xref: /qemu/hw/arm/armsse.c (revision d7a84021)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 #include "hw/qdev-clock.h"
25 
26 /* Format of the System Information block SYS_CONFIG register */
27 typedef enum SysConfigFormat {
28     IoTKitFormat,
29     SSE200Format,
30 } SysConfigFormat;
31 
32 struct ARMSSEInfo {
33     const char *name;
34     int sram_banks;
35     int num_cpus;
36     uint32_t sys_version;
37     uint32_t cpuwait_rst;
38     SysConfigFormat sys_config_format;
39     bool has_mhus;
40     bool has_ppus;
41     bool has_cachectrl;
42     bool has_cpusecctrl;
43     bool has_cpuid;
44     Property *props;
45 };
46 
47 static Property iotkit_properties[] = {
48     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
49                      MemoryRegion *),
50     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
63     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
64     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
65     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
66     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
67     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
68     DEFINE_PROP_END_OF_LIST()
69 };
70 
71 static const ARMSSEInfo armsse_variants[] = {
72     {
73         .name = TYPE_IOTKIT,
74         .sram_banks = 1,
75         .num_cpus = 1,
76         .sys_version = 0x41743,
77         .cpuwait_rst = 0,
78         .sys_config_format = IoTKitFormat,
79         .has_mhus = false,
80         .has_ppus = false,
81         .has_cachectrl = false,
82         .has_cpusecctrl = false,
83         .has_cpuid = false,
84         .props = iotkit_properties,
85     },
86     {
87         .name = TYPE_SSE200,
88         .sram_banks = 4,
89         .num_cpus = 2,
90         .sys_version = 0x22041743,
91         .cpuwait_rst = 2,
92         .sys_config_format = SSE200Format,
93         .has_mhus = true,
94         .has_ppus = true,
95         .has_cachectrl = true,
96         .has_cpusecctrl = true,
97         .has_cpuid = true,
98         .props = armsse_properties,
99     },
100 };
101 
102 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
103 {
104     /* Return the SYS_CONFIG value for this SSE */
105     uint32_t sys_config;
106 
107     switch (info->sys_config_format) {
108     case IoTKitFormat:
109         sys_config = 0;
110         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
111         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
112         break;
113     case SSE200Format:
114         sys_config = 0;
115         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
116         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
117         sys_config = deposit32(sys_config, 24, 4, 2);
118         if (info->num_cpus > 1) {
119             sys_config = deposit32(sys_config, 10, 1, 1);
120             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
121             sys_config = deposit32(sys_config, 28, 4, 2);
122         }
123         break;
124     default:
125         g_assert_not_reached();
126     }
127     return sys_config;
128 }
129 
130 /* Clock frequency in HZ of the 32KHz "slow clock" */
131 #define S32KCLK (32 * 1000)
132 
133 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
134 static bool irq_is_common[32] = {
135     [0 ... 5] = true,
136     /* 6, 7: per-CPU MHU interrupts */
137     [8 ... 12] = true,
138     /* 13: per-CPU icache interrupt */
139     /* 14: reserved */
140     [15 ... 20] = true,
141     /* 21: reserved */
142     [22 ... 26] = true,
143     /* 27: reserved */
144     /* 28, 29: per-CPU CTI interrupts */
145     /* 30, 31: reserved */
146 };
147 
148 /*
149  * Create an alias region in @container of @size bytes starting at @base
150  * which mirrors the memory starting at @orig.
151  */
152 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
153                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
154 {
155     memory_region_init_alias(mr, NULL, name, container, orig, size);
156     /* The alias is even lower priority than unimplemented_device regions */
157     memory_region_add_subregion_overlap(container, base, mr, -1500);
158 }
159 
160 static void irq_status_forwarder(void *opaque, int n, int level)
161 {
162     qemu_irq destirq = opaque;
163 
164     qemu_set_irq(destirq, level);
165 }
166 
167 static void nsccfg_handler(void *opaque, int n, int level)
168 {
169     ARMSSE *s = ARM_SSE(opaque);
170 
171     s->nsccfg = level;
172 }
173 
174 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
175 {
176     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
177      * system using the ARMSSE has a collection of control lines which
178      * are provided by the security controller and which we want to
179      * expose as control lines on the ARMSSE device itself, so the
180      * code using the ARMSSE can wire them up to the PPCs.
