xref: /qemu/hw/arm/mps2-tz.c (revision 73b49878)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20  *  "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
21  *
22  * Links to the TRM for the board itself and to the various Application
23  * Notes which document the FPGA images can be found here:
24  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
25  *
26  * Board TRM:
27  * https://developer.arm.com/documentation/100112/latest/
28  * Application Note AN505:
29  * https://developer.arm.com/documentation/dai0505/latest/
30  * Application Note AN521:
31  * https://developer.arm.com/documentation/dai0521/latest/
32  * Application Note AN524:
33  * https://developer.arm.com/documentation/dai0524/latest/
34  * Application Note AN547:
35  * https://developer.arm.com/documentation/dai0547/latest/
36  *
37  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38  * (ARM ECM0601256) for the details of some of the device layout:
39  *  https://developer.arm.com/documentation/ecm0601256/latest
40  * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41  * most of the device layout:
42  *  https://developer.arm.com/documentation/101104/latest/
43  * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44  *  https://developer.arm.com/documentation/101773/latest/
45  */
46 
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qemu/error-report.h"
53 #include "hw/arm/boot.h"
54 #include "hw/arm/armv7m.h"
55 #include "hw/or-irq.h"
56 #include "hw/boards.h"
57 #include "exec/address-spaces.h"
58 #include "sysemu/sysemu.h"
59 #include "sysemu/reset.h"
60 #include "hw/misc/unimp.h"
61 #include "hw/char/cmsdk-apb-uart.h"
62 #include "hw/timer/cmsdk-apb-timer.h"
63 #include "hw/misc/mps2-scc.h"
64 #include "hw/misc/mps2-fpgaio.h"
65 #include "hw/misc/tz-mpc.h"
66 #include "hw/misc/tz-msc.h"
67 #include "hw/arm/armsse.h"
68 #include "hw/dma/pl080.h"
69 #include "hw/rtc/pl031.h"
70 #include "hw/ssi/pl022.h"
71 #include "hw/i2c/arm_sbcon_i2c.h"
72 #include "hw/net/lan9118.h"
73 #include "net/net.h"
74 #include "hw/core/split-irq.h"
75 #include "hw/qdev-clock.h"
76 #include "qom/object.h"
77 #include "hw/irq.h"
78 
79 #define MPS2TZ_NUMIRQ_MAX 96
80 #define MPS2TZ_RAM_MAX 5
81 
82 typedef enum MPS2TZFPGAType {
83     FPGA_AN505,
84     FPGA_AN521,
85     FPGA_AN524,
86     FPGA_AN547,
87 } MPS2TZFPGAType;
88 
89 /*
90  * Define the layout of RAM in a board, including which parts are
91  * behind which MPCs.
92  * mrindex specifies the index into mms->ram[] to use for the backing RAM;
93  * -1 means "use the system RAM".
94  */
95 typedef struct RAMInfo {
96     const char *name;
97     uint32_t base;
98     uint32_t size;
99     int mpc; /* MPC number, -1 for "not behind an MPC" */
100     int mrindex;
101     int flags;
102 } RAMInfo;
103 
104 /*
105  * Flag values:
106  *  IS_ALIAS: this RAM area is an alias to the upstream end of the
107  *    MPC specified by its .mpc value
108  *  IS_ROM: this RAM area is read-only
109  */
110 #define IS_ALIAS 1
111 #define IS_ROM 2
112 
113 struct MPS2TZMachineClass {
114     MachineClass parent;
115     MPS2TZFPGAType fpga_type;
116     uint32_t scc_id;
117     uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
118     uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
119     uint32_t len_oscclk;
120     const uint32_t *oscclk;
121     uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
122     bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
123     bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
124     int numirq; /* Number of external interrupts */
125     int uart_overflow_irq; /* number of the combined UART overflow IRQ */
126     uint32_t init_svtor; /* init-svtor setting for SSE */
127     uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
128     uint32_t cpu0_mpu_ns; /* CPU0_MPU_NS setting for SSE */
129     uint32_t cpu0_mpu_s; /* CPU0_MPU_S setting for SSE */
130     uint32_t cpu1_mpu_ns; /* CPU1_MPU_NS setting for SSE */
131     uint32_t cpu1_mpu_s; /* CPU1_MPU_S setting for SSE */
132     const RAMInfo *raminfo;
133     const char *armsse_type;
134     uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
135 };
136 
137 struct MPS2TZMachineState {
138     MachineState parent;
139 
140     ARMSSE iotkit;
141     MemoryRegion ram[MPS2TZ_RAM_MAX];
142     MemoryRegion eth_usb_container;
143 
144     MPS2SCC scc;
145     MPS2FPGAIO fpgaio;
146     TZPPC ppc[5];
147     TZMPC mpc[3];
148     PL022State spi[5];
149     ArmSbconI2CState i2c[5];
150     UnimplementedDeviceState i2s_audio;
151     UnimplementedDeviceState gpio[4];
152     UnimplementedDeviceState gfx;
153     UnimplementedDeviceState cldc;
154     UnimplementedDeviceState usb;
155     PL031State rtc;
156     PL080State dma[4];
157     TZMSC msc[4];
158     CMSDKAPBUART uart[6];
159     SplitIRQ sec_resp_splitter;
160     OrIRQState uart_irq_orgate;
161     DeviceState *lan9118;
162     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
163     Clock *sysclk;
164     Clock *s32kclk;
165 
166     bool remap;
167     qemu_irq remap_irq;
168 };
169 
170 #define TYPE_MPS2TZ_MACHINE "mps2tz"
171 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
172 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
173 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
174 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
175 
176 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
177 
178 /* Slow 32Khz S32KCLK frequency in Hz */
179 #define S32KCLK_FRQ (32 * 1000)
180 
181 /*
182  * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
183  * emulation of that much guest RAM, so artificially make it smaller.
