xref: /qemu/hw/arm/mps2-tz.c (revision 5086c997)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *
20  * Links to the TRM for the board itself and to the various Application
21  * Notes which document the FPGA images can be found here:
22  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23  *
24  * Board TRM:
25  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26  * Application Note AN505:
27  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28  * Application Note AN521:
29  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30  *
31  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32  * (ARM ECM0601256) for the details of some of the device layout:
33  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34  * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35  * most of the device layout:
36  *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37  *
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
63 #include "net/net.h"
64 #include "hw/core/split-irq.h"
65 #include "hw/qdev-clock.h"
66 #include "qom/object.h"
67 
68 #define MPS2TZ_NUMIRQ 92
69 
70 typedef enum MPS2TZFPGAType {
71     FPGA_AN505,
72     FPGA_AN521,
73 } MPS2TZFPGAType;
74 
75 struct MPS2TZMachineClass {
76     MachineClass parent;
77     MPS2TZFPGAType fpga_type;
78     uint32_t scc_id;
79     const char *armsse_type;
80 };
81 
82 struct MPS2TZMachineState {
83     MachineState parent;
84 
85     ARMSSE iotkit;
86     MemoryRegion ssram[3];
87     MemoryRegion ssram1_m;
88     MPS2SCC scc;
89     MPS2FPGAIO fpgaio;
90     TZPPC ppc[5];
91     TZMPC ssram_mpc[3];
92     PL022State spi[5];
93     ArmSbconI2CState i2c[4];
94     UnimplementedDeviceState i2s_audio;
95     UnimplementedDeviceState gpio[4];
96     UnimplementedDeviceState gfx;
97     PL080State dma[4];
98     TZMSC msc[4];
99     CMSDKAPBUART uart[5];
100     SplitIRQ sec_resp_splitter;
101     qemu_or_irq uart_irq_orgate;
102     DeviceState *lan9118;
103     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
104     Clock *sysclk;
105     Clock *s32kclk;
106 };
107 
108 #define TYPE_MPS2TZ_MACHINE "mps2tz"
109 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
110 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
111 
112 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
113 
114 /* Main SYSCLK frequency in Hz */
115 #define SYSCLK_FRQ 20000000
116 /* Slow 32Khz S32KCLK frequency in Hz */
117 #define S32KCLK_FRQ (32 * 1000)
118 
119 /* Create an alias of an entire original MemoryRegion @orig
120  * located at @base in the memory map.
121  */
122 static void make_ram_alias(MemoryRegion *mr, const char *name,
123                            MemoryRegion *orig, hwaddr base)
124 {
125     memory_region_init_alias(mr, NULL, name, orig, 0,
126                              memory_region_size(orig));
127     memory_region_add_subregion(get_system_memory(), base, mr);
128 }
129 
130 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
131 {
132     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
133     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
134 
135     assert(irqno < MPS2TZ_NUMIRQ);
136 
137     switch (mmc->fpga_type) {
138     case FPGA_AN505:
139         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
140     case FPGA_AN521:
141         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
142     default:
143         g_assert_not_reached();
144     }
145 }
146 
147 /* Most of the devices in the AN505 FPGA image sit behind
148  * Peripheral Protection Controllers. These data structures
149  * define the layout of which devices sit behind which PPCs.
150  * The devfn for each port is a function which creates, configures
151  * and initializes the device, returning the MemoryRegion which
152  * needs to be plugged into the downstream end of the PPC port.
153  */
154 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
155                                 const char *name, hwaddr size);
156 
157 typedef struct PPCPortInfo {
158     const char *name;
159     MakeDevFn *devfn;
160     void *opaque;
161     hwaddr addr;
162     hwaddr size;
163 } PPCPortInfo;
164 
165 typedef struct PPCInfo {
166     const char *name;
167     PPCPortInfo ports[TZ_NUM_PORTS];
168 } PPCInfo;
169 
170 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
171                                        void *opaque,
172                                        const char *name, hwaddr size)
173 {
174     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
175      * and return a pointer to its MemoryRegion.