181      */
182     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
183     DeviceState *armssedev = DEVICE(s);
184     DeviceState *dev_secctl = DEVICE(&s->secctl);
185     DeviceState *dev_splitter = DEVICE(splitter);
186     char *name;
187 
188     name = g_strdup_printf("%s_nonsec", ppcname);
189     qdev_pass_gpios(dev_secctl, armssedev, name);
190     g_free(name);
191     name = g_strdup_printf("%s_ap", ppcname);
192     qdev_pass_gpios(dev_secctl, armssedev, name);
193     g_free(name);
194     name = g_strdup_printf("%s_irq_enable", ppcname);
195     qdev_pass_gpios(dev_secctl, armssedev, name);
196     g_free(name);
197     name = g_strdup_printf("%s_irq_clear", ppcname);
198     qdev_pass_gpios(dev_secctl, armssedev, name);
199     g_free(name);
200 
201     /* irq_status is a little more tricky, because we need to
202      * split it so we can send it both to the security controller
203      * and to our OR gate for the NVIC interrupt line.
204      * Connect up the splitter's outputs, and create a GPIO input
205      * which will pass the line state to the input splitter.
206      */
207     name = g_strdup_printf("%s_irq_status", ppcname);
208     qdev_connect_gpio_out(dev_splitter, 0,
209                           qdev_get_gpio_in_named(dev_secctl,
210                                                  name, 0));
211     qdev_connect_gpio_out(dev_splitter, 1,
212                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
213     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
214     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
215                                         s->irq_status_in[ppcnum], name, 1);
216     g_free(name);
217 }
218 
219 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
220 {
221     /* Forward the 3rd output from the splitter device as a
222      * named GPIO output of the armsse object.
223      */
224     DeviceState *dev = DEVICE(s);
225     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
226 
227     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
228     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
229                                            s->sec_resp_cfg, 1);
230     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
231 }
232 
233 static void armsse_mainclk_update(void *opaque)
234 {
235     ARMSSE *s = ARM_SSE(opaque);
236     /*
237      * Set system_clock_scale from our Clock input; this is what
238      * controls the tick rate of the CPU SysTick timer.
239      */
240     system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
241 }
242 
243 static void armsse_init(Object *obj)
244 {
245     ARMSSE *s = ARM_SSE(obj);
246     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
247     const ARMSSEInfo *info = asc->info;
248     int i;
249 
250     assert(info->sram_banks <= MAX_SRAM_BANKS);
251     assert(info->num_cpus <= SSE_MAX_CPUS);
252 
253     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
254                                     armsse_mainclk_update, s);
255     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL);
256 
257     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
258 
259     for (i = 0; i < info->num_cpus; i++) {
260         /*
261          * We put each CPU in its own cluster as they are logically
262          * distinct and may be configured differently.
263          */
264         char *name;
265 
266         name = g_strdup_printf("cluster%d", i);
267         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
268         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
269         g_free(name);
270 
271         name = g_strdup_printf("armv7m%d", i);
272         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
273                                 TYPE_ARMV7M);
274         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
275                              ARM_CPU_TYPE_NAME("cortex-m33"));
276         g_free(name);
277         name = g_strdup_printf("arm-sse-cpu-container%d", i);
278         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
279         g_free(name);
280         if (i > 0) {
281             name = g_strdup_printf("arm-sse-container-alias%d", i);
282             memory_region_init_alias(&s->container_alias[i - 1], obj,
283                                      name, &s->container, 0, UINT64_MAX);
284             g_free(name);
285         }
286     }
287 
288     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
289     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
290     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
291     for (i = 0; i < info->sram_banks; i++) {
292         char *name = g_strdup_printf("mpc%d", i);
293         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
294         g_free(name);
295     }
296     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
297                             TYPE_OR_IRQ);
298 
299     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
300         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
301         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
302 
303         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
304         g_free(name);
305     }
306     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
307     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
308     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
309                             TYPE_CMSDK_APB_TIMER);
310     object_initialize_child(obj, "dualtimer", &s->dualtimer,
311                             TYPE_CMSDK_APB_DUALTIMER);
312     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
313                             TYPE_CMSDK_APB_WATCHDOG);
314     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
315                             TYPE_CMSDK_APB_WATCHDOG);
316     object_initialize_child(obj, "swatchdog", &s->swatchdog,
317                             TYPE_CMSDK_APB_WATCHDOG);
318     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
319                             TYPE_IOTKIT_SYSCTL);
