xref: /qemu/hw/arm/mps2-tz.c (revision 12b35405)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *
20  * Links to the TRM for the board itself and to the various Application
21  * Notes which document the FPGA images can be found here:
22  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23  *
24  * Board TRM:
25  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26  * Application Note AN505:
27  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28  * Application Note AN521:
29  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30  *
31  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32  * (ARM ECM0601256) for the details of some of the device layout:
33  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34  * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35  * most of the device layout:
36  *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37  *
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
63 #include "net/net.h"
64 #include "hw/core/split-irq.h"
65 
66 #define MPS2TZ_NUMIRQ 92
67 
68 typedef enum MPS2TZFPGAType {
69     FPGA_AN505,
70     FPGA_AN521,
71 } MPS2TZFPGAType;
72 
73 typedef struct {
74     MachineClass parent;
75     MPS2TZFPGAType fpga_type;
76     uint32_t scc_id;
77     const char *armsse_type;
78 } MPS2TZMachineClass;
79 
80 typedef struct {
81     MachineState parent;
82 
83     ARMSSE iotkit;
84     MemoryRegion ssram[3];
85     MemoryRegion ssram1_m;
86     MPS2SCC scc;
87     MPS2FPGAIO fpgaio;
88     TZPPC ppc[5];
89     TZMPC ssram_mpc[3];
90     PL022State spi[5];
91     ArmSbconI2CState i2c[4];
92     UnimplementedDeviceState i2s_audio;
93     UnimplementedDeviceState gpio[4];
94     UnimplementedDeviceState gfx;
95     PL080State dma[4];
96     TZMSC msc[4];
97     CMSDKAPBUART uart[5];
98     SplitIRQ sec_resp_splitter;
99     qemu_or_irq uart_irq_orgate;
100     DeviceState *lan9118;
101     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
102 } MPS2TZMachineState;
103 
104 #define TYPE_MPS2TZ_MACHINE "mps2tz"
105 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
106 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
107 
108 #define MPS2TZ_MACHINE(obj) \
109     OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
110 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
111     OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
112 #define MPS2TZ_MACHINE_CLASS(klass) \
113     OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
114 
115 /* Main SYSCLK frequency in Hz */
116 #define SYSCLK_FRQ 20000000
117 
118 /* Create an alias of an entire original MemoryRegion @orig
119  * located at @base in the memory map.
120  */
121 static void make_ram_alias(MemoryRegion *mr, const char *name,
122                            MemoryRegion *orig, hwaddr base)
123 {
124     memory_region_init_alias(mr, NULL, name, orig, 0,
125                              memory_region_size(orig));
126     memory_region_add_subregion(get_system_memory(), base, mr);
127 }
128 
129 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
130 {
131     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
132     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
133 
134     assert(irqno < MPS2TZ_NUMIRQ);
135 
136     switch (mmc->fpga_type) {
137     case FPGA_AN505:
138         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
139     case FPGA_AN521:
140         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
141     default:
142         g_assert_not_reached();
143     }
144 }
145 
146 /* Most of the devices in the AN505 FPGA image sit behind
147  * Peripheral Protection Controllers. These data structures
148  * define the layout of which devices sit behind which PPCs.
149  * The devfn for each port is a function which creates, configures
150  * and initializes the device, returning the MemoryRegion which
151  * needs to be plugged into the downstream end of the PPC port.
152  */
153 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
154                                 const char *name, hwaddr size);
155 
156 typedef struct PPCPortInfo {
157     const char *name;
158     MakeDevFn *devfn;
159     void *opaque;
160     hwaddr addr;
161     hwaddr size;
162 } PPCPortInfo;
163 
164 typedef struct PPCInfo {
165     const char *name;
166     PPCPortInfo ports[TZ_NUM_PORTS];
167 } PPCInfo;
168 
169 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
170                                        void *opaque,
171                                        const char *name, hwaddr size)
172 {
173     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
174      * and return a pointer to its MemoryRegion.
175      */
176     UnimplementedDeviceState *uds = opaque;
177 
178     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
179     qdev_prop_set_string(DEVICE(uds), "name", name);
180     qdev_prop_set_uint64(DEVICE(uds), "size", size);
181     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
182     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
183 }
184 
185 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
186                                const char *name, hwaddr size)
187 {
188     CMSDKAPBUART *uart = opaque;
189     int i = uart - &mms->uart[0];
190     int rxirqno = i * 2;
191     int txirqno = i * 2 + 1;
192     int combirqno = i + 10;
193     SysBusDevice *s;
194     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
195 
196     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
197     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
198     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
199     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
200     s = SYS_BUS_DEVICE(uart);
201     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
202     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
203     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
204     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
205     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
206     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
207 }
208 
209 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
210                               const char *name, hwaddr size)
211 {
212     MPS2SCC *scc = opaque;
213     DeviceState *sccdev;
214     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
215 
216     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
217     sccdev = DEVICE(scc);
218     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
219     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
220     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
221     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
222     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
223 }
224 
225 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
226                                  const char *name, hwaddr size)
227 {
228     MPS2FPGAIO *fpgaio = opaque;
229 
230     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
231     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
232     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
233 }
234 
235 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
236                                   const char *name, hwaddr size)
237 {
238     SysBusDevice *s;
239     NICInfo *nd = &nd_table[0];
240 
241     /* In hardware this is a LAN9220; the LAN9118 is software compatible
242      * except that it doesn't support the checksum-offload feature.
