xref: /qemu/hw/arm/boot.c (revision b355f08a)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/datadir.h"
13 #include "qemu/error-report.h"
14 #include "qapi/error.h"
15 #include <libfdt.h>
16 #include "hw/arm/boot.h"
17 #include "hw/arm/linux-boot-if.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "hw/boards.h"
22 #include "sysemu/reset.h"
23 #include "hw/loader.h"
24 #include "elf.h"
25 #include "sysemu/device_tree.h"
26 #include "qemu/config-file.h"
27 #include "qemu/option.h"
28 #include "qemu/units.h"
29 
30 /* Kernel boot protocol is specified in the kernel docs
31  * Documentation/arm/Booting and Documentation/arm64/booting.txt
32  * They have different preferred image load offsets from system RAM base.
33  */
34 #define KERNEL_ARGS_ADDR   0x100
35 #define KERNEL_NOLOAD_ADDR 0x02000000
36 #define KERNEL_LOAD_ADDR   0x00010000
37 #define KERNEL64_LOAD_ADDR 0x00080000
38 
39 #define ARM64_TEXT_OFFSET_OFFSET    8
40 #define ARM64_MAGIC_OFFSET          56
41 
42 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
43 
44 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
45                                      const struct arm_boot_info *info)
46 {
47     /* Return the address space to use for bootloader reads and writes.
48      * We prefer the secure address space if the CPU has it and we're
49      * going to boot the guest into it.
50      */
51     int asidx;
52     CPUState *cs = CPU(cpu);
53 
54     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
55         asidx = ARMASIdx_S;
56     } else {
57         asidx = ARMASIdx_NS;
58     }
59 
60     return cpu_get_address_space(cs, asidx);
61 }
62 
63 typedef enum {
64     FIXUP_NONE = 0,     /* do nothing */
65     FIXUP_TERMINATOR,   /* end of insns */
66     FIXUP_BOARDID,      /* overwrite with board ID number */
67     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
68     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
69     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
70     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
71     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
72     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
73     FIXUP_BOOTREG,      /* overwrite with boot register address */
74     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
75     FIXUP_MAX,
76 } FixupType;
77 
78 typedef struct ARMInsnFixup {
79     uint32_t insn;
80     FixupType fixup;
81 } ARMInsnFixup;
82 
83 static const ARMInsnFixup bootloader_aarch64[] = {
84     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
85     { 0xaa1f03e1 }, /* mov x1, xzr */
86     { 0xaa1f03e2 }, /* mov x2, xzr */
87     { 0xaa1f03e3 }, /* mov x3, xzr */
88     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
89     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
90     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
91     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
92     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
93     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
94     { 0, FIXUP_TERMINATOR }
95 };
96 
97 /* A very small bootloader: call the board-setup code (if needed),
98  * set r0-r2, then jump to the kernel.
99  * If we're not calling boot setup code then we don't copy across
100  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
101  */
102 
103 static const ARMInsnFixup bootloader[] = {
104     { 0xe28fe004 }, /* add     lr, pc, #4 */
105     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
106     { 0, FIXUP_BOARD_SETUP },
107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
108     { 0xe3a00000 }, /* mov     r0, #0 */
109     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
110     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
111     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
112     { 0, FIXUP_BOARDID },
113     { 0, FIXUP_ARGPTR_LO },
114     { 0, FIXUP_ENTRYPOINT_LO },
115     { 0, FIXUP_TERMINATOR }
116 };
117 
118 /* Handling for secondary CPU boot in a multicore system.
119  * Unlike the uniprocessor/primary CPU boot, this is platform
120  * dependent. The default code here is based on the secondary
121  * CPU boot protocol used on realview/vexpress boards, with
122  * some parameterisation to increase its flexibility.
123  * QEMU platform models for which this code is not appropriate
124  * should override write_secondary_boot and secondary_cpu_reset_hook
125  * instead.
126  *
127  * This code enables the interrupt controllers for the secondary
128  * CPUs and then puts all the secondary CPUs into a loop waiting
129  * for an interprocessor interrupt and polling a configurable
130  * location for the kernel secondary CPU entry point.
131  */
132 #define DSB_INSN 0xf57ff04f
133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
134 
135 static const ARMInsnFixup smpboot[] = {
136     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
137     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
138     { 0xe3a01001 }, /* mov r1, #1 */
139     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
140     { 0xe3a010ff }, /* mov r1, #0xff */
141     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
142     { 0, FIXUP_DSB },   /* dsb */
143     { 0xe320f003 }, /* wfi */
144     { 0xe5901000 }, /* ldr     r1, [r0] */
145     { 0xe1110001 }, /* tst     r1, r1 */
146     { 0x0afffffb }, /* beq     <wfi> */
147     { 0xe12fff11 }, /* bx      r1 */
148     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
149     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
150     { 0, FIXUP_TERMINATOR }
151 };
152 
153 static void write_bootloader(const char *name, hwaddr addr,
154                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
155                              AddressSpace *as)
156 {
157     /* Fix up the specified bootloader fragment and write it into
158      * guest memory using rom_add_blob_fixed(). fixupcontext is
159      * an array giving the values to write in for the fixup types
160      * which write a value into the code array.
