xref: /qemu/hw/acpi/nvdimm.c (revision b30d1886)
1 /*
2  * NVDIMM ACPI Implementation
3  *
4  * Copyright(C) 2015 Intel Corporation.
5  *
6  * Author:
7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8  *
9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10  * and the DSM specification can be found at:
11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12  *
13  * Currently, it only supports PMEM Virtualization.
14  *
15  * This library is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU Lesser General Public
17  * License as published by the Free Software Foundation; either
18  * version 2 of the License, or (at your option) any later version.
19  *
20  * This library is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  * Lesser General Public License for more details.
24  *
25  * You should have received a copy of the GNU Lesser General Public
26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
27  */
28 
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
35 
36 static int nvdimm_device_list(Object *obj, void *opaque)
37 {
38     GSList **list = opaque;
39 
40     if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41         *list = g_slist_append(*list, DEVICE(obj));
42     }
43 
44     object_child_foreach(obj, nvdimm_device_list, opaque);
45     return 0;
46 }
47 
48 /*
49  * inquire NVDIMM devices and link them into the list which is
50  * returned to the caller.
51  *
52  * Note: it is the caller's responsibility to free the list to avoid
53  * memory leak.
54  */
55 static GSList *nvdimm_get_device_list(void)
56 {
57     GSList *list = NULL;
58 
59     object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list);
60     return list;
61 }
62 
63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
64    { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
65      (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
66      (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
67 
68 /*
69  * define Byte Addressable Persistent Memory (PM) Region according to
70  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
71  */
72 static const uint8_t nvdimm_nfit_spa_uuid[] =
73       NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
74                      0x18, 0xb7, 0x8c, 0xdb);
75 
76 /*
77  * NVDIMM Firmware Interface Table
78  * @signature: "NFIT"
79  *
80  * It provides information that allows OSPM to enumerate NVDIMM present in
81  * the platform and associate system physical address ranges created by the
82  * NVDIMMs.
83  *
84  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
85  */
86 struct NvdimmNfitHeader {
87     ACPI_TABLE_HEADER_DEF
88     uint32_t reserved;
89 } QEMU_PACKED;
90 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
91 
92 /*
93  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
94  * Interface Table (NFIT).
95  */
96 
97 /*
98  * System Physical Address Range Structure
99  *
100  * It describes the system physical address ranges occupied by NVDIMMs and
101  * the types of the regions.
102  */
103 struct NvdimmNfitSpa {
104     uint16_t type;
105     uint16_t length;
106     uint16_t spa_index;
107     uint16_t flags;
108     uint32_t reserved;
109     uint32_t proximity_domain;
110     uint8_t type_guid[16];
111     uint64_t spa_base;
112     uint64_t spa_length;
113     uint64_t mem_attr;
114 } QEMU_PACKED;
115 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
116 
117 /*
118  * Memory Device to System Physical Address Range Mapping Structure
119  *
120  * It enables identifying each NVDIMM region and the corresponding SPA
121  * describing the memory interleave
122  */
123 struct NvdimmNfitMemDev {
124     uint16_t type;
125     uint16_t length;
126     uint32_t nfit_handle;
127     uint16_t phys_id;
128     uint16_t region_id;
129     uint16_t spa_index;
130     uint16_t dcr_index;
131     uint64_t region_len;
132     uint64_t region_offset;
133     uint64_t region_dpa;
134     uint16_t interleave_index;
135     uint16_t interleave_ways;
136     uint16_t flags;
137     uint16_t reserved;
138 } QEMU_PACKED;
139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
140 
141 /*
142  * NVDIMM Control Region Structure
143  *
144  * It describes the NVDIMM and if applicable, Block Control Window.
145  */
146 struct NvdimmNfitControlRegion {
147     uint16_t type;
148     uint16_t length;
149     uint16_t dcr_index;
150     uint16_t vendor_id;
151     uint16_t device_id;
152     uint16_t revision_id;
153     uint16_t sub_vendor_id;
154     uint16_t sub_device_id;
155     uint16_t sub_revision_id;
156     uint8_t reserved[6];
157     uint32_t serial_number;
158     uint16_t fic;
159     uint16_t num_bcw;
160     uint64_t bcw_size;
161     uint64_t cmd_offset;
162     uint64_t cmd_size;
163     uint64_t status_offset;
164     uint64_t status_size;
165     uint16_t flags;
166     uint8_t reserved2[6];
167 } QEMU_PACKED;
168 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
169 
170 /*
171  * Module serial number is a unique number for each device. We use the
172  * slot id of NVDIMM device to generate this number so that each device
173  * associates with a different number.
