xref: /qemu/hw/arm/boot.c (revision bf957284)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "config.h"
11 #include "hw/hw.h"
12 #include "hw/arm/arm.h"
13 #include "hw/arm/linux-boot-if.h"
14 #include "sysemu/sysemu.h"
15 #include "hw/boards.h"
16 #include "hw/loader.h"
17 #include "elf.h"
18 #include "sysemu/device_tree.h"
19 #include "qemu/config-file.h"
20 #include "exec/address-spaces.h"
21 
22 /* Kernel boot protocol is specified in the kernel docs
23  * Documentation/arm/Booting and Documentation/arm64/booting.txt
24  * They have different preferred image load offsets from system RAM base.
25  */
26 #define KERNEL_ARGS_ADDR 0x100
27 #define KERNEL_LOAD_ADDR 0x00010000
28 #define KERNEL64_LOAD_ADDR 0x00080000
29 
30 typedef enum {
31     FIXUP_NONE = 0,   /* do nothing */
32     FIXUP_TERMINATOR, /* end of insns */
33     FIXUP_BOARDID,    /* overwrite with board ID number */
34     FIXUP_ARGPTR,     /* overwrite with pointer to kernel args */
35     FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
36     FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
37     FIXUP_BOOTREG,    /* overwrite with boot register address */
38     FIXUP_DSB,        /* overwrite with correct DSB insn for cpu */
39     FIXUP_MAX,
40 } FixupType;
41 
42 typedef struct ARMInsnFixup {
43     uint32_t insn;
44     FixupType fixup;
45 } ARMInsnFixup;
46 
47 static const ARMInsnFixup bootloader_aarch64[] = {
48     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
49     { 0xaa1f03e1 }, /* mov x1, xzr */
50     { 0xaa1f03e2 }, /* mov x2, xzr */
51     { 0xaa1f03e3 }, /* mov x3, xzr */
52     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
53     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
54     { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
55     { 0 }, /* .word @DTB Higher 32-bits */
56     { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
57     { 0 }, /* .word @Kernel Entry Higher 32-bits */
58     { 0, FIXUP_TERMINATOR }
59 };
60 
61 /* The worlds second smallest bootloader.  Set r0-r2, then jump to kernel.  */
62 static const ARMInsnFixup bootloader[] = {
63     { 0xe3a00000 }, /* mov     r0, #0 */
64     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
65     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
66     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
67     { 0, FIXUP_BOARDID },
68     { 0, FIXUP_ARGPTR },
69     { 0, FIXUP_ENTRYPOINT },
70     { 0, FIXUP_TERMINATOR }
71 };
72 
73 /* Handling for secondary CPU boot in a multicore system.
74  * Unlike the uniprocessor/primary CPU boot, this is platform
75  * dependent. The default code here is based on the secondary
76  * CPU boot protocol used on realview/vexpress boards, with
77  * some parameterisation to increase its flexibility.
78  * QEMU platform models for which this code is not appropriate
79  * should override write_secondary_boot and secondary_cpu_reset_hook
80  * instead.
81  *
82  * This code enables the interrupt controllers for the secondary
83  * CPUs and then puts all the secondary CPUs into a loop waiting
84  * for an interprocessor interrupt and polling a configurable
85  * location for the kernel secondary CPU entry point.
86  */
87 #define DSB_INSN 0xf57ff04f
88 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
89 
90 static const ARMInsnFixup smpboot[] = {
91     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
92     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
93     { 0xe3a01001 }, /* mov r1, #1 */
94     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
95     { 0xe3a010ff }, /* mov r1, #0xff */
96     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
97     { 0, FIXUP_DSB },   /* dsb */
98     { 0xe320f003 }, /* wfi */
99     { 0xe5901000 }, /* ldr     r1, [r0] */
100     { 0xe1110001 }, /* tst     r1, r1 */
101     { 0x0afffffb }, /* beq     <wfi> */
102     { 0xe12fff11 }, /* bx      r1 */
103     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
104     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
105     { 0, FIXUP_TERMINATOR }
106 };
107 
108 static void write_bootloader(const char *name, hwaddr addr,
109                              const ARMInsnFixup *insns, uint32_t *fixupcontext)
110 {
111     /* Fix up the specified bootloader fragment and write it into
112      * guest memory using rom_add_blob_fixed(). fixupcontext is
113      * an array giving the values to write in for the fixup types
114      * which write a value into the code array.
