xref: /qemu/hw/arm/omap1.c (revision 0ec8384f)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/hw.h"
28 #include "hw/irq.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/arm/boot.h"
31 #include "hw/arm/omap.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/arm/soc_dma.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "sysemu/rtc.h"
39 #include "qemu/range.h"
40 #include "hw/sysbus.h"
41 #include "qemu/cutils.h"
42 #include "qemu/bcd.h"
43 
44 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
45 {
46     qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
47                   funcname, 8 * sz, addr);
48 }
49 
50 /* Should signal the TCMI/GPMC */
51 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
52 {
53     uint8_t ret;
54 
55     omap_log_badwidth(__func__, addr, 1);
56     cpu_physical_memory_read(addr, &ret, 1);
57     return ret;
58 }
59 
60 void omap_badwidth_write8(void *opaque, hwaddr addr,
61                 uint32_t value)
62 {
63     uint8_t val8 = value;
64 
65     omap_log_badwidth(__func__, addr, 1);
66     cpu_physical_memory_write(addr, &val8, 1);
67 }
68 
69 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
70 {
71     uint16_t ret;
72 
73     omap_log_badwidth(__func__, addr, 2);
74     cpu_physical_memory_read(addr, &ret, 2);
75     return ret;
76 }
77 
78 void omap_badwidth_write16(void *opaque, hwaddr addr,
79                 uint32_t value)
80 {
81     uint16_t val16 = value;
82 
83     omap_log_badwidth(__func__, addr, 2);
84     cpu_physical_memory_write(addr, &val16, 2);
85 }
86 
87 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
88 {
89     uint32_t ret;
90 
91     omap_log_badwidth(__func__, addr, 4);
92     cpu_physical_memory_read(addr, &ret, 4);
93     return ret;
94 }
95 
96 void omap_badwidth_write32(void *opaque, hwaddr addr,
97                 uint32_t value)
98 {
99     omap_log_badwidth(__func__, addr, 4);
100     cpu_physical_memory_write(addr, &value, 4);
101 }
102 
103 /* MPU OS timers */
104 struct omap_mpu_timer_s {
105     MemoryRegion iomem;
106     qemu_irq irq;
107     omap_clk clk;
108     uint32_t val;
109     int64_t time;
110     QEMUTimer *timer;
111     QEMUBH *tick;
112     int64_t rate;
113     int it_ena;
114 
115     int enable;
116     int ptv;
117     int ar;
118     int st;
119     uint32_t reset_val;
120 };
121 
122 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
123 {
124     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
125 
126     if (timer->st && timer->enable && timer->rate)
127         return timer->val - muldiv64(distance >> (timer->ptv + 1),
128                                      timer->rate, NANOSECONDS_PER_SECOND);
129     else
130         return timer->val;
131 }
132 
133 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
134 {
135     timer->val = omap_timer_read(timer);
136     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
137 }
138 
139 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
140 {
141     int64_t expires;
142 
143     if (timer->enable && timer->st && timer->rate) {
144         timer->val = timer->reset_val;	/* Should skip this on clk enable */
145         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
146                            NANOSECONDS_PER_SECOND, timer->rate);
147 
148         /* If timer expiry would be sooner than in about 1 ms and
149          * auto-reload isn't set, then fire immediately.  This is a hack
150          * to make systems like PalmOS run in acceptable time.  PalmOS
151          * sets the interval to a very low value and polls the status bit
152          * in a busy loop when it wants to sleep just a couple of CPU
153          * ticks.  */
154         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
155             timer_mod(timer->timer, timer->time + expires);
156         } else {
157             qemu_bh_schedule(timer->tick);
158         }
159     } else
160         timer_del(timer->timer);
161 }
162 
163 static void omap_timer_fire(void *opaque)
164 {
165     struct omap_mpu_timer_s *timer = opaque;
166 
167     if (!timer->ar) {
168         timer->val = 0;
169         timer->st = 0;
170     }
171 
172     if (timer->it_ena)
173         /* Edge-triggered irq */
174         qemu_irq_pulse(timer->irq);
175 }
176 
177 static void omap_timer_tick(void *opaque)
178 {
179     struct omap_mpu_timer_s *timer = opaque;
180 
181     omap_timer_sync(timer);
182     omap_timer_fire(timer);
183     omap_timer_update(timer);
184 }
185 
186 static void omap_timer_clk_update(void *opaque, int line, int on)
187 {
188     struct omap_mpu_timer_s *timer = opaque;
189 
190     omap_timer_sync(timer);
191     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
192     omap_timer_update(timer);
193 }
194 
195 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
196 {
197     omap_clk_adduser(timer->clk,
198                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
199     timer->rate = omap_clk_getrate(timer->clk);
200 }
201 
202 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
203                                     unsigned size)
204 {
205     struct omap_mpu_timer_s *s = opaque;
206 
207     if (size != 4) {
208         return omap_badwidth_read32(opaque, addr);
209     }
210 
211     switch (addr) {
212     case 0x00:	/* CNTL_TIMER */
213         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
214 
215     case 0x04:	/* LOAD_TIM */
216         break;
217 
218     case 0x08:	/* READ_TIM */
219         return omap_timer_read(s);
220     }
221 
222     OMAP_BAD_REG(addr);
223     return 0;
224 }
225 
226 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
227                                  uint64_t value, unsigned size)
228 {
229     struct omap_mpu_timer_s *s = opaque;
230 
231     if (size != 4) {
232         omap_badwidth_write32(opaque, addr, value);
233         return;
234     }
235 
236     switch (addr) {
237     case 0x00:	/* CNTL_TIMER */
238         omap_timer_sync(s);
239         s->enable = (value >> 5) & 1;
240         s->ptv = (value >> 2) & 7;
241         s->ar = (value >> 1) & 1;
242         s->st = value & 1;
243         omap_timer_update(s);
244         return;
245 
246     case 0x04:	/* LOAD_TIM */
247         s->reset_val = value;
248         return;
249 
250     case 0x08:	/* READ_TIM */
251         OMAP_RO_REG(addr);
252         break;
253 
254     default:
255         OMAP_BAD_REG(addr);
256     }
257 }
258 
259 static const MemoryRegionOps omap_mpu_timer_ops = {
260     .read = omap_mpu_timer_read,
261     .write = omap_mpu_timer_write,
262     .endianness = DEVICE_LITTLE_ENDIAN,
263 };
264 
265 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
266 {
267     timer_del(s->timer);
268     s->enable = 0;
269     s->reset_val = 31337;
270     s->val = 0;
271     s->ptv = 0;
272     s->ar = 0;
273     s->st = 0;
274     s->it_ena = 1;
275 }
276 
277 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
278                 hwaddr base,
279                 qemu_irq irq, omap_clk clk)
280 {
281     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
282 
283     s->irq = irq;
284     s->clk = clk;
285     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
286     s->tick = qemu_bh_new(omap_timer_fire, s);
287     omap_mpu_timer_reset(s);
288     omap_timer_clk_setup(s);
289 
290     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
291                           "omap-mpu-timer", 0x100);
292 
293     memory_region_add_subregion(system_memory, base, &s->iomem);
294 
295     return s;
296 }
297 
298 /* Watchdog timer */
299 struct omap_watchdog_timer_s {
300     struct omap_mpu_timer_s timer;
301     MemoryRegion iomem;
302     uint8_t last_wr;
303     int mode;
304     int free;
305     int reset;
306 };
307 
308 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
309                                    unsigned size)
310 {
311     struct omap_watchdog_timer_s *s = opaque;
312 
313     if (size != 2) {
314         return omap_badwidth_read16(opaque, addr);
315     }
316 
317     switch (addr) {
318     case 0x00:	/* CNTL_TIMER */
319         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
320                 (s->timer.st << 7) | (s->free << 1);
321 
322     case 0x04:	/* READ_TIMER */
323         return omap_timer_read(&s->timer);
324 
325     case 0x08:	/* TIMER_MODE */
326         return s->mode << 15;
327     }
328 
329     OMAP_BAD_REG(addr);
330     return 0;
331 }
332 
333 static void omap_wd_timer_write(void *opaque, hwaddr addr,
334                                 uint64_t value, unsigned size)
335 {
336     struct omap_watchdog_timer_s *s = opaque;
337 
338     if (size != 2) {
339         omap_badwidth_write16(opaque, addr, value);
340         return;
341     }
342 
343     switch (addr) {
344     case 0x00:	/* CNTL_TIMER */
345         omap_timer_sync(&s->timer);
346         s->timer.ptv = (value >> 9) & 7;
347         s->timer.ar = (value >> 8) & 1;
348         s->timer.st = (value >> 7) & 1;
349         s->free = (value >> 1) & 1;
350         omap_timer_update(&s->timer);
351         break;
352 
353     case 0x04:	/* LOAD_TIMER */
354         s->timer.reset_val = value & 0xffff;
355         break;
356 
357     case 0x08:	/* TIMER_MODE */
358         if (!s->mode && ((value >> 15) & 1))
359             omap_clk_get(s->timer.clk);
360         s->mode |= (value >> 15) & 1;
361         if (s->last_wr == 0xf5) {
362             if ((value & 0xff) == 0xa0) {
363                 if (s->mode) {
364                     s->mode = 0;
365                     omap_clk_put(s->timer.clk);
366                 }
367             } else {
368                 /* XXX: on T|E hardware somehow this has no effect,
369                  * on Zire 71 it works as specified.  */
370                 s->reset = 1;
371                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
372             }
373         }
374         s->last_wr = value & 0xff;
375         break;
376 
377     default:
378         OMAP_BAD_REG(addr);
379     }
380 }
381 
382 static const MemoryRegionOps omap_wd_timer_ops = {