174  *
175  * 0x123456 is a magic number we arbitrarily chose.
176  */
177 static uint32_t nvdimm_slot_to_sn(int slot)
178 {
179     return 0x123456 + slot;
180 }
181 
182 /*
183  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
184  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
185  * by ACPI device _ADR method.
186  *
187  * We generate the handle with the slot id of NVDIMM device and reserve
188  * 0 for NVDIMM root device.
189  */
190 static uint32_t nvdimm_slot_to_handle(int slot)
191 {
192     return slot + 1;
193 }
194 
195 /*
196  * index uniquely identifies the structure, 0 is reserved which indicates
197  * that the structure is not valid or the associated structure is not
198  * present.
199  *
200  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
201  * nfit_dc which are generated by the slot id of NVDIMM device.
202  */
203 static uint16_t nvdimm_slot_to_spa_index(int slot)
204 {
205     return (slot + 1) << 1;
206 }
207 
208 /* See the comments of nvdimm_slot_to_spa_index(). */
209 static uint32_t nvdimm_slot_to_dcr_index(int slot)
210 {
211     return nvdimm_slot_to_spa_index(slot) + 1;
212 }
213 
214 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
215 {
216     NVDIMMDevice *nvdimm = NULL;
217     GSList *list, *device_list = nvdimm_get_device_list();
218 
219     for (list = device_list; list; list = list->next) {
220         NVDIMMDevice *nvd = list->data;
221         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
222                                            NULL);
223 
224         if (nvdimm_slot_to_handle(slot) == handle) {
225             nvdimm = nvd;
226             break;
227         }
228     }
229 
230     g_slist_free(device_list);
231     return nvdimm;
232 }
233 
234 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
235 static void
236 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
237 {
238     NvdimmNfitSpa *nfit_spa;
239     uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
240                                             NULL);
241     uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
242                                             NULL);
243     uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
244                                             NULL);
245     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
246                                             NULL);
247 
248     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
249 
250     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
251                                       Structure */);
252     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
253     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
254 
255     /*
256      * Control region is strict as all the device info, such as SN, index,
257      * is associated with slot id.
258      */
259     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
260                                        management during hot add/online
261                                        operation */ |
262                                   2 /* Data in Proximity Domain field is
263                                        valid*/);
264 
265     /* NUMA node. */
266     nfit_spa->proximity_domain = cpu_to_le32(node);
267     /* the region reported as PMEM. */
268     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
269            sizeof(nvdimm_nfit_spa_uuid));
270 
271     nfit_spa->spa_base = cpu_to_le64(addr);
272     nfit_spa->spa_length = cpu_to_le64(size);
273 
274     /* It is the PMEM and can be cached as writeback. */
275     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
276                                      0x8000ULL /* EFI_MEMORY_NV */);
277 }
278 
279 /*
280  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
281  * Structure
282  */
283 static void
284 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
285 {
286     NvdimmNfitMemDev *nfit_memdev;
287     uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
288                                             NULL);
289     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
290                                             NULL);
291     uint32_t handle = nvdimm_slot_to_handle(slot);
292 
293     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
294 
295     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
296                                          Range Map Structure*/);
297     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
298     nfit_memdev->nfit_handle = cpu_to_le32(handle);
299 
300     /*
301      * associate memory device with System Physical Address Range
302      * Structure.
303      */
304     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
305     /* associate memory device with Control Region Structure. */
306     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
307 
308     /* The memory region on the device. */
309     nfit_memdev->region_len = cpu_to_le64(size);
310     /* The device address starts from 0. */
311     nfit_memdev->region_dpa = cpu_to_le64(0);
312 
313     /* Only one interleave for PMEM. */
314     nfit_memdev->interleave_ways = cpu_to_le16(1);
315 }
316 
317 /*
318  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
319  */
320 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
321 {
322     NvdimmNfitControlRegion *nfit_dcr;
323     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
324                                        NULL);
325     uint32_t sn = nvdimm_slot_to_sn(slot);
326 
327     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
328 
329     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
330     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
331     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
332 
333     /* vendor: Intel. */
334     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
335     nfit_dcr->device_id = cpu_to_le16(1);
336 
337     /* The _DSM method is following Intel's DSM specification. */
338     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
339                                              in ACPI 6.0 is 1. */);
340     nfit_dcr->serial_number = cpu_to_le32(sn);
341     nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
342                                          2: NVDIMM Device Specific Method
343                                          (DSM) in DSM Spec Rev1.*/);
344 }
345 
346 static GArray *nvdimm_build_device_structure(void)
347 {
348     GSList *device_list = nvdimm_get_device_list();
349     GArray *structures = g_array_new(false, true /* clear */, 1);
350 
351     for (; device_list; device_list = device_list->next) {
352         DeviceState *dev = device_list->data;
353 
354         /* build System Physical Address Range Structure. */
355         nvdimm_build_structure_spa(structures, dev);
356 
357         /*
358          * build Memory Device to System Physical Address Range Mapping
359          * Structure.