115      */
116     int i, len;
117     uint32_t *code;
118 
119     len = 0;
120     while (insns[len].fixup != FIXUP_TERMINATOR) {
121         len++;
122     }
123 
124     code = g_new0(uint32_t, len);
125 
126     for (i = 0; i < len; i++) {
127         uint32_t insn = insns[i].insn;
128         FixupType fixup = insns[i].fixup;
129 
130         switch (fixup) {
131         case FIXUP_NONE:
132             break;
133         case FIXUP_BOARDID:
134         case FIXUP_ARGPTR:
135         case FIXUP_ENTRYPOINT:
136         case FIXUP_GIC_CPU_IF:
137         case FIXUP_BOOTREG:
138         case FIXUP_DSB:
139             insn = fixupcontext[fixup];
140             break;
141         default:
142             abort();
143         }
144         code[i] = tswap32(insn);
145     }
146 
147     rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
148 
149     g_free(code);
150 }
151 
152 static void default_write_secondary(ARMCPU *cpu,
153                                     const struct arm_boot_info *info)
154 {
155     uint32_t fixupcontext[FIXUP_MAX];
156 
157     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
158     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
159     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
160         fixupcontext[FIXUP_DSB] = DSB_INSN;
161     } else {
162         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
163     }
164 
165     write_bootloader("smpboot", info->smp_loader_start,
166                      smpboot, fixupcontext);
167 }
168 
169 static void default_reset_secondary(ARMCPU *cpu,
170                                     const struct arm_boot_info *info)
171 {
172     CPUState *cs = CPU(cpu);
173 
174     address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
175                                0, MEMTXATTRS_UNSPECIFIED, NULL);
176     cpu_set_pc(cs, info->smp_loader_start);
177 }
178 
179 static inline bool have_dtb(const struct arm_boot_info *info)
180 {
181     return info->dtb_filename || info->get_dtb;
182 }
183 
184 #define WRITE_WORD(p, value) do { \
185     address_space_stl_notdirty(&address_space_memory, p, value, \
186                                MEMTXATTRS_UNSPECIFIED, NULL);  \
187     p += 4;                       \
188 } while (0)
189 
190 static void set_kernel_args(const struct arm_boot_info *info)
191 {
192     int initrd_size = info->initrd_size;
193     hwaddr base = info->loader_start;
194     hwaddr p;
195 
196     p = base + KERNEL_ARGS_ADDR;
197     /* ATAG_CORE */
198     WRITE_WORD(p, 5);
199     WRITE_WORD(p, 0x54410001);
200     WRITE_WORD(p, 1);
201     WRITE_WORD(p, 0x1000);
202     WRITE_WORD(p, 0);
203     /* ATAG_MEM */
204     /* TODO: handle multiple chips on one ATAG list */
205     WRITE_WORD(p, 4);
206     WRITE_WORD(p, 0x54410002);
207     WRITE_WORD(p, info->ram_size);
208     WRITE_WORD(p, info->loader_start);
209     if (initrd_size) {
210         /* ATAG_INITRD2 */
211         WRITE_WORD(p, 4);
212         WRITE_WORD(p, 0x54420005);
213         WRITE_WORD(p, info->initrd_start);
214         WRITE_WORD(p, initrd_size);
215     }
216     if (info->kernel_cmdline && *info->kernel_cmdline) {
217         /* ATAG_CMDLINE */
218         int cmdline_size;
219 
220         cmdline_size = strlen(info->kernel_cmdline);
221         cpu_physical_memory_write(p + 8, info->kernel_cmdline,
222                                   cmdline_size + 1);
223         cmdline_size = (cmdline_size >> 2) + 1;
224         WRITE_WORD(p, cmdline_size + 2);
