xref: /qemu/hw/arm/mps2-tz.c (revision 09147930)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *
20  * Links to the TRM for the board itself and to the various Application
21  * Notes which document the FPGA images can be found here:
22  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23  *
24  * Board TRM:
25  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26  * Application Note AN505:
27  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28  * Application Note AN521:
29  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30  *
31  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32  * (ARM ECM0601256) for the details of some of the device layout:
33  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34  * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35  * most of the device layout:
36  *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37  *
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/net/lan9118.h"
62 #include "net/net.h"
63 #include "hw/core/split-irq.h"
64 
65 #define MPS2TZ_NUMIRQ 92
66 
67 typedef enum MPS2TZFPGAType {
68     FPGA_AN505,
69     FPGA_AN521,
70 } MPS2TZFPGAType;
71 
72 typedef struct {
73     MachineClass parent;
74     MPS2TZFPGAType fpga_type;
75     uint32_t scc_id;
76     const char *armsse_type;
77 } MPS2TZMachineClass;
78 
79 typedef struct {
80     MachineState parent;
81 
82     ARMSSE iotkit;
83     MemoryRegion ssram[3];
84     MemoryRegion ssram1_m;
85     MPS2SCC scc;
86     MPS2FPGAIO fpgaio;
87     TZPPC ppc[5];
88     TZMPC ssram_mpc[3];
89     PL022State spi[5];
90     UnimplementedDeviceState i2c[4];
91     UnimplementedDeviceState i2s_audio;
92     UnimplementedDeviceState gpio[4];
93     UnimplementedDeviceState gfx;
94     PL080State dma[4];
95     TZMSC msc[4];
96     CMSDKAPBUART uart[5];
97     SplitIRQ sec_resp_splitter;
98     qemu_or_irq uart_irq_orgate;
99     DeviceState *lan9118;
100     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
101 } MPS2TZMachineState;
102 
103 #define TYPE_MPS2TZ_MACHINE "mps2tz"
104 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
105 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
106 
107 #define MPS2TZ_MACHINE(obj) \
108     OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
109 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
110     OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
111 #define MPS2TZ_MACHINE_CLASS(klass) \
112     OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
113 
114 /* Main SYSCLK frequency in Hz */
115 #define SYSCLK_FRQ 20000000
116 
117 /* Create an alias of an entire original MemoryRegion @orig
118  * located at @base in the memory map.
119  */
120 static void make_ram_alias(MemoryRegion *mr, const char *name,
121                            MemoryRegion *orig, hwaddr base)
122 {
123     memory_region_init_alias(mr, NULL, name, orig, 0,
124                              memory_region_size(orig));
125     memory_region_add_subregion(get_system_memory(), base, mr);
126 }
127 
128 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
129 {
130     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
131     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
132 
133     assert(irqno < MPS2TZ_NUMIRQ);
134 
135     switch (mmc->fpga_type) {
136     case FPGA_AN505:
137         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
138     case FPGA_AN521:
139         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
140     default:
141         g_assert_not_reached();
142     }
143 }
144 
145 /* Most of the devices in the AN505 FPGA image sit behind
146  * Peripheral Protection Controllers. These data structures
147  * define the layout of which devices sit behind which PPCs.
148  * The devfn for each port is a function which creates, configures
149  * and initializes the device, returning the MemoryRegion which
150  * needs to be plugged into the downstream end of the PPC port.
151  */
152 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
153                                 const char *name, hwaddr size);
154 
155 typedef struct PPCPortInfo {
156     const char *name;
157     MakeDevFn *devfn;
158     void *opaque;
159     hwaddr addr;
160     hwaddr size;
161 } PPCPortInfo;
162 
163 typedef struct PPCInfo {
164     const char *name;
165     PPCPortInfo ports[TZ_NUM_PORTS];
166 } PPCInfo;
167 
168 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
169                                        void *opaque,
170                                        const char *name, hwaddr size)
171 {
172     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
173      * and return a pointer to its MemoryRegion.