360          */
361         nvdimm_build_structure_memdev(structures, dev);
362 
363         /* build NVDIMM Control Region Structure. */
364         nvdimm_build_structure_dcr(structures, dev);
365     }
366     g_slist_free(device_list);
367 
368     return structures;
369 }
370 
371 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
372 {
373     fit_buf->fit = g_array_new(false, true /* clear */, 1);
374 }
375 
376 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
377 {
378     g_array_free(fit_buf->fit, true);
379     fit_buf->fit = nvdimm_build_device_structure();
380     fit_buf->dirty = true;
381 }
382 
383 void nvdimm_plug(AcpiNVDIMMState *state)
384 {
385     nvdimm_build_fit_buffer(&state->fit_buf);
386 }
387 
388 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
389                               GArray *table_data, BIOSLinker *linker)
390 {
391     NvdimmFitBuffer *fit_buf = &state->fit_buf;
392     unsigned int header;
393 
394     acpi_add_table(table_offsets, table_data);
395 
396     /* NFIT header. */
397     header = table_data->len;
398     acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
399     /* NVDIMM device structures. */
400     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
401 
402     build_header(linker, table_data,
403                  (void *)(table_data->data + header), "NFIT",
404                  sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
405 }
406 
407 #define NVDIMM_DSM_MEMORY_SIZE      4096
408 
409 struct NvdimmDsmIn {
410     uint32_t handle;
411     uint32_t revision;
412     uint32_t function;
413     /* the remaining size in the page is used by arg3. */
414     union {
415         uint8_t arg3[4084];
416     };
417 } QEMU_PACKED;
418 typedef struct NvdimmDsmIn NvdimmDsmIn;
419 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
420 
421 struct NvdimmDsmOut {
422     /* the size of buffer filled by QEMU. */
423     uint32_t len;
424     uint8_t data[4092];
425 } QEMU_PACKED;
426 typedef struct NvdimmDsmOut NvdimmDsmOut;
427 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
428 
429 struct NvdimmDsmFunc0Out {
430     /* the size of buffer filled by QEMU. */
431      uint32_t len;
432      uint32_t supported_func;
433 } QEMU_PACKED;
434 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
435 
436 struct NvdimmDsmFuncNoPayloadOut {
437     /* the size of buffer filled by QEMU. */
438      uint32_t len;
439      uint32_t func_ret_status;
440 } QEMU_PACKED;
441 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
442 
443 struct NvdimmFuncGetLabelSizeOut {
444     /* the size of buffer filled by QEMU. */
445     uint32_t len;
446     uint32_t func_ret_status; /* return status code. */
447     uint32_t label_size; /* the size of label data area. */
448     /*
449      * Maximum size of the namespace label data length supported by
450      * the platform in Get/Set Namespace Label Data functions.