383     .read = omap_wd_timer_read,
384     .write = omap_wd_timer_write,
385     .endianness = DEVICE_NATIVE_ENDIAN,
386 };
387 
388 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
389 {
390     timer_del(s->timer.timer);
391     if (!s->mode)
392         omap_clk_get(s->timer.clk);
393     s->mode = 1;
394     s->free = 1;
395     s->reset = 0;
396     s->timer.enable = 1;
397     s->timer.it_ena = 1;
398     s->timer.reset_val = 0xffff;
399     s->timer.val = 0;
400     s->timer.st = 0;
401     s->timer.ptv = 0;
402     s->timer.ar = 0;
403     omap_timer_update(&s->timer);
404 }
405 
406 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
407                 hwaddr base,
408                 qemu_irq irq, omap_clk clk)
409 {
410     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
411 
412     s->timer.irq = irq;
413     s->timer.clk = clk;
414     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
415     omap_wd_timer_reset(s);
416     omap_timer_clk_setup(&s->timer);
417 
418     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
419                           "omap-wd-timer", 0x100);
420     memory_region_add_subregion(memory, base, &s->iomem);
421 
422     return s;
423 }
424 
425 /* 32-kHz timer */
426 struct omap_32khz_timer_s {
427     struct omap_mpu_timer_s timer;
428     MemoryRegion iomem;
429 };
430 
431 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
432                                    unsigned size)
433 {
434     struct omap_32khz_timer_s *s = opaque;
435     int offset = addr & OMAP_MPUI_REG_MASK;
436 
437     if (size != 4) {
438         return omap_badwidth_read32(opaque, addr);
439     }
440 
441     switch (offset) {
442     case 0x00:	/* TVR */
443         return s->timer.reset_val;
444 
445     case 0x04:	/* TCR */
446         return omap_timer_read(&s->timer);
447 
448     case 0x08:	/* CR */
449         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
450 
451     default:
452         break;
453     }
454     OMAP_BAD_REG(addr);
455     return 0;
456 }
457 
458 static void omap_os_timer_write(void *opaque, hwaddr addr,
459                                 uint64_t value, unsigned size)
460 {
461     struct omap_32khz_timer_s *s = opaque;
462     int offset = addr & OMAP_MPUI_REG_MASK;
463 
464     if (size != 4) {
465         omap_badwidth_write32(opaque, addr, value);
466         return;
467     }
468 
469     switch (offset) {
470     case 0x00:	/* TVR */
471         s->timer.reset_val = value & 0x00ffffff;
472         break;
473 
474     case 0x04:	/* TCR */
475         OMAP_RO_REG(addr);
476         break;
477 
478     case 0x08:	/* CR */
479         s->timer.ar = (value >> 3) & 1;
480         s->timer.it_ena = (value >> 2) & 1;
481         if (s->timer.st != (value & 1) || (value & 2)) {
482             omap_timer_sync(&s->timer);
483             s->timer.enable = value & 1;
484             s->timer.st = value & 1;
485             omap_timer_update(&s->timer);
486         }
487         break;
488 
489     default:
490         OMAP_BAD_REG(addr);
491     }
492 }
493 
494 static const MemoryRegionOps omap_os_timer_ops = {
495     .read = omap_os_timer_read,
496     .write = omap_os_timer_write,
497     .endianness = DEVICE_NATIVE_ENDIAN,
498 };
499 
500 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
501 {
502     timer_del(s->timer.timer);
503     s->timer.enable = 0;
504     s->timer.it_ena = 0;
505     s->timer.reset_val = 0x00ffffff;
506     s->timer.val = 0;
507     s->timer.st = 0;
508     s->timer.ptv = 0;
509     s->timer.ar = 1;
510 }
511 
512 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
513                 hwaddr base,
514                 qemu_irq irq, omap_clk clk)
515 {
516     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
517 
518     s->timer.irq = irq;
519     s->timer.clk = clk;
520     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
521     omap_os_timer_reset(s);
522     omap_timer_clk_setup(&s->timer);
523 
524     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
525                           "omap-os-timer", 0x800);
526     memory_region_add_subregion(memory, base, &s->iomem);
527 
528     return s;
529 }
530 
531 /* Ultra Low-Power Device Module */
532 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
533                                   unsigned size)
534 {
535     struct omap_mpu_state_s *s = opaque;
536     uint16_t ret;
537 
538     if (size != 2) {
539         return omap_badwidth_read16(opaque, addr);
540     }
541 
542     switch (addr) {
543     case 0x14:	/* IT_STATUS */
544         ret = s->ulpd_pm_regs[addr >> 2];
545         s->ulpd_pm_regs[addr >> 2] = 0;
546         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
547         return ret;
548 
549     case 0x18:	/* Reserved */
550     case 0x1c:	/* Reserved */
551     case 0x20:	/* Reserved */
552     case 0x28:	/* Reserved */
553     case 0x2c:	/* Reserved */
554         OMAP_BAD_REG(addr);
555         /* fall through */
556     case 0x00:	/* COUNTER_32_LSB */
557     case 0x04:	/* COUNTER_32_MSB */
558     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
559     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
560     case 0x10:	/* GAUGING_CTRL */
561     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
562     case 0x30:	/* CLOCK_CTRL */
563     case 0x34:	/* SOFT_REQ */
564     case 0x38:	/* COUNTER_32_FIQ */
565     case 0x3c:	/* DPLL_CTRL */
566     case 0x40:	/* STATUS_REQ */
567         /* XXX: check clk::usecount state for every clock */
568     case 0x48:	/* LOCL_TIME */
569     case 0x4c:	/* APLL_CTRL */
570     case 0x50:	/* POWER_CTRL */
571         return s->ulpd_pm_regs[addr >> 2];
572     }
573 
574     OMAP_BAD_REG(addr);
575     return 0;
576 }
577 
578 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
579                 uint16_t diff, uint16_t value)
580 {
581     if (diff & (1 << 4))				/* USB_MCLK_EN */
582         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
583     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
584         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
585 }
586 
587 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
588                 uint16_t diff, uint16_t value)
589 {
590     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
591         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
592     if (diff & (1 << 1))				/* SOFT_COM_REQ */
593         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
594     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
595         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
596     if (diff & (1 << 3))				/* SOFT_USB_REQ */
597         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
598 }
599 
600 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
601                                uint64_t value, unsigned size)
602 {
603     struct omap_mpu_state_s *s = opaque;
604     int64_t now, ticks;
605     int div, mult;
606     static const int bypass_div[4] = { 1, 2, 4, 4 };
607     uint16_t diff;
608 
609     if (size != 2) {
610         omap_badwidth_write16(opaque, addr, value);
611         return;
612     }
613 
614     switch (addr) {
615     case 0x00:	/* COUNTER_32_LSB */
616     case 0x04:	/* COUNTER_32_MSB */
617     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
618     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
619     case 0x14:	/* IT_STATUS */
620     case 0x40:	/* STATUS_REQ */
621         OMAP_RO_REG(addr);
622         break;
623 
624     case 0x10:	/* GAUGING_CTRL */
625         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
626         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
627             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
628 
629             if (value & 1)
630                 s->ulpd_gauge_start = now;
631             else {
632                 now -= s->ulpd_gauge_start;
633 
634                 /* 32-kHz ticks */
635                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
636                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
637                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
638                 if (ticks >> 32)	/* OVERFLOW_32K */
639                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
640 
641                 /* High frequency ticks */
642                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
643                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
644                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
645                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
646                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
647 
648                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
649                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
650             }
651         }
652         s->ulpd_pm_regs[addr >> 2] = value;
653         break;
654 
655     case 0x18:	/* Reserved */
656     case 0x1c:	/* Reserved */
657     case 0x20:	/* Reserved */
658     case 0x28:	/* Reserved */
659     case 0x2c:	/* Reserved */
660         OMAP_BAD_REG(addr);
661         /* fall through */
662     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
663     case 0x38:	/* COUNTER_32_FIQ */
664     case 0x48:	/* LOCL_TIME */
665     case 0x50:	/* POWER_CTRL */
666         s->ulpd_pm_regs[addr >> 2] = value;
667         break;
668 
669     case 0x30:	/* CLOCK_CTRL */
670         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
671         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
672         omap_ulpd_clk_update(s, diff, value);
673         break;
674 
675     case 0x34:	/* SOFT_REQ */
676         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
677         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
678         omap_ulpd_req_update(s, diff, value);
679         break;
680 
681     case 0x3c:	/* DPLL_CTRL */
682         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