161      */
162     int i, len;
163     uint32_t *code;
164 
165     len = 0;
166     while (insns[len].fixup != FIXUP_TERMINATOR) {
167         len++;
168     }
169 
170     code = g_new0(uint32_t, len);
171 
172     for (i = 0; i < len; i++) {
173         uint32_t insn = insns[i].insn;
174         FixupType fixup = insns[i].fixup;
175 
176         switch (fixup) {
177         case FIXUP_NONE:
178             break;
179         case FIXUP_BOARDID:
180         case FIXUP_BOARD_SETUP:
181         case FIXUP_ARGPTR_LO:
182         case FIXUP_ARGPTR_HI:
183         case FIXUP_ENTRYPOINT_LO:
184         case FIXUP_ENTRYPOINT_HI:
185         case FIXUP_GIC_CPU_IF:
186         case FIXUP_BOOTREG:
187         case FIXUP_DSB:
188             insn = fixupcontext[fixup];
189             break;
190         default:
191             abort();
192         }
193         code[i] = tswap32(insn);
194     }
195 
196     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
197 
198     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
199 
200     g_free(code);
201 }
202 
203 static void default_write_secondary(ARMCPU *cpu,
204                                     const struct arm_boot_info *info)
205 {
206     uint32_t fixupcontext[FIXUP_MAX];
207     AddressSpace *as = arm_boot_address_space(cpu, info);
208 
209     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
210     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
211     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
212         fixupcontext[FIXUP_DSB] = DSB_INSN;
213     } else {
214         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
215     }
216 
217     write_bootloader("smpboot", info->smp_loader_start,
218                      smpboot, fixupcontext, as);
219 }
220 
221 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
222                                             const struct arm_boot_info *info,
223                                             hwaddr mvbar_addr)
224 {
225     AddressSpace *as = arm_boot_address_space(cpu, info);
226     int n;
227     uint32_t mvbar_blob[] = {
228         /* mvbar_addr: secure monitor vectors
229          * Default unimplemented and unused vectors to spin. Makes it
230          * easier to debug (as opposed to the CPU running away).
231          */
232         0xeafffffe, /* (spin) */
233         0xeafffffe, /* (spin) */
234         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
235         0xeafffffe, /* (spin) */
236         0xeafffffe, /* (spin) */
237         0xeafffffe, /* (spin) */
238         0xeafffffe, /* (spin) */
239         0xeafffffe, /* (spin) */
240     };
241     uint32_t board_setup_blob[] = {
242         /* board setup addr */
243         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
244         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
245         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
246         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
247         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
248         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
249         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
250         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
251         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
252         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
253         0xe1a0f001, /* mov     pc, r1                 ;return */
254     };
255 
256     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
257     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
258 
259     /* check that these blobs don't overlap */
260     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
261           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
262 
263     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
264         mvbar_blob[n] = tswap32(mvbar_blob[n]);
265     }
266     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
267                           mvbar_addr, as);
268 
269     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
270         board_setup_blob[n] = tswap32(board_setup_blob[n]);
271     }
272     rom_add_blob_fixed_as("board-setup", board_setup_blob,
273                           sizeof(board_setup_blob), info->board_setup_addr, as);
274 }
275 
276 static void default_reset_secondary(ARMCPU *cpu,
277                                     const struct arm_boot_info *info)
278 {
279     AddressSpace *as = arm_boot_address_space(cpu, info);
280     CPUState *cs = CPU(cpu);
281 
282     address_space_stl_notdirty(as, info->smp_bootreg_addr,
283                                0, MEMTXATTRS_UNSPECIFIED, NULL);
284     cpu_set_pc(cs, info->smp_loader_start);
285 }
286 
287 static inline bool have_dtb(const struct arm_boot_info *info)
288 {
289     return info->dtb_filename || info->get_dtb;
290 }
291 
292 #define WRITE_WORD(p, value) do { \
293     address_space_stl_notdirty(as, p, value, \
294                                MEMTXATTRS_UNSPECIFIED, NULL);  \
295     p += 4;                       \
296 } while (0)
297 
298 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
299 {
300     int initrd_size = info->initrd_size;
301     hwaddr base = info->loader_start;
302     hwaddr p;
303 
304     p = base + KERNEL_ARGS_ADDR;
305     /* ATAG_CORE */
306     WRITE_WORD(p, 5);
307     WRITE_WORD(p, 0x54410001);
308     WRITE_WORD(p, 1);
309     WRITE_WORD(p, 0x1000);
310     WRITE_WORD(p, 0);
311     /* ATAG_MEM */
312     /* TODO: handle multiple chips on one ATAG list */
313     WRITE_WORD(p, 4);
314     WRITE_WORD(p, 0x54410002);
315     WRITE_WORD(p, info->ram_size);
316     WRITE_WORD(p, info->loader_start);
317     if (initrd_size) {
318         /* ATAG_INITRD2 */
319         WRITE_WORD(p, 4);
320         WRITE_WORD(p, 0x54420005);
321         WRITE_WORD(p, info->initrd_start);
322         WRITE_WORD(p, initrd_size);
323     }
324     if (info->kernel_cmdline && *info->kernel_cmdline) {
325         /* ATAG_CMDLINE */
326         int cmdline_size;
327 
328         cmdline_size = strlen(info->kernel_cmdline);
329         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
330                             info->kernel_cmdline, cmdline_size + 1);