320     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
321                             TYPE_IOTKIT_SYSINFO);
322     if (info->has_mhus) {
323         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
324         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
325     }
326     if (info->has_ppus) {
327         for (i = 0; i < info->num_cpus; i++) {
328             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
329             int ppuidx = CPU0CORE_PPU + i;
330 
331             object_initialize_child(obj, name, &s->ppu[ppuidx],
332                                     TYPE_UNIMPLEMENTED_DEVICE);
333             g_free(name);
334         }
335         object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
336                                 TYPE_UNIMPLEMENTED_DEVICE);
337         for (i = 0; i < info->sram_banks; i++) {
338             char *name = g_strdup_printf("RAM%d_PPU", i);
339             int ppuidx = RAM0_PPU + i;
340 
341             object_initialize_child(obj, name, &s->ppu[ppuidx],
342                                     TYPE_UNIMPLEMENTED_DEVICE);
343             g_free(name);
344         }
345     }
346     if (info->has_cachectrl) {
347         for (i = 0; i < info->num_cpus; i++) {
348             char *name = g_strdup_printf("cachectrl%d", i);
349 
350             object_initialize_child(obj, name, &s->cachectrl[i],
351                                     TYPE_UNIMPLEMENTED_DEVICE);
352             g_free(name);
353         }
354     }
355     if (info->has_cpusecctrl) {
356         for (i = 0; i < info->num_cpus; i++) {
357             char *name = g_strdup_printf("cpusecctrl%d", i);
358 
359             object_initialize_child(obj, name, &s->cpusecctrl[i],
360                                     TYPE_UNIMPLEMENTED_DEVICE);
361             g_free(name);
362         }
363     }
364     if (info->has_cpuid) {
365         for (i = 0; i < info->num_cpus; i++) {
366             char *name = g_strdup_printf("cpuid%d", i);
367 
368             object_initialize_child(obj, name, &s->cpuid[i],
369                                     TYPE_ARMSSE_CPUID);
370             g_free(name);
371         }
372     }
373     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
374     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
375                             TYPE_OR_IRQ);
376     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
377                             TYPE_SPLIT_IRQ);
378     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
379         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
380         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
381 
382         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
383         g_free(name);
384     }
385     if (info->num_cpus > 1) {
386         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
387             if (irq_is_common[i]) {
388                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
389                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
390 
391                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
392                 g_free(name);
393             }
394         }
395     }
396 }
397 
398 static void armsse_exp_irq(void *opaque, int n, int level)
399 {
400     qemu_irq *irqarray = opaque;
401 
402     qemu_set_irq(irqarray[n], level);
403 }
404 
405 static void armsse_mpcexp_status(void *opaque, int n, int level)
406 {
407     ARMSSE *s = ARM_SSE(opaque);
408     qemu_set_irq(s->mpcexp_status_in[n], level);
409 }
410 
411 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
412 {
413     /*
414      * Return a qemu_irq which can be used to signal IRQ n to
415      * all CPUs in the SSE.
416      */
417     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
418     const ARMSSEInfo *info = asc->info;
419 
420     assert(irq_is_common[irqno]);
421 
422     if (info->num_cpus == 1) {
423         /* Only one CPU -- just connect directly to it */
424         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
425     } else {
426         /* Connect to the splitter which feeds all CPUs */
427         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
428     }
429 }
430 
431 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
432 {
433     /* Map a PPU unimplemented device stub */
434     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
435 
436     qdev_prop_set_string(dev, "name", name);
437     qdev_prop_set_uint64(dev, "size", 0x1000);
438     sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
439     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
440 }
441 
442 static void armsse_realize(DeviceState *dev, Error **errp)
443 {
444     ARMSSE *s = ARM_SSE(dev);
445     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
446     const ARMSSEInfo *info = asc->info;
447     int i;
448     MemoryRegion *mr;
449     Error *err = NULL;
450     SysBusDevice *sbd_apb_ppc0;
451     SysBusDevice *sbd_secctl;
452     DeviceState *dev_apb_ppc0;
453     DeviceState *dev_apb_ppc1;
454     DeviceState *dev_secctl;
455     DeviceState *dev_splitter;
456     uint32_t addr_width_max;
457 
458     if (!s->board_memory) {
459         error_setg(errp, "memory property was not set");
460         return;
461     }
462 
463     if (!clock_has_source(s->mainclk)) {
464         error_setg(errp, "MAINCLK clock was not connected");
465     }
466     if (!clock_has_source(s->s32kclk)) {
467         error_setg(errp, "S32KCLK clock was not connected");
468     }
469 
470     assert(info->num_cpus <= SSE_MAX_CPUS);
471 
472     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
473     assert(is_power_of_2(info->sram_banks));
474     addr_width_max = 24 - ctz32(info->sram_banks);
475     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
476         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
477                    addr_width_max);
478         return;
479     }
480 
481     /* Handling of which devices should be available only to secure
482      * code is usually done differently for M profile than for A profile.