683          * omitted altogether, probably a typo.  */
684         /* This register has identical semantics with DPLL(1:3) control
685          * registers, see omap_dpll_write() */
686         diff = s->ulpd_pm_regs[addr >> 2] & value;
687         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
688         if (diff & (0x3ff << 2)) {
689             if (value & (1 << 4)) {			/* PLL_ENABLE */
690                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
691                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
692             } else {
693                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
694                 mult = 1;
695             }
696             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
697         }
698 
699         /* Enter the desired mode.  */
700         s->ulpd_pm_regs[addr >> 2] =
701                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
702                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
703 
704         /* Act as if the lock is restored.  */
705         s->ulpd_pm_regs[addr >> 2] |= 2;
706         break;
707 
708     case 0x4c:	/* APLL_CTRL */
709         diff = s->ulpd_pm_regs[addr >> 2] & value;
710         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
711         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
712             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
713                                     (value & (1 << 0)) ? "apll" : "dpll4"));
714         break;
715 
716     default:
717         OMAP_BAD_REG(addr);
718     }
719 }
720 
721 static const MemoryRegionOps omap_ulpd_pm_ops = {
722     .read = omap_ulpd_pm_read,
723     .write = omap_ulpd_pm_write,
724     .endianness = DEVICE_NATIVE_ENDIAN,
725 };
726 
727 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
728 {
729     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
730     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
731     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
732     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
733     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
734     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
735     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
736     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
737     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
738     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
739     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
740     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
741     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
742     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
743     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
744     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
745     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
746     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
747     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
748     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
749     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
750     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
751     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
752 }
753 
754 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
755                 hwaddr base,
756                 struct omap_mpu_state_s *mpu)
757 {
758     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
759                           "omap-ulpd-pm", 0x800);
760     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
761     omap_ulpd_pm_reset(mpu);
762 }
763 
764 /* OMAP Pin Configuration */
765 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
766                                   unsigned size)
767 {
768     struct omap_mpu_state_s *s = opaque;
769 
770     if (size != 4) {
771         return omap_badwidth_read32(opaque, addr);
772     }
773 
774     switch (addr) {
775     case 0x00:	/* FUNC_MUX_CTRL_0 */
776     case 0x04:	/* FUNC_MUX_CTRL_1 */
777     case 0x08:	/* FUNC_MUX_CTRL_2 */
778         return s->func_mux_ctrl[addr >> 2];
779 
780     case 0x0c:	/* COMP_MODE_CTRL_0 */
781         return s->comp_mode_ctrl[0];
782 
783     case 0x10:	/* FUNC_MUX_CTRL_3 */
784     case 0x14:	/* FUNC_MUX_CTRL_4 */
785     case 0x18:	/* FUNC_MUX_CTRL_5 */
786     case 0x1c:	/* FUNC_MUX_CTRL_6 */
787     case 0x20:	/* FUNC_MUX_CTRL_7 */
788     case 0x24:	/* FUNC_MUX_CTRL_8 */
789     case 0x28:	/* FUNC_MUX_CTRL_9 */
790     case 0x2c:	/* FUNC_MUX_CTRL_A */
791     case 0x30:	/* FUNC_MUX_CTRL_B */
792     case 0x34:	/* FUNC_MUX_CTRL_C */
793     case 0x38:	/* FUNC_MUX_CTRL_D */
794         return s->func_mux_ctrl[(addr >> 2) - 1];
795 
796     case 0x40:	/* PULL_DWN_CTRL_0 */
797     case 0x44:	/* PULL_DWN_CTRL_1 */
798     case 0x48:	/* PULL_DWN_CTRL_2 */
799     case 0x4c:	/* PULL_DWN_CTRL_3 */
800         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
801 
802     case 0x50:	/* GATE_INH_CTRL_0 */
803         return s->gate_inh_ctrl[0];
804 
805     case 0x60:	/* VOLTAGE_CTRL_0 */
806         return s->voltage_ctrl[0];
807 
808     case 0x70:	/* TEST_DBG_CTRL_0 */
809         return s->test_dbg_ctrl[0];
810 
811     case 0x80:	/* MOD_CONF_CTRL_0 */
812         return s->mod_conf_ctrl[0];
813     }
814 
815     OMAP_BAD_REG(addr);
816     return 0;
817 }
818 
819 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
820                 uint32_t diff, uint32_t value)
821 {
822     if (s->compat1509) {
823         if (diff & (1 << 9))			/* BLUETOOTH */
824             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
825                             (~value >> 9) & 1);
826         if (diff & (1 << 7))			/* USB.CLKO */
827             omap_clk_onoff(omap_findclk(s, "usb.clko"),
828                             (value >> 7) & 1);
829     }
830 }
831 
832 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
833                 uint32_t diff, uint32_t value)
834 {
835     if (s->compat1509) {
836         if (diff & (1U << 31)) {
837             /* MCBSP3_CLK_HIZ_DI */
838             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
839         }
840         if (diff & (1 << 1)) {
841             /* CLK32K */
842             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
843         }
844     }
845 }
846 
847 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
848                 uint32_t diff, uint32_t value)
849 {
850     if (diff & (1U << 31)) {
851         /* CONF_MOD_UART3_CLK_MODE_R */
852         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
853                           omap_findclk(s, ((value >> 31) & 1) ?
854                                        "ck_48m" : "armper_ck"));
855     }
856     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
857          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
858                          omap_findclk(s, ((value >> 30) & 1) ?
859                                  "ck_48m" : "armper_ck"));
860     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
861          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
862                          omap_findclk(s, ((value >> 29) & 1) ?
863                                  "ck_48m" : "armper_ck"));
864     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
865          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
866                          omap_findclk(s, ((value >> 23) & 1) ?
867                                  "ck_48m" : "armper_ck"));
868     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
869          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
870                          omap_findclk(s, ((value >> 12) & 1) ?
871                                  "ck_48m" : "armper_ck"));
872     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
873          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
874 }
875 
876 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
877                                uint64_t value, unsigned size)
878 {
879     struct omap_mpu_state_s *s = opaque;
880     uint32_t diff;
881 
882     if (size != 4) {
883         omap_badwidth_write32(opaque, addr, value);
884         return;
885     }
886 
887     switch (addr) {
888     case 0x00:	/* FUNC_MUX_CTRL_0 */
889         diff = s->func_mux_ctrl[addr >> 2] ^ value;
890         s->func_mux_ctrl[addr >> 2] = value;
891         omap_pin_funcmux0_update(s, diff, value);
892         return;
893 
894     case 0x04:	/* FUNC_MUX_CTRL_1 */
895         diff = s->func_mux_ctrl[addr >> 2] ^ value;
896         s->func_mux_ctrl[addr >> 2] = value;
897         omap_pin_funcmux1_update(s, diff, value);
898         return;
899 
900     case 0x08:	/* FUNC_MUX_CTRL_2 */
901         s->func_mux_ctrl[addr >> 2] = value;
902         return;
903 
904     case 0x0c:	/* COMP_MODE_CTRL_0 */
905         s->comp_mode_ctrl[0] = value;
906         s->compat1509 = (value != 0x0000eaef);
907         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
908         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
909         return;
910 
911     case 0x10:	/* FUNC_MUX_CTRL_3 */
912     case 0x14:	/* FUNC_MUX_CTRL_4 */
913     case 0x18:	/* FUNC_MUX_CTRL_5 */
914     case 0x1c:	/* FUNC_MUX_CTRL_6 */
915     case 0x20:	/* FUNC_MUX_CTRL_7 */
916     case 0x24:	/* FUNC_MUX_CTRL_8 */
917     case 0x28:	/* FUNC_MUX_CTRL_9 */
918     case 0x2c:	/* FUNC_MUX_CTRL_A */
919     case 0x30:	/* FUNC_MUX_CTRL_B */
920     case 0x34:	/* FUNC_MUX_CTRL_C */
921     case 0x38:	/* FUNC_MUX_CTRL_D */
922         s->func_mux_ctrl[(addr >> 2) - 1] = value;
923         return;
924 
925     case 0x40:	/* PULL_DWN_CTRL_0 */
926     case 0x44:	/* PULL_DWN_CTRL_1 */
927     case 0x48:	/* PULL_DWN_CTRL_2 */
928     case 0x4c:	/* PULL_DWN_CTRL_3 */
929         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
930         return;
931 
932     case 0x50:	/* GATE_INH_CTRL_0 */
933         s->gate_inh_ctrl[0] = value;
934         return;
935 
936     case 0x60:	/* VOLTAGE_CTRL_0 */