331         cmdline_size = (cmdline_size >> 2) + 1;
332         WRITE_WORD(p, cmdline_size + 2);
333         WRITE_WORD(p, 0x54410009);
334         p += cmdline_size * 4;
335     }
336     if (info->atag_board) {
337         /* ATAG_BOARD */
338         int atag_board_len;
339         uint8_t atag_board_buf[0x1000];
340 
341         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
342         WRITE_WORD(p, (atag_board_len + 8) >> 2);
343         WRITE_WORD(p, 0x414f4d50);
344         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
345                             atag_board_buf, atag_board_len);
346         p += atag_board_len;
347     }
348     /* ATAG_END */
349     WRITE_WORD(p, 0);
350     WRITE_WORD(p, 0);
351 }
352 
353 static void set_kernel_args_old(const struct arm_boot_info *info,
354                                 AddressSpace *as)
355 {
356     hwaddr p;
357     const char *s;
358     int initrd_size = info->initrd_size;
359     hwaddr base = info->loader_start;
360 
361     /* see linux/include/asm-arm/setup.h */
362     p = base + KERNEL_ARGS_ADDR;
363     /* page_size */
364     WRITE_WORD(p, 4096);
365     /* nr_pages */
366     WRITE_WORD(p, info->ram_size / 4096);
367     /* ramdisk_size */
368     WRITE_WORD(p, 0);
369 #define FLAG_READONLY	1
370 #define FLAG_RDLOAD	4
371 #define FLAG_RDPROMPT	8
372     /* flags */
373     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
374     /* rootdev */
375     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
376     /* video_num_cols */
377     WRITE_WORD(p, 0);
378     /* video_num_rows */
379     WRITE_WORD(p, 0);
380     /* video_x */
381     WRITE_WORD(p, 0);
382     /* video_y */
383     WRITE_WORD(p, 0);
384     /* memc_control_reg */
385     WRITE_WORD(p, 0);
386     /* unsigned char sounddefault */
387     /* unsigned char adfsdrives */
388     /* unsigned char bytes_per_char_h */
389     /* unsigned char bytes_per_char_v */
390     WRITE_WORD(p, 0);
391     /* pages_in_bank[4] */
392     WRITE_WORD(p, 0);
393     WRITE_WORD(p, 0);
394     WRITE_WORD(p, 0);
395     WRITE_WORD(p, 0);
396     /* pages_in_vram */
397     WRITE_WORD(p, 0);
398     /* initrd_start */
399     if (initrd_size) {
400         WRITE_WORD(p, info->initrd_start);
401     } else {
402         WRITE_WORD(p, 0);
403     }
404     /* initrd_size */
405     WRITE_WORD(p, initrd_size);
406     /* rd_start */
407     WRITE_WORD(p, 0);
408     /* system_rev */
409     WRITE_WORD(p, 0);
410     /* system_serial_low */
411     WRITE_WORD(p, 0);
412     /* system_serial_high */
413     WRITE_WORD(p, 0);
414     /* mem_fclk_21285 */
415     WRITE_WORD(p, 0);
416     /* zero unused fields */
417     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
418         WRITE_WORD(p, 0);
419     }
420     s = info->kernel_cmdline;
421     if (s) {
422         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
423     } else {
424         WRITE_WORD(p, 0);
425     }
426 }
427 
428 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
429                                uint32_t scells, hwaddr mem_len,
430                                int numa_node_id)
431 {
432     char *nodename;
433     int ret;
434 
435     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
436     qemu_fdt_add_subnode(fdt, nodename);
437     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
438     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
439                                        scells, mem_len);
440     if (ret < 0) {
441         goto out;
442     }
443 
444     /* only set the NUMA ID if it is specified */
445     if (numa_node_id >= 0) {
446         ret = qemu_fdt_setprop_cell(fdt, nodename,
447                                     "numa-node-id", numa_node_id);
448     }
449 out:
450     g_free(nodename);
451     return ret;
452 }
453 
454 static void fdt_add_psci_node(void *fdt)
455 {
456     uint32_t cpu_suspend_fn;
457     uint32_t cpu_off_fn;
458     uint32_t cpu_on_fn;
459     uint32_t migrate_fn;
460     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
461     const char *psci_method;
462     int64_t psci_conduit;
463     int rc;
464 
465     psci_conduit = object_property_get_int(OBJECT(armcpu),
466                                            "psci-conduit",
467                                            &error_abort);
468     switch (psci_conduit) {
469     case QEMU_PSCI_CONDUIT_DISABLED:
470         return;
471     case QEMU_PSCI_CONDUIT_HVC:
472         psci_method = "hvc";
473         break;
474     case QEMU_PSCI_CONDUIT_SMC:
475         psci_method = "smc";
476         break;
477     default:
478         g_assert_not_reached();
479     }
480 
481     /*
482      * If /psci node is present in provided DTB, assume that no fixup
483      * is necessary and all PSCI configuration should be taken as-is
484      */
485     rc = fdt_path_offset(fdt, "/psci");
486     if (rc >= 0) {
487         return;
488     }
489 
490     qemu_fdt_add_subnode(fdt, "/psci");
491     if (armcpu->psci_version == 2) {
492         const char comp[] = "arm,psci-0.2\0arm,psci";
493         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
494 
495         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
496         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
497             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
498             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
499             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
500         } else {
501             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
502             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
503             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
504         }
505     } else {
506         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
507 
508         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
509         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
510         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
511         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
512     }
513 
514     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
515      * to the instruction that should be used to invoke PSCI functions.
