xref: /qemu/hw/arm/musca.c (revision 8110fa1d)
1 /*
2  * Arm Musca-B1 test chip board emulation
3  *
4  * Copyright (c) 2019 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /*
13  * The Musca boards are a reference implementation of a system using
14  * the SSE-200 subsystem for embedded:
15  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16  * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17  * We model the A and B1 variants of this board, as described in the TRMs:
18  * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
19  * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
36 #include "qom/object.h"
37 
38 #define MUSCA_NUMIRQ_MAX 96
39 #define MUSCA_PPC_MAX 3
40 #define MUSCA_MPC_MAX 5
41 
42 typedef struct MPCInfo MPCInfo;
43 
44 typedef enum MuscaType {
45     MUSCA_A,
46     MUSCA_B1,
47 } MuscaType;
48 
49 struct MuscaMachineClass {
50     MachineClass parent;
51     MuscaType type;
52     uint32_t init_svtor;
53     int sram_addr_width;
54     int num_irqs;
55     const MPCInfo *mpc_info;
56     int num_mpcs;
57 };
58 typedef struct MuscaMachineClass MuscaMachineClass;
59 
60 struct MuscaMachineState {
61     MachineState parent;
62 
63     ARMSSE sse;
64     /* RAM and flash */
65     MemoryRegion ram[MUSCA_MPC_MAX];
66     SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
67     SplitIRQ sec_resp_splitter;
68     TZPPC ppc[MUSCA_PPC_MAX];
69     MemoryRegion container;
70     UnimplementedDeviceState eflash[2];
71     UnimplementedDeviceState qspi;
72     TZMPC mpc[MUSCA_MPC_MAX];
73     UnimplementedDeviceState mhu[2];
74     UnimplementedDeviceState pwm[3];
75     UnimplementedDeviceState i2s;
76     PL011State uart[2];
77     UnimplementedDeviceState i2c[2];
78     UnimplementedDeviceState spi;
79     UnimplementedDeviceState scc;
80     UnimplementedDeviceState timer;
81     PL031State rtc;
82     UnimplementedDeviceState pvt;
83     UnimplementedDeviceState sdio;
84     UnimplementedDeviceState gpio;
85     UnimplementedDeviceState cryptoisland;
86 };
87 typedef struct MuscaMachineState MuscaMachineState;
88 
89 #define TYPE_MUSCA_MACHINE "musca"
90 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
91 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
92 
93 DECLARE_OBJ_CHECKERS(MuscaMachineState, MuscaMachineClass,
94                      MUSCA_MACHINE, TYPE_MUSCA_MACHINE)
95 
96 /*
97  * Main SYSCLK frequency in Hz
98  * TODO this should really be different for the two cores, but we
99  * don't model that in our SSE-200 model yet.
100  */
101 #define SYSCLK_FRQ 40000000
102 
103 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
104 {
105     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
106     assert(irqno < MUSCA_NUMIRQ_MAX);
107 
108     return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
109 }
110 
111 /*
112  * Most of the devices in the Musca board sit behind Peripheral Protection
113  * Controllers. These data structures define the layout of which devices
114  * sit behind which PPCs.
115  * The devfn for each port is a function which creates, configures
116  * and initializes the device, returning the MemoryRegion which
117  * needs to be plugged into the downstream end of the PPC port.
118  */
119 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
120                                 const char *name, hwaddr size);
121 
122 typedef struct PPCPortInfo {
123     const char *name;
124     MakeDevFn *devfn;
125     void *opaque;
126     hwaddr addr;
127     hwaddr size;
128 } PPCPortInfo;
129 
130 typedef struct PPCInfo {
131     const char *name;
132     PPCPortInfo ports[TZ_NUM_PORTS];
133 } PPCInfo;
134 
135 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
136                                     void *opaque, const char *name, hwaddr size)
137 {
138     /*
139      * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
140      * and return a pointer to its MemoryRegion.
