xref: /qemu/hw/arm/musca.c (revision 8063396b)
1 /*
2  * Arm Musca-B1 test chip board emulation
3  *
4  * Copyright (c) 2019 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /*
13  * The Musca boards are a reference implementation of a system using
14  * the SSE-200 subsystem for embedded:
15  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17  * We model the A and B1 variants of this board, as described in the TRMs:
18  * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
19  * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
36 #include "qom/object.h"
37 
38 #define MUSCA_NUMIRQ_MAX 96
39 #define MUSCA_PPC_MAX 3
40 #define MUSCA_MPC_MAX 5
41 
42 typedef struct MPCInfo MPCInfo;
43 
44 typedef enum MuscaType {
45     MUSCA_A,
46     MUSCA_B1,
47 } MuscaType;
48 
49 struct MuscaMachineClass {
50     MachineClass parent;
51     MuscaType type;
52     uint32_t init_svtor;
53     int sram_addr_width;
54     int num_irqs;
55     const MPCInfo *mpc_info;
56     int num_mpcs;
57 };
58 
59 struct MuscaMachineState {
60     MachineState parent;
61 
62     ARMSSE sse;
63     /* RAM and flash */
64     MemoryRegion ram[MUSCA_MPC_MAX];
65     SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
66     SplitIRQ sec_resp_splitter;
67     TZPPC ppc[MUSCA_PPC_MAX];
68     MemoryRegion container;
69     UnimplementedDeviceState eflash[2];
70     UnimplementedDeviceState qspi;
71     TZMPC mpc[MUSCA_MPC_MAX];
72     UnimplementedDeviceState mhu[2];
73     UnimplementedDeviceState pwm[3];
74     UnimplementedDeviceState i2s;
75     PL011State uart[2];
76     UnimplementedDeviceState i2c[2];
77     UnimplementedDeviceState spi;
78     UnimplementedDeviceState scc;
79     UnimplementedDeviceState timer;
80     PL031State rtc;
81     UnimplementedDeviceState pvt;
82     UnimplementedDeviceState sdio;
83     UnimplementedDeviceState gpio;
84     UnimplementedDeviceState cryptoisland;
85 };
86 
87 #define TYPE_MUSCA_MACHINE "musca"
88 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
89 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
90 
91 OBJECT_DECLARE_TYPE(MuscaMachineState, MuscaMachineClass, MUSCA_MACHINE)
92 
93 /*
94  * Main SYSCLK frequency in Hz
95  * TODO this should really be different for the two cores, but we
96  * don't model that in our SSE-200 model yet.
97  */
98 #define SYSCLK_FRQ 40000000
99 
100 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
101 {
102     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
103     assert(irqno < MUSCA_NUMIRQ_MAX);
104 
105     return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
106 }
107 
108 /*
109  * Most of the devices in the Musca board sit behind Peripheral Protection
110  * Controllers. These data structures define the layout of which devices
111  * sit behind which PPCs.
112  * The devfn for each port is a function which creates, configures
113  * and initializes the device, returning the MemoryRegion which
114  * needs to be plugged into the downstream end of the PPC port.
115  */
116 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
117                                 const char *name, hwaddr size);
118 
119 typedef struct PPCPortInfo {
120     const char *name;
121     MakeDevFn *devfn;
122     void *opaque;
123     hwaddr addr;
124     hwaddr size;
125 } PPCPortInfo;
126 
127 typedef struct PPCInfo {
128     const char *name;
129     PPCPortInfo ports[TZ_NUM_PORTS];
130 } PPCInfo;
131 
132 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
133                                     void *opaque, const char *name, hwaddr size)
134 {
135     /*
136      * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
137      * and return a pointer to its MemoryRegion.
138      */
139     UnimplementedDeviceState *uds = opaque;
140 
141     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
142     qdev_prop_set_string(DEVICE(uds), "name", name);
143     qdev_prop_set_uint64(DEVICE(uds), "size", size);
144     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
145     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
146 }
147 
148 typedef enum MPCInfoType {
149     MPC_RAM,
150     MPC_ROM,
151     MPC_CRYPTOISLAND,
152 } MPCInfoType;
153 
154 struct MPCInfo {
155     const char *name;
156     hwaddr addr;
157     hwaddr size;
158     MPCInfoType type;
159 };
160 
161 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
162 static const MPCInfo a_mpc_info[] = { {
163         .name = "qspi",
164         .type = MPC_ROM,
165         .addr = 0x00200000,
166         .size = 0x00800000,
167     }, {
168         .name = "sram",
169         .type = MPC_RAM,
170         .addr = 0x00000000,
171         .size = 0x00200000,
172     }
173 };
174 
175 static const MPCInfo b1_mpc_info[] = { {
176         .name = "qspi",
177         .type = MPC_ROM,
178         .addr = 0x00000000,
179         .size = 0x02000000,
180     }, {
181         .name = "sram",
182         .type = MPC_RAM,
183         .addr = 0x0a400000,
184         .size = 0x00080000,
185     }, {
186         .name = "eflash0",
187         .type = MPC_ROM,
188         .addr = 0x0a000000,
189         .size = 0x00200000,
190     }, {
191         .name = "eflash1",
192         .type = MPC_ROM,
193         .addr = 0x0a200000,
194         .size = 0x00200000,
195     }, {
196         .name = "cryptoisland",
197         .type = MPC_CRYPTOISLAND,
198         .addr = 0x0a000000,
199         .size = 0x00200000,
200     }
201 };
202 
203 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
204                               const char *name, hwaddr size)
205 {
206     /*
207      * Create an MPC and the RAM or flash behind it.