516      * However, the device tree binding uses 'method' instead, so that is
517      * what we should use here.
518      */
519     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
520 
521     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
522     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
523     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
524     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
525 }
526 
527 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
528                  hwaddr addr_limit, AddressSpace *as, MachineState *ms)
529 {
530     void *fdt = NULL;
531     int size, rc, n = 0;
532     uint32_t acells, scells;
533     unsigned int i;
534     hwaddr mem_base, mem_len;
535     char **node_path;
536     Error *err = NULL;
537 
538     if (binfo->dtb_filename) {
539         char *filename;
540         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
541         if (!filename) {
542             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
543             goto fail;
544         }
545 
546         fdt = load_device_tree(filename, &size);
547         if (!fdt) {
548             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
549             g_free(filename);
550             goto fail;
551         }
552         g_free(filename);
553     } else {
554         fdt = binfo->get_dtb(binfo, &size);
555         if (!fdt) {
556             fprintf(stderr, "Board was unable to create a dtb blob\n");
557             goto fail;
558         }
559     }
560 
561     if (addr_limit > addr && size > (addr_limit - addr)) {
562         /* Installing the device tree blob at addr would exceed addr_limit.
563          * Whether this constitutes failure is up to the caller to decide,
564          * so just return 0 as size, i.e., no error.
565          */
566         g_free(fdt);
567         return 0;
568     }
569 
570     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
571                                    NULL, &error_fatal);
572     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
573                                    NULL, &error_fatal);
574     if (acells == 0 || scells == 0) {
575         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
576         goto fail;
577     }
578 
579     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
580         /* This is user error so deserves a friendlier error message
581          * than the failure of setprop_sized_cells would provide
582          */
583         fprintf(stderr, "qemu: dtb file not compatible with "
584                 "RAM size > 4GB\n");
585         goto fail;
586     }
587 
588     /* nop all root nodes matching /memory or /memory@unit-address */
589     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
590     if (err) {
591         error_report_err(err);
592         goto fail;
593     }
594     while (node_path[n]) {
595         if (g_str_has_prefix(node_path[n], "/memory")) {
596             qemu_fdt_nop_node(fdt, node_path[n]);
597         }
598         n++;
599     }
600     g_strfreev(node_path);
601 
602     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
603         mem_base = binfo->loader_start;
604         for (i = 0; i < ms->numa_state->num_nodes; i++) {
605             mem_len = ms->numa_state->nodes[i].node_mem;
606             rc = fdt_add_memory_node(fdt, acells, mem_base,
607                                      scells, mem_len, i);
608             if (rc < 0) {
609                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
610                         mem_base);
611                 goto fail;
612             }
613 
614             mem_base += mem_len;
615         }
616     } else {
617         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
618                                  scells, binfo->ram_size, -1);
619         if (rc < 0) {
620             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
621                     binfo->loader_start);
622             goto fail;
623         }
624     }
625 
626     rc = fdt_path_offset(fdt, "/chosen");
627     if (rc < 0) {
628         qemu_fdt_add_subnode(fdt, "/chosen");
629     }
630 
631     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
632         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
633                                      ms->kernel_cmdline);
634         if (rc < 0) {
635             fprintf(stderr, "couldn't set /chosen/bootargs\n");
636             goto fail;
637         }
638     }
639 
640     if (binfo->initrd_size) {
641         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
642                                    binfo->initrd_start);
643         if (rc < 0) {
644             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
645             goto fail;
646         }
647 
648         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
649                                    binfo->initrd_start + binfo->initrd_size);
650         if (rc < 0) {
651             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
652             goto fail;
653         }
654     }
655 
656     fdt_add_psci_node(fdt);
657 
658     if (binfo->modify_dtb) {
659         binfo->modify_dtb(binfo, fdt);
660     }
661 
662     qemu_fdt_dumpdtb(fdt, size);
663 
664     /* Put the DTB into the memory map as a ROM image: this will ensure
665      * the DTB is copied again upon reset, even if addr points into RAM.
666      */
667     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
668 
669     g_free(fdt);
670 
671     return size;
672 
673 fail:
674     g_free(fdt);
675     return -1;
676 }
677 
678 static void do_cpu_reset(void *opaque)
679 {
680     ARMCPU *cpu = opaque;
681     CPUState *cs = CPU(cpu);
682     CPUARMState *env = &cpu->env;
683     const struct arm_boot_info *info = env->boot_info;
684 
685     cpu_reset(cs);
686     if (info) {
687         if (!info->is_linux) {
688             int i;
689             /* Jump to the entry point.  */
690             uint64_t entry = info->entry;
691 
692             switch (info->endianness) {
693             case ARM_ENDIANNESS_LE:
694                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
695                 for (i = 1; i < 4; ++i) {
696                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
697                 }
698                 env->uncached_cpsr &= ~CPSR_E;
699                 break;
700             case ARM_ENDIANNESS_BE8:
701                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
702                 for (i = 1; i < 4; ++i) {
703                     env->cp15.sctlr_el[i] |= SCTLR_EE;
704                 }
705                 env->uncached_cpsr |= CPSR_E;
706                 break;
707             case ARM_ENDIANNESS_BE32:
708                 env->cp15.sctlr_el[1] |= SCTLR_B;
709                 break;
710             case ARM_ENDIANNESS_UNKNOWN:
711                 break; /* Board's decision */
712             default:
713                 g_assert_not_reached();
714             }
715 
716             cpu_set_pc(cs, entry);
717         } else {
718             /* If we are booting Linux then we need to check whether we are
719              * booting into secure or non-secure state and adjust the state
720              * accordingly.  Out of reset, ARM is defined to be in secure state
721              * (SCR.NS = 0), we change that here if non-secure boot has been
722              * requested.