483      * Instead of putting some devices only into the secure address space,
484      * devices exist in both address spaces but with hard-wired security
485      * permissions that will cause the CPU to fault for non-secure accesses.
486      *
487      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
488      * which specifies hard-wired security permissions for different
489      * areas of the physical address space. For the ARMSSE IDAU, the
490      * top 4 bits of the physical address are the IDAU region ID, and
491      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
492      * region, otherwise it is an S region.
493      *
494      * The various devices and RAMs are generally all mapped twice,
495      * once into a region that the IDAU defines as secure and once
496      * into a non-secure region. They sit behind either a Memory
497      * Protection Controller (for RAM) or a Peripheral Protection
498      * Controller (for devices), which allow a more fine grained
499      * configuration of whether non-secure accesses are permitted.
500      *
501      * (The other place that guest software can configure security
502      * permissions is in the architected SAU (Security Attribution
503      * Unit), which is entirely inside the CPU. The IDAU can upgrade
504      * the security attributes for a region to more restrictive than
505      * the SAU specifies, but cannot downgrade them.)
506      *
507      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
508      * 0x20000000..0x2007ffff  32KB FPGA block RAM
509      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
510      * 0x40000000..0x4000ffff  base peripheral region 1
511      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
512      * 0x40020000..0x4002ffff  system control element peripherals
513      * 0x40080000..0x400fffff  base peripheral region 2
514      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
515      */
516 
517     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
518 
519     for (i = 0; i < info->num_cpus; i++) {
520         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
521         Object *cpuobj = OBJECT(&s->armv7m[i]);
522         int j;
523         char *gpioname;
524 
525         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
526         /*
527          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
528          * registers in the IoT Kit System Control Register block. In QEMU
529          * we set the initial value here, and also the reset value of the
530          * sysctl register, from this object's QOM init-svtor property.
531          * If the guest changes the INITSVTOR* registers at runtime then the
532          * code in iotkit-sysctl.c will update the CPU init-svtor property
533          * (which will then take effect on the next CPU warm-reset).
534          *
535          * Note that typically a board using the SSE-200 will have a system
536          * control processor whose boot firmware initializes the INITSVTOR*
537          * registers before powering up the CPUs. QEMU doesn't emulate
538          * the control processor, so instead we behave in the way that the
539          * firmware does: the initial value should be set by the board code
540          * (using the init-svtor property on the ARMSSE object) to match
541          * whatever its firmware does.
542          */
543         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
544         /*
545          * CPUs start powered down if the corresponding bit in the CPUWAIT
546          * register is 1. In real hardware the CPUWAIT register reset value is
547          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
548          * CPUWAIT1_RST parameters), but since all the boards we care about
549          * start CPU0 and leave CPU1 powered off, we hard-code that in
550          * info->cpuwait_rst for now. We can add QOM properties for this
551          * later if necessary.
552          */
553         if (extract32(info->cpuwait_rst, i, 1)) {
554             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
555                                           errp)) {
556                 return;
557             }
558         }
559         if (!s->cpu_fpu[i]) {
560             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
561                 return;
562             }
563         }
564         if (!s->cpu_dsp[i]) {
565             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
566                 return;
567             }
568         }
569 
570         if (i > 0) {
571             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
572                                                 &s->container_alias[i - 1], -1);
573         } else {
574             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
575                                                 &s->container, -1);
576         }
577         object_property_set_link(cpuobj, "memory",
578                                  OBJECT(&s->cpu_container[i]), &error_abort);
579         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
580         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
581             return;
582         }
583         /*
584          * The cluster must be realized after the armv7m container, as
585          * the container's CPU object is only created on realize, and the
586          * CPU must exist and have been parented into the cluster before
587          * the cluster is realized.