937         s->voltage_ctrl[0] = value;
938         return;
939 
940     case 0x70:	/* TEST_DBG_CTRL_0 */
941         s->test_dbg_ctrl[0] = value;
942         return;
943 
944     case 0x80:	/* MOD_CONF_CTRL_0 */
945         diff = s->mod_conf_ctrl[0] ^ value;
946         s->mod_conf_ctrl[0] = value;
947         omap_pin_modconf1_update(s, diff, value);
948         return;
949 
950     default:
951         OMAP_BAD_REG(addr);
952     }
953 }
954 
955 static const MemoryRegionOps omap_pin_cfg_ops = {
956     .read = omap_pin_cfg_read,
957     .write = omap_pin_cfg_write,
958     .endianness = DEVICE_NATIVE_ENDIAN,
959 };
960 
961 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
962 {
963     /* Start in Compatibility Mode.  */
964     mpu->compat1509 = 1;
965     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
966     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
967     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
968     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
969     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
970     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
971     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
972     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
973     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
974     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
975 }
976 
977 static void omap_pin_cfg_init(MemoryRegion *system_memory,
978                 hwaddr base,
979                 struct omap_mpu_state_s *mpu)
980 {
981     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
982                           "omap-pin-cfg", 0x800);
983     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
984     omap_pin_cfg_reset(mpu);
985 }
986 
987 /* Device Identification, Die Identification */
988 static uint64_t omap_id_read(void *opaque, hwaddr addr,
989                              unsigned size)
990 {
991     struct omap_mpu_state_s *s = opaque;
992 
993     if (size != 4) {
994         return omap_badwidth_read32(opaque, addr);
995     }
996 
997     switch (addr) {
998     case 0xfffe1800:	/* DIE_ID_LSB */
999         return 0xc9581f0e;
1000     case 0xfffe1804:	/* DIE_ID_MSB */
1001         return 0xa8858bfa;
1002 
1003     case 0xfffe2000:	/* PRODUCT_ID_LSB */
1004         return 0x00aaaafc;
1005     case 0xfffe2004:	/* PRODUCT_ID_MSB */
1006         return 0xcafeb574;
1007 
1008     case 0xfffed400:	/* JTAG_ID_LSB */
1009         switch (s->mpu_model) {
1010         case omap310:
1011             return 0x03310315;
1012         case omap1510:
1013             return 0x03310115;
1014         default:
1015             hw_error("%s: bad mpu model\n", __func__);
1016         }
1017         break;
1018 
1019     case 0xfffed404:	/* JTAG_ID_MSB */
1020         switch (s->mpu_model) {
1021         case omap310:
1022             return 0xfb57402f;
1023         case omap1510:
1024             return 0xfb47002f;
1025         default:
1026             hw_error("%s: bad mpu model\n", __func__);
1027         }
1028         break;
1029     }
1030 
1031     OMAP_BAD_REG(addr);
1032     return 0;
1033 }
1034 
1035 static void omap_id_write(void *opaque, hwaddr addr,
1036                           uint64_t value, unsigned size)
1037 {
1038     if (size != 4) {
1039         omap_badwidth_write32(opaque, addr, value);
1040         return;
1041     }
1042 
1043     OMAP_BAD_REG(addr);
1044 }
1045 
1046 static const MemoryRegionOps omap_id_ops = {
1047     .read = omap_id_read,
1048     .write = omap_id_write,
1049     .endianness = DEVICE_NATIVE_ENDIAN,
1050 };
1051 
1052 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1053 {
1054     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1055                           "omap-id", 0x100000000ULL);
1056     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1057                              0xfffe1800, 0x800);
1058     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1059     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1060                              0xfffed400, 0x100);
1061     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1062     if (!cpu_is_omap15xx(mpu)) {
1063         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1064                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1065         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1066     }
1067 }
1068 
1069 /* MPUI Control (Dummy) */
1070 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1071                                unsigned size)
1072 {
1073     struct omap_mpu_state_s *s = opaque;
1074 
1075     if (size != 4) {
1076         return omap_badwidth_read32(opaque, addr);
1077     }
1078 
1079     switch (addr) {
1080     case 0x00:	/* CTRL */
1081         return s->mpui_ctrl;
1082     case 0x04:	/* DEBUG_ADDR */
1083         return 0x01ffffff;
1084     case 0x08:	/* DEBUG_DATA */
1085         return 0xffffffff;
1086     case 0x0c:	/* DEBUG_FLAG */
1087         return 0x00000800;
1088     case 0x10:	/* STATUS */
1089         return 0x00000000;
1090 
1091     /* Not in OMAP310 */
1092     case 0x14:	/* DSP_STATUS */
1093     case 0x18:	/* DSP_BOOT_CONFIG */
1094         return 0x00000000;
1095     case 0x1c:	/* DSP_MPUI_CONFIG */
1096         return 0x0000ffff;
1097     }
1098 
1099     OMAP_BAD_REG(addr);
1100     return 0;
1101 }
1102 
1103 static void omap_mpui_write(void *opaque, hwaddr addr,
1104                             uint64_t value, unsigned size)
1105 {
1106     struct omap_mpu_state_s *s = opaque;
1107 
1108     if (size != 4) {
1109         omap_badwidth_write32(opaque, addr, value);
1110         return;
1111     }
1112 
1113     switch (addr) {
1114     case 0x00:	/* CTRL */
1115         s->mpui_ctrl = value & 0x007fffff;
1116         break;
1117 
1118     case 0x04:	/* DEBUG_ADDR */
1119     case 0x08:	/* DEBUG_DATA */
1120     case 0x0c:	/* DEBUG_FLAG */
1121     case 0x10:	/* STATUS */
1122     /* Not in OMAP310 */
1123     case 0x14:	/* DSP_STATUS */
1124         OMAP_RO_REG(addr);
1125         break;
1126     case 0x18:	/* DSP_BOOT_CONFIG */
1127     case 0x1c:	/* DSP_MPUI_CONFIG */
1128         break;
1129 
1130     default:
1131         OMAP_BAD_REG(addr);
1132     }
1133 }
1134 
1135 static const MemoryRegionOps omap_mpui_ops = {
1136     .read = omap_mpui_read,
1137     .write = omap_mpui_write,
1138     .endianness = DEVICE_NATIVE_ENDIAN,
1139 };
1140 
1141 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1142 {
1143     s->mpui_ctrl = 0x0003ff1b;
1144 }
1145 
1146 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1147                 struct omap_mpu_state_s *mpu)
1148 {
1149     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1150                           "omap-mpui", 0x100);
1151     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1152 
1153     omap_mpui_reset(mpu);
1154 }
1155 
1156 /* TIPB Bridges */
1157 struct omap_tipb_bridge_s {
1158     qemu_irq abort;
1159     MemoryRegion iomem;
1160 
1161     int width_intr;
1162     uint16_t control;
1163     uint16_t alloc;
1164     uint16_t buffer;
1165     uint16_t enh_control;
1166 };
1167 
1168 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1169                                       unsigned size)
1170 {
1171     struct omap_tipb_bridge_s *s = opaque;
1172 
1173     if (size < 2) {
1174         return omap_badwidth_read16(opaque, addr);
1175     }
1176 
1177     switch (addr) {
1178     case 0x00:	/* TIPB_CNTL */
1179         return s->control;
1180     case 0x04:	/* TIPB_BUS_ALLOC */
1181         return s->alloc;
1182     case 0x08:	/* MPU_TIPB_CNTL */
1183         return s->buffer;
1184     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1185         return s->enh_control;
1186     case 0x10:	/* ADDRESS_DBG */
1187     case 0x14:	/* DATA_DEBUG_LOW */
1188     case 0x18:	/* DATA_DEBUG_HIGH */
1189         return 0xffff;
1190     case 0x1c:	/* DEBUG_CNTR_SIG */
1191         return 0x00f8;
1192     }
1193 
1194     OMAP_BAD_REG(addr);
1195     return 0;
1196 }
1197 
1198 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1199                                    uint64_t value, unsigned size)
1200 {
1201     struct omap_tipb_bridge_s *s = opaque;
1202 
1203     if (size < 2) {
1204         omap_badwidth_write16(opaque, addr, value);
1205         return;
1206     }
1207 
1208     switch (addr) {
1209     case 0x00:	/* TIPB_CNTL */
1210         s->control = value & 0xffff;
1211         break;
1212 
1213     case 0x04:	/* TIPB_BUS_ALLOC */
1214         s->alloc = value & 0x003f;
1215         break;
1216 
1217     case 0x08:	/* MPU_TIPB_CNTL */
1218         s->buffer = value & 0x0003;
1219         break;
1220 
1221     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1222         s->width_intr = !(value & 2);
1223         s->enh_control = value & 0x000f;
1224         break;
1225 
1226     case 0x10:	/* ADDRESS_DBG */
1227     case 0x14:	/* DATA_DEBUG_LOW */
1228     case 0x18:	/* DATA_DEBUG_HIGH */
1229     case 0x1c:	/* DEBUG_CNTR_SIG */
1230         OMAP_RO_REG(addr);
1231         break;
1232 
1233     default:
1234         OMAP_BAD_REG(addr);
1235     }
1236 }
1237 
1238 static const MemoryRegionOps omap_tipb_bridge_ops = {
1239     .read = omap_tipb_bridge_read,
1240     .write = omap_tipb_bridge_write,
1241     .endianness = DEVICE_NATIVE_ENDIAN,
1242 };
1243 
1244 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1245 {
1246     s->control = 0xffff;
1247     s->alloc = 0x0009;
1248     s->buffer = 0x0000;
1249     s->enh_control = 0x000f;
1250 }
1251 
1252 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1253     MemoryRegion *memory, hwaddr base,
1254     qemu_irq abort_irq, omap_clk clk)
1255 {
1256     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1257 
1258     s->abort = abort_irq;
1259     omap_tipb_bridge_reset(s);
1260 
1261     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1262                           "omap-tipb-bridge", 0x100);
1263     memory_region_add_subregion(memory, base, &s->iomem);
1264 
1265     return s;