174      */
175     UnimplementedDeviceState *uds = opaque;
176 
177     sysbus_init_child_obj(OBJECT(mms), name, uds,
178                           sizeof(UnimplementedDeviceState),
179                           TYPE_UNIMPLEMENTED_DEVICE);
180     qdev_prop_set_string(DEVICE(uds), "name", name);
181     qdev_prop_set_uint64(DEVICE(uds), "size", size);
182     object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
183     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
184 }
185 
186 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
187                                const char *name, hwaddr size)
188 {
189     CMSDKAPBUART *uart = opaque;
190     int i = uart - &mms->uart[0];
191     int rxirqno = i * 2;
192     int txirqno = i * 2 + 1;
193     int combirqno = i + 10;
194     SysBusDevice *s;
195     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
196 
197     sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
198                           TYPE_CMSDK_APB_UART);
199     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
200     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
201     object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
202     s = SYS_BUS_DEVICE(uart);
203     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
204     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
205     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
206     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
207     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
208     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
209 }
210 
211 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
212                               const char *name, hwaddr size)
213 {
214     MPS2SCC *scc = opaque;
215     DeviceState *sccdev;
216     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
217 
218     sysbus_init_child_obj(OBJECT(mms), "scc", scc,
219                           sizeof(mms->scc), TYPE_MPS2_SCC);
220     sccdev = DEVICE(scc);
221     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
222     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
223     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
224     object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
225     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
226 }
227 
228 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
229                                  const char *name, hwaddr size)
230 {
231     MPS2FPGAIO *fpgaio = opaque;
232 
233     sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio,
234                           sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
235     object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
236     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
237 }
238 
239 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
240                                   const char *name, hwaddr size)
241 {
242     SysBusDevice *s;
243     NICInfo *nd = &nd_table[0];
244 
245     /* In hardware this is a LAN9220; the LAN9118 is software compatible
246      * except that it doesn't support the checksum-offload feature.
247      */
248     qemu_check_nic_model(nd, "lan9118");
249     mms->lan9118 = qdev_create(NULL, TYPE_LAN9118);
250     qdev_set_nic_properties(mms->lan9118, nd);
251     qdev_init_nofail(mms->lan9118);
252 
253     s = SYS_BUS_DEVICE(mms->lan9118);
254     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
255     return sysbus_mmio_get_region(s, 0);
256 }
257 
258 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
259                               const char *name, hwaddr size)
260 {
261     TZMPC *mpc = opaque;
262     int i = mpc - &mms->ssram_mpc[0];
263     MemoryRegion *ssram = &mms->ssram[i];
264     MemoryRegion *upstream;
265     char *mpcname = g_strdup_printf("%s-mpc", name);
266     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
267     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
268 
269     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
270 
271     sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
272                           TYPE_TZ_MPC);
273     object_property_set_link(OBJECT(mpc), OBJECT(ssram),
274                              "downstream", &error_fatal);
275     object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
276     /* Map the upstream end of the MPC into system memory */
277     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
278     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
279     /* and connect its interrupt to the IoTKit */
280     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
281                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
282                                                        "mpcexp_status", i));
283 
284     /* The first SSRAM is a special case as it has an alias; accesses to
285      * the alias region at 0x00400000 must also go to the MPC upstream.
286      */
287     if (i == 0) {
288         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
289     }
290 
291     g_free(mpcname);
292     /* Return the register interface MR for our caller to map behind the PPC */
293     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
294 }
295 
296 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
297                               const char *name, hwaddr size)
298 {
299     PL080State *dma = opaque;
300     int i = dma - &mms->dma[0];
301     SysBusDevice *s;
302     char *mscname = g_strdup_printf("%s-msc", name);
303     TZMSC *msc = &mms->msc[i];
304     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
305     MemoryRegion *msc_upstream;
306     MemoryRegion *msc_downstream;
307 
308     /*
309      * Each DMA device is a PL081 whose transaction master interface
310      * is guarded by a Master Security Controller. The downstream end of
311      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
312      * DMA devices can see all devices and memory that the CPU does.