243      */
244     qemu_check_nic_model(nd, "lan9118");
245     mms->lan9118 = qdev_new(TYPE_LAN9118);
246     qdev_set_nic_properties(mms->lan9118, nd);
247 
248     s = SYS_BUS_DEVICE(mms->lan9118);
249     sysbus_realize_and_unref(s, &error_fatal);
250     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
251     return sysbus_mmio_get_region(s, 0);
252 }
253 
254 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
255                               const char *name, hwaddr size)
256 {
257     TZMPC *mpc = opaque;
258     int i = mpc - &mms->ssram_mpc[0];
259     MemoryRegion *ssram = &mms->ssram[i];
260     MemoryRegion *upstream;
261     char *mpcname = g_strdup_printf("%s-mpc", name);
262     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
263     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
264 
265     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
266 
267     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
268     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ssram),
269                              &error_fatal);
270     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
271     /* Map the upstream end of the MPC into system memory */
272     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
273     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
274     /* and connect its interrupt to the IoTKit */
275     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
276                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
277                                                        "mpcexp_status", i));
278 
279     /* The first SSRAM is a special case as it has an alias; accesses to
280      * the alias region at 0x00400000 must also go to the MPC upstream.
281      */
282     if (i == 0) {
283         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
284     }
285 
286     g_free(mpcname);
287     /* Return the register interface MR for our caller to map behind the PPC */
288     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
289 }
290 
291 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
292                               const char *name, hwaddr size)
293 {
294     PL080State *dma = opaque;
295     int i = dma - &mms->dma[0];
296     SysBusDevice *s;
297     char *mscname = g_strdup_printf("%s-msc", name);
298     TZMSC *msc = &mms->msc[i];
299     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
300     MemoryRegion *msc_upstream;
301     MemoryRegion *msc_downstream;
302 
303     /*
304      * Each DMA device is a PL081 whose transaction master interface
305      * is guarded by a Master Security Controller. The downstream end of
306      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
307      * DMA devices can see all devices and memory that the CPU does.
308      */
309     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
310     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
311     object_property_set_link(OBJECT(msc), "downstream",
312                              OBJECT(msc_downstream), &error_fatal);
313     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
314     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
315 
316     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
317                                 qdev_get_gpio_in_named(iotkitdev,
318                                                        "mscexp_status", i));
319     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
320                                 qdev_get_gpio_in_named(DEVICE(msc),
321                                                        "irq_clear", 0));
322     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
323                                 qdev_get_gpio_in_named(DEVICE(msc),
324                                                        "cfg_nonsec", 0));
325     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
326                           ARRAY_SIZE(mms->ppc) + i,
327                           qdev_get_gpio_in_named(DEVICE(msc),
328                                                  "cfg_sec_resp", 0));
329     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
330 
331     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
332     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
333                              &error_fatal);
334     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
335 
336     s = SYS_BUS_DEVICE(dma);
337     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
338     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
339     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
340     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
341 
342     g_free(mscname);
343     return sysbus_mmio_get_region(s, 0);
344 }
345 
346 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
347                               const char *name, hwaddr size)
348 {
349     /*
350      * The AN505 has five PL022 SPI controllers.
351      * One of these should have the LCD controller behind it; the others
352      * are connected only to the FPGA's "general purpose SPI connector"
353      * or "shield" expansion connectors.