141      */
142     UnimplementedDeviceState *uds = opaque;
143 
144     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
145     qdev_prop_set_string(DEVICE(uds), "name", name);
146     qdev_prop_set_uint64(DEVICE(uds), "size", size);
147     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
148     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
149 }
150 
151 typedef enum MPCInfoType {
152     MPC_RAM,
153     MPC_ROM,
154     MPC_CRYPTOISLAND,
155 } MPCInfoType;
156 
157 struct MPCInfo {
158     const char *name;
159     hwaddr addr;
160     hwaddr size;
161     MPCInfoType type;
162 };
163 
164 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
165 static const MPCInfo a_mpc_info[] = { {
166         .name = "qspi",
167         .type = MPC_ROM,
168         .addr = 0x00200000,
169         .size = 0x00800000,
170     }, {
171         .name = "sram",
172         .type = MPC_RAM,
173         .addr = 0x00000000,
174         .size = 0x00200000,
175     }
176 };
177 
178 static const MPCInfo b1_mpc_info[] = { {
179         .name = "qspi",
180         .type = MPC_ROM,
181         .addr = 0x00000000,
182         .size = 0x02000000,
183     }, {
184         .name = "sram",
185         .type = MPC_RAM,
186         .addr = 0x0a400000,
187         .size = 0x00080000,
188     }, {
189         .name = "eflash0",
190         .type = MPC_ROM,
191         .addr = 0x0a000000,
192         .size = 0x00200000,
193     }, {
194         .name = "eflash1",
195         .type = MPC_ROM,
196         .addr = 0x0a200000,
197         .size = 0x00200000,
198     }, {
199         .name = "cryptoisland",
200         .type = MPC_CRYPTOISLAND,
201         .addr = 0x0a000000,
202         .size = 0x00200000,
203     }
204 };
205 
206 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
207                               const char *name, hwaddr size)
208 {
209     /*
210      * Create an MPC and the RAM or flash behind it.
211      * MPC 0: eFlash 0
212      * MPC 1: eFlash 1
213      * MPC 2: SRAM
214      * MPC 3: QSPI flash
215      * MPC 4: CryptoIsland
216      * For now we implement the flash regions as ROM (ie not programmable)
217      * (with their control interface memory regions being unimplemented
218      * stubs behind the PPCs).
219      * The whole CryptoIsland region behind its MPC is an unimplemented stub.
220      */
221     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
222     TZMPC *mpc = opaque;
223     int i = mpc - &mms->mpc[0];
224     MemoryRegion *downstream;
225     MemoryRegion *upstream;
226     UnimplementedDeviceState *uds;
227     char *mpcname;
228     const MPCInfo *mpcinfo = mmc->mpc_info;
229 
230     mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
231 
232     switch (mpcinfo[i].type) {
233     case MPC_ROM:
234         downstream = &mms->ram[i];
235         memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
236                                mpcinfo[i].size, &error_fatal);
237         break;
238     case MPC_RAM:
239         downstream = &mms->ram[i];
240         memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
241                                mpcinfo[i].size, &error_fatal);
242         break;
243     case MPC_CRYPTOISLAND:
244         /* We don't implement the CryptoIsland yet */
245         uds = &mms->cryptoisland;
246         object_initialize_child(OBJECT(mms), name, uds,
247                                 TYPE_UNIMPLEMENTED_DEVICE);
248         qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
249         qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
250         sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
251         downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
252         break;
253     default:
254         g_assert_not_reached();
255     }
256 
257     object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
258     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
259                              &error_fatal);
260     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
261     /* Map the upstream end of the MPC into system memory */
262     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
263     memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
264     /* and connect its interrupt to the SSE-200 */
265     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
266                                 qdev_get_gpio_in_named(DEVICE(&mms->sse),
267                                                        "mpcexp_status", i));
268 
269     g_free(mpcname);
270     /* Return the register interface MR for our caller to map behind the PPC */
271     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
272 }
273 
274 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
275                               const char *name, hwaddr size)
276 {
277     PL031State *rtc = opaque;
278 
279     object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
280     sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
281     sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
282     return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
283 }
284 
285 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
286                                const char *name, hwaddr size)
287 {
288     PL011State *uart = opaque;
289     int i = uart - &mms->uart[0];
290     int irqbase = 7 + i * 6;
291     SysBusDevice *s;
292 
293     object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
294     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
295     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
296     s = SYS_BUS_DEVICE(uart);
297     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
298     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
299     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
300     sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
301     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
302     sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
303     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
304 }
305 
306 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
307                                        const char *name, hwaddr size)
308 {
309     /*
310      * Create the container MemoryRegion for all the devices that live
311      * behind the Musca-A PPC's single port. These devices don't have a PPC
312      * port each, but we use the PPCPortInfo struct as a convenient way
313      * to describe them. Note that addresses here are relative to the base
314      * address of the PPC port region: 0x40100000, and devices appear both
315      * at the 0x4... NS region and the 0x5... S region.