184  */
185 #if HOST_LONG_BITS == 32
186 #define MPS3_DDR_SIZE (1 * GiB)
187 #else
188 #define MPS3_DDR_SIZE (2 * GiB)
189 #endif
190 
191 /* For cpu{0,1}_mpu_{ns,s}, means "leave at SSE's default value" */
192 #define MPU_REGION_DEFAULT UINT32_MAX
193 
194 static const uint32_t an505_oscclk[] = {
195     40000000,
196     24580000,
197     25000000,
198 };
199 
200 static const uint32_t an524_oscclk[] = {
201     24000000,
202     32000000,
203     50000000,
204     50000000,
205     24576000,
206     23750000,
207 };
208 
209 static const RAMInfo an505_raminfo[] = { {
210         .name = "ssram-0",
211         .base = 0x00000000,
212         .size = 0x00400000,
213         .mpc = 0,
214         .mrindex = 0,
215     }, {
216         .name = "ssram-1",
217         .base = 0x28000000,
218         .size = 0x00200000,
219         .mpc = 1,
220         .mrindex = 1,
221     }, {
222         .name = "ssram-2",
223         .base = 0x28200000,
224         .size = 0x00200000,
225         .mpc = 2,
226         .mrindex = 2,
227     }, {
228         .name = "ssram-0-alias",
229         .base = 0x00400000,
230         .size = 0x00400000,
231         .mpc = 0,
232         .mrindex = 3,
233         .flags = IS_ALIAS,
234     }, {
235         /* Use the largest bit of contiguous RAM as our "system memory" */
236         .name = "mps.ram",
237         .base = 0x80000000,
238         .size = 16 * MiB,
239         .mpc = -1,
240         .mrindex = -1,
241     }, {
242         .name = NULL,
243     },
244 };
245 
246 /*
247  * Note that the addresses and MPC numbering here should match up
248  * with those used in remap_memory(), which can swap the BRAM and QSPI.
249  */
250 static const RAMInfo an524_raminfo[] = { {
251         .name = "bram",
252         .base = 0x00000000,
253         .size = 512 * KiB,
254         .mpc = 0,
255         .mrindex = 0,
256     }, {
257         /* We don't model QSPI flash yet; for now expose it as simple ROM */
258         .name = "QSPI",
259         .base = 0x28000000,
260         .size = 8 * MiB,
261         .mpc = 1,
262         .mrindex = 1,
263         .flags = IS_ROM,
264     }, {
265         .name = "DDR",
266         .base = 0x60000000,
267         .size = MPS3_DDR_SIZE,
268         .mpc = 2,
269         .mrindex = -1,
270     }, {
271         .name = NULL,
272     },
273 };
274 
275 static const RAMInfo an547_raminfo[] = { {
276         .name = "sram",
277         .base = 0x01000000,
278         .size = 2 * MiB,
279         .mpc = 0,
280         .mrindex = 1,
281     }, {
282         .name = "sram 2",
283         .base = 0x21000000,
284         .size = 4 * MiB,
285         .mpc = -1,
286         .mrindex = 3,
287     }, {
288         /* We don't model QSPI flash yet; for now expose it as simple ROM */
289         .name = "QSPI",
290         .base = 0x28000000,
291         .size = 8 * MiB,
292         .mpc = 1,
293         .mrindex = 4,
294         .flags = IS_ROM,
295     }, {
296         .name = "DDR",
297         .base = 0x60000000,
298         .size = MPS3_DDR_SIZE,
299         .mpc = 2,
300         .mrindex = -1,
301     }, {
302         .name = NULL,
303     },
304 };
305 
306 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
307 {
308     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
309     const RAMInfo *p;
310     const RAMInfo *found = NULL;
311 
312     for (p = mmc->raminfo; p->name; p++) {
313         if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
314             /* There should only be one entry in the array for this MPC */
315             g_assert(!found);
316             found = p;
317         }
318     }
319     /* if raminfo array doesn't have an entry for each MPC this is a bug */
320     assert(found);
321     return found;
322 }
323 
324 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
325                                     const RAMInfo *raminfo)
326 {
327     /* Return an initialized MemoryRegion for the RAMInfo. */
328     MemoryRegion *ram;
329 
330     if (raminfo->mrindex < 0) {
331         /* Means this RAMInfo is for QEMU's "system memory" */
332         MachineState *machine = MACHINE(mms);
333         assert(!(raminfo->flags & IS_ROM));
334         return machine->ram;
335     }
336 
337     assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
338     ram = &mms->ram[raminfo->mrindex];
339 
340     memory_region_init_ram(ram, NULL, raminfo->name,
341                            raminfo->size, &error_fatal);
342     if (raminfo->flags & IS_ROM) {
343         memory_region_set_readonly(ram, true);
344     }
345     return ram;
346 }
347 
348 /* Create an alias of an entire original MemoryRegion @orig
349  * located at @base in the memory map.
350  */
351 static void make_ram_alias(MemoryRegion *mr, const char *name,
352                            MemoryRegion *orig, hwaddr base)
353 {
354     memory_region_init_alias(mr, NULL, name, orig, 0,
355                              memory_region_size(orig));
356     memory_region_add_subregion(get_system_memory(), base, mr);
357 }
358 
359 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
360 {
361     /*
362      * Return a qemu_irq which will signal IRQ n to all CPUs in the
363      * SSE.  The irqno should be as the CPU sees it, so the first
364      * external-to-the-SSE interrupt is 32.
365      */
366     MachineClass *mc = MACHINE_GET_CLASS(mms);
367     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
368 
369     assert(irqno >= 32 && irqno < (mmc->numirq + 32));
370 
371     /*
372      * Convert from "CPU irq number" (as listed in the FPGA image
373      * documentation) to the SSE external-interrupt number.