588          */
589         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
590             return;
591         }
592 
593         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
594         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
595         for (j = 0; j < s->exp_numirq; j++) {
596             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
597         }
598         if (i == 0) {
599             gpioname = g_strdup("EXP_IRQ");
600         } else {
601             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
602         }
603         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
604                                             s->exp_irqs[i],
605                                             gpioname, s->exp_numirq);
606         g_free(gpioname);
607     }
608 
609     /* Wire up the splitters that connect common IRQs to all CPUs */
610     if (info->num_cpus > 1) {
611         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
612             if (irq_is_common[i]) {
613                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
614                 DeviceState *devs = DEVICE(splitter);
615                 int cpunum;
616 
617                 if (!object_property_set_int(splitter, "num-lines",
618                                              info->num_cpus, errp)) {
619                     return;
620                 }
621                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
622                     return;
623                 }
624                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
625                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
626 
627                     qdev_connect_gpio_out(devs, cpunum,
628                                           qdev_get_gpio_in(cpudev, i));
629                 }
630             }
631         }
632     }
633 
634     /* Set up the big aliases first */
635     make_alias(s, &s->alias1, &s->container, "alias 1",
636                0x10000000, 0x10000000, 0x00000000);
637     make_alias(s, &s->alias2, &s->container,
638                "alias 2", 0x30000000, 0x10000000, 0x20000000);
639     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
640      * a few extra devices that only appear there (generally the
641      * control interfaces for the protection controllers).
642      * We implement this by mapping those devices over the top of this
643      * alias MR at a higher priority. Some of the devices in this range
644      * are per-CPU, so we must put this alias in the per-cpu containers.
645      */
646     for (i = 0; i < info->num_cpus; i++) {
647         make_alias(s, &s->alias3[i], &s->cpu_container[i],
648                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
649     }
650 
651     /* Security controller */
652     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
653         return;
654     }
655     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
656     dev_secctl = DEVICE(&s->secctl);
657     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
658     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
659 
660     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
661     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
662 
663     /* The sec_resp_cfg output from the security controller must be split into
664      * multiple lines, one for each of the PPCs within the ARMSSE and one
665      * that will be an output from the ARMSSE to the system.
666      */
667     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
668                                  "num-lines", 3, errp)) {
669         return;
670     }
671     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
672         return;
673     }
674     dev_splitter = DEVICE(&s->sec_resp_splitter);
675     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
676                                 qdev_get_gpio_in(dev_splitter, 0));
677 
678     /* Each SRAM bank lives behind its own Memory Protection Controller */
679     for (i = 0; i < info->sram_banks; i++) {
680         char *ramname = g_strdup_printf("armsse.sram%d", i);
681         SysBusDevice *sbd_mpc;
682         uint32_t sram_bank_size = 1 << s->sram_addr_width;
683 
684         memory_region_init_ram(&s->sram[i], NULL, ramname,
685                                sram_bank_size, &err);
686         g_free(ramname);
687         if (err) {
688             error_propagate(errp, err);
689             return;
690         }
691         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
692                                  OBJECT(&s->sram[i]), &error_abort);
693         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
694             return;
695         }
696         /* Map the upstream end of the MPC into the right place... */
697         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
698         memory_region_add_subregion(&s->container,
699                                     0x20000000 + i * sram_bank_size,
700                                     sysbus_mmio_get_region(sbd_mpc, 1));
701         /* ...and its register interface */
702         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
703                                     sysbus_mmio_get_region(sbd_mpc, 0));
704     }
705 
706     /* We must OR together lines from the MPC splitters to go to the NVIC */
707     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
708                                  IOTS_NUM_EXP_MPC + info->sram_banks,
709                                  errp)) {
710         return;
711     }
712     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
713         return;
714     }
715     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
716                           armsse_get_common_irq_in(s, 9));
717 
718     /* Devices behind APB PPC0:
719      *   0x40000000: timer0
720      *   0x40001000: timer1
721      *   0x40002000: dual timer
722      *   0x40003000: MHU0 (SSE-200 only)
723      *   0x40004000: MHU1 (SSE-200 only)
724      * We must configure and realize each downstream device and connect
725      * it to the appropriate PPC port; then we can realize the PPC and
726      * map its upstream ends to the right place in the container.