225         WRITE_WORD(p, 0x54410009);
226         p += cmdline_size * 4;
227     }
228     if (info->atag_board) {
229         /* ATAG_BOARD */
230         int atag_board_len;
231         uint8_t atag_board_buf[0x1000];
232 
233         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
234         WRITE_WORD(p, (atag_board_len + 8) >> 2);
235         WRITE_WORD(p, 0x414f4d50);
236         cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
237         p += atag_board_len;
238     }
239     /* ATAG_END */
240     WRITE_WORD(p, 0);
241     WRITE_WORD(p, 0);
242 }
243 
244 static void set_kernel_args_old(const struct arm_boot_info *info)
245 {
246     hwaddr p;
247     const char *s;
248     int initrd_size = info->initrd_size;
249     hwaddr base = info->loader_start;
250 
251     /* see linux/include/asm-arm/setup.h */
252     p = base + KERNEL_ARGS_ADDR;
253     /* page_size */
254     WRITE_WORD(p, 4096);
255     /* nr_pages */
256     WRITE_WORD(p, info->ram_size / 4096);
257     /* ramdisk_size */
258     WRITE_WORD(p, 0);
259 #define FLAG_READONLY	1
260 #define FLAG_RDLOAD	4
261 #define FLAG_RDPROMPT	8
262     /* flags */
263     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
264     /* rootdev */
265     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
266     /* video_num_cols */
267     WRITE_WORD(p, 0);
268     /* video_num_rows */
269     WRITE_WORD(p, 0);
270     /* video_x */
271     WRITE_WORD(p, 0);
272     /* video_y */
273     WRITE_WORD(p, 0);
274     /* memc_control_reg */
275     WRITE_WORD(p, 0);
276     /* unsigned char sounddefault */
277     /* unsigned char adfsdrives */
278     /* unsigned char bytes_per_char_h */
279     /* unsigned char bytes_per_char_v */
280     WRITE_WORD(p, 0);
281     /* pages_in_bank[4] */
282     WRITE_WORD(p, 0);
283     WRITE_WORD(p, 0);
284     WRITE_WORD(p, 0);
285     WRITE_WORD(p, 0);
286     /* pages_in_vram */
287     WRITE_WORD(p, 0);
288     /* initrd_start */
289     if (initrd_size) {
290         WRITE_WORD(p, info->initrd_start);
291     } else {
292         WRITE_WORD(p, 0);
293     }
294     /* initrd_size */
295     WRITE_WORD(p, initrd_size);
296     /* rd_start */
297     WRITE_WORD(p, 0);
298     /* system_rev */
299     WRITE_WORD(p, 0);
300     /* system_serial_low */
301     WRITE_WORD(p, 0);
302     /* system_serial_high */
303     WRITE_WORD(p, 0);
304     /* mem_fclk_21285 */
305     WRITE_WORD(p, 0);
306     /* zero unused fields */
307     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
308         WRITE_WORD(p, 0);
309     }
310     s = info->kernel_cmdline;
311     if (s) {
312         cpu_physical_memory_write(p, s, strlen(s) + 1);
313     } else {
314         WRITE_WORD(p, 0);
315     }
316 }
317 
318 /**
319  * load_dtb() - load a device tree binary image into memory
320  * @addr:       the address to load the image at
321  * @binfo:      struct describing the boot environment
322  * @addr_limit: upper limit of the available memory area at @addr
323  *
324  * Load a device tree supplied by the machine or by the user  with the
325  * '-dtb' command line option, and put it at offset @addr in target
326  * memory.
327  *
328  * If @addr_limit contains a meaningful value (i.e., it is strictly greater
329  * than @addr), the device tree is only loaded if its size does not exceed
330  * the limit.
331  *
332  * Returns: the size of the device tree image on success,
333  *          0 if the image size exceeds the limit,
334  *          -1 on errors.