374      */
375     irqno -= 32;
376 
377     if (mc->max_cpus > 1) {
378         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
379     } else {
380         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
381     }
382 }
383 
384 /* Union describing the device-specific extra data we pass to the devfn. */
385 typedef union PPCExtraData {
386     bool i2c_internal;
387 } PPCExtraData;
388 
389 /* Most of the devices in the AN505 FPGA image sit behind
390  * Peripheral Protection Controllers. These data structures
391  * define the layout of which devices sit behind which PPCs.
392  * The devfn for each port is a function which creates, configures
393  * and initializes the device, returning the MemoryRegion which
394  * needs to be plugged into the downstream end of the PPC port.
395  */
396 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
397                                 const char *name, hwaddr size,
398                                 const int *irqs,
399                                 const PPCExtraData *extradata);
400 
401 typedef struct PPCPortInfo {
402     const char *name;
403     MakeDevFn *devfn;
404     void *opaque;
405     hwaddr addr;
406     hwaddr size;
407     int irqs[3]; /* currently no device needs more IRQ lines than this */
408     PPCExtraData extradata; /* to pass device-specific info to the devfn */
409 } PPCPortInfo;
410 
411 typedef struct PPCInfo {
412     const char *name;
413     PPCPortInfo ports[TZ_NUM_PORTS];
414 } PPCInfo;
415 
416 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
417                                     void *opaque,
418                                     const char *name, hwaddr size,
419                                     const int *irqs,
420                                     const PPCExtraData *extradata)
421 {
422     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
423      * and return a pointer to its MemoryRegion.
424      */
425     UnimplementedDeviceState *uds = opaque;
426 
427     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
428     qdev_prop_set_string(DEVICE(uds), "name", name);
429     qdev_prop_set_uint64(DEVICE(uds), "size", size);
430     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
431     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
432 }
433 
434 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
435                                const char *name, hwaddr size,
436                                const int *irqs, const PPCExtraData *extradata)
437 {
438     /* The irq[] array is tx, rx, combined, in that order */
439     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
440     CMSDKAPBUART *uart = opaque;
441     int i = uart - &mms->uart[0];
442     SysBusDevice *s;
443     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
444 
445     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
446     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
447     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
448     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
449     s = SYS_BUS_DEVICE(uart);
450     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
451     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
452     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
453     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
454     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
455     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
456 }
457 
458 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
459                               const char *name, hwaddr size,
460                               const int *irqs, const PPCExtraData *extradata)
461 {
462     MPS2SCC *scc = opaque;
463     DeviceState *sccdev;
464     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
465     QList *oscclk;
466     uint32_t i;
467 
468     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
469     sccdev = DEVICE(scc);
470     qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
471     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
472     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
473     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
474 
475     oscclk = qlist_new();
476     for (i = 0; i < mmc->len_oscclk; i++) {
477         qlist_append_int(oscclk, mmc->oscclk[i]);
478     }
479     qdev_prop_set_array(sccdev, "oscclk", oscclk);
480 
481     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
482     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
483 }
484 
485 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
486                                  const char *name, hwaddr size,
487                                  const int *irqs, const PPCExtraData *extradata)
488 {
489     MPS2FPGAIO *fpgaio = opaque;
490     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
491 
492     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
493     qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
494     qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
495     qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
496     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
497     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
498 }
499 
500 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
501                                   const char *name, hwaddr size,
502                                   const int *irqs,
503                                   const PPCExtraData *extradata)
504 {
505     SysBusDevice *s;
506     NICInfo *nd = &nd_table[0];
507 
508     /* In hardware this is a LAN9220; the LAN9118 is software compatible
509      * except that it doesn't support the checksum-offload feature.
510      */
511     qemu_check_nic_model(nd, "lan9118");
512     mms->lan9118 = qdev_new(TYPE_LAN9118);
513     qdev_set_nic_properties(mms->lan9118, nd);
514 
515     s = SYS_BUS_DEVICE(mms->lan9118);
516     sysbus_realize_and_unref(s, &error_fatal);
517     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
518     return sysbus_mmio_get_region(s, 0);
519 }
520 
521 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
522                                   const char *name, hwaddr size,
523                                   const int *irqs,
524                                   const PPCExtraData *extradata)
525 {
526     /*
527      * The AN524 makes the ethernet and USB share a PPC port.
528      * irqs[] is the ethernet IRQ.
529      */
530     SysBusDevice *s;
531     NICInfo *nd = &nd_table[0];
532 
533     memory_region_init(&mms->eth_usb_container, OBJECT(mms),
534                        "mps2-tz-eth-usb-container", 0x200000);
535 
536     /*
537      * In hardware this is a LAN9220; the LAN9118 is software compatible
538      * except that it doesn't support the checksum-offload feature.
539      */
540     qemu_check_nic_model(nd, "lan9118");
541     mms->lan9118 = qdev_new(TYPE_LAN9118);
542     qdev_set_nic_properties(mms->lan9118, nd);
543 
544     s = SYS_BUS_DEVICE(mms->lan9118);
545     sysbus_realize_and_unref(s, &error_fatal);
546     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
547 
548     memory_region_add_subregion(&mms->eth_usb_container,
549                                 0, sysbus_mmio_get_region(s, 0));
550 
551     /* The USB OTG controller is an ISP1763; we don't have a model of it. */
552     object_initialize_child(OBJECT(mms), "usb-otg",
553                             &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
554     qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
555     qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
556     s = SYS_BUS_DEVICE(&mms->usb);
557     sysbus_realize(s, &error_fatal);
558 
559     memory_region_add_subregion(&mms->eth_usb_container,
560                                 0x100000, sysbus_mmio_get_region(s, 0));
561 
562     return &mms->eth_usb_container;
563 }
564 
565 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
566                               const char *name, hwaddr size,
567                               const int *irqs, const PPCExtraData *extradata)
568 {
569     TZMPC *mpc = opaque;
570     int i = mpc - &mms->mpc[0];
571     MemoryRegion *upstream;
572     const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
573     MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
574 
575     object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
576     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
577                              &error_fatal);
578     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
579     /* Map the upstream end of the MPC into system memory */
580     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
581     memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
582     /* and connect its interrupt to the IoTKit */
583     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
584                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
585                                                        "mpcexp_status", i));
586 
587     /* Return the register interface MR for our caller to map behind the PPC */
588     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
589 }
590 
591 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
592 {
593     /*
594      * Return the canonical address of the block which will be mapped
595      * at address 0x0 (i.e. where the vector table is).