316      */
317     int i;
318     MemoryRegion *container = &mms->container;
319 
320     const PPCPortInfo devices[] = {
321         { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
322         { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
323         { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
324         { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
325         { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
326         { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
327         { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
328         { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
329         { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
330         { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
331         { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
332         { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
333         { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
334         { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
335         { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
336         { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
337     };
338 
339     memory_region_init(container, OBJECT(mms), "musca-device-container", size);
340 
341     for (i = 0; i < ARRAY_SIZE(devices); i++) {
342         const PPCPortInfo *pinfo = &devices[i];
343         MemoryRegion *mr;
344 
345         mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
346         memory_region_add_subregion(container, pinfo->addr, mr);
347     }
348 
349     return &mms->container;
350 }
351 
352 static void musca_init(MachineState *machine)
353 {
354     MuscaMachineState *mms = MUSCA_MACHINE(machine);
355     MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
356     MachineClass *mc = MACHINE_GET_CLASS(machine);
357     MemoryRegion *system_memory = get_system_memory();
358     DeviceState *ssedev;
359     DeviceState *dev_splitter;
360     const PPCInfo *ppcs;
361     int num_ppcs;
362     int i;
363 
364     assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
365     assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
366 
367     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
368         error_report("This board can only be used with CPU %s",
369                      mc->default_cpu_type);
370         exit(1);
371     }
372 
373     object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
374                             TYPE_SSE200);
375     ssedev = DEVICE(&mms->sse);
376     object_property_set_link(OBJECT(&mms->sse), "memory",
377                              OBJECT(system_memory), &error_fatal);
378     qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
379     qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
380     qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
381     qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
382     /*
383      * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
384      * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
385      */
386     if (mmc->type == MUSCA_B1) {
387         qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
388         qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
389     }
390     sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
391 
392     /*
393      * We need to create splitters to feed the IRQ inputs
394      * for each CPU in the SSE-200 from each device in the board.
395      */
396     for (i = 0; i < mmc->num_irqs; i++) {
397         char *name = g_strdup_printf("musca-irq-splitter%d", i);
398         SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
399 
400         object_initialize_child_with_props(OBJECT(machine), name, splitter,
401                                            sizeof(*splitter), TYPE_SPLIT_IRQ,
402                                            &error_fatal, NULL);
403         g_free(name);
404 
405         object_property_set_int(OBJECT(splitter), "num-lines", 2,
406                                 &error_fatal);
407         qdev_realize(DEVICE(splitter), NULL, &error_fatal);
408         qdev_connect_gpio_out(DEVICE(splitter), 0,
409                               qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
410         qdev_connect_gpio_out(DEVICE(splitter), 1,
411                               qdev_get_gpio_in_named(ssedev,
412                                                      "EXP_CPU1_IRQ", i));
413     }
414 
415     /*
416      * The sec_resp_cfg output from the SSE-200 must be split into multiple
417      * lines, one for each of the PPCs we create here.