451      */
452     uint32_t max_xfer;
453 } QEMU_PACKED;
454 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
455 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
456 
457 struct NvdimmFuncGetLabelDataIn {
458     uint32_t offset; /* the offset in the namespace label data area. */
459     uint32_t length; /* the size of data is to be read via the function. */
460 } QEMU_PACKED;
461 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
462 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
463                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
464 
465 struct NvdimmFuncGetLabelDataOut {
466     /* the size of buffer filled by QEMU. */
467     uint32_t len;
468     uint32_t func_ret_status; /* return status code. */
469     uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
470 } QEMU_PACKED;
471 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
472 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
473 
474 struct NvdimmFuncSetLabelDataIn {
475     uint32_t offset; /* the offset in the namespace label data area. */
476     uint32_t length; /* the size of data is to be written via the function. */
477     uint8_t in_buf[0]; /* the data written to label data area. */
478 } QEMU_PACKED;
479 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
481                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
482 
483 struct NvdimmFuncReadFITIn {
484     uint32_t offset; /* the offset into FIT buffer. */
485 } QEMU_PACKED;
486 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
487 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
488                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
489 
490 struct NvdimmFuncReadFITOut {
491     /* the size of buffer filled by QEMU. */
492     uint32_t len;
493     uint32_t func_ret_status; /* return status code. */
494     uint8_t fit[0]; /* the FIT data. */
495 } QEMU_PACKED;
496 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
497 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
498 
499 static void
500 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
501 {
502     NvdimmDsmFunc0Out func0 = {
503         .len = cpu_to_le32(sizeof(func0)),
504         .supported_func = cpu_to_le32(supported_func),
505     };
506     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
507 }
508 
509 static void
510 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
511 {
512     NvdimmDsmFuncNoPayloadOut out = {
513         .len = cpu_to_le32(sizeof(out)),
514         .func_ret_status = cpu_to_le32(func_ret_status),
515     };
516     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
517 }
518 
519 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
520 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
521 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
522 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
523 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
524 
525 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
526 
527 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
528 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
529                                      hwaddr dsm_mem_addr)
530 {
531     NvdimmFitBuffer *fit_buf = &state->fit_buf;
532     NvdimmFuncReadFITIn *read_fit;
533     NvdimmFuncReadFITOut *read_fit_out;
534     GArray *fit;
535     uint32_t read_len = 0, func_ret_status;
536     int size;
537 
538     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
539     le32_to_cpus(&read_fit->offset);
540 
541     fit = fit_buf->fit;
542 
543     nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
544                  read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
545 
546     if (read_fit->offset > fit->len) {
547         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
548         goto exit;
549     }
550 
551     /* It is the first time to read FIT. */
552     if (!read_fit->offset) {
553         fit_buf->dirty = false;
554     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
555         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
556         goto exit;
557     }
558 
559     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
560     read_len = MIN(fit->len - read_fit->offset,
561                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
562 
563 exit:
564     size = sizeof(NvdimmFuncReadFITOut) + read_len;
565     read_fit_out = g_malloc(size);
566 
567     read_fit_out->len = cpu_to_le32(size);
568     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
569     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
570 
571     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
572 
573     g_free(read_fit_out);
574 }
575 
576 static void
577 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state,
578                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
579 {
580     switch (in->function) {
581     case 0x0:
582         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
583         return;
584     case 0x1 /* Read FIT */:
585         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
586         return;
587     }
588 
589     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
590 }
591 
592 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
593 {
594     /*
595      * function 0 is called to inquire which functions are supported by
596      * OSPM
597      */
598     if (!in->function) {
599         nvdimm_dsm_function0(0 /* No function supported other than
600                                   function 0 */, dsm_mem_addr);
601         return;
602     }
603 
604     /* No function except function 0 is supported yet. */
605     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
606 }
607 
608 /*
609  * the max transfer size is the max size transferred by both a
610  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
611  * function.
612  */
613 static uint32_t nvdimm_get_max_xfer_label_size(void)
614 {
615     uint32_t max_get_size, max_set_size, dsm_memory_size;
616 
617     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
618 
619     /*
620      * the max data ACPI can read one time which is transferred by
621      * the response of 'Get Namespace Label Data' function.
622      */
623     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
624 
625     /*
626      * the max data ACPI can write one time which is transferred by
627      * 'Set Namespace Label Data' function.
628      */
629     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
630                    sizeof(NvdimmFuncSetLabelDataIn);
631 
632     return MIN(max_get_size, max_set_size);
633 }
634 
635 /*
636  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
637  *
638  * It gets the size of Namespace Label data area and the max data size
639  * that Get/Set Namespace Label Data functions can transfer.