596      * This is usually 0, but if the AN524 alternate memory map is
597      * enabled it will be the base address of the QSPI block.
598      */
599     return mms->remap ? 0x28000000 : 0;
600 }
601 
602 static void remap_memory(MPS2TZMachineState *mms, int map)
603 {
604     /*
605      * Remap the memory for the AN524. 'map' is the value of
606      * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
607      * for the "option 1" mapping where QSPI is at address 0.
608      *
609      * Effectively we need to swap around the "upstream" ends of
610      * MPC 0 and MPC 1.
611      */
612     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
613     int i;
614 
615     if (mmc->fpga_type != FPGA_AN524) {
616         return;
617     }
618 
619     memory_region_transaction_begin();
620     for (i = 0; i < 2; i++) {
621         TZMPC *mpc = &mms->mpc[i];
622         MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
623         hwaddr addr = (i ^ map) ? 0x28000000 : 0;
624 
625         memory_region_set_address(upstream, addr);
626     }
627     memory_region_transaction_commit();
628 }
629 
630 static void remap_irq_fn(void *opaque, int n, int level)
631 {
632     MPS2TZMachineState *mms = opaque;
633 
634     remap_memory(mms, level);
635 }
636 
637 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
638                               const char *name, hwaddr size,
639                               const int *irqs, const PPCExtraData *extradata)
640 {
641     /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
642     PL080State *dma = opaque;
643     int i = dma - &mms->dma[0];
644     SysBusDevice *s;
645     char *mscname = g_strdup_printf("%s-msc", name);
646     TZMSC *msc = &mms->msc[i];
647     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
648     MemoryRegion *msc_upstream;
649     MemoryRegion *msc_downstream;
650 
651     /*
652      * Each DMA device is a PL081 whose transaction master interface
653      * is guarded by a Master Security Controller. The downstream end of
654      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
655      * DMA devices can see all devices and memory that the CPU does.
656      */
657     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
658     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
659     object_property_set_link(OBJECT(msc), "downstream",
660                              OBJECT(msc_downstream), &error_fatal);
661     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
662     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
663 
664     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
665                                 qdev_get_gpio_in_named(iotkitdev,
666                                                        "mscexp_status", i));
667     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
668                                 qdev_get_gpio_in_named(DEVICE(msc),
669                                                        "irq_clear", 0));
670     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
671                                 qdev_get_gpio_in_named(DEVICE(msc),
672                                                        "cfg_nonsec", 0));
673     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
674                           ARRAY_SIZE(mms->ppc) + i,
675                           qdev_get_gpio_in_named(DEVICE(msc),
676                                                  "cfg_sec_resp", 0));
677     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
678 
679     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
680     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
681                              &error_fatal);
682     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
683 
684     s = SYS_BUS_DEVICE(dma);
685     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
686     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
687     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
688     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
689 
690     g_free(mscname);
691     return sysbus_mmio_get_region(s, 0);
692 }
693 
694 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
695                               const char *name, hwaddr size,
696                               const int *irqs, const PPCExtraData *extradata)
697 {
698     /*
699      * The AN505 has five PL022 SPI controllers.
700      * One of these should have the LCD controller behind it; the others
701      * are connected only to the FPGA's "general purpose SPI connector"
702      * or "shield" expansion connectors.
703      * Note that if we do implement devices behind SPI, the chip select
704      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
705      */
706     PL022State *spi = opaque;
707     SysBusDevice *s;
708 
709     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
710     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
711     s = SYS_BUS_DEVICE(spi);
712     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
713     return sysbus_mmio_get_region(s, 0);
714 }
715 
716 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
717                               const char *name, hwaddr size,
718                               const int *irqs, const PPCExtraData *extradata)
719 {
720     ArmSbconI2CState *i2c = opaque;
721     SysBusDevice *s;
722 
723     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
724     s = SYS_BUS_DEVICE(i2c);
725     sysbus_realize(s, &error_fatal);
726 
727     /*
728      * If this is an internal-use-only i2c bus, mark it full
729      * so that user-created i2c devices are not plugged into it.
730      * If we implement models of any on-board i2c devices that
731      * plug in to one of the internal-use-only buses, then we will
732      * need to create and plugging those in here before we mark the
733      * bus as full.
734      */
735     if (extradata->i2c_internal) {
736         BusState *qbus = qdev_get_child_bus(DEVICE(i2c), "i2c");
737         qbus_mark_full(qbus);
738     }
739 
740     return sysbus_mmio_get_region(s, 0);
741 }
742 
743 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
744                               const char *name, hwaddr size,
745                               const int *irqs, const PPCExtraData *extradata)
746 {
747     PL031State *pl031 = opaque;
748     SysBusDevice *s;
749 
750     object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
751     s = SYS_BUS_DEVICE(pl031);
752     sysbus_realize(s, &error_fatal);
753     /*
754      * The board docs don't give an IRQ number for the PL031, so
755      * presumably it is not connected.
756      */
757     return sysbus_mmio_get_region(s, 0);
758 }
759 
760 static void create_non_mpc_ram(MPS2TZMachineState *mms)
761 {
762     /*
763      * Handle the RAMs which are either not behind MPCs or which are
764      * aliases to another MPC.