354      * Note that if we do implement devices behind SPI, the chip select
355      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
356      */
357     PL022State *spi = opaque;
358     int i = spi - &mms->spi[0];
359     SysBusDevice *s;
360 
361     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
362     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
363     s = SYS_BUS_DEVICE(spi);
364     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
365     return sysbus_mmio_get_region(s, 0);
366 }
367 
368 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
369                               const char *name, hwaddr size)
370 {
371     ArmSbconI2CState *i2c = opaque;
372     SysBusDevice *s;
373 
374     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
375     s = SYS_BUS_DEVICE(i2c);
376     sysbus_realize(s, &error_fatal);
377     return sysbus_mmio_get_region(s, 0);
378 }
379 
380 static void mps2tz_common_init(MachineState *machine)
381 {
382     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
383     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
384     MachineClass *mc = MACHINE_GET_CLASS(machine);
385     MemoryRegion *system_memory = get_system_memory();
386     DeviceState *iotkitdev;
387     DeviceState *dev_splitter;
388     int i;
389 
390     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
391         error_report("This board can only be used with CPU %s",
392                      mc->default_cpu_type);
393         exit(1);
394     }
395 
396     if (machine->ram_size != mc->default_ram_size) {
397         char *sz = size_to_str(mc->default_ram_size);
398         error_report("Invalid RAM size, should be %s", sz);
399         g_free(sz);
400         exit(EXIT_FAILURE);
401     }
402 
403     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
404                             mmc->armsse_type);
405     iotkitdev = DEVICE(&mms->iotkit);
406     object_property_set_link(OBJECT(&mms->iotkit), "memory",
407                              OBJECT(system_memory), &error_abort);
408     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
409     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
410     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
411 
412     /*
413      * The AN521 needs us to create splitters to feed the IRQ inputs
414      * for each CPU in the SSE-200 from each device in the board.
415      */
416     if (mmc->fpga_type == FPGA_AN521) {
417         for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
418             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
419             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
420 
421             object_initialize_child_with_props(OBJECT(machine), name,
422                                                splitter, sizeof(*splitter),
423                                                TYPE_SPLIT_IRQ, &error_fatal,
424                                                NULL);
425             g_free(name);
426 
427             object_property_set_int(OBJECT(splitter), "num-lines", 2,
428                                     &error_fatal);
429             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
430             qdev_connect_gpio_out(DEVICE(splitter), 0,
431                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
432                                                          "EXP_IRQ", i));
433             qdev_connect_gpio_out(DEVICE(splitter), 1,
434                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
435                                                          "EXP_CPU1_IRQ", i));
436         }
437     }
438 
439     /* The sec_resp_cfg output from the IoTKit must be split into multiple
440      * lines, one for each of the PPCs we create here, plus one per MSC.
441      */
442     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
443                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
444     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
445                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
446                             &error_fatal);
447     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
448     dev_splitter = DEVICE(&mms->sec_resp_splitter);
449     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
450                                 qdev_get_gpio_in(dev_splitter, 0));
451 
452     /* The IoTKit sets up much of the memory layout, including
453      * the aliases between secure and non-secure regions in the
454      * address space. The FPGA itself contains:
455      *
456      * 0x00000000..0x003fffff  SSRAM1
457      * 0x00400000..0x007fffff  alias of SSRAM1
458      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
459      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
460      * 0x80000000..0x80ffffff  16MB PSRAM
461      */
462 
463     /* The FPGA images have an odd combination of different RAMs,
464      * because in hardware they are different implementations and
465      * connected to different buses, giving varying performance/size
466      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
467      * call the 16MB our "system memory", as it's the largest lump.
468      */
469     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
470 
471     /* The overflow IRQs for all UARTs are ORed together.
472      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
473      * Create the OR gate for this.
474      */
475     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
476                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
477     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 10,
478                             &error_fatal);
479     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
480     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
481                           get_sse_irq_in(mms, 15));
482 
483     /* Most of the devices in the FPGA are behind Peripheral Protection
484      * Controllers. The required order for initializing things is:
485      *  + initialize the PPC
486      *  + initialize, configure and realize downstream devices
487      *  + connect downstream device MemoryRegions to the PPC
488      *  + realize the PPC
489      *  + map the PPC's MemoryRegions to the places in the address map
490      *    where the downstream devices should appear
491      *  + wire up the PPC's control lines to the IoTKit object
492      */
493 
494     const PPCInfo ppcs[] = { {
495             .name = "apb_ppcexp0",
496             .ports = {
497                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
498                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
499                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
500             },
501         }, {
502             .name = "apb_ppcexp1",
503             .ports = {
504                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
505                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
506                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
507                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
508                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
509                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
510                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
511                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
512                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
513                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
514                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
515                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
516                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
517                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