335  *
336  * Note: Must not be called unless have_dtb(binfo) is true.
337  */
338 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
339                     hwaddr addr_limit)
340 {
341     void *fdt = NULL;
342     int size, rc;
343     uint32_t acells, scells;
344 
345     if (binfo->dtb_filename) {
346         char *filename;
347         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
348         if (!filename) {
349             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
350             goto fail;
351         }
352 
353         fdt = load_device_tree(filename, &size);
354         if (!fdt) {
355             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
356             g_free(filename);
357             goto fail;
358         }
359         g_free(filename);
360     } else {
361         fdt = binfo->get_dtb(binfo, &size);
362         if (!fdt) {
363             fprintf(stderr, "Board was unable to create a dtb blob\n");
364             goto fail;
365         }
366     }
367 
368     if (addr_limit > addr && size > (addr_limit - addr)) {
369         /* Installing the device tree blob at addr would exceed addr_limit.
370          * Whether this constitutes failure is up to the caller to decide,
371          * so just return 0 as size, i.e., no error.
372          */
373         g_free(fdt);
374         return 0;
375     }
376 
377     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
378     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
379     if (acells == 0 || scells == 0) {
380         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
381         goto fail;
382     }
383 
384     if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
385         /* This is user error so deserves a friendlier error message
386          * than the failure of setprop_sized_cells would provide
387          */
388         fprintf(stderr, "qemu: dtb file not compatible with "
389                 "RAM size > 4GB\n");
390         goto fail;
391     }
392 
393     rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
394                                       acells, binfo->loader_start,
395                                       scells, binfo->ram_size);
396     if (rc < 0) {
397         fprintf(stderr, "couldn't set /memory/reg\n");
398         goto fail;
399     }
400 
401     if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
402         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
403                                      binfo->kernel_cmdline);
404         if (rc < 0) {
405             fprintf(stderr, "couldn't set /chosen/bootargs\n");
406             goto fail;
407         }
408     }
409 
410     if (binfo->initrd_size) {
411         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
412                                    binfo->initrd_start);
413         if (rc < 0) {
414             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
415             goto fail;
416         }
417 
418         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
419                                    binfo->initrd_start + binfo->initrd_size);
420         if (rc < 0) {
421             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
422             goto fail;
423         }
424     }
425 
426     if (binfo->modify_dtb) {
427         binfo->modify_dtb(binfo, fdt);
428     }
429 
430     qemu_fdt_dumpdtb(fdt, size);
431 
432     /* Put the DTB into the memory map as a ROM image: this will ensure
433      * the DTB is copied again upon reset, even if addr points into RAM.
434      */
435     rom_add_blob_fixed("dtb", fdt, size, addr);
436 
437     g_free(fdt);
438 
439     return size;
440 
441 fail:
442     g_free(fdt);
443     return -1;
444 }
445 
446 static void do_cpu_reset(void *opaque)
447 {
448     ARMCPU *cpu = opaque;
449     CPUState *cs = CPU(cpu);
450     CPUARMState *env = &cpu->env;
451     const struct arm_boot_info *info = env->boot_info;
452 
453     cpu_reset(cs);
454     if (info) {
455         if (!info->is_linux) {
456             /* Jump to the entry point.  */
457             uint64_t entry = info->entry;
458 
459             if (!env->aarch64) {
460                 env->thumb = info->entry & 1;
461                 entry &= 0xfffffffe;
462             }
463             cpu_set_pc(cs, entry);
464         } else {
465             /* If we are booting Linux then we need to check whether we are
466              * booting into secure or non-secure state and adjust the state
467              * accordingly.  Out of reset, ARM is defined to be in secure state
468              * (SCR.NS = 0), we change that here if non-secure boot has been
469              * requested.
470              */
471             if (arm_feature(env, ARM_FEATURE_EL3)) {
472                 /* AArch64 is defined to come out of reset into EL3 if enabled.