723              */
724             if (arm_feature(env, ARM_FEATURE_EL3)) {
725                 /* AArch64 is defined to come out of reset into EL3 if enabled.
726                  * If we are booting Linux then we need to adjust our EL as
727                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
728                  * SVC, which Linux expects, so no privilege/exception level to
729                  * adjust.
730                  */
731                 if (env->aarch64) {
732                     env->cp15.scr_el3 |= SCR_RW;
733                     if (arm_feature(env, ARM_FEATURE_EL2)) {
734                         env->cp15.hcr_el2 |= HCR_RW;
735                         env->pstate = PSTATE_MODE_EL2h;
736                     } else {
737                         env->pstate = PSTATE_MODE_EL1h;
738                     }
739                     if (cpu_isar_feature(aa64_pauth, cpu)) {
740                         env->cp15.scr_el3 |= SCR_API | SCR_APK;
741                     }
742                     if (cpu_isar_feature(aa64_mte, cpu)) {
743                         env->cp15.scr_el3 |= SCR_ATA;
744                     }
745                     if (cpu_isar_feature(aa64_sve, cpu)) {
746                         env->cp15.cptr_el[3] |= CPTR_EZ;
747                     }
748                     /* AArch64 kernels never boot in secure mode */
749                     assert(!info->secure_boot);
750                     /* This hook is only supported for AArch32 currently:
751                      * bootloader_aarch64[] will not call the hook, and
752                      * the code above has already dropped us into EL2 or EL1.
753                      */
754                     assert(!info->secure_board_setup);
755                 }
756 
757                 if (arm_feature(env, ARM_FEATURE_EL2)) {
758                     /* If we have EL2 then Linux expects the HVC insn to work */
759                     env->cp15.scr_el3 |= SCR_HCE;
760                 }
761 
762                 /* Set to non-secure if not a secure boot */
763                 if (!info->secure_boot &&
764                     (cs != first_cpu || !info->secure_board_setup)) {
765                     /* Linux expects non-secure state */
766                     env->cp15.scr_el3 |= SCR_NS;
767                     /* Set NSACR.{CP11,CP10} so NS can access the FPU */
768                     env->cp15.nsacr |= 3 << 10;
769                 }
770             }
771 
772             if (!env->aarch64 && !info->secure_boot &&
773                 arm_feature(env, ARM_FEATURE_EL2)) {
774                 /*
775                  * This is an AArch32 boot not to Secure state, and
776                  * we have Hyp mode available, so boot the kernel into
777                  * Hyp mode. This is not how the CPU comes out of reset,
778                  * so we need to manually put it there.
779                  */
780                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
781             }
782 
783             if (cs == first_cpu) {
784                 AddressSpace *as = arm_boot_address_space(cpu, info);
785 
786                 cpu_set_pc(cs, info->loader_start);
787 
788                 if (!have_dtb(info)) {
789                     if (old_param) {
790                         set_kernel_args_old(info, as);
791                     } else {
792                         set_kernel_args(info, as);
793                     }
794                 }
795             } else {
796                 info->secondary_cpu_reset_hook(cpu, info);
797             }
798         }
799         arm_rebuild_hflags(env);
800     }
801 }
802 
803 /**
804  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
805  *                          by key.
806  * @fw_cfg:         The firmware config instance to store the data in.
807  * @size_key:       The firmware config key to store the size of the loaded
808  *                  data under, with fw_cfg_add_i32().
809  * @data_key:       The firmware config key to store the loaded data under,
810  *                  with fw_cfg_add_bytes().
811  * @image_name:     The name of the image file to load. If it is NULL, the
812  *                  function returns without doing anything.
813  * @try_decompress: Whether the image should be decompressed (gunzipped) before
814  *                  adding it to fw_cfg. If decompression fails, the image is
815  *                  loaded as-is.
816  *
817  * In case of failure, the function prints an error message to stderr and the
818  * process exits with status 1.