765      */
766     const RAMInfo *p;
767     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
768 
769     for (p = mmc->raminfo; p->name; p++) {
770         if (p->flags & IS_ALIAS) {
771             SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
772             MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
773             make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
774         } else if (p->mpc == -1) {
775             /* RAM not behind an MPC */
776             MemoryRegion *mr = mr_for_raminfo(mms, p);
777             memory_region_add_subregion(get_system_memory(), p->base, mr);
778         }
779     }
780 }
781 
782 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
783 {
784     /* Return the size of the RAM block at guest address zero */
785     const RAMInfo *p;
786     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
787 
788     /*
789      * Use a per-board specification (for when the boot RAM is in
790      * the SSE and so doesn't have a RAMInfo list entry)
791      */
792     if (mmc->boot_ram_size) {
793         return mmc->boot_ram_size;
794     }
795 
796     for (p = mmc->raminfo; p->name; p++) {
797         if (p->base == boot_mem_base(mms)) {
798             return p->size;
799         }
800     }
801     g_assert_not_reached();
802 }
803 
804 static void mps2tz_common_init(MachineState *machine)
805 {
806     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
807     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
808     MachineClass *mc = MACHINE_GET_CLASS(machine);
809     MemoryRegion *system_memory = get_system_memory();
810     DeviceState *iotkitdev;
811     DeviceState *dev_splitter;
812     const PPCInfo *ppcs;
813     int num_ppcs;
814     int i;
815 
816     if (machine->ram_size != mc->default_ram_size) {
817         char *sz = size_to_str(mc->default_ram_size);
818         error_report("Invalid RAM size, should be %s", sz);
819         g_free(sz);
820         exit(EXIT_FAILURE);
821     }
822 
823     /* These clocks don't need migration because they are fixed-frequency */
824     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
825     clock_set_hz(mms->sysclk, mmc->sysclk_frq);
826     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
827     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
828 
829     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
830                             mmc->armsse_type);
831     iotkitdev = DEVICE(&mms->iotkit);
832     object_property_set_link(OBJECT(&mms->iotkit), "memory",
833                              OBJECT(system_memory), &error_abort);
834     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
835     qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
836     if (mmc->cpu0_mpu_ns != MPU_REGION_DEFAULT) {
837         qdev_prop_set_uint32(iotkitdev, "CPU0_MPU_NS", mmc->cpu0_mpu_ns);
838     }
839     if (mmc->cpu0_mpu_s != MPU_REGION_DEFAULT) {
840         qdev_prop_set_uint32(iotkitdev, "CPU0_MPU_S", mmc->cpu0_mpu_s);
841     }
842     if (object_property_find(OBJECT(iotkitdev), "CPU1_MPU_NS")) {
843         if (mmc->cpu1_mpu_ns != MPU_REGION_DEFAULT) {
844             qdev_prop_set_uint32(iotkitdev, "CPU1_MPU_NS", mmc->cpu1_mpu_ns);
845         }
846         if (mmc->cpu1_mpu_s != MPU_REGION_DEFAULT) {
847             qdev_prop_set_uint32(iotkitdev, "CPU1_MPU_S", mmc->cpu1_mpu_s);
848         }
849     }
850     qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
851     qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
852     qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
853     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
854 
855     /*
856      * If this board has more than one CPU, then we need to create splitters
857      * to feed the IRQ inputs for each CPU in the SSE from each device in the
858      * board. If there is only one CPU, we can just wire the device IRQ
859      * directly to the SSE's IRQ input.
860      */
861     assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
862     if (mc->max_cpus > 1) {
863         for (i = 0; i < mmc->numirq; i++) {
864             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
865             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
866 
867             object_initialize_child_with_props(OBJECT(machine), name,
868                                                splitter, sizeof(*splitter),
869                                                TYPE_SPLIT_IRQ, &error_fatal,
870                                                NULL);
871             g_free(name);
872 
873             object_property_set_int(OBJECT(splitter), "num-lines", 2,
874                                     &error_fatal);
875             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
876             qdev_connect_gpio_out(DEVICE(splitter), 0,
877                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
878                                                          "EXP_IRQ", i));
879             qdev_connect_gpio_out(DEVICE(splitter), 1,
880                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
881                                                          "EXP_CPU1_IRQ", i));
882         }
883     }
884 
885     /* The sec_resp_cfg output from the IoTKit must be split into multiple
886      * lines, one for each of the PPCs we create here, plus one per MSC.
887      */
888     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
889                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
890     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
891                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
892                             &error_fatal);
893     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
894     dev_splitter = DEVICE(&mms->sec_resp_splitter);
895     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
896                                 qdev_get_gpio_in(dev_splitter, 0));
897 
898     /*
899      * The IoTKit sets up much of the memory layout, including
900      * the aliases between secure and non-secure regions in the
901      * address space, and also most of the devices in the system.
902      * The FPGA itself contains various RAMs and some additional devices.
903      * The FPGA images have an odd combination of different RAMs,
904      * because in hardware they are different implementations and
905      * connected to different buses, giving varying performance/size
906      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
907      * call the largest lump our "system memory".
908      */
909 
910     /*
911      * The overflow IRQs for all UARTs are ORed together.
912      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
913      * Create the OR gate for this: it has one input for the TX overflow
914      * and one for the RX overflow for each UART we might have.
915      * (If the board has fewer than the maximum possible number of UARTs
916      * those inputs are never wired up and are treated as always-zero.)