313      */
314     sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
315     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
316     object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
317                              "downstream", &error_fatal);
318     object_property_set_link(OBJECT(msc), OBJECT(mms),
319                              "idau", &error_fatal);
320     object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
321 
322     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
323                                 qdev_get_gpio_in_named(iotkitdev,
324                                                        "mscexp_status", i));
325     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
326                                 qdev_get_gpio_in_named(DEVICE(msc),
327                                                        "irq_clear", 0));
328     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
329                                 qdev_get_gpio_in_named(DEVICE(msc),
330                                                        "cfg_nonsec", 0));
331     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
332                           ARRAY_SIZE(mms->ppc) + i,
333                           qdev_get_gpio_in_named(DEVICE(msc),
334                                                  "cfg_sec_resp", 0));
335     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
336 
337     sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
338     object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
339                              "downstream", &error_fatal);
340     object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
341 
342     s = SYS_BUS_DEVICE(dma);
343     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
344     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
345     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
346     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
347 
348     g_free(mscname);
349     return sysbus_mmio_get_region(s, 0);
350 }
351 
352 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
353                               const char *name, hwaddr size)
354 {
355     /*
356      * The AN505 has five PL022 SPI controllers.
357      * One of these should have the LCD controller behind it; the others
358      * are connected only to the FPGA's "general purpose SPI connector"
359      * or "shield" expansion connectors.
360      * Note that if we do implement devices behind SPI, the chip select
361      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
362      */
363     PL022State *spi = opaque;
364     int i = spi - &mms->spi[0];
365     SysBusDevice *s;
366 
367     sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
368                           TYPE_PL022);
369     object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
370     s = SYS_BUS_DEVICE(spi);
371     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
372     return sysbus_mmio_get_region(s, 0);
373 }
374 
375 static void mps2tz_common_init(MachineState *machine)
376 {
377     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
378     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
379     MachineClass *mc = MACHINE_GET_CLASS(machine);
380     MemoryRegion *system_memory = get_system_memory();
381     DeviceState *iotkitdev;
382     DeviceState *dev_splitter;
383     int i;
384 
385     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
386         error_report("This board can only be used with CPU %s",
387                      mc->default_cpu_type);
388         exit(1);
389     }
390 
391     if (machine->ram_size != mc->default_ram_size) {
392         char *sz = size_to_str(mc->default_ram_size);
393         error_report("Invalid RAM size, should be %s", sz);
394         g_free(sz);
395         exit(EXIT_FAILURE);
396     }
397 
398     sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
399                           sizeof(mms->iotkit), mmc->armsse_type);
400     iotkitdev = DEVICE(&mms->iotkit);
401     object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
402                              "memory", &error_abort);
403     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
404     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
405     object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
406                              &error_fatal);
407 
408     /*
409      * The AN521 needs us to create splitters to feed the IRQ inputs
410      * for each CPU in the SSE-200 from each device in the board.
411      */
412     if (mmc->fpga_type == FPGA_AN521) {
413         for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
414             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
415             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
416 
417             object_initialize_child(OBJECT(machine), name,
418                                     splitter, sizeof(*splitter),
419                                     TYPE_SPLIT_IRQ, &error_fatal, NULL);
420             g_free(name);
421 
422             object_property_set_int(OBJECT(splitter), 2, "num-lines",
423                                     &error_fatal);
424             object_property_set_bool(OBJECT(splitter), true, "realized",
425                                      &error_fatal);
426             qdev_connect_gpio_out(DEVICE(splitter), 0,
427                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
428                                                          "EXP_IRQ", i));
429             qdev_connect_gpio_out(DEVICE(splitter), 1,
430                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
431                                                          "EXP_CPU1_IRQ", i));
432         }
433     }
434 
435     /* The sec_resp_cfg output from the IoTKit must be split into multiple
436      * lines, one for each of the PPCs we create here, plus one per MSC.