819  */
820 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
821                                  uint16_t data_key, const char *image_name,
822                                  bool try_decompress)
823 {
824     size_t size = -1;
825     uint8_t *data;
826 
827     if (image_name == NULL) {
828         return;
829     }
830 
831     if (try_decompress) {
832         size = load_image_gzipped_buffer(image_name,
833                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
834     }
835 
836     if (size == (size_t)-1) {
837         gchar *contents;
838         gsize length;
839 
840         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
841             error_report("failed to load \"%s\"", image_name);
842             exit(1);
843         }
844         size = length;
845         data = (uint8_t *)contents;
846     }
847 
848     fw_cfg_add_i32(fw_cfg, size_key, size);
849     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
850 }
851 
852 static int do_arm_linux_init(Object *obj, void *opaque)
853 {
854     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
855         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
856         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
857         struct arm_boot_info *info = opaque;
858 
859         if (albifc->arm_linux_init) {
860             albifc->arm_linux_init(albif, info->secure_boot);
861         }
862     }
863     return 0;
864 }
865 
866 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
867                             uint64_t *lowaddr, uint64_t *highaddr,
868                             int elf_machine, AddressSpace *as)
869 {
870     bool elf_is64;
871     union {
872         Elf32_Ehdr h32;
873         Elf64_Ehdr h64;
874     } elf_header;
875     int data_swab = 0;
876     bool big_endian;
877     int64_t ret = -1;
878     Error *err = NULL;
879 
880 
881     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
882     if (err) {
883         error_free(err);
884         return ret;
885     }
886 
887     if (elf_is64) {
888         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
889         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
890                                       : ARM_ENDIANNESS_LE;
891     } else {
892         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
893         if (big_endian) {
894             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
895                 info->endianness = ARM_ENDIANNESS_BE8;
896             } else {
897                 info->endianness = ARM_ENDIANNESS_BE32;
898                 /* In BE32, the CPU has a different view of the per-byte
899                  * address map than the rest of the system. BE32 ELF files
900                  * are organised such that they can be programmed through
901                  * the CPU's per-word byte-reversed view of the world. QEMU
902                  * however loads ELF files independently of the CPU. So
903                  * tell the ELF loader to byte reverse the data for us.
904                  */
905                 data_swab = 2;
906             }
907         } else {
908             info->endianness = ARM_ENDIANNESS_LE;
909         }
910     }
911 
912     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
913                       pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
914                       1, data_swab, as);
915     if (ret <= 0) {
916         /* The header loaded but the image didn't */
917         exit(1);
918     }
919 
920     return ret;
921 }
922 
923 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
924                                    hwaddr *entry, AddressSpace *as)
925 {
926     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
927     uint64_t kernel_size = 0;
928     uint8_t *buffer;
929     int size;
930 
931     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
932     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
933                                      &buffer);
934 
935     if (size < 0) {
936         gsize len;
937 
938         /* Load as raw file otherwise */
939         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
940             return -1;
941         }
942         size = len;
943     }
944 
945     /* check the arm64 magic header value -- very old kernels may not have it */
946     if (size > ARM64_MAGIC_OFFSET + 4 &&
947         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
948         uint64_t hdrvals[2];
949 
950         /* The arm64 Image header has text_offset and image_size fields at 8 and
951          * 16 bytes into the Image header, respectively. The text_offset field
952          * is only valid if the image_size is non-zero.
953          */
954         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
955 
956         kernel_size = le64_to_cpu(hdrvals[1]);
957 
958         if (kernel_size != 0) {
959             kernel_load_offset = le64_to_cpu(hdrvals[0]);
960 
961             /*
962              * We write our startup "bootloader" at the very bottom of RAM,
963              * so that bit can't be used for the image. Luckily the Image
964              * format specification is that the image requests only an offset
965              * from a 2MB boundary, not an absolute load address. So if the
966              * image requests an offset that might mean it overlaps with the
967              * bootloader, we can just load it starting at 2MB+offset rather
968              * than 0MB + offset.
969              */
970             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
971                 kernel_load_offset += 2 * MiB;
972             }
973         }
974     }
975 
976     /*
977      * Kernels before v3.17 don't populate the image_size field, and
978      * raw images have no header. For those our best guess at the size
979      * is the size of the Image file itself.
980      */
981     if (kernel_size == 0) {
982         kernel_size = size;
983     }
984 
985     *entry = mem_base + kernel_load_offset;
986     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
987 
988     g_free(buffer);
989 
990     return kernel_size;
991 }
992 
993 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
994                                          struct arm_boot_info *info)
995 {
996     /* Set up for a direct boot of a kernel image file. */
997     CPUState *cs;
998     AddressSpace *as = arm_boot_address_space(cpu, info);
999     int kernel_size;
1000     int initrd_size;
1001     int is_linux = 0;
1002     uint64_t elf_entry;
1003     /* Addresses of first byte used and first byte not used by the image */
1004     uint64_t image_low_addr = 0, image_high_addr = 0;
1005     int elf_machine;
1006     hwaddr entry;
1007     static const ARMInsnFixup *primary_loader;
1008     uint64_t ram_end = info->loader_start + info->ram_size;
1009 
1010     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1011         primary_loader = bootloader_aarch64;
1012         elf_machine = EM_AARCH64;
1013     } else {
1014         primary_loader = bootloader;
1015         if (!info->write_board_setup) {
1016             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1017         }
1018         elf_machine = EM_ARM;
1019     }
1020 
1021     if (!info->secondary_cpu_reset_hook) {
1022         info->secondary_cpu_reset_hook = default_reset_secondary;
1023     }
1024     if (!info->write_secondary_boot) {
1025         info->write_secondary_boot = default_write_secondary;
1026     }
1027 
1028     if (info->nb_cpus == 0)
1029         info->nb_cpus = 1;
1030 
1031     /* Assume that raw images are linux kernels, and ELF images are not.  */
1032     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1033                                &image_high_addr, elf_machine, as);
1034     if (kernel_size > 0 && have_dtb(info)) {
1035         /*
1036          * If there is still some room left at the base of RAM, try and put
1037          * the DTB there like we do for images loaded with -bios or -pflash.