176      */
177     UnimplementedDeviceState *uds = opaque;
178 
179     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
180     qdev_prop_set_string(DEVICE(uds), "name", name);
181     qdev_prop_set_uint64(DEVICE(uds), "size", size);
182     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
183     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
184 }
185 
186 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
187                                const char *name, hwaddr size)
188 {
189     CMSDKAPBUART *uart = opaque;
190     int i = uart - &mms->uart[0];
191     int rxirqno = i * 2;
192     int txirqno = i * 2 + 1;
193     int combirqno = i + 10;
194     SysBusDevice *s;
195     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
196 
197     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
198     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
199     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
200     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
201     s = SYS_BUS_DEVICE(uart);
202     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
203     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
204     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
205     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
206     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
207     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
208 }
209 
210 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
211                               const char *name, hwaddr size)
212 {
213     MPS2SCC *scc = opaque;
214     DeviceState *sccdev;
215     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
216 
217     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
218     sccdev = DEVICE(scc);
219     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
220     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
221     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
222     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
223     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
224 }
225 
226 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
227                                  const char *name, hwaddr size)
228 {
229     MPS2FPGAIO *fpgaio = opaque;
230 
231     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
232     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
233     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
234 }
235 
236 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
237                                   const char *name, hwaddr size)
238 {
239     SysBusDevice *s;
240     NICInfo *nd = &nd_table[0];
241 
242     /* In hardware this is a LAN9220; the LAN9118 is software compatible
243      * except that it doesn't support the checksum-offload feature.
244      */
245     qemu_check_nic_model(nd, "lan9118");
246     mms->lan9118 = qdev_new(TYPE_LAN9118);
247     qdev_set_nic_properties(mms->lan9118, nd);
248 
249     s = SYS_BUS_DEVICE(mms->lan9118);
250     sysbus_realize_and_unref(s, &error_fatal);
251     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
252     return sysbus_mmio_get_region(s, 0);
253 }
254 
255 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
256                               const char *name, hwaddr size)
257 {
258     TZMPC *mpc = opaque;
259     int i = mpc - &mms->ssram_mpc[0];
260     MemoryRegion *ssram = &mms->ssram[i];
261     MemoryRegion *upstream;
262     char *mpcname = g_strdup_printf("%s-mpc", name);
263     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
264     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
265 
266     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
267 
268     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
269     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ssram),
270                              &error_fatal);
271     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
272     /* Map the upstream end of the MPC into system memory */
273     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
274     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
275     /* and connect its interrupt to the IoTKit */
276     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
277                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
278                                                        "mpcexp_status", i));
279 
280     /* The first SSRAM is a special case as it has an alias; accesses to
281      * the alias region at 0x00400000 must also go to the MPC upstream.
282      */
283     if (i == 0) {
284         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
285     }
286 
287     g_free(mpcname);
288     /* Return the register interface MR for our caller to map behind the PPC */
289     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
290 }
291 
292 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
293                               const char *name, hwaddr size)
294 {
295     PL080State *dma = opaque;
296     int i = dma - &mms->dma[0];
297     SysBusDevice *s;
298     char *mscname = g_strdup_printf("%s-msc", name);
299     TZMSC *msc = &mms->msc[i];
300     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
301     MemoryRegion *msc_upstream;
302     MemoryRegion *msc_downstream;
303 
304     /*
305      * Each DMA device is a PL081 whose transaction master interface
306      * is guarded by a Master Security Controller. The downstream end of
307      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
308      * DMA devices can see all devices and memory that the CPU does.