437      */
438     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
439                             &mms->sec_resp_splitter,
440                             sizeof(mms->sec_resp_splitter),
441                             TYPE_SPLIT_IRQ, &error_abort, NULL);
442     object_property_set_int(OBJECT(&mms->sec_resp_splitter),
443                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
444                             "num-lines", &error_fatal);
445     object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
446                              "realized", &error_fatal);
447     dev_splitter = DEVICE(&mms->sec_resp_splitter);
448     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
449                                 qdev_get_gpio_in(dev_splitter, 0));
450 
451     /* The IoTKit sets up much of the memory layout, including
452      * the aliases between secure and non-secure regions in the
453      * address space. The FPGA itself contains:
454      *
455      * 0x00000000..0x003fffff  SSRAM1
456      * 0x00400000..0x007fffff  alias of SSRAM1
457      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
458      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
459      * 0x80000000..0x80ffffff  16MB PSRAM
460      */
461 
462     /* The FPGA images have an odd combination of different RAMs,
463      * because in hardware they are different implementations and
464      * connected to different buses, giving varying performance/size
465      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
466      * call the 16MB our "system memory", as it's the largest lump.
467      */
468     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
469 
470     /* The overflow IRQs for all UARTs are ORed together.
471      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
472      * Create the OR gate for this.
473      */
474     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
475                             &mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
476                             TYPE_OR_IRQ, &error_abort, NULL);
477     object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
478                             &error_fatal);
479     object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
480                              "realized", &error_fatal);
481     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
482                           get_sse_irq_in(mms, 15));
483 
484     /* Most of the devices in the FPGA are behind Peripheral Protection
485      * Controllers. The required order for initializing things is:
486      *  + initialize the PPC
487      *  + initialize, configure and realize downstream devices
488      *  + connect downstream device MemoryRegions to the PPC
489      *  + realize the PPC
490      *  + map the PPC's MemoryRegions to the places in the address map
491      *    where the downstream devices should appear
492      *  + wire up the PPC's control lines to the IoTKit object
493      */
494 
495     const PPCInfo ppcs[] = { {
496             .name = "apb_ppcexp0",
497             .ports = {
498                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
499                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
500                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
501             },
502         }, {
503             .name = "apb_ppcexp1",
504             .ports = {
505                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
506                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
507                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
508                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
509                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
510                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
511                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
512                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
513                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
514                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
515                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
516                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
517                 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
518                 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
519             },
520         }, {
521             .name = "apb_ppcexp2",
522             .ports = {
523                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
524                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
525                   0x40301000, 0x1000 },
526                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
527             },
528         }, {
529             .name = "ahb_ppcexp0",
530             .ports = {
531                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
532                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
533                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
534                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
535                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
536                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
537             },
538         }, {
539             .name = "ahb_ppcexp1",
540             .ports = {
541                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
542                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
543                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
544                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
545             },
546         },
547     };
548 
549     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
550         const PPCInfo *ppcinfo = &ppcs[i];
551         TZPPC *ppc = &mms->ppc[i];
552         DeviceState *ppcdev;
553         int port;
554         char *gpioname;
555 
556         sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
557                               sizeof(TZPPC), TYPE_TZ_PPC);
558         ppcdev = DEVICE(ppc);
559 
560         for (port = 0; port < TZ_NUM_PORTS; port++) {
561             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
562             MemoryRegion *mr;
563             char *portname;
564 
565             if (!pinfo->devfn) {
566                 continue;
567             }
568 
569             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
570             portname = g_strdup_printf("port[%d]", port);
571             object_property_set_link(OBJECT(ppc), OBJECT(mr),
572                                      portname, &error_fatal);
573             g_free(portname);
574         }
575 
576         object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
577 
578         for (port = 0; port < TZ_NUM_PORTS; port++) {
579             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
580 
581             if (!pinfo->devfn) {
582                 continue;
583             }
584             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
585 
586             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
587             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
588                                         qdev_get_gpio_in_named(ppcdev,
589                                                                "cfg_nonsec",
590                                                                port));
591             g_free(gpioname);
592             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
593             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
594                                         qdev_get_gpio_in_named(ppcdev,
595                                                                "cfg_ap", port));
596             g_free(gpioname);
597         }
598 
599         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
600         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
601                                     qdev_get_gpio_in_named(ppcdev,
602                                                            "irq_enable", 0));
603         g_free(gpioname);
604         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
605         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
606                                     qdev_get_gpio_in_named(ppcdev,
607                                                            "irq_clear", 0));
608         g_free(gpioname);
609         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
610         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
611                                     qdev_get_gpio_in_named(iotkitdev,
612                                                            gpioname, 0));
613         g_free(gpioname);
614 
615         qdev_connect_gpio_out(dev_splitter, i,
616                               qdev_get_gpio_in_named(ppcdev,
617                                                      "cfg_sec_resp", 0));
618     }
619 
620     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
621 
622     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
623 }
624 
625 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
626                                int *iregion, bool *exempt, bool *ns, bool *nsc)
627 {
628     /*
629      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
630      * the Master Security Controllers. Thes have the same logic as
631      * is used by the IoTKit for the IDAU connected to the CPU, except
632      * that MSCs don't care about the NSC attribute.