518             },
519         }, {
520             .name = "apb_ppcexp2",
521             .ports = {
522                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
523                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
524                   0x40301000, 0x1000 },
525                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
526             },
527         }, {
528             .name = "ahb_ppcexp0",
529             .ports = {
530                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
531                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
532                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
533                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
534                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
535                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
536             },
537         }, {
538             .name = "ahb_ppcexp1",
539             .ports = {
540                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
541                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
542                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
543                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
544             },
545         },
546     };
547 
548     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
549         const PPCInfo *ppcinfo = &ppcs[i];
550         TZPPC *ppc = &mms->ppc[i];
551         DeviceState *ppcdev;
552         int port;
553         char *gpioname;
554 
555         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
556                                 TYPE_TZ_PPC);
557         ppcdev = DEVICE(ppc);
558 
559         for (port = 0; port < TZ_NUM_PORTS; port++) {
560             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
561             MemoryRegion *mr;
562             char *portname;
563 
564             if (!pinfo->devfn) {
565                 continue;
566             }
567 
568             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
569             portname = g_strdup_printf("port[%d]", port);
570             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
571                                      &error_fatal);
572             g_free(portname);
573         }
574 
575         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
576 
577         for (port = 0; port < TZ_NUM_PORTS; port++) {
578             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
579 
580             if (!pinfo->devfn) {
581                 continue;
582             }
583             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
584 
585             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
586             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
587                                         qdev_get_gpio_in_named(ppcdev,
588                                                                "cfg_nonsec",
589                                                                port));
590             g_free(gpioname);
591             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
592             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
593                                         qdev_get_gpio_in_named(ppcdev,
594                                                                "cfg_ap", port));
595             g_free(gpioname);
596         }
597 
598         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
599         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
600                                     qdev_get_gpio_in_named(ppcdev,
601                                                            "irq_enable", 0));
602         g_free(gpioname);
603         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
604         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
605                                     qdev_get_gpio_in_named(ppcdev,
606                                                            "irq_clear", 0));
607         g_free(gpioname);
608         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
609         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
610                                     qdev_get_gpio_in_named(iotkitdev,
611                                                            gpioname, 0));
612         g_free(gpioname);
613 
614         qdev_connect_gpio_out(dev_splitter, i,
615                               qdev_get_gpio_in_named(ppcdev,
616                                                      "cfg_sec_resp", 0));
617     }
618 
619     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
620 
621     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
622 }
623 
624 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
625                                int *iregion, bool *exempt, bool *ns, bool *nsc)
626 {
627     /*
628      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
629      * the Master Security Controllers. Thes have the same logic as
630      * is used by the IoTKit for the IDAU connected to the CPU, except
631      * that MSCs don't care about the NSC attribute.
632      */
633     int region = extract32(address, 28, 4);
634 
635     *ns = !(region & 1);
636     *nsc = false;
637     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
638     *exempt = (address & 0xeff00000) == 0xe0000000;
639     *iregion = region;
640 }
641 
642 static void mps2tz_class_init(ObjectClass *oc, void *data)
643 {
644     MachineClass *mc = MACHINE_CLASS(oc);
645     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
646 
647     mc->init = mps2tz_common_init;
648     iic->check = mps2_tz_idau_check;
649     mc->default_ram_size = 16 * MiB;
650     mc->default_ram_id = "mps.ram";
651 }
652 
653 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
654 {
655     MachineClass *mc = MACHINE_CLASS(oc);
656     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
657 
658     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
659     mc->default_cpus = 1;
660     mc->min_cpus = mc->default_cpus;
661     mc->max_cpus = mc->default_cpus;
662     mmc->fpga_type = FPGA_AN505;
663     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
664     mmc->scc_id = 0x41045050;
665     mmc->armsse_type = TYPE_IOTKIT;
666 }
667 
668 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
669 {
670     MachineClass *mc = MACHINE_CLASS(oc);
671     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
672 
673     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
674     mc->default_cpus = 2;
675     mc->min_cpus = mc->default_cpus;
676     mc->max_cpus = mc->default_cpus;
677     mmc->fpga_type = FPGA_AN521;
678     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
679     mmc->scc_id = 0x41045210;
680     mmc->armsse_type = TYPE_SSE200;
681 }
682 
683 static const TypeInfo mps2tz_info = {
684     .name = TYPE_MPS2TZ_MACHINE,
685     .parent = TYPE_MACHINE,
686     .abstract = true,
687     .instance_size = sizeof(MPS2TZMachineState),
688     .class_size = sizeof(MPS2TZMachineClass),
689     .class_init = mps2tz_class_init,
690     .interfaces = (InterfaceInfo[]) {
691         { TYPE_IDAU_INTERFACE },
692         { }
693     },
694 };
695 
696 static const TypeInfo mps2tz_an505_info = {
697     .name = TYPE_MPS2TZ_AN505_MACHINE,
698     .parent = TYPE_MPS2TZ_MACHINE,
699     .class_init = mps2tz_an505_class_init,
700 };
701 
702 static const TypeInfo mps2tz_an521_info = {
703     .name = TYPE_MPS2TZ_AN521_MACHINE,
704     .parent = TYPE_MPS2TZ_MACHINE,
705     .class_init = mps2tz_an521_class_init,
706 };
707 
708 static void mps2tz_machine_init(void)
709 {
710     type_register_static(&mps2tz_info);
711     type_register_static(&mps2tz_an505_info);
712     type_register_static(&mps2tz_an521_info);
713 }
714 
715 type_init(mps2tz_machine_init);
716