1266 }
1267 
1268 /* Dummy Traffic Controller's Memory Interface */
1269 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1270                                unsigned size)
1271 {
1272     struct omap_mpu_state_s *s = opaque;
1273     uint32_t ret;
1274 
1275     if (size != 4) {
1276         return omap_badwidth_read32(opaque, addr);
1277     }
1278 
1279     switch (addr) {
1280     case 0x00:	/* IMIF_PRIO */
1281     case 0x04:	/* EMIFS_PRIO */
1282     case 0x08:	/* EMIFF_PRIO */
1283     case 0x0c:	/* EMIFS_CONFIG */
1284     case 0x10:	/* EMIFS_CS0_CONFIG */
1285     case 0x14:	/* EMIFS_CS1_CONFIG */
1286     case 0x18:	/* EMIFS_CS2_CONFIG */
1287     case 0x1c:	/* EMIFS_CS3_CONFIG */
1288     case 0x24:	/* EMIFF_MRS */
1289     case 0x28:	/* TIMEOUT1 */
1290     case 0x2c:	/* TIMEOUT2 */
1291     case 0x30:	/* TIMEOUT3 */
1292     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1293     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1294         return s->tcmi_regs[addr >> 2];
1295 
1296     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1297         ret = s->tcmi_regs[addr >> 2];
1298         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1299         /* XXX: We can try using the VGA_DIRTY flag for this */
1300         return ret;
1301     }
1302 
1303     OMAP_BAD_REG(addr);
1304     return 0;
1305 }
1306 
1307 static void omap_tcmi_write(void *opaque, hwaddr addr,
1308                             uint64_t value, unsigned size)
1309 {
1310     struct omap_mpu_state_s *s = opaque;
1311 
1312     if (size != 4) {
1313         omap_badwidth_write32(opaque, addr, value);
1314         return;
1315     }
1316 
1317     switch (addr) {
1318     case 0x00:	/* IMIF_PRIO */
1319     case 0x04:	/* EMIFS_PRIO */
1320     case 0x08:	/* EMIFF_PRIO */
1321     case 0x10:	/* EMIFS_CS0_CONFIG */
1322     case 0x14:	/* EMIFS_CS1_CONFIG */
1323     case 0x18:	/* EMIFS_CS2_CONFIG */
1324     case 0x1c:	/* EMIFS_CS3_CONFIG */
1325     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1326     case 0x24:	/* EMIFF_MRS */
1327     case 0x28:	/* TIMEOUT1 */
1328     case 0x2c:	/* TIMEOUT2 */
1329     case 0x30:	/* TIMEOUT3 */
1330     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1331     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1332         s->tcmi_regs[addr >> 2] = value;
1333         break;
1334     case 0x0c:	/* EMIFS_CONFIG */
1335         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1336         break;
1337 
1338     default:
1339         OMAP_BAD_REG(addr);
1340     }
1341 }
1342 
1343 static const MemoryRegionOps omap_tcmi_ops = {
1344     .read = omap_tcmi_read,
1345     .write = omap_tcmi_write,
1346     .endianness = DEVICE_NATIVE_ENDIAN,
1347 };
1348 
1349 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1350 {
1351     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1352     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1353     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1354     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1355     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1356     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1357     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1358     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1359     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1360     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1361     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1362     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1363     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1364     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1365     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1366 }
1367 
1368 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1369                 struct omap_mpu_state_s *mpu)
1370 {
1371     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1372                           "omap-tcmi", 0x100);
1373     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1374     omap_tcmi_reset(mpu);
1375 }
1376 
1377 /* Digital phase-locked loops control */
1378 struct dpll_ctl_s {
1379     MemoryRegion iomem;
1380     uint16_t mode;
1381     omap_clk dpll;
1382 };
1383 
1384 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1385                                unsigned size)
1386 {
1387     struct dpll_ctl_s *s = opaque;
1388 
1389     if (size != 2) {
1390         return omap_badwidth_read16(opaque, addr);
1391     }
1392 
1393     if (addr == 0x00)	/* CTL_REG */
1394         return s->mode;
1395 
1396     OMAP_BAD_REG(addr);
1397     return 0;
1398 }
1399 
1400 static void omap_dpll_write(void *opaque, hwaddr addr,
1401                             uint64_t value, unsigned size)
1402 {
1403     struct dpll_ctl_s *s = opaque;
1404     uint16_t diff;
1405     static const int bypass_div[4] = { 1, 2, 4, 4 };
1406     int div, mult;
1407 
1408     if (size != 2) {
1409         omap_badwidth_write16(opaque, addr, value);
1410         return;
1411     }
1412 
1413     if (addr == 0x00) {	/* CTL_REG */
1414         /* See omap_ulpd_pm_write() too */
1415         diff = s->mode & value;
1416         s->mode = value & 0x2fff;
1417         if (diff & (0x3ff << 2)) {
1418             if (value & (1 << 4)) {			/* PLL_ENABLE */
1419                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1420                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1421             } else {
1422                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1423                 mult = 1;
1424             }
1425             omap_clk_setrate(s->dpll, div, mult);
1426         }
1427 
1428         /* Enter the desired mode.  */
1429         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1430 
1431         /* Act as if the lock is restored.  */
1432         s->mode |= 2;
1433     } else {
1434         OMAP_BAD_REG(addr);
1435     }
1436 }
1437 
1438 static const MemoryRegionOps omap_dpll_ops = {
1439     .read = omap_dpll_read,
1440     .write = omap_dpll_write,
1441     .endianness = DEVICE_NATIVE_ENDIAN,
1442 };
1443 
1444 static void omap_dpll_reset(struct dpll_ctl_s *s)
1445 {
1446     s->mode = 0x2002;
1447     omap_clk_setrate(s->dpll, 1, 1);
1448 }
1449 
1450 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1451                            hwaddr base, omap_clk clk)
1452 {
1453     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1454     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1455 
1456     s->dpll = clk;
1457     omap_dpll_reset(s);
1458 
1459     memory_region_add_subregion(memory, base, &s->iomem);
1460     return s;
1461 }
1462 
1463 /* MPU Clock/Reset/Power Mode Control */
1464 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1465                                unsigned size)
1466 {
1467     struct omap_mpu_state_s *s = opaque;
1468 
1469     if (size != 2) {
1470         return omap_badwidth_read16(opaque, addr);
1471     }
1472 
1473     switch (addr) {
1474     case 0x00:	/* ARM_CKCTL */
1475         return s->clkm.arm_ckctl;
1476 
1477     case 0x04:	/* ARM_IDLECT1 */
1478         return s->clkm.arm_idlect1;
1479 
1480     case 0x08:	/* ARM_IDLECT2 */
1481         return s->clkm.arm_idlect2;
1482 
1483     case 0x0c:	/* ARM_EWUPCT */
1484         return s->clkm.arm_ewupct;
1485 
1486     case 0x10:	/* ARM_RSTCT1 */
1487         return s->clkm.arm_rstct1;
1488 
1489     case 0x14:	/* ARM_RSTCT2 */
1490         return s->clkm.arm_rstct2;
1491 
1492     case 0x18:	/* ARM_SYSST */
1493         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1494 
1495     case 0x1c:	/* ARM_CKOUT1 */
1496         return s->clkm.arm_ckout1;
1497 
1498     case 0x20:	/* ARM_CKOUT2 */
1499         break;
1500     }
1501 
1502     OMAP_BAD_REG(addr);
1503     return 0;
1504 }
1505 
1506 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1507                 uint16_t diff, uint16_t value)
1508 {
1509     omap_clk clk;
1510 
1511     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1512         if (value & (1 << 14))
1513             /* Reserved */;
1514         else {
1515             clk = omap_findclk(s, "arminth_ck");
1516             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1517         }
1518     }
1519     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1520         clk = omap_findclk(s, "armtim_ck");
1521         if (value & (1 << 12))
1522             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1523         else
1524             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1525     }
1526     /* XXX: en_dspck */
1527     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1528         clk = omap_findclk(s, "dspmmu_ck");
1529         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1530     }
1531     if (diff & (3 << 8)) {				/* TCDIV */
1532         clk = omap_findclk(s, "tc_ck");
1533         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1534     }
1535     if (diff & (3 << 6)) {				/* DSPDIV */
1536         clk = omap_findclk(s, "dsp_ck");
1537         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1538     }
1539     if (diff & (3 << 4)) {				/* ARMDIV */
1540         clk = omap_findclk(s, "arm_ck");
1541         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1542     }
1543     if (diff & (3 << 2)) {				/* LCDDIV */
1544         clk = omap_findclk(s, "lcd_ck");
1545         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1546     }
1547     if (diff & (3 << 0)) {				/* PERDIV */
1548         clk = omap_findclk(s, "armper_ck");
1549         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1550     }
1551 }
1552 
1553 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1554                 uint16_t diff, uint16_t value)
1555 {
1556     omap_clk clk;
1557 
1558     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1559         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1560     }
1561     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1562         /* XXX: disable wakeup from IRQ */