917      */
918     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
919                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
920     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
921                             2 * ARRAY_SIZE(mms->uart),
922                             &error_fatal);
923     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
924     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
925                           get_sse_irq_in(mms, mmc->uart_overflow_irq));
926 
927     /* Most of the devices in the FPGA are behind Peripheral Protection
928      * Controllers. The required order for initializing things is:
929      *  + initialize the PPC
930      *  + initialize, configure and realize downstream devices
931      *  + connect downstream device MemoryRegions to the PPC
932      *  + realize the PPC
933      *  + map the PPC's MemoryRegions to the places in the address map
934      *    where the downstream devices should appear
935      *  + wire up the PPC's control lines to the IoTKit object
936      */
937 
938     const PPCInfo an505_ppcs[] = { {
939             .name = "apb_ppcexp0",
940             .ports = {
941                 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
942                 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
943                 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
944             },
945         }, {
946             .name = "apb_ppcexp1",
947             .ports = {
948                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
949                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
950                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
951                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
952                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
953                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
954                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
955                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
956                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
957                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
958                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000, {},
959                   { .i2c_internal = true /* touchscreen */ } },
960                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000, {},
961                   { .i2c_internal = true /* audio conf */ } },
962                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000, {},
963                   { .i2c_internal = false /* shield 0 */ } },
964                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000, {},
965                   { .i2c_internal = false /* shield 1 */ } },
966             },
967         }, {
968             .name = "apb_ppcexp2",
969             .ports = {
970                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
971                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
972                   0x40301000, 0x1000 },
973                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
974             },
975         }, {
976             .name = "ahb_ppcexp0",
977             .ports = {
978                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
979                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
980                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
981                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
982                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
983                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
984             },
985         }, {
986             .name = "ahb_ppcexp1",
987             .ports = {
988                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
989                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
990                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
991                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
992             },
993         },
994     };
995 
996     const PPCInfo an524_ppcs[] = { {
997             .name = "apb_ppcexp0",
998             .ports = {
999                 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
1000                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
1001                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
1002             },
1003         }, {
1004             .name = "apb_ppcexp1",
1005             .ports = {
1006                 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000, {},
1007                   { .i2c_internal = true /* touchscreen */ } },
1008                 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000, {},
1009                   { .i2c_internal = true /* audio conf */ } },
1010                 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
1011                 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
1012                 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
1013                 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000, {},
1014                   { .i2c_internal = false /* shield 0 */ } },
1015                 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000, {},
1016                   { .i2c_internal = false /* shield 1 */ } },
1017                 { /* port 7 reserved */ },
1018                 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000, {},
1019                   { .i2c_internal = true /* DDR4 EEPROM */ } },
1020             },
1021         }, {
1022             .name = "apb_ppcexp2",
1023             .ports = {
1024                 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
1025                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
1026                   0x41301000, 0x1000 },
1027                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
1028                 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
1029                 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
1030                 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
1031                 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
1032                 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
1033                 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
1034 
1035                 { /* port 9 reserved */ },
1036                 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
1037                 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
1038             },
1039         }, {
1040             .name = "ahb_ppcexp0",
1041             .ports = {
1042                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1043                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1044                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1045                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1046                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
1047             },
1048         },
1049     };
1050 
1051     const PPCInfo an547_ppcs[] = { {
1052             .name = "apb_ppcexp0",
1053             .ports = {
1054                 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1055                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1056                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1057             },
1058         }, {
1059             .name = "apb_ppcexp1",
1060             .ports = {
1061                 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000, {},
1062                   { .i2c_internal = true /* touchscreen */ } },
1063                 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000, {},
1064                   { .i2c_internal = true /* audio conf */ } },
1065                 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1066                 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1067                 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1068                 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000, {},
1069                   { .i2c_internal = false /* shield 0 */ } },
1070                 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000, {},
1071                   { .i2c_internal = false /* shield 1 */ } },
1072                 { /* port 7 reserved */ },
1073                 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000, {},
1074                   { .i2c_internal = true /* DDR4 EEPROM */ } },
1075             },
1076         }, {
1077             .name = "apb_ppcexp2",
1078             .ports = {
1079                 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1080                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1081                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1082                 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1083                 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1084                 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1085                 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1086                 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1087                 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1088 
1089                 { /* port 9 reserved */ },
1090                 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1091                 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1092             },
1093         }, {
1094             .name = "ahb_ppcexp0",
1095             .ports = {
1096                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1097                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1098                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1099                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1100                 { /* port 4 USER AHB interface 0 */ },
1101                 { /* port 5 USER AHB interface 1 */ },
1102                 { /* port 6 USER AHB interface 2 */ },
1103                 { /* port 7 USER AHB interface 3 */ },
1104                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1105             },
1106         },
1107     };
1108 
1109     switch (mmc->fpga_type) {
1110     case FPGA_AN505:
1111     case FPGA_AN521:
1112         ppcs = an505_ppcs;
1113         num_ppcs = ARRAY_SIZE(an505_ppcs);
1114         break;
1115     case FPGA_AN524:
1116         ppcs = an524_ppcs;
1117         num_ppcs = ARRAY_SIZE(an524_ppcs);
1118         break;
1119     case FPGA_AN547:
1120         ppcs = an547_ppcs;
1121         num_ppcs = ARRAY_SIZE(an547_ppcs);
1122         break;
1123     default:
1124         g_assert_not_reached();
1125     }
1126 
1127     for (i = 0; i < num_ppcs; i++) {
1128         const PPCInfo *ppcinfo = &ppcs[i];
1129         TZPPC *ppc = &mms->ppc[i];
1130         DeviceState *ppcdev;
1131         int port;
1132         char *gpioname;
1133 
1134         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1135                                 TYPE_TZ_PPC);
1136         ppcdev = DEVICE(ppc);
1137 
1138         for (port = 0; port < TZ_NUM_PORTS; port++) {
1139             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1140             MemoryRegion *mr;
1141             char *portname;
1142 
1143             if (!pinfo->devfn) {
1144                 continue;
1145             }
1146 
1147             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1148                               pinfo->irqs, &pinfo->extradata);
1149             portname = g_strdup_printf("port[%d]", port);
1150             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1151                                      &error_fatal);
1152             g_free(portname);
1153         }
1154 
1155         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1156 
1157         for (port = 0; port < TZ_NUM_PORTS; port++) {
1158             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1159 
1160             if (!pinfo->devfn) {
1161                 continue;
1162             }
1163             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1164 
1165             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1166             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1167                                         qdev_get_gpio_in_named(ppcdev,
1168                                                                "cfg_nonsec",
1169                                                                port));
1170             g_free(gpioname);
1171             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1172             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1173                                         qdev_get_gpio_in_named(ppcdev,
1174                                                                "cfg_ap", port));
1175             g_free(gpioname);
1176         }
1177 
1178         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1179         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1180                                     qdev_get_gpio_in_named(ppcdev,
1181                                                            "irq_enable", 0));
1182         g_free(gpioname);
1183         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1184         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1185                                     qdev_get_gpio_in_named(ppcdev,
1186                                                            "irq_clear", 0));
1187         g_free(gpioname);
1188         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1189         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1190                                     qdev_get_gpio_in_named(iotkitdev,
1191                                                            gpioname, 0));
1192         g_free(gpioname);
1193 
1194         qdev_connect_gpio_out(dev_splitter, i,
1195                               qdev_get_gpio_in_named(ppcdev,
1196                                                      "cfg_sec_resp", 0));
1197     }
1198 
1199     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1200 
1201     if (mmc->fpga_type == FPGA_AN547) {
1202         create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1203         create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1204     }
1205 
1206     create_non_mpc_ram(mms);
1207 
1208     if (mmc->fpga_type == FPGA_AN524) {
1209         /*
1210          * Connect the line from the SCC so that we can remap when the
1211          * guest updates that register.