640  */
641 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
642 {
643     NvdimmFuncGetLabelSizeOut label_size_out = {
644         .len = cpu_to_le32(sizeof(label_size_out)),
645     };
646     uint32_t label_size, mxfer;
647 
648     label_size = nvdimm->label_size;
649     mxfer = nvdimm_get_max_xfer_label_size();
650 
651     nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
652 
653     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
654     label_size_out.label_size = cpu_to_le32(label_size);
655     label_size_out.max_xfer = cpu_to_le32(mxfer);
656 
657     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
658                               sizeof(label_size_out));
659 }
660 
661 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
662                                            uint32_t offset, uint32_t length)
663 {
664     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
665 
666     if (offset + length < offset) {
667         nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
668                      length);
669         return ret;
670     }
671 
672     if (nvdimm->label_size < offset + length) {
673         nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
674                      offset + length, nvdimm->label_size);
675         return ret;
676     }
677 
678     if (length > nvdimm_get_max_xfer_label_size()) {
679         nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
680                      length, nvdimm_get_max_xfer_label_size());
681         return ret;
682     }
683 
684     return NVDIMM_DSM_RET_STATUS_SUCCESS;
685 }
686 
687 /*
688  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
689  */
690 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
691                                       hwaddr dsm_mem_addr)
692 {
693     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
694     NvdimmFuncGetLabelDataIn *get_label_data;
695     NvdimmFuncGetLabelDataOut *get_label_data_out;
696     uint32_t status;
697     int size;
698 
699     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
700     le32_to_cpus(&get_label_data->offset);
701     le32_to_cpus(&get_label_data->length);
702 
703     nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
704                  get_label_data->offset, get_label_data->length);
705 
706     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
707                                         get_label_data->length);
708     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
709         nvdimm_dsm_no_payload(status, dsm_mem_addr);
710         return;
711     }
712 
713     size = sizeof(*get_label_data_out) + get_label_data->length;
714     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
715     get_label_data_out = g_malloc(size);
716 
717     get_label_data_out->len = cpu_to_le32(size);
718     get_label_data_out->func_ret_status =
719                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
720     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
721                          get_label_data->length, get_label_data->offset);
722 
723     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
724     g_free(get_label_data_out);
725 }
726 
727 /*
728  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
729  */
730 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
731                                       hwaddr dsm_mem_addr)
732 {
733     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
734     NvdimmFuncSetLabelDataIn *set_label_data;
735     uint32_t status;
736 
737     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
738 
739     le32_to_cpus(&set_label_data->offset);
740     le32_to_cpus(&set_label_data->length);
741 
742     nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
743                  set_label_data->offset, set_label_data->length);
744 
745     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
746                                         set_label_data->length);
747     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
748         nvdimm_dsm_no_payload(status, dsm_mem_addr);
749         return;
750     }
751 
752     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
753                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
754 
755     nvc->write_label_data(nvdimm, set_label_data->in_buf,
756                           set_label_data->length, set_label_data->offset);
757     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
758 }
759 
760 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
761 {
762     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
763 
764     /* See the comments in nvdimm_dsm_root(). */
765     if (!in->function) {
766         uint32_t supported_func = 0;
767 
768         if (nvdimm && nvdimm->label_size) {
769             supported_func |= 0x1 /* Bit 0 indicates whether there is
770                                      support for any functions other
771                                      than function 0. */ |
772                               1 << 4 /* Get Namespace Label Size */ |
773                               1 << 5 /* Get Namespace Label Data */ |
774                               1 << 6 /* Set Namespace Label Data */;
775         }
776         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
777         return;
778     }
779 
780     if (!nvdimm) {
781         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
782                               dsm_mem_addr);
783         return;
784     }
785 
786     /* Encode DSM function according to DSM Spec Rev1. */
787     switch (in->function) {
788     case 4 /* Get Namespace Label Size */:
789         if (nvdimm->label_size) {
790             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
791             return;
792         }
793         break;
794     case 5 /* Get Namespace Label Data */:
795         if (nvdimm->label_size) {
796             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
797             return;
798         }
799         break;
800     case 0x6 /* Set Namespace Label Data */:
801         if (nvdimm->label_size) {
802             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
803             return;
804         }
805         break;
806     }
807 
808     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
809 }
810 
811 static uint64_t
812 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
813 {
814     nvdimm_debug("BUG: we never read _DSM IO Port.\n");
815     return 0;
816 }
817 
818 static void
819 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
820 {
821     AcpiNVDIMMState *state = opaque;
822     NvdimmDsmIn *in;
823     hwaddr dsm_mem_addr = val;
824 
825     nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
826 
827     /*
828      * The DSM memory is mapped to guest address space so an evil guest
829      * can change its content while we are doing DSM emulation. Avoid
830      * this by copying DSM memory to QEMU local memory.