1563         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1564     }
1565 
1566 #define SET_CANIDLE(clock, bit)				\
1567     if (diff & (1 << bit)) {				\
1568         clk = omap_findclk(s, clock);			\
1569         omap_clk_canidle(clk, (value >> bit) & 1);	\
1570     }
1571     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1572     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1573     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1574     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1575     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1576     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1577     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1578     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1579     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1580     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1581     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1582     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1583     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1584     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1585 }
1586 
1587 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1588                 uint16_t diff, uint16_t value)
1589 {
1590     omap_clk clk;
1591 
1592 #define SET_ONOFF(clock, bit)				\
1593     if (diff & (1 << bit)) {				\
1594         clk = omap_findclk(s, clock);			\
1595         omap_clk_onoff(clk, (value >> bit) & 1);	\
1596     }
1597     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1598     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1599     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1600     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1601     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1602     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1603     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1604     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1605     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1606     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1607     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1608 }
1609 
1610 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1611                 uint16_t diff, uint16_t value)
1612 {
1613     omap_clk clk;
1614 
1615     if (diff & (3 << 4)) {				/* TCLKOUT */
1616         clk = omap_findclk(s, "tclk_out");
1617         switch ((value >> 4) & 3) {
1618         case 1:
1619             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1620             omap_clk_onoff(clk, 1);
1621             break;
1622         case 2:
1623             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1624             omap_clk_onoff(clk, 1);
1625             break;
1626         default:
1627             omap_clk_onoff(clk, 0);
1628         }
1629     }
1630     if (diff & (3 << 2)) {				/* DCLKOUT */
1631         clk = omap_findclk(s, "dclk_out");
1632         switch ((value >> 2) & 3) {
1633         case 0:
1634             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1635             break;
1636         case 1:
1637             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1638             break;
1639         case 2:
1640             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1641             break;
1642         case 3:
1643             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1644             break;
1645         }
1646     }
1647     if (diff & (3 << 0)) {				/* ACLKOUT */
1648         clk = omap_findclk(s, "aclk_out");
1649         switch ((value >> 0) & 3) {
1650         case 1:
1651             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1652             omap_clk_onoff(clk, 1);
1653             break;
1654         case 2:
1655             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1656             omap_clk_onoff(clk, 1);
1657             break;
1658         case 3:
1659             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1660             omap_clk_onoff(clk, 1);
1661             break;
1662         default:
1663             omap_clk_onoff(clk, 0);
1664         }
1665     }
1666 }
1667 
1668 static void omap_clkm_write(void *opaque, hwaddr addr,
1669                             uint64_t value, unsigned size)
1670 {
1671     struct omap_mpu_state_s *s = opaque;
1672     uint16_t diff;
1673     omap_clk clk;
1674     static const char *clkschemename[8] = {
1675         "fully synchronous", "fully asynchronous", "synchronous scalable",
1676         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1677     };
1678 
1679     if (size != 2) {
1680         omap_badwidth_write16(opaque, addr, value);
1681         return;
1682     }
1683 
1684     switch (addr) {
1685     case 0x00:	/* ARM_CKCTL */
1686         diff = s->clkm.arm_ckctl ^ value;
1687         s->clkm.arm_ckctl = value & 0x7fff;
1688         omap_clkm_ckctl_update(s, diff, value);
1689         return;
1690 
1691     case 0x04:	/* ARM_IDLECT1 */
1692         diff = s->clkm.arm_idlect1 ^ value;
1693         s->clkm.arm_idlect1 = value & 0x0fff;
1694         omap_clkm_idlect1_update(s, diff, value);
1695         return;
1696 
1697     case 0x08:	/* ARM_IDLECT2 */
1698         diff = s->clkm.arm_idlect2 ^ value;
1699         s->clkm.arm_idlect2 = value & 0x07ff;
1700         omap_clkm_idlect2_update(s, diff, value);
1701         return;
1702 
1703     case 0x0c:	/* ARM_EWUPCT */
1704         s->clkm.arm_ewupct = value & 0x003f;
1705         return;
1706 
1707     case 0x10:	/* ARM_RSTCT1 */
1708         diff = s->clkm.arm_rstct1 ^ value;
1709         s->clkm.arm_rstct1 = value & 0x0007;
1710         if (value & 9) {
1711             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1712             s->clkm.cold_start = 0xa;
1713         }
1714         if (diff & ~value & 4) {				/* DSP_RST */
1715             omap_mpui_reset(s);
1716             omap_tipb_bridge_reset(s->private_tipb);
1717             omap_tipb_bridge_reset(s->public_tipb);
1718         }
1719         if (diff & 2) {						/* DSP_EN */
1720             clk = omap_findclk(s, "dsp_ck");
1721             omap_clk_canidle(clk, (~value >> 1) & 1);
1722         }
1723         return;
1724 
1725     case 0x14:	/* ARM_RSTCT2 */
1726         s->clkm.arm_rstct2 = value & 0x0001;
1727         return;
1728 
1729     case 0x18:	/* ARM_SYSST */
1730         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1731             s->clkm.clocking_scheme = (value >> 11) & 7;
1732             printf("%s: clocking scheme set to %s\n", __func__,
1733                    clkschemename[s->clkm.clocking_scheme]);
1734         }
1735         s->clkm.cold_start &= value & 0x3f;
1736         return;
1737 
1738     case 0x1c:	/* ARM_CKOUT1 */
1739         diff = s->clkm.arm_ckout1 ^ value;
1740         s->clkm.arm_ckout1 = value & 0x003f;
1741         omap_clkm_ckout1_update(s, diff, value);
1742         return;
1743 
1744     case 0x20:	/* ARM_CKOUT2 */
1745     default:
1746         OMAP_BAD_REG(addr);
1747     }
1748 }
1749 
1750 static const MemoryRegionOps omap_clkm_ops = {
1751     .read = omap_clkm_read,
1752     .write = omap_clkm_write,
1753     .endianness = DEVICE_NATIVE_ENDIAN,
1754 };
1755 
1756 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1757                                  unsigned size)
1758 {
1759     struct omap_mpu_state_s *s = opaque;
1760     CPUState *cpu = CPU(s->cpu);
1761 
1762     if (size != 2) {
1763         return omap_badwidth_read16(opaque, addr);
1764     }
1765 
1766     switch (addr) {
1767     case 0x04:	/* DSP_IDLECT1 */
1768         return s->clkm.dsp_idlect1;
1769 
1770     case 0x08:	/* DSP_IDLECT2 */
1771         return s->clkm.dsp_idlect2;
1772 
1773     case 0x14:	/* DSP_RSTCT2 */
1774         return s->clkm.dsp_rstct2;
1775 
1776     case 0x18:	/* DSP_SYSST */
1777         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1778                 (cpu->halted << 6);      /* Quite useless... */
1779     }
1780 
1781     OMAP_BAD_REG(addr);
1782     return 0;
1783 }
1784 
1785 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1786                 uint16_t diff, uint16_t value)
1787 {
1788     omap_clk clk;
1789 
1790     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1791 }
1792 
1793 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1794                 uint16_t diff, uint16_t value)
1795 {
1796     omap_clk clk;
1797 
1798     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1799 }
1800 
1801 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1802                               uint64_t value, unsigned size)
1803 {
1804     struct omap_mpu_state_s *s = opaque;
1805     uint16_t diff;
1806 
1807     if (size != 2) {
1808         omap_badwidth_write16(opaque, addr, value);
1809         return;
1810     }
1811 
1812     switch (addr) {
1813     case 0x04:	/* DSP_IDLECT1 */
1814         diff = s->clkm.dsp_idlect1 ^ value;
1815         s->clkm.dsp_idlect1 = value & 0x01f7;
1816         omap_clkdsp_idlect1_update(s, diff, value);
1817         break;
1818 
1819     case 0x08:	/* DSP_IDLECT2 */
1820         s->clkm.dsp_idlect2 = value & 0x0037;
1821         diff = s->clkm.dsp_idlect1 ^ value;
1822         omap_clkdsp_idlect2_update(s, diff, value);
1823         break;
1824 
1825     case 0x14:	/* DSP_RSTCT2 */
1826         s->clkm.dsp_rstct2 = value & 0x0001;
1827         break;
1828 
1829     case 0x18:	/* DSP_SYSST */
1830         s->clkm.cold_start &= value & 0x3f;
1831         break;
1832 
1833     default:
1834         OMAP_BAD_REG(addr);
1835     }
1836 }
1837 
1838 static const MemoryRegionOps omap_clkdsp_ops = {
1839     .read = omap_clkdsp_read,
1840     .write = omap_clkdsp_write,
1841     .endianness = DEVICE_NATIVE_ENDIAN,
1842 };
1843 
1844 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1845 {
1846     if (s->wdt && s->wdt->reset)
1847         s->clkm.cold_start = 0x6;
1848     s->clkm.clocking_scheme = 0;
1849     omap_clkm_ckctl_update(s, ~0, 0x3000);