208      * MPC 0: eFlash 0
209      * MPC 1: eFlash 1
210      * MPC 2: SRAM
211      * MPC 3: QSPI flash
212      * MPC 4: CryptoIsland
213      * For now we implement the flash regions as ROM (ie not programmable)
214      * (with their control interface memory regions being unimplemented
215      * stubs behind the PPCs).
216      * The whole CryptoIsland region behind its MPC is an unimplemented stub.
217      */
218     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
219     TZMPC *mpc = opaque;
220     int i = mpc - &mms->mpc[0];
221     MemoryRegion *downstream;
222     MemoryRegion *upstream;
223     UnimplementedDeviceState *uds;
224     char *mpcname;
225     const MPCInfo *mpcinfo = mmc->mpc_info;
226 
227     mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
228 
229     switch (mpcinfo[i].type) {
230     case MPC_ROM:
231         downstream = &mms->ram[i];
232         memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
233                                mpcinfo[i].size, &error_fatal);
234         break;
235     case MPC_RAM:
236         downstream = &mms->ram[i];
237         memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
238                                mpcinfo[i].size, &error_fatal);
239         break;
240     case MPC_CRYPTOISLAND:
241         /* We don't implement the CryptoIsland yet */
242         uds = &mms->cryptoisland;
243         object_initialize_child(OBJECT(mms), name, uds,
244                                 TYPE_UNIMPLEMENTED_DEVICE);
245         qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
246         qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
247         sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
248         downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
249         break;
250     default:
251         g_assert_not_reached();
252     }
253 
254     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
255     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
256                              &error_fatal);
257     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
258     /* Map the upstream end of the MPC into system memory */
259     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
260     memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
261     /* and connect its interrupt to the SSE-200 */
262     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
263                                 qdev_get_gpio_in_named(DEVICE(&mms->sse),
264                                                        "mpcexp_status", i));
265 
266     g_free(mpcname);
267     /* Return the register interface MR for our caller to map behind the PPC */
268     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
269 }
270 
271 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
272                               const char *name, hwaddr size)
273 {
274     PL031State *rtc = opaque;
275 
276     object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
277     sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
278     sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
279     return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
280 }
281 
282 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
283                                const char *name, hwaddr size)
284 {
285     PL011State *uart = opaque;
286     int i = uart - &mms->uart[0];
287     int irqbase = 7 + i * 6;
288     SysBusDevice *s;
289 
290     object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
291     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
292     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
293     s = SYS_BUS_DEVICE(uart);
294     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
295     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
296     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
297     sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
298     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
299     sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
300     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
301 }
302 
303 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
304                                        const char *name, hwaddr size)
305 {
306     /*
307      * Create the container MemoryRegion for all the devices that live
308      * behind the Musca-A PPC's single port. These devices don't have a PPC
309      * port each, but we use the PPCPortInfo struct as a convenient way
310      * to describe them. Note that addresses here are relative to the base
311      * address of the PPC port region: 0x40100000, and devices appear both
312      * at the 0x4... NS region and the 0x5... S region.
313      */
314     int i;
315     MemoryRegion *container = &mms->container;
316 
317     const PPCPortInfo devices[] = {
318         { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
319         { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
320         { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
321         { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
322         { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
323         { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
324         { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
325         { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
326         { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
327         { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
328         { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
329         { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
330         { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
331         { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
332         { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
333         { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
334     };
335 
336     memory_region_init(container, OBJECT(mms), "musca-device-container", size);
337 
338     for (i = 0; i < ARRAY_SIZE(devices); i++) {
339         const PPCPortInfo *pinfo = &devices[i];
340         MemoryRegion *mr;
341 
342         mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
343         memory_region_add_subregion(container, pinfo->addr, mr);
344     }
345 
346     return &mms->container;
347 }
348 
349 static void musca_init(MachineState *machine)
350 {
351     MuscaMachineState *mms = MUSCA_MACHINE(machine);
352     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
353     MachineClass *mc = MACHINE_GET_CLASS(machine);
354     MemoryRegion *system_memory = get_system_memory();
355     DeviceState *ssedev;
356     DeviceState *dev_splitter;
357     const PPCInfo *ppcs;
358     int num_ppcs;
359     int i;
360 
361     assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
362     assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
363 
364     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
365         error_report("This board can only be used with CPU %s",
366                      mc->default_cpu_type);
367         exit(1);
368     }
369 
370     object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
371                             TYPE_SSE200);
372     ssedev = DEVICE(&mms->sse);
373     object_property_set_link(OBJECT(&mms->sse), "memory",
374                              OBJECT(system_memory), &error_fatal);
375     qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
376     qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
377     qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
378     qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
379     /*
380      * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
381      * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
382      */
383     if (mmc->type == MUSCA_B1) {
384         qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
385         qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
386     }
387     sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
388 
389     /*
390      * We need to create splitters to feed the IRQ inputs
391      * for each CPU in the SSE-200 from each device in the board.