831      */
832     in = g_new(NvdimmDsmIn, 1);
833     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
834 
835     le32_to_cpus(&in->revision);
836     le32_to_cpus(&in->function);
837     le32_to_cpus(&in->handle);
838 
839     nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
840                  in->handle, in->function);
841 
842     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
843         nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
844                      in->revision, 0x1);
845         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
846         goto exit;
847     }
848 
849     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
850         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
851         goto exit;
852     }
853 
854      /* Handle 0 is reserved for NVDIMM Root Device. */
855     if (!in->handle) {
856         nvdimm_dsm_root(in, dsm_mem_addr);
857         goto exit;
858     }
859 
860     nvdimm_dsm_device(in, dsm_mem_addr);
861 
862 exit:
863     g_free(in);
864 }
865 
866 static const MemoryRegionOps nvdimm_dsm_ops = {
867     .read = nvdimm_dsm_read,
868     .write = nvdimm_dsm_write,
869     .endianness = DEVICE_LITTLE_ENDIAN,
870     .valid = {
871         .min_access_size = 4,
872         .max_access_size = 4,
873     },
874 };
875 
876 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
877 {
878     if (dev->hotplugged) {
879         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
880     }
881 }
882 
883 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
884                             FWCfgState *fw_cfg, Object *owner)
885 {
886     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
887                           "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
888     memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
889 
890     state->dsm_mem = g_array_new(false, true /* clear */, 1);
891     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
892     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
893                     state->dsm_mem->len);
894 
895     nvdimm_init_fit_buffer(&state->fit_buf);
896 }
897 
898 #define NVDIMM_COMMON_DSM       "NCAL"
899 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
900 
901 #define NVDIMM_DSM_MEMORY       "NRAM"
902 #define NVDIMM_DSM_IOPORT       "NPIO"
903 
904 #define NVDIMM_DSM_NOTIFY       "NTFI"
905 #define NVDIMM_DSM_HANDLE       "HDLE"
906 #define NVDIMM_DSM_REVISION     "REVS"
907 #define NVDIMM_DSM_FUNCTION     "FUNC"
908 #define NVDIMM_DSM_ARG3         "FARG"
909 
910 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
911 #define NVDIMM_DSM_OUT_BUF      "ODAT"
912 
913 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
914 
915 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
916 
917 static void nvdimm_build_common_dsm(Aml *dev)
918 {
919     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
920     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
921     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
922     uint8_t byte_list[1];
923 
924     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
925     uuid = aml_arg(0);
926     function = aml_arg(2);
927     handle = aml_arg(4);
928     dsm_mem = aml_local(6);
929     dsm_out_buf = aml_local(7);
930 
931     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
932 
933     /* map DSM memory and IO into ACPI namespace. */
934     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
935                aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
936     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
937                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
938 
939     /*
940      * DSM notifier:
941      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
942      *                    emulate the access.
943      *
944      * It is the IO port so that accessing them will cause VM-exit, the
945      * control will be transferred to QEMU.
946      */
947     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
948                       AML_PRESERVE);
949     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
950                sizeof(uint32_t) * BITS_PER_BYTE));
951     aml_append(method, field);
952 
953     /*
954      * DSM input:
955      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
956      *                    happens on NVDIMM Root Device.
957      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
958      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
959      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
960      *                  containing function-specific arguments.
961      *
962      * They are RAM mapping on host so that these accesses never cause
963      * VM-EXIT.
964      */
965     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
966                       AML_PRESERVE);
967     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
968                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
969     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
970                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
971     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
972                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
973     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
974          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
975     aml_append(method, field);
976 
977     /*
978      * DSM output:
979      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
980      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
981      *
982      * Since the page is reused by both input and out, the input data
983      * will be lost after storing new result into ODAT so we should fetch
984      * all the input data before writing the result.
985      */
986     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
987                       AML_PRESERVE);
988     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
989                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
990     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
991        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
992     aml_append(method, field);
993 
994     /*
995      * do not support any method if DSM memory address has not been
996      * patched.
997      */
998     unpatched = aml_equal(dsm_mem, aml_int(0x0));
999 
1000     expected_uuid = aml_local(0);
1001 
1002     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1003     aml_append(ifctx, aml_store(
1004                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1005                /* UUID for NVDIMM Root Device */, expected_uuid));
1006     aml_append(method, ifctx);
1007     elsectx = aml_else();
1008     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1009     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1010                /* UUID for QEMU internal use */), expected_uuid));
1011     aml_append(elsectx, ifctx);
1012     elsectx2 = aml_else();
1013     aml_append(elsectx2, aml_store(
1014                aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1015                /* UUID for NVDIMM Devices */, expected_uuid));
1016     aml_append(elsectx, elsectx2);
1017     aml_append(method, elsectx);
1018 
1019     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1020 
1021     unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1022 
1023     /*
1024      * function 0 is called to inquire what functions are supported by
1025      * OSPM
1026      */
1027     ifctx = aml_if(aml_equal(function, aml_int(0)));
1028     byte_list[0] = 0 /* No function Supported */;
1029     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1030     aml_append(unsupport, ifctx);
1031 
1032     /* No function is supported yet. */
1033     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1034     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1035     aml_append(method, unsupport);
1036 
1037     /*
1038      * The HDLE indicates the DSM function is issued from which device,
1039      * it reserves 0 for root device and is the handle for NVDIMM devices.