1850     s->clkm.arm_ckctl = 0x3000;
1851     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1852     s->clkm.arm_idlect1 = 0x0400;
1853     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1854     s->clkm.arm_idlect2 = 0x0100;
1855     s->clkm.arm_ewupct = 0x003f;
1856     s->clkm.arm_rstct1 = 0x0000;
1857     s->clkm.arm_rstct2 = 0x0000;
1858     s->clkm.arm_ckout1 = 0x0015;
1859     s->clkm.dpll1_mode = 0x2002;
1860     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1861     s->clkm.dsp_idlect1 = 0x0040;
1862     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1863     s->clkm.dsp_idlect2 = 0x0000;
1864     s->clkm.dsp_rstct2 = 0x0000;
1865 }
1866 
1867 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1868                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1869 {
1870     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1871                           "omap-clkm", 0x100);
1872     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1873                           "omap-clkdsp", 0x1000);
1874 
1875     s->clkm.arm_idlect1 = 0x03ff;
1876     s->clkm.arm_idlect2 = 0x0100;
1877     s->clkm.dsp_idlect1 = 0x0002;
1878     omap_clkm_reset(s);
1879     s->clkm.cold_start = 0x3a;
1880 
1881     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1882     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1883 }
1884 
1885 /* MPU I/O */
1886 struct omap_mpuio_s {
1887     qemu_irq irq;
1888     qemu_irq kbd_irq;
1889     qemu_irq *in;
1890     qemu_irq handler[16];
1891     qemu_irq wakeup;
1892     MemoryRegion iomem;
1893 
1894     uint16_t inputs;
1895     uint16_t outputs;
1896     uint16_t dir;
1897     uint16_t edge;
1898     uint16_t mask;
1899     uint16_t ints;
1900 
1901     uint16_t debounce;
1902     uint16_t latch;
1903     uint8_t event;
1904 
1905     uint8_t buttons[5];
1906     uint8_t row_latch;
1907     uint8_t cols;
1908     int kbd_mask;
1909     int clk;
1910 };
1911 
1912 static void omap_mpuio_set(void *opaque, int line, int level)
1913 {
1914     struct omap_mpuio_s *s = opaque;
1915     uint16_t prev = s->inputs;
1916 
1917     if (level)
1918         s->inputs |= 1 << line;
1919     else
1920         s->inputs &= ~(1 << line);
1921 
1922     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1923         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1924             s->ints |= 1 << line;
1925             qemu_irq_raise(s->irq);
1926             /* TODO: wakeup */
1927         }
1928         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1929                 (s->event >> 1) == line)	/* PIN_SELECT */
1930             s->latch = s->inputs;
1931     }
1932 }
1933 
1934 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1935 {
1936     int i;
1937     uint8_t *row, rows = 0, cols = ~s->cols;
1938 
1939     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1940         if (*row & cols)
1941             rows |= i;
1942 
1943     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1944     s->row_latch = ~rows;
1945 }
1946 
1947 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1948                                 unsigned size)
1949 {
1950     struct omap_mpuio_s *s = opaque;
1951     int offset = addr & OMAP_MPUI_REG_MASK;
1952     uint16_t ret;
1953 
1954     if (size != 2) {
1955         return omap_badwidth_read16(opaque, addr);
1956     }
1957 
1958     switch (offset) {
1959     case 0x00:	/* INPUT_LATCH */
1960         return s->inputs;
1961 
1962     case 0x04:	/* OUTPUT_REG */
1963         return s->outputs;
1964 
1965     case 0x08:	/* IO_CNTL */
1966         return s->dir;
1967 
1968     case 0x10:	/* KBR_LATCH */
1969         return s->row_latch;
1970 
1971     case 0x14:	/* KBC_REG */
1972         return s->cols;
1973 
1974     case 0x18:	/* GPIO_EVENT_MODE_REG */
1975         return s->event;
1976 
1977     case 0x1c:	/* GPIO_INT_EDGE_REG */
1978         return s->edge;
1979 
1980     case 0x20:	/* KBD_INT */
1981         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1982 
1983     case 0x24:	/* GPIO_INT */
1984         ret = s->ints;
1985         s->ints &= s->mask;
1986         if (ret)
1987             qemu_irq_lower(s->irq);
1988         return ret;
1989 
1990     case 0x28:	/* KBD_MASKIT */
1991         return s->kbd_mask;
1992 
1993     case 0x2c:	/* GPIO_MASKIT */
1994         return s->mask;
1995 
1996     case 0x30:	/* GPIO_DEBOUNCING_REG */
1997         return s->debounce;
1998 
1999     case 0x34:	/* GPIO_LATCH_REG */
2000         return s->latch;
2001     }
2002 
2003     OMAP_BAD_REG(addr);
2004     return 0;
2005 }
2006 
2007 static void omap_mpuio_write(void *opaque, hwaddr addr,
2008                              uint64_t value, unsigned size)
2009 {
2010     struct omap_mpuio_s *s = opaque;
2011     int offset = addr & OMAP_MPUI_REG_MASK;
2012     uint16_t diff;
2013     int ln;
2014 
2015     if (size != 2) {
2016         omap_badwidth_write16(opaque, addr, value);
2017         return;
2018     }
2019 
2020     switch (offset) {
2021     case 0x04:	/* OUTPUT_REG */
2022         diff = (s->outputs ^ value) & ~s->dir;
2023         s->outputs = value;
2024         while ((ln = ctz32(diff)) != 32) {
2025             if (s->handler[ln])
2026                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2027             diff &= ~(1 << ln);
2028         }
2029         break;
2030 
2031     case 0x08:	/* IO_CNTL */
2032         diff = s->outputs & (s->dir ^ value);
2033         s->dir = value;
2034 
2035         value = s->outputs & ~s->dir;
2036         while ((ln = ctz32(diff)) != 32) {
2037             if (s->handler[ln])
2038                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2039             diff &= ~(1 << ln);
2040         }
2041         break;
2042 
2043     case 0x14:	/* KBC_REG */
2044         s->cols = value;
2045         omap_mpuio_kbd_update(s);
2046         break;
2047 
2048     case 0x18:	/* GPIO_EVENT_MODE_REG */
2049         s->event = value & 0x1f;
2050         break;
2051 
2052     case 0x1c:	/* GPIO_INT_EDGE_REG */
2053         s->edge = value;
2054         break;
2055 
2056     case 0x28:	/* KBD_MASKIT */
2057         s->kbd_mask = value & 1;
2058         omap_mpuio_kbd_update(s);
2059         break;
2060 
2061     case 0x2c:	/* GPIO_MASKIT */
2062         s->mask = value;
2063         break;
2064 
2065     case 0x30:	/* GPIO_DEBOUNCING_REG */
2066         s->debounce = value & 0x1ff;
2067         break;
2068 
2069     case 0x00:	/* INPUT_LATCH */
2070     case 0x10:	/* KBR_LATCH */
2071     case 0x20:	/* KBD_INT */
2072     case 0x24:	/* GPIO_INT */
2073     case 0x34:	/* GPIO_LATCH_REG */
2074         OMAP_RO_REG(addr);
2075         return;
2076 
2077     default:
2078         OMAP_BAD_REG(addr);
2079         return;
2080     }
2081 }
2082 
2083 static const MemoryRegionOps omap_mpuio_ops  = {
2084     .read = omap_mpuio_read,
2085     .write = omap_mpuio_write,
2086     .endianness = DEVICE_NATIVE_ENDIAN,
2087 };
2088 
2089 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2090 {
2091     s->inputs = 0;
2092     s->outputs = 0;
2093     s->dir = ~0;
2094     s->event = 0;
2095     s->edge = 0;
2096     s->kbd_mask = 0;
2097     s->mask = 0;
2098     s->debounce = 0;
2099     s->latch = 0;
2100     s->ints = 0;
2101     s->row_latch = 0x1f;
2102     s->clk = 1;
2103 }
2104 
2105 static void omap_mpuio_onoff(void *opaque, int line, int on)
2106 {
2107     struct omap_mpuio_s *s = opaque;
2108 
2109     s->clk = on;
2110     if (on)
2111         omap_mpuio_kbd_update(s);
2112 }
2113 
2114 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2115                 hwaddr base,
2116                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2117                 omap_clk clk)
2118 {
2119     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2120 
2121     s->irq = gpio_int;
2122     s->kbd_irq = kbd_int;
2123     s->wakeup = wakeup;
2124     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2125     omap_mpuio_reset(s);
2126 
2127     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2128                           "omap-mpuio", 0x800);
2129     memory_region_add_subregion(memory, base, &s->iomem);
2130 
2131     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2132 
2133     return s;
2134 }
2135 
2136 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2137 {
2138     return s->in;
2139 }
2140 
2141 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2142 {
2143     if (line >= 16 || line < 0)
2144         hw_error("%s: No GPIO line %i\n", __func__, line);
2145     s->handler[line] = handler;
2146 }
2147 
2148 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2149 {
2150     if (row >= 5 || row < 0)
2151         hw_error("%s: No key %i-%i\n", __func__, col, row);
2152 
2153     if (down)
2154         s->buttons[row] |= 1 << col;
2155     else
2156         s->buttons[row] &= ~(1 << col);
2157 
2158     omap_mpuio_kbd_update(s);
2159 }
2160 
2161 /* MicroWire Interface */
2162 struct omap_uwire_s {
2163     MemoryRegion iomem;
2164     qemu_irq txirq;
2165     qemu_irq rxirq;
2166     qemu_irq txdrq;
2167 
2168     uint16_t txbuf;
2169     uint16_t rxbuf;
2170     uint16_t control;
2171     uint16_t setup[5];
2172 
2173     uWireSlave *chip[4];
2174 };
2175 
2176 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2177 {
2178     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2179     uWireSlave *slave = s->chip[chipselect];
2180 
2181     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2182         if (s->control & (1 << 12))			/* CS_CMD */
2183             if (slave && slave->send)
2184                 slave->send(slave->opaque,
2185                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2186         s->control &= ~(1 << 14);			/* CSRB */
2187         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2188          * a DRQ.  When is the level IRQ supposed to be reset?  */
2189     }
2190 
2191     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2192         if (s->control & (1 << 12))			/* CS_CMD */