392      */
393     for (i = 0; i < mmc->num_irqs; i++) {
394         char *name = g_strdup_printf("musca-irq-splitter%d", i);
395         SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
396 
397         object_initialize_child_with_props(OBJECT(machine), name, splitter,
398                                            sizeof(*splitter), TYPE_SPLIT_IRQ,
399                                            &error_fatal, NULL);
400         g_free(name);
401 
402         object_property_set_int(OBJECT(splitter), "num-lines", 2,
403                                 &error_fatal);
404         qdev_realize(DEVICE(splitter), NULL, &error_fatal);
405         qdev_connect_gpio_out(DEVICE(splitter), 0,
406                               qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
407         qdev_connect_gpio_out(DEVICE(splitter), 1,
408                               qdev_get_gpio_in_named(ssedev,
409                                                      "EXP_CPU1_IRQ", i));
410     }
411 
412     /*
413      * The sec_resp_cfg output from the SSE-200 must be split into multiple
414      * lines, one for each of the PPCs we create here.
415      */
416     object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
417                                        &mms->sec_resp_splitter,
418                                        sizeof(mms->sec_resp_splitter),
419                                        TYPE_SPLIT_IRQ, &error_fatal, NULL);
420 
421     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
422                             ARRAY_SIZE(mms->ppc), &error_fatal);
423     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
424     dev_splitter = DEVICE(&mms->sec_resp_splitter);
425     qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
426                                 qdev_get_gpio_in(dev_splitter, 0));
427 
428     /*
429      * Most of the devices in the board are behind Peripheral Protection
430      * Controllers. The required order for initializing things is:
431      *  + initialize the PPC
432      *  + initialize, configure and realize downstream devices
433      *  + connect downstream device MemoryRegions to the PPC
434      *  + realize the PPC
435      *  + map the PPC's MemoryRegions to the places in the address map
436      *    where the downstream devices should appear
437      *  + wire up the PPC's control lines to the SSE object
438      *
439      * The PPC mapping differs for the -A and -B1 variants; the -A version
440      * is much simpler, using only a single port of a single PPC and putting
441      * all the devices behind that.
442      */
443     const PPCInfo a_ppcs[] = { {
444             .name = "ahb_ppcexp0",
445             .ports = {
446                 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
447             },
448         },
449     };
450 
451     /*
452      * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
453      * and the 0x5.. S region. Devices listed with an 0x5.. address appear
454      * only in the S region.
455      */
456     const PPCInfo b1_ppcs[] = { {
457             .name = "apb_ppcexp0",
458             .ports = {
459                 { "eflash0", make_unimp_dev, &mms->eflash[0],
460                   0x52400000, 0x1000 },
461                 { "eflash1", make_unimp_dev, &mms->eflash[1],
462                   0x52500000, 0x1000 },
463                 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
464                 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
465                 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
466                 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
467                 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
468                 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
469                 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
470                 { }, /* port 9: unused */
471                 { }, /* port 10: unused */
472                 { }, /* port 11: unused */
473                 { }, /* port 12: unused */
474                 { }, /* port 13: unused */
475                 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
476             },
477         }, {
478             .name = "apb_ppcexp1",
479             .ports = {
480                 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
481                 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
482                 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
483                 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
484                 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
485                 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
486                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
487                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
488                 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
489                 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
490                 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
491                 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
492                 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
493                 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
494             },
495         }, {
496             .name = "ahb_ppcexp0",
497             .ports = {
498                 { }, /* port 0: unused */
499                 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
500             },
501         },
502     };
503 
504     switch (mmc->type) {
505     case MUSCA_A:
506         ppcs = a_ppcs;
507         num_ppcs = ARRAY_SIZE(a_ppcs);
508         break;
509     case MUSCA_B1:
510         ppcs = b1_ppcs;
511         num_ppcs = ARRAY_SIZE(b1_ppcs);
512         break;
513     default:
514         g_assert_not_reached();