1040      * See the comments in nvdimm_slot_to_handle().
1041      */
1042     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1043     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1044     aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1045 
1046     /*
1047      * The fourth parameter (Arg3) of _DSM is a package which contains
1048      * a buffer, the layout of the buffer is specified by UUID (Arg0),
1049      * Revision ID (Arg1) and Function Index (Arg2) which are documented
1050      * in the DSM Spec.
1051      */
1052     pckg = aml_arg(3);
1053     ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1054                    aml_int(4 /* Package */)) /* It is a Package? */,
1055                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1056                    NULL));
1057 
1058     pckg_index = aml_local(2);
1059     pckg_buf = aml_local(3);
1060     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1061     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1062     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1063     aml_append(method, ifctx);
1064 
1065     /*
1066      * tell QEMU about the real address of DSM memory, then QEMU
1067      * gets the control and fills the result in DSM memory.
1068      */
1069     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1070 
1071     dsm_out_buf_size = aml_local(1);
1072     /* RLEN is not included in the payload returned to guest. */
1073     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1074                aml_int(4), dsm_out_buf_size));
1075     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1076                                  dsm_out_buf_size));
1077     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1078                aml_int(0), dsm_out_buf_size, "OBUF"));
1079     aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1080                                        dsm_out_buf));
1081     aml_append(method, aml_return(dsm_out_buf));
1082     aml_append(dev, method);
1083 }
1084 
1085 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1086 {
1087     Aml *method;
1088 
1089     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1090     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1091                                   aml_arg(1), aml_arg(2), aml_arg(3),
1092                                   aml_int(handle))));
1093     aml_append(dev, method);
1094 }
1095 
1096 static void nvdimm_build_fit(Aml *dev)
1097 {
1098     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1099     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1100 
1101     buf = aml_local(0);
1102     buf_size = aml_local(1);
1103     fit = aml_local(2);
1104 
1105     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1106 
1107     /* build helper function, RFIT. */
1108     method = aml_method("RFIT", 1, AML_SERIALIZED);
1109     aml_append(method, aml_name_decl("OFST", aml_int(0)));
1110 
1111     /* prepare input package. */
1112     pkg = aml_package(1);
1113     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1114     aml_append(pkg, aml_name("OFST"));
1115 
1116     /* call Read_FIT function. */
1117     call_result = aml_call5(NVDIMM_COMMON_DSM,
1118                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1119                             aml_int(1) /* Revision 1 */,
1120                             aml_int(0x1) /* Read FIT */,
1121                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1122     aml_append(method, aml_store(call_result, buf));
1123 
1124     /* handle _DSM result. */
1125     aml_append(method, aml_create_dword_field(buf,
1126                aml_int(0) /* offset at byte 0 */, "STAU"));
1127 
1128     aml_append(method, aml_store(aml_name("STAU"),
1129                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
1130 
1131      /* if something is wrong during _DSM. */
1132     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1133                        aml_name("STAU"));
1134     ifctx = aml_if(aml_lnot(ifcond));
1135     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1136     aml_append(method, ifctx);
1137 
1138     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1139     aml_append(method, aml_subtract(buf_size,
1140                                     aml_int(4) /* the size of "STAU" */,
1141                                     buf_size));
1142 
1143     /* if we read the end of fit. */
1144     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1145     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1146     aml_append(method, ifctx);
1147 
1148     aml_append(method, aml_create_field(buf,
1149                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1150                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1151     aml_append(method, aml_return(aml_name("BUFF")));
1152     aml_append(dev, method);
1153 
1154     /* build _FIT. */
1155     method = aml_method("_FIT", 0, AML_SERIALIZED);
1156     offset = aml_local(3);
1157 
1158     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1159     aml_append(method, aml_store(aml_int(0), offset));
1160 
1161     whilectx = aml_while(aml_int(1));
1162     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1163     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1164 
1165     /*
1166      * if fit buffer was changed during RFIT, read from the beginning
1167      * again.