1212          */
1213         mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1214         qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1215                                     mms->remap_irq);
1216     }
1217 
1218     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1219                        0, boot_ram_size(mms));
1220 }
1221 
1222 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1223                                int *iregion, bool *exempt, bool *ns, bool *nsc)
1224 {
1225     /*
1226      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1227      * the Master Security Controllers. These have the same logic as
1228      * is used by the IoTKit for the IDAU connected to the CPU, except
1229      * that MSCs don't care about the NSC attribute.
1230      */
1231     int region = extract32(address, 28, 4);
1232 
1233     *ns = !(region & 1);
1234     *nsc = false;
1235     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1236     *exempt = (address & 0xeff00000) == 0xe0000000;
1237     *iregion = region;
1238 }
1239 
1240 static char *mps2_get_remap(Object *obj, Error **errp)
1241 {
1242     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1243     const char *val = mms->remap ? "QSPI" : "BRAM";
1244     return g_strdup(val);
1245 }
1246 
1247 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1248 {
1249     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1250 
1251     if (!strcmp(value, "BRAM")) {
1252         mms->remap = false;
1253     } else if (!strcmp(value, "QSPI")) {
1254         mms->remap = true;
1255     } else {
1256         error_setg(errp, "Invalid remap value");
1257         error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1258     }
1259 }
1260 
1261 static void mps2_machine_reset(MachineState *machine, ShutdownCause reason)
1262 {
1263     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1264 
1265     /*
1266      * Set the initial memory mapping before triggering the reset of
1267      * the rest of the system, so that the guest image loader and CPU
1268      * reset see the correct mapping.
1269      */
1270     remap_memory(mms, mms->remap);
1271     qemu_devices_reset(reason);
1272 }
1273 
1274 static void mps2tz_class_init(ObjectClass *oc, void *data)
1275 {
1276     MachineClass *mc = MACHINE_CLASS(oc);
1277     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1278     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1279 
1280     mc->init = mps2tz_common_init;
1281     mc->reset = mps2_machine_reset;
1282     iic->check = mps2_tz_idau_check;
1283 
1284     /* Most machines leave these at the SSE defaults */
1285     mmc->cpu0_mpu_ns = MPU_REGION_DEFAULT;
1286     mmc->cpu0_mpu_s = MPU_REGION_DEFAULT;
1287     mmc->cpu1_mpu_ns = MPU_REGION_DEFAULT;
1288     mmc->cpu1_mpu_s = MPU_REGION_DEFAULT;
1289 }
1290 
1291 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1292 {
1293     /*
1294      * Set mc->default_ram_size and default_ram_id from the
1295      * information in mmc->raminfo.
1296      */
1297     MachineClass *mc = MACHINE_CLASS(mmc);
1298     const RAMInfo *p;
1299 
1300     for (p = mmc->raminfo; p->name; p++) {
1301         if (p->mrindex < 0) {
1302             /* Found the entry for "system memory" */
1303             mc->default_ram_size = p->size;
1304             mc->default_ram_id = p->name;
1305             return;
1306         }
1307     }
1308     g_assert_not_reached();
1309 }
1310 
1311 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1312 {
1313     MachineClass *mc = MACHINE_CLASS(oc);
1314     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1315     static const char * const valid_cpu_types[] = {
1316         ARM_CPU_TYPE_NAME("cortex-m33"),
1317         NULL
1318     };
1319 
1320     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1321     mc->default_cpus = 1;
1322     mc->min_cpus = mc->default_cpus;
1323     mc->max_cpus = mc->default_cpus;
1324     mmc->fpga_type = FPGA_AN505;
1325     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1326     mc->valid_cpu_types = valid_cpu_types;
1327     mmc->scc_id = 0x41045050;
1328     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1329     mmc->apb_periph_frq = mmc->sysclk_frq;
1330     mmc->oscclk = an505_oscclk;
1331     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1332     mmc->fpgaio_num_leds = 2;
1333     mmc->fpgaio_has_switches = false;
1334     mmc->fpgaio_has_dbgctrl = false;
1335     mmc->numirq = 92;
1336     mmc->uart_overflow_irq = 47;
1337     mmc->init_svtor = 0x10000000;
1338     mmc->sram_addr_width = 15;
1339     mmc->raminfo = an505_raminfo;
1340     mmc->armsse_type = TYPE_IOTKIT;
1341     mmc->boot_ram_size = 0;
1342     mps2tz_set_default_ram_info(mmc);
1343 }
1344 
1345 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1346 {
1347     MachineClass *mc = MACHINE_CLASS(oc);
1348     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1349     static const char * const valid_cpu_types[] = {
1350         ARM_CPU_TYPE_NAME("cortex-m33"),
1351         NULL
1352     };
1353 
1354     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1355     mc->default_cpus = 2;
1356     mc->min_cpus = mc->default_cpus;
1357     mc->max_cpus = mc->default_cpus;
1358     mmc->fpga_type = FPGA_AN521;
