIMM interface device. Platform firmware is required to contain one
1239      * such device in _SB scope if NVDIMMs support is exposed by platform to
1240      * OSPM.
1241      * For each NVDIMM present or intended to be supported by platform,
1242      * platform firmware also exposes an ACPI Namespace Device under the
1243      * root device.
1244      */
1245     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1246 
1247     nvdimm_build_common_dsm(dev);
1248 
1249     /* 0 is reserved for root device. */
1250     nvdimm_build_device_dsm(dev, 0);
1251     nvdimm_build_fit(dev);
1252 
1253     nvdimm_build_nvdimm_devices(dev, ram_slots);
1254 
1255     aml_append(sb_scope, dev);
1256     aml_append(ssdt, sb_scope);
1257 
1258     nvdimm_ssdt = table_data->len;
1259 
1260     /* copy AML table into ACPI tables blob and patch header there */
1261     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1262     mem_addr_offset = build_append_named_dword(table_data,
1263                                                NVDIMM_ACPI_MEM_ADDR);
1264 
1265     bios_linker_loader_alloc(linker,
1266                              NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1267                              sizeof(NvdimmDsmIn), false /* high memory */);
1268     bios_linker_loader_add_pointer(linker,
1269         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1270         NVDIMM_DSM_MEM_FILE, 0);
1271     build_header(linker, table_data,
1272         (void *)(table_data->data + nvdimm_ssdt),
1273         "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1274     free_aml_allocator();
1275 }
1276 
1277 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1278                        BIOSLinker *linker, AcpiNVDIMMState *state,
1279                        uint32_t ram_slots)
1280 {
1281     GSList *device_list;
1282 
1283     /* no nvdimm device can be plugged. */
1284     if (!ram_slots) {
1285         return;
1286     }
1287 
1288     nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1289                       ram_slots);
1290 
1291     device_list = nvdimm_get_device_list();
1292     /* no NVDIMM device is plugged. */
1293     if (!device_list) {
1294         return;
1295     }
1296 
1297     nvdimm_build_nfit(state, table_offsets, table_data, linker);
1298     g_slist_free(device_list);
1299 }
1300