1038          */
1039         if (image_low_addr > info->loader_start
1040             || image_high_addr < info->loader_start) {
1041             /*
1042              * Set image_low_addr as address limit for arm_load_dtb if it may be
1043              * pointing into RAM, otherwise pass '0' (no limit)
1044              */
1045             if (image_low_addr < info->loader_start) {
1046                 image_low_addr = 0;
1047             }
1048             info->dtb_start = info->loader_start;
1049             info->dtb_limit = image_low_addr;
1050         }
1051     }
1052     entry = elf_entry;
1053     if (kernel_size < 0) {
1054         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1055         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1056                                      &is_linux, NULL, NULL, as);
1057         if (kernel_size >= 0) {
1058             image_low_addr = loadaddr;
1059             image_high_addr = image_low_addr + kernel_size;
1060         }
1061     }
1062     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1063         kernel_size = load_aarch64_image(info->kernel_filename,
1064                                          info->loader_start, &entry, as);
1065         is_linux = 1;
1066         if (kernel_size >= 0) {
1067             image_low_addr = entry;
1068             image_high_addr = image_low_addr + kernel_size;
1069         }
1070     } else if (kernel_size < 0) {
1071         /* 32-bit ARM */
1072         entry = info->loader_start + KERNEL_LOAD_ADDR;
1073         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1074                                              ram_end - KERNEL_LOAD_ADDR, as);
1075         is_linux = 1;
1076         if (kernel_size >= 0) {
1077             image_low_addr = entry;
1078             image_high_addr = image_low_addr + kernel_size;
1079         }
1080     }
1081     if (kernel_size < 0) {
1082         error_report("could not load kernel '%s'", info->kernel_filename);
1083         exit(1);
1084     }
1085 
1086     if (kernel_size > info->ram_size) {
1087         error_report("kernel '%s' is too large to fit in RAM "
1088                      "(kernel size %d, RAM size %" PRId64 ")",
1089                      info->kernel_filename, kernel_size, info->ram_size);
1090         exit(1);
1091     }
1092 
1093     info->entry = entry;
1094 
1095     /*
1096      * We want to put the initrd far enough into RAM that when the
1097      * kernel is uncompressed it will not clobber the initrd. However
1098      * on boards without much RAM we must ensure that we still leave
1099      * enough room for a decent sized initrd, and on boards with large
1100      * amounts of RAM we must avoid the initrd being so far up in RAM
1101      * that it is outside lowmem and inaccessible to the kernel.
1102      * So for boards with less  than 256MB of RAM we put the initrd
1103      * halfway into RAM, and for boards with 256MB of RAM or more we put
1104      * the initrd at 128MB.
1105      * We also refuse to put the initrd somewhere that will definitely
1106      * overlay the kernel we just loaded, though for kernel formats which
1107      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1108      * we might still make a bad choice here.
1109      */
1110     info->initrd_start = info->loader_start +
1111         MIN(info->ram_size / 2, 128 * MiB);
1112     if (image_high_addr) {
1113         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1114     }
1115     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1116 
1117     if (is_linux) {
1118         uint32_t fixupcontext[FIXUP_MAX];
1119 
1120         if (info->initrd_filename) {
1121 
1122             if (info->initrd_start >= ram_end) {
1123                 error_report("not enough space after kernel to load initrd");
1124                 exit(1);
1125             }
1126 
1127             initrd_size = load_ramdisk_as(info->initrd_filename,
1128                                           info->initrd_start,
1129                                           ram_end - info->initrd_start, as);
1130             if (initrd_size < 0) {
1131                 initrd_size = load_image_targphys_as(info->initrd_filename,
1132                                                      info->initrd_start,
1133                                                      ram_end -
1134                                                      info->initrd_start,
1135                                                      as);
1136             }
1137             if (initrd_size < 0) {
1138                 error_report("could not load initrd '%s'",
1139                              info->initrd_filename);
1140                 exit(1);
1141             }
1142             if (info->initrd_start + initrd_size > ram_end) {
1143                 error_report("could not load initrd '%s': "
1144                              "too big to fit into RAM after the kernel",
1145                              info->initrd_filename);
1146                 exit(1);
1147             }
1148         } else {
1149             initrd_size = 0;
1150         }
1151         info->initrd_size = initrd_size;
1152 
1153         fixupcontext[FIXUP_BOARDID] = info->board_id;
1154         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1155 
1156         /*
1157          * for device tree boot, we pass the DTB directly in r2. Otherwise
1158          * we point to the kernel args.
1159          */
1160         if (have_dtb(info)) {
1161             hwaddr align;
1162 
1163             if (elf_machine == EM_AARCH64) {
1164                 /*
1165                  * Some AArch64 kernels on early bootup map the fdt region as
1166                  *
1167                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1168                  *
1169                  * Let's play safe and prealign it to 2MB to give us some space.
1170                  */
1171                 align = 2 * MiB;
1172             } else {
1173                 /*
1174                  * Some 32bit kernels will trash anything in the 4K page the
1175                  * initrd ends in, so make sure the DTB isn't caught up in that.