1359     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1360     mc->valid_cpu_types = valid_cpu_types;
1361     mmc->scc_id = 0x41045210;
1362     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1363     mmc->apb_periph_frq = mmc->sysclk_frq;
1364     mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1365     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1366     mmc->fpgaio_num_leds = 2;
1367     mmc->fpgaio_has_switches = false;
1368     mmc->fpgaio_has_dbgctrl = false;
1369     mmc->numirq = 92;
1370     mmc->uart_overflow_irq = 47;
1371     mmc->init_svtor = 0x10000000;
1372     mmc->sram_addr_width = 15;
1373     mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1374     mmc->armsse_type = TYPE_SSE200;
1375     mmc->boot_ram_size = 0;
1376     mps2tz_set_default_ram_info(mmc);
1377 }
1378 
1379 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1380 {
1381     MachineClass *mc = MACHINE_CLASS(oc);
1382     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1383     static const char * const valid_cpu_types[] = {
1384         ARM_CPU_TYPE_NAME("cortex-m33"),
1385         NULL
1386     };
1387 
1388     mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1389     mc->default_cpus = 2;
1390     mc->min_cpus = mc->default_cpus;
1391     mc->max_cpus = mc->default_cpus;
1392     mmc->fpga_type = FPGA_AN524;
1393     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1394     mc->valid_cpu_types = valid_cpu_types;
1395     mmc->scc_id = 0x41045240;
1396     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1397     mmc->apb_periph_frq = mmc->sysclk_frq;
1398     mmc->oscclk = an524_oscclk;
1399     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1400     mmc->fpgaio_num_leds = 10;
1401     mmc->fpgaio_has_switches = true;
1402     mmc->fpgaio_has_dbgctrl = false;
1403     mmc->numirq = 95;
1404     mmc->uart_overflow_irq = 47;
1405     mmc->init_svtor = 0x10000000;
1406     mmc->sram_addr_width = 15;
1407     mmc->raminfo = an524_raminfo;
1408     mmc->armsse_type = TYPE_SSE200;
1409     mmc->boot_ram_size = 0;
1410     mps2tz_set_default_ram_info(mmc);
1411 
1412     object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1413     object_class_property_set_description(oc, "remap",
1414                                           "Set memory mapping. Valid values "
1415                                           "are BRAM (default) and QSPI.");
1416 }
1417 
1418 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1419 {
1420     MachineClass *mc = MACHINE_CLASS(oc);
1421     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1422     static const char * const valid_cpu_types[] = {
1423         ARM_CPU_TYPE_NAME("cortex-m55"),
1424         NULL
1425     };
1426 
1427     mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1428     mc->default_cpus = 1;
1429     mc->min_cpus = mc->default_cpus;
1430     mc->max_cpus = mc->default_cpus;
1431     mmc->fpga_type = FPGA_AN547;
1432     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1433     mc->valid_cpu_types = valid_cpu_types;
1434     mmc->scc_id = 0x41055470;
1435     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1436     mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1437     mmc->oscclk = an524_oscclk; /* same as AN524 */
1438     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1439     mmc->fpgaio_num_leds = 10;
1440     mmc->fpgaio_has_switches = true;
1441     mmc->fpgaio_has_dbgctrl = true;
1442     mmc->numirq = 96;
1443     mmc->uart_overflow_irq = 48;
1444     mmc->init_svtor = 0x00000000;
1445     mmc->cpu0_mpu_s = mmc->cpu0_mpu_ns = 16;
1446     mmc->sram_addr_width = 21;
1447     mmc->raminfo = an547_raminfo;
1448     mmc->armsse_type = TYPE_SSE300;
1449     mmc->boot_ram_size = 512 * KiB;
1450     mps2tz_set_default_ram_info(mmc);
1451 }
1452 
1453 static const TypeInfo mps2tz_info = {
1454     .name = TYPE_MPS2TZ_MACHINE,
1455     .parent = TYPE_MACHINE,
1456     .abstract = true,
1457     .instance_size = sizeof(MPS2TZMachineState),
1458     .class_size = sizeof(MPS2TZMachineClass),
1459     .class_init = mps2tz_class_init,
1460     .interfaces = (InterfaceInfo[]) {
1461         { TYPE_IDAU_INTERFACE },
1462         { }
1463     },
1464 };
1465 
1466 static const TypeInfo mps2tz_an505_info = {
1467     .name = TYPE_MPS2TZ_AN505_MACHINE,
1468     .parent = TYPE_MPS2TZ_MACHINE,
1469     .class_init = mps2tz_an505_class_init,
1470 };
1471 
1472 static const TypeInfo mps2tz_an521_info = {
1473     .name = TYPE_MPS2TZ_AN521_MACHINE,
1474     .parent = TYPE_MPS2TZ_MACHINE,
1475     .class_init = mps2tz_an521_class_init,
1476 };
1477 
1478 static const TypeInfo mps3tz_an524_info = {
1479     .name = TYPE_MPS3TZ_AN524_MACHINE,
1480     .parent = TYPE_MPS2TZ_MACHINE,
1481     .class_init = mps3tz_an524_class_init,
1482 };
1483 
1484 static const TypeInfo mps3tz_an547_info = {
1485     .name = TYPE_MPS3TZ_AN547_MACHINE,
1486     .parent = TYPE_MPS2TZ_MACHINE,
1487     .class_init = mps3tz_an547_class_init,
1488 };
1489 
1490 static void mps2tz_machine_init(void)
1491 {
1492     type_register_static(&mps2tz_info);
1493     type_register_static(&mps2tz_an505_info);
1494     type_register_static(&mps2tz_an521_info);
1495     type_register_static(&mps3tz_an524_info);
1496     type_register_static(&mps3tz_an547_info);
1497 }
1498 
1499 type_init(mps2tz_machine_init);
1500