418      */
419     object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
420                                        &mms->sec_resp_splitter,
421                                        sizeof(mms->sec_resp_splitter),
422                                        TYPE_SPLIT_IRQ, &error_fatal, NULL);
423 
424     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
425                             ARRAY_SIZE(mms->ppc), &error_fatal);
426     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
427     dev_splitter = DEVICE(&mms->sec_resp_splitter);
428     qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
429                                 qdev_get_gpio_in(dev_splitter, 0));
430 
431     /*
432      * Most of the devices in the board are behind Peripheral Protection
433      * Controllers. The required order for initializing things is:
434      *  + initialize the PPC
435      *  + initialize, configure and realize downstream devices
436      *  + connect downstream device MemoryRegions to the PPC
437      *  + realize the PPC
438      *  + map the PPC's MemoryRegions to the places in the address map
439      *    where the downstream devices should appear
440      *  + wire up the PPC's control lines to the SSE object
441      *
442      * The PPC mapping differs for the -A and -B1 variants; the -A version
443      * is much simpler, using only a single port of a single PPC and putting
444      * all the devices behind that.
445      */
446     const PPCInfo a_ppcs[] = { {
447             .name = "ahb_ppcexp0",
448             .ports = {
449                 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
450             },
451         },
452     };
453 
454     /*
455      * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
456      * and the 0x5.. S region. Devices listed with an 0x5.. address appear
457      * only in the S region.
458      */
459     const PPCInfo b1_ppcs[] = { {
460             .name = "apb_ppcexp0",
461             .ports = {
462                 { "eflash0", make_unimp_dev, &mms->eflash[0],
463                   0x52400000, 0x1000 },
464                 { "eflash1", make_unimp_dev, &mms->eflash[1],
465                   0x52500000, 0x1000 },
466                 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
467                 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
468                 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
469                 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
470                 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
471                 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
472                 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
473                 { }, /* port 9: unused */
474                 { }, /* port 10: unused */
475                 { }, /* port 11: unused */
476                 { }, /* port 12: unused */
477                 { }, /* port 13: unused */
478                 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
479             },
480         }, {
481             .name = "apb_ppcexp1",
482             .ports = {
483                 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
484                 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
485                 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
486                 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
487                 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
488                 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
489                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
490                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
491                 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
492                 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
493                 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
494                 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
495                 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
496                 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
497             },
498         }, {
499             .name = "ahb_ppcexp0",
500             .ports = {
501                 { }, /* port 0: unused */
502                 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
503             },
504         },
505     };
506 
507     switch (mmc->type) {
508     case MUSCA_A:
509         ppcs = a_ppcs;
510         num_ppcs = ARRAY_SIZE(a_ppcs);
511         break;
512     case MUSCA_B1:
513         ppcs = b1_ppcs;
514         num_ppcs = ARRAY_SIZE(b1_ppcs);
515         break;
516     default:
517         g_assert_not_reached();
518     }
519     assert(num_ppcs <= MUSCA_PPC_MAX);
520 
521     for (i = 0; i < num_ppcs; i++) {
522         const PPCInfo *ppcinfo = &ppcs[i];
523         TZPPC *ppc = &mms->ppc[i];
524         DeviceState *ppcdev;
525         int port;
526         char *gpioname;
527 
528         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
529                                 TYPE_TZ_PPC);
530         ppcdev = DEVICE(ppc);
531 
532         for (port = 0; port < TZ_NUM_PORTS; port++) {
533             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
534             MemoryRegion *mr;