515     }
516     assert(num_ppcs <= MUSCA_PPC_MAX);
517 
518     for (i = 0; i < num_ppcs; i++) {
519         const PPCInfo *ppcinfo = &ppcs[i];
520         TZPPC *ppc = &mms->ppc[i];
521         DeviceState *ppcdev;
522         int port;
523         char *gpioname;
524 
525         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
526                                 TYPE_TZ_PPC);
527         ppcdev = DEVICE(ppc);
528 
529         for (port = 0; port < TZ_NUM_PORTS; port++) {
530             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
531             MemoryRegion *mr;
532             char *portname;
533 
534             if (!pinfo->devfn) {
535                 continue;
536             }
537 
538             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
539             portname = g_strdup_printf("port[%d]", port);
540             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
541                                      &error_fatal);
542             g_free(portname);
543         }
544 
545         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
546 
547         for (port = 0; port < TZ_NUM_PORTS; port++) {
548             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
549 
550             if (!pinfo->devfn) {
551                 continue;
552             }
553             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
554 
555             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
556             qdev_connect_gpio_out_named(ssedev, gpioname, port,
557                                         qdev_get_gpio_in_named(ppcdev,
558                                                                "cfg_nonsec",
559                                                                port));
560             g_free(gpioname);
561             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
562             qdev_connect_gpio_out_named(ssedev, gpioname, port,
563                                         qdev_get_gpio_in_named(ppcdev,
564                                                                "cfg_ap", port));
565             g_free(gpioname);
566         }
567 
568         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
569         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
570                                     qdev_get_gpio_in_named(ppcdev,
571                                                            "irq_enable", 0));
572         g_free(gpioname);
573         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
574         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
575                                     qdev_get_gpio_in_named(ppcdev,
576                                                            "irq_clear", 0));
577         g_free(gpioname);
578         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
579         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
580                                     qdev_get_gpio_in_named(ssedev,
581                                                            gpioname, 0));
582         g_free(gpioname);
583 
584         qdev_connect_gpio_out(dev_splitter, i,
585                               qdev_get_gpio_in_named(ppcdev,
586                                                      "cfg_sec_resp", 0));
587     }
588 
589     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
590 }
591 
592 static void musca_class_init(ObjectClass *oc, void *data)
593 {
594     MachineClass *mc = MACHINE_CLASS(oc);
595 
596     mc->default_cpus = 2;
597     mc->min_cpus = mc->default_cpus;
598     mc->max_cpus = mc->default_cpus;
599     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
600     mc->init = musca_init;
601 }
602 
603 static void musca_a_class_init(ObjectClass *oc, void *data)
604 {
605     MachineClass *mc = MACHINE_CLASS(oc);
606     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
607 
608     mc->desc = "ARM Musca-A board (dual Cortex-M33)";
609     mmc->type = MUSCA_A;
610     mmc->init_svtor = 0x10200000;
611     mmc->sram_addr_width = 15;
612     mmc->num_irqs = 64;
613     mmc->mpc_info = a_mpc_info;
614     mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
615 }
616 
617 static void musca_b1_class_init(ObjectClass *oc, void *data)
618 {
619     MachineClass *mc = MACHINE_CLASS(oc);
620     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
621 
622     mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
623     mmc->type = MUSCA_B1;
624     /*
625      * This matches the DAPlink firmware which boots from QSPI. There
626      * is also a firmware blob which boots from the eFlash, which
627      * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
628      * though we could in theory expose a machine property on the command
629      * line to allow the user to request eFlash boot.
630      */
631     mmc->init_svtor = 0x10000000;
632     mmc->sram_addr_width = 17;
633     mmc->num_irqs = 96;
634     mmc->mpc_info = b1_mpc_info;
635     mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
636 }
637 
638 static const TypeInfo musca_info = {
639     .name = TYPE_MUSCA_MACHINE,
640     .parent = TYPE_MACHINE,
641     .abstract = true,
642     .instance_size = sizeof(MuscaMachineState),
643     .class_size = sizeof(MuscaMachineClass),
644     .class_init = musca_class_init,
645 };
646 
647 static const TypeInfo musca_a_info = {
648     .name = TYPE_MUSCA_A_MACHINE,
649     .parent = TYPE_MUSCA_MACHINE,
650     .class_init = musca_a_class_init,
651 };
652 
653 static const TypeInfo musca_b1_info = {
654     .name = TYPE_MUSCA_B1_MACHINE,
655     .parent = TYPE_MUSCA_MACHINE,
656     .class_init = musca_b1_class_init,
657 };
658 
659 static void musca_machine_init(void)
660 {
661     type_register_static(&musca_info);
662     type_register_static(&musca_a_info);
663     type_register_static(&musca_b1_info);
664 }
665 
666 type_init(musca_machine_init);
667