1168      */
1169     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1170                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1171     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1172     aml_append(ifctx, aml_store(aml_int(0), offset));
1173     aml_append(whilectx, ifctx);
1174 
1175     elsectx = aml_else();
1176 
1177     /* finish fit read if no data is read out. */
1178     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1179     aml_append(ifctx, aml_return(fit));
1180     aml_append(elsectx, ifctx);
1181 
1182     /* update the offset. */
1183     aml_append(elsectx, aml_add(offset, buf_size, offset));
1184     /* append the data we read out to the fit buffer. */
1185     aml_append(elsectx, aml_concatenate(fit, buf, fit));
1186     aml_append(whilectx, elsectx);
1187     aml_append(method, whilectx);
1188 
1189     aml_append(dev, method);
1190 }
1191 
1192 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1193 {
1194     uint32_t slot;
1195 
1196     for (slot = 0; slot < ram_slots; slot++) {
1197         uint32_t handle = nvdimm_slot_to_handle(slot);
1198         Aml *nvdimm_dev;
1199 
1200         nvdimm_dev = aml_device("NV%02X", slot);
1201 
1202         /*
1203          * ACPI 6.0: 9.20 NVDIMM Devices:
1204          *
1205          * _ADR object that is used to supply OSPM with unique address
1206          * of the NVDIMM device. This is done by returning the NFIT Device
1207          * handle that is used to identify the associated entries in ACPI
1208          * table NFIT or _FIT.
1209          */
1210         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1211 
1212         nvdimm_build_device_dsm(nvdimm_dev, handle);
1213         aml_append(root_dev, nvdimm_dev);
1214     }
1215 }
1216 
1217 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1218                               BIOSLinker *linker, GArray *dsm_dma_arrea,
1219                               uint32_t ram_slots)
1220 {
1221     Aml *ssdt, *sb_scope, *dev;
1222     int mem_addr_offset, nvdimm_ssdt;
1223 
1224     acpi_add_table(table_offsets, table_data);
1225 
1226     ssdt = init_aml_allocator();
1227     acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1228 
1229     sb_scope = aml_scope("\\_SB");
1230 
1231     dev = aml_device("NVDR");
1232 
1233     /*
1234      * ACPI 6.0: 9.20 NVDIMM Devices:
1235      *
1236      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1237      * NVDIMM interface device. Platform firmware is required to contain one
1238      * such device in _SB scope if NVDIMMs support is exposed by platform to
1239      * OSPM.
1240      * For each NVDIMM present or intended to be supported by platform,
1241      * platform firmware also exposes an ACPI Namespace Device under the
1242      * root device.
1243      */
1244     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1245 
1246     nvdimm_build_common_dsm(dev);
1247 
1248     /* 0 is reserved for root device. */
1249     nvdimm_build_device_dsm(dev, 0);
1250     nvdimm_build_fit(dev);
1251 
1252     nvdimm_build_nvdimm_devices(dev, ram_slots);
1253 
1254     aml_append(sb_scope, dev);
1255     aml_append(ssdt, sb_scope);
1256 
1257     nvdimm_ssdt = table_data->len;
1258 
1259     /* copy AML table into ACPI tables blob and patch header there */
1260     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1261     mem_addr_offset = build_append_named_dword(table_data,
1262                                                NVDIMM_ACPI_MEM_ADDR);
1263 
1264     bios_linker_loader_alloc(linker,
1265                              NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1266                              sizeof(NvdimmDsmIn), false /* high memory */);
1267     bios_linker_loader_add_pointer(linker,
1268         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1269         NVDIMM_DSM_MEM_FILE, 0);
1270     build_header(linker, table_data,
1271         (void *)(table_data->data + nvdimm_ssdt),
1272         "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1273     free_aml_allocator();
1274 }
1275 
1276 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1277                        BIOSLinker *linker, AcpiNVDIMMState *state,
1278                        uint32_t ram_slots)
1279 {
1280     GSList *device_list;
1281 
1282     /* no nvdimm device can be plugged. */
1283     if (!ram_slots) {
1284         return;
1285     }
1286 
1287     nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1288                       ram_slots);
1289 
1290     device_list = nvdimm_get_device_list();
1291     /* no NVDIMM device is plugged. */
1292     if (!device_list) {
1293         return;
1294     }
1295 
1296     nvdimm_build_nfit(state, table_offsets, table_data, linker);
1297     g_slist_free(device_list);
1298 }
1299