727      */
728     qdev_connect_clock_in(DEVICE(&s->timer0), "pclk", s->mainclk);
729     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
730         return;
731     }
732     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
733                        armsse_get_common_irq_in(s, 3));
734     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
735     object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
736                              &error_abort);
737 
738     qdev_connect_clock_in(DEVICE(&s->timer1), "pclk", s->mainclk);
739     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
740         return;
741     }
742     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
743                        armsse_get_common_irq_in(s, 4));
744     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
745     object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
746                              &error_abort);
747 
748     qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
749     if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
750         return;
751     }
752     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
753                        armsse_get_common_irq_in(s, 5));
754     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
755     object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
756                              &error_abort);
757 
758     if (info->has_mhus) {
759         /*
760          * An SSE-200 with only one CPU should have only one MHU created,
761          * with the region where the second MHU usually is being RAZ/WI.
762          * We don't implement that SSE-200 config; if we want to support
763          * it then this code needs to be enhanced to handle creating the
764          * RAZ/WI region instead of the second MHU.
765          */
766         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
767 
768         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
769             char *port;
770             int cpunum;
771             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
772 
773             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
774                 return;
775             }
776             port = g_strdup_printf("port[%d]", i + 3);
777             mr = sysbus_mmio_get_region(mhu_sbd, 0);
778             object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
779                                      &error_abort);
780             g_free(port);
781 
782             /*
783              * Each MHU has an irq line for each CPU:
784              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
785              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
786              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
787              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
788              */
789             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
790                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
791 
792                 sysbus_connect_irq(mhu_sbd, cpunum,
793                                    qdev_get_gpio_in(cpudev, 6 + i));
794             }
795         }
796     }
797 
798     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
799         return;
800     }
801 
802     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
803     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
804 
805     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
806     memory_region_add_subregion(&s->container, 0x40000000, mr);
807     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
808     memory_region_add_subregion(&s->container, 0x40001000, mr);
809     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
810     memory_region_add_subregion(&s->container, 0x40002000, mr);
811     if (info->has_mhus) {
812         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
813         memory_region_add_subregion(&s->container, 0x40003000, mr);
814         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
815         memory_region_add_subregion(&s->container, 0x40004000, mr);
816     }
817     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
818         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
819                                     qdev_get_gpio_in_named(dev_apb_ppc0,
820                                                            "cfg_nonsec", i));
821         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
822                                     qdev_get_gpio_in_named(dev_apb_ppc0,
823                                                            "cfg_ap", i));
824     }
825     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
826                                 qdev_get_gpio_in_named(dev_apb_ppc0,
827                                                        "irq_enable", 0));
828     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
829                                 qdev_get_gpio_in_named(dev_apb_ppc0,
830                                                        "irq_clear", 0));
831     qdev_connect_gpio_out(dev_splitter, 0,
832                           qdev_get_gpio_in_named(dev_apb_ppc0,
833                                                  "cfg_sec_resp", 0));
834 
835     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
836      * ones) are sent individually to the security controller, and also
837      * ORed together to give a single combined PPC interrupt to the NVIC.