1176                  */
1177                 align = 4 * KiB;
1178             }
1179 
1180             /* Place the DTB after the initrd in memory with alignment. */
1181             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1182                                            align);
1183             if (info->dtb_start >= ram_end) {
1184                 error_report("Not enough space for DTB after kernel/initrd");
1185                 exit(1);
1186             }
1187             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1188             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1189         } else {
1190             fixupcontext[FIXUP_ARGPTR_LO] =
1191                 info->loader_start + KERNEL_ARGS_ADDR;
1192             fixupcontext[FIXUP_ARGPTR_HI] =
1193                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1194             if (info->ram_size >= 4 * GiB) {
1195                 error_report("RAM size must be less than 4GB to boot"
1196                              " Linux kernel using ATAGS (try passing a device tree"
1197                              " using -dtb)");
1198                 exit(1);
1199             }
1200         }
1201         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1202         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1203 
1204         write_bootloader("bootloader", info->loader_start,
1205                          primary_loader, fixupcontext, as);
1206 
1207         if (info->nb_cpus > 1) {
1208             info->write_secondary_boot(cpu, info);
1209         }
1210         if (info->write_board_setup) {
1211             info->write_board_setup(cpu, info);
1212         }
1213 
1214         /*
1215          * Notify devices which need to fake up firmware initialization
1216          * that we're doing a direct kernel boot.
1217          */
1218         object_child_foreach_recursive(object_get_root(),
1219                                        do_arm_linux_init, info);
1220     }
1221     info->is_linux = is_linux;
1222 
1223     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1224         ARM_CPU(cs)->env.boot_info = info;
1225     }
1226 }
1227 
1228 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1229 {
1230     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1231 
1232     if (have_dtb(info)) {
1233         /*
1234          * If we have a device tree blob, but no kernel to supply it to (or
1235          * the kernel is supposed to be loaded by the bootloader), copy the
1236          * DTB to the base of RAM for the bootloader to pick up.
1237          */
1238         info->dtb_start = info->loader_start;
1239     }
1240 
1241     if (info->kernel_filename) {
1242         FWCfgState *fw_cfg;
1243         bool try_decompressing_kernel;
1244 
1245         fw_cfg = fw_cfg_find();
1246 
1247         if (!fw_cfg) {
1248             error_report("This machine type does not support loading both "
1249                          "a guest firmware/BIOS image and a guest kernel at "
1250                          "the same time. You should change your QEMU command "
1251                          "line to specify one or the other, but not both.");
1252             exit(1);
1253         }
1254 
1255         try_decompressing_kernel = arm_feature(&cpu->env,
1256                                                ARM_FEATURE_AARCH64);
1257 
1258         /*
1259          * Expose the kernel, the command line, and the initrd in fw_cfg.
1260          * We don't process them here at all, it's all left to the
1261          * firmware.
1262          */
1263         load_image_to_fw_cfg(fw_cfg,
1264                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1265                              info->kernel_filename,
1266                              try_decompressing_kernel);
1267         load_image_to_fw_cfg(fw_cfg,
1268                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1269                              info->initrd_filename, false);
1270 
1271         if (info->kernel_cmdline) {
1272             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1273                            strlen(info->kernel_cmdline) + 1);
1274             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1275                               info->kernel_cmdline);
1276         }
1277     }
1278 
1279     /*
1280      * We will start from address 0 (typically a boot ROM image) in the
1281      * same way as hardware. Leave env->boot_info NULL, so that
1282      * do_cpu_reset() knows it does not need to alter the PC on reset.
1283      */
1284 }
1285 
1286 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1287 {
1288     CPUState *cs;
1289     AddressSpace *as = arm_boot_address_space(cpu, info);
1290 
1291     /*
1292      * CPU objects (unlike devices) are not automatically reset on system
1293      * reset, so we must always register a handler to do so. If we're
1294      * actually loading a kernel, the handler is also responsible for
1295      * arranging that we start it correctly.
1296      */
1297     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1298         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1299     }
1300 
1301     /*
1302      * The board code is not supposed to set secure_board_setup unless
1303      * running its code in secure mode is actually possible, and KVM
1304      * doesn't support secure.
1305      */
1306     assert(!(info->secure_board_setup && kvm_enabled()));
1307     info->kernel_filename = ms->kernel_filename;
1308     info->kernel_cmdline = ms->kernel_cmdline;
1309     info->initrd_filename = ms->initrd_filename;
1310     info->dtb_filename = ms->dtb;
1311     info->dtb_limit = 0;
1312 
1313     /* Load the kernel.  */
1314     if (!info->kernel_filename || info->firmware_loaded) {
1315         arm_setup_firmware_boot(cpu, info);
1316     } else {
1317         arm_setup_direct_kernel_boot(cpu, info);
1318     }
1319 
1320     if (!info->skip_dtb_autoload && have_dtb(info)) {
1321         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1322             exit(1);
1323         }
1324     }
1325 }
1326 
1327 static const TypeInfo arm_linux_boot_if_info = {
1328     .name = TYPE_ARM_LINUX_BOOT_IF,
1329     .parent = TYPE_INTERFACE,
1330     .class_size = sizeof(ARMLinuxBootIfClass),
1331 };
1332 
1333 static void arm_linux_boot_register_types(void)
1334 {
1335     type_register_static(&arm_linux_boot_if_info);
1336 }
1337 
1338 type_init(arm_linux_boot_register_types)
1339