473                  * If we are booting Linux then we need to adjust our EL as
474                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
475                  * SVC, which Linux expects, so no privilege/exception level to
476                  * adjust.
477                  */
478                 if (env->aarch64) {
479                     if (arm_feature(env, ARM_FEATURE_EL2)) {
480                         env->pstate = PSTATE_MODE_EL2h;
481                     } else {
482                         env->pstate = PSTATE_MODE_EL1h;
483                     }
484                 }
485 
486                 /* Set to non-secure if not a secure boot */
487                 if (!info->secure_boot) {
488                     /* Linux expects non-secure state */
489                     env->cp15.scr_el3 |= SCR_NS;
490                 }
491             }
492 
493             if (cs == first_cpu) {
494                 cpu_set_pc(cs, info->loader_start);
495 
496                 if (!have_dtb(info)) {
497                     if (old_param) {
498                         set_kernel_args_old(info);
499                     } else {
500                         set_kernel_args(info);
501                     }
502                 }
503             } else {
504                 info->secondary_cpu_reset_hook(cpu, info);
505             }
506         }
507     }
508 }
509 
510 /**
511  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
512  *                          by key.
513  * @fw_cfg:         The firmware config instance to store the data in.
514  * @size_key:       The firmware config key to store the size of the loaded
515  *                  data under, with fw_cfg_add_i32().
516  * @data_key:       The firmware config key to store the loaded data under,
517  *                  with fw_cfg_add_bytes().
518  * @image_name:     The name of the image file to load. If it is NULL, the
519  *                  function returns without doing anything.
520  * @try_decompress: Whether the image should be decompressed (gunzipped) before
521  *                  adding it to fw_cfg. If decompression fails, the image is
522  *                  loaded as-is.
523  *
524  * In case of failure, the function prints an error message to stderr and the
525  * process exits with status 1.
526  */
527 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
528                                  uint16_t data_key, const char *image_name,
529                                  bool try_decompress)
530 {
531     size_t size = -1;
532     uint8_t *data;
533 
534     if (image_name == NULL) {
535         return;
536     }
537 
538     if (try_decompress) {
539         size = load_image_gzipped_buffer(image_name,
540                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
541     }
542 
543     if (size == (size_t)-1) {
544         gchar *contents;
545         gsize length;
546 
547         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
548             fprintf(stderr, "failed to load \"%s\"\n", image_name);
549             exit(1);
550         }
551         size = length;
552         data = (uint8_t *)contents;
553     }
554 
555     fw_cfg_add_i32(fw_cfg, size_key, size);
556     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
557 }
558 
559 static int do_arm_linux_init(Object *obj, void *opaque)
560 {
561     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
562         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
563         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
564         struct arm_boot_info *info = opaque;
565 
566         if (albifc->arm_linux_init) {
567             albifc->arm_linux_init(albif, info->secure_boot);
568         }
569     }
570     return 0;
571 }
572 
573 static void arm_load_kernel_notify(Notifier *notifier, void *data)
574 {
575     CPUState *cs;
576     int kernel_size;
577     int initrd_size;
578     int is_linux = 0;
579     uint64_t elf_entry, elf_low_addr, elf_high_addr;
580     int elf_machine;
581     hwaddr entry, kernel_load_offset;
582     int big_endian;
583     static const ARMInsnFixup *primary_loader;
584     ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
585                                          notifier, notifier);
586     ARMCPU *cpu = n->cpu;
587     struct arm_boot_info *info =
588         container_of(n, struct arm_boot_info, load_kernel_notifier);
589 
590     /* Load the kernel.  */
591     if (!info->kernel_filename || info->firmware_loaded) {
592 
593         if (have_dtb(info)) {
594             /* If we have a device tree blob, but no kernel to supply it to (or
595              * the kernel is supposed to be loaded by the bootloader), copy the
596              * DTB to the base of RAM for the bootloader to pick up.