633      */
634     int region = extract32(address, 28, 4);
635 
636     *ns = !(region & 1);
637     *nsc = false;
638     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
639     *exempt = (address & 0xeff00000) == 0xe0000000;
640     *iregion = region;
641 }
642 
643 static void mps2tz_class_init(ObjectClass *oc, void *data)
644 {
645     MachineClass *mc = MACHINE_CLASS(oc);
646     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
647 
648     mc->init = mps2tz_common_init;
649     iic->check = mps2_tz_idau_check;
650     mc->default_ram_size = 16 * MiB;
651     mc->default_ram_id = "mps.ram";
652 }
653 
654 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
655 {
656     MachineClass *mc = MACHINE_CLASS(oc);
657     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
658 
659     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
660     mc->default_cpus = 1;
661     mc->min_cpus = mc->default_cpus;
662     mc->max_cpus = mc->default_cpus;
663     mmc->fpga_type = FPGA_AN505;
664     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
665     mmc->scc_id = 0x41045050;
666     mmc->armsse_type = TYPE_IOTKIT;
667 }
668 
669 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
670 {
671     MachineClass *mc = MACHINE_CLASS(oc);
672     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
673 
674     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
675     mc->default_cpus = 2;
676     mc->min_cpus = mc->default_cpus;
677     mc->max_cpus = mc->default_cpus;
678     mmc->fpga_type = FPGA_AN521;
679     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
680     mmc->scc_id = 0x41045210;
681     mmc->armsse_type = TYPE_SSE200;
682 }
683 
684 static const TypeInfo mps2tz_info = {
685     .name = TYPE_MPS2TZ_MACHINE,
686     .parent = TYPE_MACHINE,
687     .abstract = true,
688     .instance_size = sizeof(MPS2TZMachineState),
689     .class_size = sizeof(MPS2TZMachineClass),
690     .class_init = mps2tz_class_init,
691     .interfaces = (InterfaceInfo[]) {
692         { TYPE_IDAU_INTERFACE },
693         { }
694     },
695 };
696 
697 static const TypeInfo mps2tz_an505_info = {
698     .name = TYPE_MPS2TZ_AN505_MACHINE,
699     .parent = TYPE_MPS2TZ_MACHINE,
700     .class_init = mps2tz_an505_class_init,
701 };
702 
703 static const TypeInfo mps2tz_an521_info = {
704     .name = TYPE_MPS2TZ_AN521_MACHINE,
705     .parent = TYPE_MPS2TZ_MACHINE,
706     .class_init = mps2tz_an521_class_init,
707 };
708 
709 static void mps2tz_machine_init(void)
710 {
711     type_register_static(&mps2tz_info);
712     type_register_static(&mps2tz_an505_info);
713     type_register_static(&mps2tz_an521_info);
714 }
715 
716 type_init(mps2tz_machine_init);
717