838      */
839     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
840                                  "num-lines", NUM_PPCS, errp)) {
841         return;
842     }
843     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
844         return;
845     }
846     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
847                           armsse_get_common_irq_in(s, 10));
848 
849     /*
850      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
851      * private per-CPU region (all these devices are SSE-200 only):
852      *  0x50010000: L1 icache control registers
853      *  0x50011000: CPUSECCTRL (CPU local security control registers)
854      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
855      */
856     if (info->has_cachectrl) {
857         for (i = 0; i < info->num_cpus; i++) {
858             char *name = g_strdup_printf("cachectrl%d", i);
859             MemoryRegion *mr;
860 
861             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
862             g_free(name);
863             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
864             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
865                 return;
866             }
867 
868             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
869             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
870         }
871     }
872     if (info->has_cpusecctrl) {
873         for (i = 0; i < info->num_cpus; i++) {
874             char *name = g_strdup_printf("CPUSECCTRL%d", i);
875             MemoryRegion *mr;
876 
877             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
878             g_free(name);
879             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
880             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
881                 return;
882             }
883 
884             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
885             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
886         }
887     }
888     if (info->has_cpuid) {
889         for (i = 0; i < info->num_cpus; i++) {
890             MemoryRegion *mr;
891 
892             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
893             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
894                 return;
895             }
896 
897             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
898             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
899         }
900     }
901 
902     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
903     /* Devices behind APB PPC1:
904      *   0x4002f000: S32K timer
905      */
906     qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
907     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
908         return;
909     }
910     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
911                        armsse_get_common_irq_in(s, 2));
912     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
913     object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
914                              &error_abort);
915 
916     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
917         return;
918     }
919     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
920     memory_region_add_subregion(&s->container, 0x4002f000, mr);
921 
922     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
923     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
924                                 qdev_get_gpio_in_named(dev_apb_ppc1,
925                                                        "cfg_nonsec", 0));
926     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
927                                 qdev_get_gpio_in_named(dev_apb_ppc1,
928                                                        "cfg_ap", 0));
929     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
930                                 qdev_get_gpio_in_named(dev_apb_ppc1,
931                                                        "irq_enable", 0));
932     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
933                                 qdev_get_gpio_in_named(dev_apb_ppc1,
934                                                        "irq_clear", 0));
935     qdev_connect_gpio_out(dev_splitter, 1,
936                           qdev_get_gpio_in_named(dev_apb_ppc1,
937                                                  "cfg_sec_resp", 0));
938 
939     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
940                                  info->sys_version, errp)) {
941         return;
942     }
943     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
944                                  armsse_sys_config_value(s, info), errp)) {
945         return;
946     }
947     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
948         return;
949     }
950     /* System information registers */
951     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
952     /* System control registers */
953     object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
954                             info->sys_version, &error_abort);
955     object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
956                             info->cpuwait_rst, &error_abort);
957     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
958                             s->init_svtor, &error_abort);
959     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
960                             s->init_svtor, &error_abort);
961     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
962         return;
963     }
964     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
965 
966     if (info->has_ppus) {
967         /* CPUnCORE_PPU for each CPU */
968         for (i = 0; i < info->num_cpus; i++) {
969             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
970 
971             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
972             /*
973              * We don't support CPU debug so don't create the
974              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
975              */
976             g_free(name);
977         }
978         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
979 
980         for (i = 0; i < info->sram_banks; i++) {
981             char *name = g_strdup_printf("RAM%d_PPU", i);
982 
983             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
984             g_free(name);
985         }
986     }
987 
988     /* This OR gate wires together outputs from the secure watchdogs to NMI */
989     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
990                                  errp)) {
991         return;
992     }
993     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
994         return;
995     }
996     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
997                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
998 
999     qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
1000     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
1001         return;
1002     }
1003     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1004                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1005     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1006 
1007     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1008 
1009     qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
1010     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
1011         return;
1012     }
1013     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1014                        armsse_get_common_irq_in(s, 1));
1015     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1016 
1017     qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
1018     if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1019         return;
1020     }
1021     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1022                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1023     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1024 
1025     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1026         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1027 
1028         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1029             return;
1030         }
1031         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1032             return;
1033         }
1034     }
1035 
1036     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1037         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1038 
1039         armsse_forward_ppc(s, ppcname, i);
1040         g_free(ppcname);
1041     }
1042 
1043     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1044         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1045 
1046         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1047         g_free(ppcname);
1048     }
1049 
1050     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1051         /* Wire up IRQ splitter for internal PPCs */
1052         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1053         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1054                                          i - NUM_EXTERNAL_PPCS);
1055         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1056 
1057         qdev_connect_gpio_out(devs, 0,
1058                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1059         qdev_connect_gpio_out(devs, 1,
1060                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1061         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1062                                     qdev_get_gpio_in(devs, 0));
1063         g_free(gpioname);
1064     }
1065 
1066     /* Wire up the splitters for the MPC IRQs */
1067     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1068         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1069         DeviceState *dev_splitter = DEVICE(splitter);
1070 
1071         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1072                                      errp)) {
1073             return;
1074         }
1075         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1076             return;
1077         }
1078 
1079         if (i < IOTS_NUM_EXP_MPC) {
1080             /* Splitter input is from GPIO input line */
1081             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1082             qdev_connect_gpio_out(dev_splitter, 0,
1083                                   qdev_get_gpio_in_named(dev_secctl,
1084                                                          "mpcexp_status", i));
1085         } else {
1086             /* Splitter input is from our own MPC */
1087             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1088                                         "irq", 0,
1089                                         qdev_get_gpio_in(dev_splitter, 0));
1090             qdev_connect_gpio_out(dev_splitter, 0,
1091                                   qdev_get_gpio_in_named(dev_secctl,
1092                                                          "mpc_status",
1093                                                          i - IOTS_NUM_EXP_MPC));
1094         }
1095 
1096         qdev_connect_gpio_out(dev_splitter, 1,
1097                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1098     }
1099     /* Create GPIO inputs which will pass the line state for our
1100      * mpcexp_irq inputs to the correct splitter devices.