309      */
310     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
311     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
312     object_property_set_link(OBJECT(msc), "downstream",
313                              OBJECT(msc_downstream), &error_fatal);
314     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
315     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
316 
317     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
318                                 qdev_get_gpio_in_named(iotkitdev,
319                                                        "mscexp_status", i));
320     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
321                                 qdev_get_gpio_in_named(DEVICE(msc),
322                                                        "irq_clear", 0));
323     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
324                                 qdev_get_gpio_in_named(DEVICE(msc),
325                                                        "cfg_nonsec", 0));
326     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
327                           ARRAY_SIZE(mms->ppc) + i,
328                           qdev_get_gpio_in_named(DEVICE(msc),
329                                                  "cfg_sec_resp", 0));
330     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
331 
332     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
333     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
334                              &error_fatal);
335     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
336 
337     s = SYS_BUS_DEVICE(dma);
338     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
339     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
340     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
341     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
342 
343     g_free(mscname);
344     return sysbus_mmio_get_region(s, 0);
345 }
346 
347 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
348                               const char *name, hwaddr size)
349 {
350     /*
351      * The AN505 has five PL022 SPI controllers.
352      * One of these should have the LCD controller behind it; the others
353      * are connected only to the FPGA's "general purpose SPI connector"
354      * or "shield" expansion connectors.
355      * Note that if we do implement devices behind SPI, the chip select
356      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
357      */
358     PL022State *spi = opaque;
359     int i = spi - &mms->spi[0];
360     SysBusDevice *s;
361 
362     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
363     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
364     s = SYS_BUS_DEVICE(spi);
365     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
366     return sysbus_mmio_get_region(s, 0);
367 }
368 
369 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
370                               const char *name, hwaddr size)
371 {
372     ArmSbconI2CState *i2c = opaque;
373     SysBusDevice *s;
374 
375     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
376     s = SYS_BUS_DEVICE(i2c);
377     sysbus_realize(s, &error_fatal);
378     return sysbus_mmio_get_region(s, 0);
379 }
380 
381 static void mps2tz_common_init(MachineState *machine)
382 {
383     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
384     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
385     MachineClass *mc = MACHINE_GET_CLASS(machine);
386     MemoryRegion *system_memory = get_system_memory();
387     DeviceState *iotkitdev;
388     DeviceState *dev_splitter;
389     int i;
390 
391     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
392         error_report("This board can only be used with CPU %s",
393                      mc->default_cpu_type);
394         exit(1);
395     }
396 
397     if (machine->ram_size != mc->default_ram_size) {
398         char *sz = size_to_str(mc->default_ram_size);
399         error_report("Invalid RAM size, should be %s", sz);
400         g_free(sz);
401         exit(EXIT_FAILURE);
402     }
403 
404     /* These clocks don't need migration because they are fixed-frequency */
405     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
406     clock_set_hz(mms->sysclk, SYSCLK_FRQ);
407     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
408     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
409 
410     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
411                             mmc->armsse_type);
412     iotkitdev = DEVICE(&mms->iotkit);
413     object_property_set_link(OBJECT(&mms->iotkit), "memory",
414                              OBJECT(system_memory), &error_abort);
415     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
416     qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
417     qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
418     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
419 
420     /*
421      * The AN521 needs us to create splitters to feed the IRQ inputs
422      * for each CPU in the SSE-200 from each device in the board.
423      */
424     if (mmc->fpga_type == FPGA_AN521) {
425         for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
426             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
427             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
428 
429             object_initialize_child_with_props(OBJECT(machine), name,
430                                                splitter, sizeof(*splitter),
431                                                TYPE_SPLIT_IRQ, &error_fatal,
432                                                NULL);
433             g_free(name);
434 
435             object_property_set_int(OBJECT(splitter), "num-lines", 2,
436                                     &error_fatal);
437             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
438             qdev_connect_gpio_out(DEVICE(splitter), 0,
439                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
440                                                          "EXP_IRQ", i));
441             qdev_connect_gpio_out(DEVICE(splitter), 1,
442                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
443                                                          "EXP_CPU1_IRQ", i));
444         }
445     }
446 
447     /* The sec_resp_cfg output from the IoTKit must be split into multiple
448      * lines, one for each of the PPCs we create here, plus one per MSC.