597              */
598             if (load_dtb(info->loader_start, info, 0) < 0) {
599                 exit(1);
600             }
601         }
602 
603         if (info->kernel_filename) {
604             FWCfgState *fw_cfg;
605             bool try_decompressing_kernel;
606 
607             fw_cfg = fw_cfg_find();
608             try_decompressing_kernel = arm_feature(&cpu->env,
609                                                    ARM_FEATURE_AARCH64);
610 
611             /* Expose the kernel, the command line, and the initrd in fw_cfg.
612              * We don't process them here at all, it's all left to the
613              * firmware.
614              */
615             load_image_to_fw_cfg(fw_cfg,
616                                  FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
617                                  info->kernel_filename,
618                                  try_decompressing_kernel);
619             load_image_to_fw_cfg(fw_cfg,
620                                  FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
621                                  info->initrd_filename, false);
622 
623             if (info->kernel_cmdline) {
624                 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
625                                strlen(info->kernel_cmdline) + 1);
626                 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
627                                   info->kernel_cmdline);
628             }
629         }
630 
631         /* We will start from address 0 (typically a boot ROM image) in the
632          * same way as hardware.
633          */
634         return;
635     }
636 
637     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
638         primary_loader = bootloader_aarch64;
639         kernel_load_offset = KERNEL64_LOAD_ADDR;
640         elf_machine = EM_AARCH64;
641     } else {
642         primary_loader = bootloader;
643         kernel_load_offset = KERNEL_LOAD_ADDR;
644         elf_machine = EM_ARM;
645     }
646 
647     info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
648 
649     if (!info->secondary_cpu_reset_hook) {
650         info->secondary_cpu_reset_hook = default_reset_secondary;
651     }
652     if (!info->write_secondary_boot) {
653         info->write_secondary_boot = default_write_secondary;
654     }
655 
656     if (info->nb_cpus == 0)
657         info->nb_cpus = 1;
658 
659 #ifdef TARGET_WORDS_BIGENDIAN
660     big_endian = 1;
661 #else
662     big_endian = 0;
663 #endif
664 
665     /* We want to put the initrd far enough into RAM that when the
666      * kernel is uncompressed it will not clobber the initrd. However
667      * on boards without much RAM we must ensure that we still leave
668      * enough room for a decent sized initrd, and on boards with large
669      * amounts of RAM we must avoid the initrd being so far up in RAM
670      * that it is outside lowmem and inaccessible to the kernel.
671      * So for boards with less  than 256MB of RAM we put the initrd
672      * halfway into RAM, and for boards with 256MB of RAM or more we put
673      * the initrd at 128MB.
674      */
675     info->initrd_start = info->loader_start +
676         MIN(info->ram_size / 2, 128 * 1024 * 1024);
677 
678     /* Assume that raw images are linux kernels, and ELF images are not.  */
679     kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
680                            &elf_low_addr, &elf_high_addr, big_endian,
681                            elf_machine, 1);
682     if (kernel_size > 0 && have_dtb(info)) {
683         /* If there is still some room left at the base of RAM, try and put
684          * the DTB there like we do for images loaded with -bios or -pflash.