1101      */
1102     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1103                             IOTS_NUM_EXP_MPC);
1104 
1105     armsse_forward_sec_resp_cfg(s);
1106 
1107     /* Forward the MSC related signals */
1108     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1109     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1110     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1111     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1112                                 armsse_get_common_irq_in(s, 11));
1113 
1114     /*
1115      * Expose our container region to the board model; this corresponds
1116      * to the AHB Slave Expansion ports which allow bus master devices
1117      * (eg DMA controllers) in the board model to make transactions into
1118      * devices in the ARMSSE.
1119      */
1120     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1121 
1122     /* Set initial system_clock_scale from MAINCLK */
1123     armsse_mainclk_update(s);
1124 }
1125 
1126 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1127                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1128 {
1129     /*
1130      * For ARMSSE systems the IDAU responses are simple logical functions
1131      * of the address bits. The NSC attribute is guest-adjustable via the
1132      * NSCCFG register in the security controller.
1133      */
1134     ARMSSE *s = ARM_SSE(ii);
1135     int region = extract32(address, 28, 4);
1136 
1137     *ns = !(region & 1);
1138     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1139     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1140     *exempt = (address & 0xeff00000) == 0xe0000000;
1141     *iregion = region;
1142 }
1143 
1144 static const VMStateDescription armsse_vmstate = {
1145     .name = "iotkit",
1146     .version_id = 2,
1147     .minimum_version_id = 2,
1148     .fields = (VMStateField[]) {
1149         VMSTATE_CLOCK(mainclk, ARMSSE),
1150         VMSTATE_CLOCK(s32kclk, ARMSSE),
1151         VMSTATE_UINT32(nsccfg, ARMSSE),
1152         VMSTATE_END_OF_LIST()
1153     }
1154 };
1155 
1156 static void armsse_reset(DeviceState *dev)
1157 {
1158     ARMSSE *s = ARM_SSE(dev);
1159 
1160     s->nsccfg = 0;
1161 }
1162 
1163 static void armsse_class_init(ObjectClass *klass, void *data)
1164 {
1165     DeviceClass *dc = DEVICE_CLASS(klass);
1166     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1167     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1168     const ARMSSEInfo *info = data;
1169 
1170     dc->realize = armsse_realize;
1171     dc->vmsd = &armsse_vmstate;
1172     device_class_set_props(dc, info->props);
1173     dc->reset = armsse_reset;
1174     iic->check = armsse_idau_check;
1175     asc->info = info;
1176 }
1177 
1178 static const TypeInfo armsse_info = {
1179     .name = TYPE_ARM_SSE,
1180     .parent = TYPE_SYS_BUS_DEVICE,
1181     .instance_size = sizeof(ARMSSE),
1182     .class_size = sizeof(ARMSSEClass),
1183     .instance_init = armsse_init,
1184     .abstract = true,
1185     .interfaces = (InterfaceInfo[]) {
1186         { TYPE_IDAU_INTERFACE },
1187         { }
1188     }
1189 };
1190 
1191 static void armsse_register_types(void)
1192 {
1193     int i;
1194 
1195     type_register_static(&armsse_info);
1196 
1197     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1198         TypeInfo ti = {
1199             .name = armsse_variants[i].name,
1200             .parent = TYPE_ARM_SSE,
1201             .class_init = armsse_class_init,
1202             .class_data = (void *)&armsse_variants[i],
1203         };
1204         type_register(&ti);
1205     }
1206 }
1207 
1208 type_init(armsse_register_types);
1209