449      */
450     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
451                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
452     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
453                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
454                             &error_fatal);
455     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
456     dev_splitter = DEVICE(&mms->sec_resp_splitter);
457     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
458                                 qdev_get_gpio_in(dev_splitter, 0));
459 
460     /* The IoTKit sets up much of the memory layout, including
461      * the aliases between secure and non-secure regions in the
462      * address space. The FPGA itself contains:
463      *
464      * 0x00000000..0x003fffff  SSRAM1
465      * 0x00400000..0x007fffff  alias of SSRAM1
466      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
467      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
468      * 0x80000000..0x80ffffff  16MB PSRAM
469      */
470 
471     /* The FPGA images have an odd combination of different RAMs,
472      * because in hardware they are different implementations and
473      * connected to different buses, giving varying performance/size
474      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
475      * call the 16MB our "system memory", as it's the largest lump.
476      */
477     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
478 
479     /* The overflow IRQs for all UARTs are ORed together.
480      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
481      * Create the OR gate for this.
482      */
483     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
484                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
485     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 10,
486                             &error_fatal);
487     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
488     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
489                           get_sse_irq_in(mms, 15));
490 
491     /* Most of the devices in the FPGA are behind Peripheral Protection
492      * Controllers. The required order for initializing things is:
493      *  + initialize the PPC
494      *  + initialize, configure and realize downstream devices
495      *  + connect downstream device MemoryRegions to the PPC
496      *  + realize the PPC
497      *  + map the PPC's MemoryRegions to the places in the address map
498      *    where the downstream devices should appear
499      *  + wire up the PPC's control lines to the IoTKit object
500      */
501 
502     const PPCInfo ppcs[] = { {
503             .name = "apb_ppcexp0",
504             .ports = {
505                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
506                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
507                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
508             },
509         }, {
510             .name = "apb_ppcexp1",
511             .ports = {
512                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
513                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
514                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
515                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
516                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
517                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
518                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
519                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
520                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
521                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
522                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
523                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
524                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
525                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
526             },
527         }, {
528             .name = "apb_ppcexp2",
529             .ports = {
530                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
531                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
532                   0x40301000, 0x1000 },
533                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
534             },
535         }, {
536             .name = "ahb_ppcexp0",
537             .ports = {
538                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
539                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
540                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
541                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
542                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
543                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
544             },
545         }, {
546             .name = "ahb_ppcexp1",
547             .ports = {
548                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
549                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
550                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
551                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
552             },
553         },
554     };
555 
556     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
557         const PPCInfo *ppcinfo = &ppcs[i];
558         TZPPC *ppc = &mms->ppc[i];
559         DeviceState *ppcdev;
560         int port;
561         char *gpioname;
562 
563         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
564                                 TYPE_TZ_PPC);
565         ppcdev = DEVICE(ppc);
566 
567         for (port = 0; port < TZ_NUM_PORTS; port++) {
568             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
569             MemoryRegion *mr;
570             char *portname;
571 
572             if (!pinfo->devfn) {
573                 continue;
574             }
575 
576             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
577             portname = g_strdup_printf("port[%d]", port);
578             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
579                                      &error_fatal);
580             g_free(portname);
581         }
582 
583         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
584 
585         for (port = 0; port < TZ_NUM_PORTS; port++) {
586             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
587 
588             if (!pinfo->devfn) {
589                 continue;
590             }
591             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
592 
593             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
594             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
595                                         qdev_get_gpio_in_named(ppcdev,
596                                                                "cfg_nonsec",
597                                                                port));
598             g_free(gpioname);
599             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
600             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
601                                         qdev_get_gpio_in_named(ppcdev,
602                                                                "cfg_ap", port));
603             g_free(gpioname);
604         }
605 
606         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
607         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
608                                     qdev_get_gpio_in_named(ppcdev,
609                                                            "irq_enable", 0));
610         g_free(gpioname);
611         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
612         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
613                                     qdev_get_gpio_in_named(ppcdev,
614                                                            "irq_clear", 0));
615         g_free(gpioname);
616         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
617         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
618                                     qdev_get_gpio_in_named(iotkitdev,
619                                                            gpioname, 0));
620         g_free(gpioname);
621 
622         qdev_connect_gpio_out(dev_splitter, i,
623                               qdev_get_gpio_in_named(ppcdev,
624                                                      "cfg_sec_resp", 0));
625     }
626 
627     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
628 
629     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
630 }
631 
632 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
633                                int *iregion, bool *exempt, bool *ns, bool *nsc)
634 {
635     /*
636      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
637      * the Master Security Controllers. Thes have the same logic as
638      * is used by the IoTKit for the IDAU connected to the CPU, except
639      * that MSCs don't care about the NSC attribute.