685          */
686         if (elf_low_addr > info->loader_start
687             || elf_high_addr < info->loader_start) {
688             /* Pass elf_low_addr as address limit to load_dtb if it may be
689              * pointing into RAM, otherwise pass '0' (no limit)
690              */
691             if (elf_low_addr < info->loader_start) {
692                 elf_low_addr = 0;
693             }
694             if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
695                 exit(1);
696             }
697         }
698     }
699     entry = elf_entry;
700     if (kernel_size < 0) {
701         kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
702                                   &is_linux, NULL, NULL);
703     }
704     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
705     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
706         entry = info->loader_start + kernel_load_offset;
707         kernel_size = load_image_gzipped(info->kernel_filename, entry,
708                                          info->ram_size - kernel_load_offset);
709         is_linux = 1;
710     }
711     if (kernel_size < 0) {
712         entry = info->loader_start + kernel_load_offset;
713         kernel_size = load_image_targphys(info->kernel_filename, entry,
714                                           info->ram_size - kernel_load_offset);
715         is_linux = 1;
716     }
717     if (kernel_size < 0) {
718         fprintf(stderr, "qemu: could not load kernel '%s'\n",
719                 info->kernel_filename);
720         exit(1);
721     }
722     info->entry = entry;
723     if (is_linux) {
724         uint32_t fixupcontext[FIXUP_MAX];
725 
726         if (info->initrd_filename) {
727             initrd_size = load_ramdisk(info->initrd_filename,
728                                        info->initrd_start,
729                                        info->ram_size -
730                                        info->initrd_start);
731             if (initrd_size < 0) {
732                 initrd_size = load_image_targphys(info->initrd_filename,
733                                                   info->initrd_start,
734                                                   info->ram_size -
735                                                   info->initrd_start);
736             }
737             if (initrd_size < 0) {
738                 fprintf(stderr, "qemu: could not load initrd '%s'\n",
739                         info->initrd_filename);
740                 exit(1);
741             }
742         } else {
743             initrd_size = 0;
744         }
745         info->initrd_size = initrd_size;
746 
747         fixupcontext[FIXUP_BOARDID] = info->board_id;
748 
749         /* for device tree boot, we pass the DTB directly in r2. Otherwise
750          * we point to the kernel args.
751          */
752         if (have_dtb(info)) {
753             hwaddr align;
754             hwaddr dtb_start;
755 
756             if (elf_machine == EM_AARCH64) {
757                 /*
758                  * Some AArch64 kernels on early bootup map the fdt region as
759                  *
760                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
761                  *
762                  * Let's play safe and prealign it to 2MB to give us some space.
763                  */
764                 align = 2 * 1024 * 1024;
765             } else {
766                 /*
767                  * Some 32bit kernels will trash anything in the 4K page the
768                  * initrd ends in, so make sure the DTB isn't caught up in that.
769                  */
770                 align = 4096;
771             }
772 
773             /* Place the DTB after the initrd in memory with alignment. */
774             dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
775             if (load_dtb(dtb_start, info, 0) < 0) {
776                 exit(1);
777             }
778             fixupcontext[FIXUP_ARGPTR] = dtb_start;
779         } else {
780             fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
781             if (info->ram_size >= (1ULL << 32)) {
782                 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
783                         " Linux kernel using ATAGS (try passing a device tree"
784                         " using -dtb)\n");
785                 exit(1);
786             }
787         }
788         fixupcontext[FIXUP_ENTRYPOINT] = entry;
789 
790         write_bootloader("bootloader", info->loader_start,
791                          primary_loader, fixupcontext);
792 
793         if (info->nb_cpus > 1) {
794             info->write_secondary_boot(cpu, info);
795         }
796 
797         /* Notify devices which need to fake up firmware initialization
798          * that we're doing a direct kernel boot.
799          */
800         object_child_foreach_recursive(object_get_root(),
801                                        do_arm_linux_init, info);
802     }
803     info->is_linux = is_linux;
804 
805     for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
806         ARM_CPU(cs)->env.boot_info = info;
807     }
808 }
809 
810 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
811 {
812     CPUState *cs;
813 
814     info->load_kernel_notifier.cpu = cpu;
815     info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
816     qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
817 
818     /* CPU objects (unlike devices) are not automatically reset on system
819      * reset, so we must always register a handler to do so. If we're
820      * actually loading a kernel, the handler is also responsible for
821      * arranging that we start it correctly.
822      */
823     for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
824         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
825     }
826 }
827 
828 static const TypeInfo arm_linux_boot_if_info = {
829     .name = TYPE_ARM_LINUX_BOOT_IF,
830     .parent = TYPE_INTERFACE,
831     .class_size = sizeof(ARMLinuxBootIfClass),
832 };
833 
834 static void arm_linux_boot_register_types(void)
835 {
836     type_register_static(&arm_linux_boot_if_info);
837 }
838 
839 type_init(arm_linux_boot_register_types)
840