535             char *portname;
536 
537             if (!pinfo->devfn) {
538                 continue;
539             }
540 
541             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
542             portname = g_strdup_printf("port[%d]", port);
543             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
544                                      &error_fatal);
545             g_free(portname);
546         }
547 
548         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
549 
550         for (port = 0; port < TZ_NUM_PORTS; port++) {
551             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
552 
553             if (!pinfo->devfn) {
554                 continue;
555             }
556             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
557 
558             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
559             qdev_connect_gpio_out_named(ssedev, gpioname, port,
560                                         qdev_get_gpio_in_named(ppcdev,
561                                                                "cfg_nonsec",
562                                                                port));
563             g_free(gpioname);
564             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
565             qdev_connect_gpio_out_named(ssedev, gpioname, port,
566                                         qdev_get_gpio_in_named(ppcdev,
567                                                                "cfg_ap", port));
568             g_free(gpioname);
569         }
570 
571         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
572         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
573                                     qdev_get_gpio_in_named(ppcdev,
574                                                            "irq_enable", 0));
575         g_free(gpioname);
576         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
577         qdev_connect_gpio_out_named(ssedev, gpioname, 0,
578                                     qdev_get_gpio_in_named(ppcdev,
579                                                            "irq_clear", 0));
580         g_free(gpioname);
581         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
582         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
583                                     qdev_get_gpio_in_named(ssedev,
584                                                            gpioname, 0));
585         g_free(gpioname);
586 
587         qdev_connect_gpio_out(dev_splitter, i,
588                               qdev_get_gpio_in_named(ppcdev,
589                                                      "cfg_sec_resp", 0));
590     }
591 
592     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
593 }
594 
595 static void musca_class_init(ObjectClass *oc, void *data)
596 {
597     MachineClass *mc = MACHINE_CLASS(oc);
598 
599     mc->default_cpus = 2;
600     mc->min_cpus = mc->default_cpus;
601     mc->max_cpus = mc->default_cpus;
602     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
603     mc->init = musca_init;
604 }
605 
606 static void musca_a_class_init(ObjectClass *oc, void *data)
607 {
608     MachineClass *mc = MACHINE_CLASS(oc);
609     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
610 
611     mc->desc = "ARM Musca-A board (dual Cortex-M33)";
612     mmc->type = MUSCA_A;
613     mmc->init_svtor = 0x10200000;
614     mmc->sram_addr_width = 15;
615     mmc->num_irqs = 64;
616     mmc->mpc_info = a_mpc_info;
617     mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
618 }
619 
620 static void musca_b1_class_init(ObjectClass *oc, void *data)
621 {
622     MachineClass *mc = MACHINE_CLASS(oc);
623     MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
624 
625     mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
626     mmc->type = MUSCA_B1;
627     /*
628      * This matches the DAPlink firmware which boots from QSPI. There
629      * is also a firmware blob which boots from the eFlash, which
630      * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
631      * though we could in theory expose a machine property on the command
632      * line to allow the user to request eFlash boot.
633      */
634     mmc->init_svtor = 0x10000000;
635     mmc->sram_addr_width = 17;
636     mmc->num_irqs = 96;
637     mmc->mpc_info = b1_mpc_info;
638     mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
639 }
640 
641 static const TypeInfo musca_info = {
642     .name = TYPE_MUSCA_MACHINE,
643     .parent = TYPE_MACHINE,
644     .abstract = true,
645     .instance_size = sizeof(MuscaMachineState),
646     .class_size = sizeof(MuscaMachineClass),
647     .class_init = musca_class_init,
648 };
649 
650 static const TypeInfo musca_a_info = {
651     .name = TYPE_MUSCA_A_MACHINE,
652     .parent = TYPE_MUSCA_MACHINE,
653     .class_init = musca_a_class_init,
654 };
655 
656 static const TypeInfo musca_b1_info = {
657     .name = TYPE_MUSCA_B1_MACHINE,
658     .parent = TYPE_MUSCA_MACHINE,
659     .class_init = musca_b1_class_init,
660 };
661 
662 static void musca_machine_init(void)
663 {
664     type_register_static(&musca_info);
665     type_register_static(&musca_a_info);
666     type_register_static(&musca_b1_info);
667 }
668 
669 type_init(musca_machine_init);
670