640      */
641     int region = extract32(address, 28, 4);
642 
643     *ns = !(region & 1);
644     *nsc = false;
645     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
646     *exempt = (address & 0xeff00000) == 0xe0000000;
647     *iregion = region;
648 }
649 
650 static void mps2tz_class_init(ObjectClass *oc, void *data)
651 {
652     MachineClass *mc = MACHINE_CLASS(oc);
653     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
654 
655     mc->init = mps2tz_common_init;
656     iic->check = mps2_tz_idau_check;
657     mc->default_ram_size = 16 * MiB;
658     mc->default_ram_id = "mps.ram";
659 }
660 
661 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
662 {
663     MachineClass *mc = MACHINE_CLASS(oc);
664     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
665 
666     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
667     mc->default_cpus = 1;
668     mc->min_cpus = mc->default_cpus;
669     mc->max_cpus = mc->default_cpus;
670     mmc->fpga_type = FPGA_AN505;
671     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
672     mmc->scc_id = 0x41045050;
673     mmc->armsse_type = TYPE_IOTKIT;
674 }
675 
676 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
677 {
678     MachineClass *mc = MACHINE_CLASS(oc);
679     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
680 
681     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
682     mc->default_cpus = 2;
683     mc->min_cpus = mc->default_cpus;
684     mc->max_cpus = mc->default_cpus;
685     mmc->fpga_type = FPGA_AN521;
686     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
687     mmc->scc_id = 0x41045210;
688     mmc->armsse_type = TYPE_SSE200;
689 }
690 
691 static const TypeInfo mps2tz_info = {
692     .name = TYPE_MPS2TZ_MACHINE,
693     .parent = TYPE_MACHINE,
694     .abstract = true,
695     .instance_size = sizeof(MPS2TZMachineState),
696     .class_size = sizeof(MPS2TZMachineClass),
697     .class_init = mps2tz_class_init,
698     .interfaces = (InterfaceInfo[]) {
699         { TYPE_IDAU_INTERFACE },
700         { }
701     },
702 };
703 
704 static const TypeInfo mps2tz_an505_info = {
705     .name = TYPE_MPS2TZ_AN505_MACHINE,
706     .parent = TYPE_MPS2TZ_MACHINE,
707     .class_init = mps2tz_an505_class_init,
708 };
709 
710 static const TypeInfo mps2tz_an521_info = {
711     .name = TYPE_MPS2TZ_AN521_MACHINE,
712     .parent = TYPE_MPS2TZ_MACHINE,
713     .class_init = mps2tz_an521_class_init,
714 };
715 
716 static void mps2tz_machine_init(void)
717 {
718     type_register_static(&mps2tz_info);
719     type_register_static(&mps2tz_an505_info);
720     type_register_static(&mps2tz_an521_info);
721 }
722 
723 type_init(mps2tz_machine_init);
724