2193             if (slave && slave->receive)
2194                 s->rxbuf = slave->receive(slave->opaque);
2195         s->control |= 1 << 15;				/* RDRB */
2196         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2197          * a DRQ.  When is the level IRQ supposed to be reset?  */
2198     }
2199 }
2200 
2201 static uint64_t omap_uwire_read(void *opaque, hwaddr addr, unsigned size)
2202 {
2203     struct omap_uwire_s *s = opaque;
2204     int offset = addr & OMAP_MPUI_REG_MASK;
2205 
2206     if (size != 2) {
2207         return omap_badwidth_read16(opaque, addr);
2208     }
2209 
2210     switch (offset) {
2211     case 0x00:	/* RDR */
2212         s->control &= ~(1 << 15);			/* RDRB */
2213         return s->rxbuf;
2214 
2215     case 0x04:	/* CSR */
2216         return s->control;
2217 
2218     case 0x08:	/* SR1 */
2219         return s->setup[0];
2220     case 0x0c:	/* SR2 */
2221         return s->setup[1];
2222     case 0x10:	/* SR3 */
2223         return s->setup[2];
2224     case 0x14:	/* SR4 */
2225         return s->setup[3];
2226     case 0x18:	/* SR5 */
2227         return s->setup[4];
2228     }
2229 
2230     OMAP_BAD_REG(addr);
2231     return 0;
2232 }
2233 
2234 static void omap_uwire_write(void *opaque, hwaddr addr,
2235                              uint64_t value, unsigned size)
2236 {
2237     struct omap_uwire_s *s = opaque;
2238     int offset = addr & OMAP_MPUI_REG_MASK;
2239 
2240     if (size != 2) {
2241         omap_badwidth_write16(opaque, addr, value);
2242         return;
2243     }
2244 
2245     switch (offset) {
2246     case 0x00:	/* TDR */
2247         s->txbuf = value;				/* TD */
2248         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2249                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2250                          (s->control & (1 << 12)))) {	/* CS_CMD */
2251             s->control |= 1 << 14;			/* CSRB */
2252             omap_uwire_transfer_start(s);
2253         }
2254         break;
2255 
2256     case 0x04:	/* CSR */
2257         s->control = value & 0x1fff;
2258         if (value & (1 << 13))				/* START */
2259             omap_uwire_transfer_start(s);
2260         break;
2261 
2262     case 0x08:	/* SR1 */
2263         s->setup[0] = value & 0x003f;
2264         break;
2265 
2266     case 0x0c:	/* SR2 */
2267         s->setup[1] = value & 0x0fc0;
2268         break;
2269 
2270     case 0x10:	/* SR3 */
2271         s->setup[2] = value & 0x0003;
2272         break;
2273 
2274     case 0x14:	/* SR4 */
2275         s->setup[3] = value & 0x0001;
2276         break;
2277 
2278     case 0x18:	/* SR5 */
2279         s->setup[4] = value & 0x000f;
2280         break;
2281 
2282     default:
2283         OMAP_BAD_REG(addr);
2284         return;
2285     }
2286 }
2287 
2288 static const MemoryRegionOps omap_uwire_ops = {
2289     .read = omap_uwire_read,
2290     .write = omap_uwire_write,
2291     .endianness = DEVICE_NATIVE_ENDIAN,
2292 };
2293 
2294 static void omap_uwire_reset(struct omap_uwire_s *s)
2295 {
2296     s->control = 0;
2297     s->setup[0] = 0;
2298     s->setup[1] = 0;
2299     s->setup[2] = 0;
2300     s->setup[3] = 0;
2301     s->setup[4] = 0;
2302 }
2303 
2304 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2305                                             hwaddr base,
2306                                             qemu_irq txirq, qemu_irq rxirq,
2307                                             qemu_irq dma,
2308                                             omap_clk clk)
2309 {
2310     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2311 
2312     s->txirq = txirq;
2313     s->rxirq = rxirq;
2314     s->txdrq = dma;
2315     omap_uwire_reset(s);
2316 
2317     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2318     memory_region_add_subregion(system_memory, base, &s->iomem);
2319 
2320     return s;
2321 }
2322 
2323 void omap_uwire_attach(struct omap_uwire_s *s,
2324                 uWireSlave *slave, int chipselect)
2325 {
2326     if (chipselect < 0 || chipselect > 3) {
2327         error_report("%s: Bad chipselect %i", __func__, chipselect);
2328         exit(-1);
2329     }
2330 
2331     s->chip[chipselect] = slave;
2332 }
2333 
2334 /* Pseudonoise Pulse-Width Light Modulator */
2335 struct omap_pwl_s {
2336     MemoryRegion iomem;
2337     uint8_t output;
2338     uint8_t level;
2339     uint8_t enable;
2340     int clk;
2341 };
2342 
2343 static void omap_pwl_update(struct omap_pwl_s *s)
2344 {
2345     int output = (s->clk && s->enable) ? s->level : 0;
2346 
2347     if (output != s->output) {
2348         s->output = output;
2349         printf("%s: Backlight now at %i/256\n", __func__, output);
2350     }
2351 }
2352 
2353 static uint64_t omap_pwl_read(void *opaque, hwaddr addr, unsigned size)
2354 {
2355     struct omap_pwl_s *s = opaque;
2356     int offset = addr & OMAP_MPUI_REG_MASK;
2357 
2358     if (size != 1) {
2359         return omap_badwidth_read8(opaque, addr);
2360     }
2361 
2362     switch (offset) {
2363     case 0x00:	/* PWL_LEVEL */
2364         return s->level;
2365     case 0x04:	/* PWL_CTRL */
2366         return s->enable;
2367     }
2368     OMAP_BAD_REG(addr);
2369     return 0;
2370 }
2371 
2372 static void omap_pwl_write(void *opaque, hwaddr addr,
2373                            uint64_t value, unsigned size)
2374 {
2375     struct omap_pwl_s *s = opaque;
2376     int offset = addr & OMAP_MPUI_REG_MASK;
2377 
2378     if (size != 1) {
2379         omap_badwidth_write8(opaque, addr, value);
2380         return;
2381     }
2382 
2383     switch (offset) {
2384     case 0x00:	/* PWL_LEVEL */
2385         s->level = value;
2386         omap_pwl_update(s);
2387         break;
2388     case 0x04:	/* PWL_CTRL */
2389         s->enable = value & 1;
2390         omap_pwl_update(s);
2391         break;
2392     default:
2393         OMAP_BAD_REG(addr);
2394         return;
2395     }
2396 }
2397 
2398 static const MemoryRegionOps omap_pwl_ops = {
2399     .read = omap_pwl_read,
2400     .write = omap_pwl_write,
2401     .endianness = DEVICE_NATIVE_ENDIAN,
2402 };
2403 
2404 static void omap_pwl_reset(struct omap_pwl_s *s)
2405 {
2406     s->output = 0;
2407     s->level = 0;
2408     s->enable = 0;
2409     s->clk = 1;
2410     omap_pwl_update(s);
2411 }
2412 
2413 static void omap_pwl_clk_update(void *opaque, int line, int on)
2414 {
2415     struct omap_pwl_s *s = opaque;
2416 
2417     s->clk = on;
2418     omap_pwl_update(s);
2419 }
2420 
2421 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2422                                         hwaddr base,
2423                                         omap_clk clk)
2424 {
2425     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2426 
2427     omap_pwl_reset(s);
2428 
2429     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2430                           "omap-pwl", 0x800);
2431     memory_region_add_subregion(system_memory, base, &s->iomem);
2432 
2433     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2434     return s;
2435 }
2436 
2437 /* Pulse-Width Tone module */
2438 struct omap_pwt_s {
2439     MemoryRegion iomem;
2440     uint8_t frc;
2441     uint8_t vrc;
2442     uint8_t gcr;
2443     omap_clk clk;
2444 };
2445 
2446 static uint64_t omap_pwt_read(void *opaque, hwaddr addr, unsigned size)
2447 {
2448     struct omap_pwt_s *s = opaque;
2449     int offset = addr & OMAP_MPUI_REG_MASK;
2450 
2451     if (size != 1) {
2452         return omap_badwidth_read8(opaque, addr);
2453     }
2454 
2455     switch (offset) {
2456     case 0x00:	/* FRC */
2457         return s->frc;
2458     case 0x04:	/* VCR */
2459         return s->vrc;
2460     case 0x08:	/* GCR */
2461         return s->gcr;
2462     }
2463     OMAP_BAD_REG(addr);
2464     return 0;
2465 }
2466 
2467 static void omap_pwt_write(void *opaque, hwaddr addr,
2468                            uint64_t value, unsigned size)
2469 {
2470     struct omap_pwt_s *s = opaque;
2471     int offset = addr & OMAP_MPUI_REG_MASK;
2472 
2473     if (size != 1) {
2474         omap_badwidth_write8(opaque, addr, value);
2475         return;
2476     }
2477 
2478     switch (offset) {
2479     case 0x00:	/* FRC */
2480         s->frc = value & 0x3f;
2481         break;
2482     case 0x04:	/* VRC */
2483         if ((value ^ s->vrc) & 1) {
2484             if (value & 1)
2485                 printf("%s: %iHz buzz on\n", __func__, (int)
2486                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2487                                 ((omap_clk_getrate(s->clk) >> 3) /
2488                                  /* Pre-multiplexer divider */
2489                                  ((s->gcr & 2) ? 1 : 154) /
2490                                  /* Octave multiplexer */
2491                                  (2 << (value & 3)) *
2492                                  /* 101/107 divider */
2493                                  ((value & (1 << 2)) ? 101 : 107) *
2494                                  /*  49/55 divider */
2495                                  ((value & (1 << 3)) ?  49 : 55) *
2496                                  /*  50/63 divider */
2497                                  ((value & (1 << 4)) ?  50 : 63) *
2498                                  /*  80/127 divider */
2499                                  ((value & (1 << 5)) ?  80 : 127) /
2500                                  (107 * 55 * 63 * 127)));
2501             else
2502                 printf("%s: silence!\n", __func__);
2503         }
2504         s->vrc = value & 0x7f;
2505         break;
2506     case 0x08:	/* GCR */
2507         s->gcr = value & 3;
2508         break;
2509     default:
2510         OMAP_BAD_REG(addr);
2511         return;
2512     }
2513 }
2514 
2515 static const MemoryRegionOps omap_pwt_ops = {
2516     .read =omap_pwt_read,
2517     .write = omap_pwt_write,
2518     .endianness = DEVICE_NATIVE_ENDIAN,
2519 };
2520 
2521 static void omap_pwt_reset(struct omap_pwt_s *s)
2522 {
2523     s->frc = 0;
2524     s->vrc = 0;
2525     s->gcr = 0;
2526 }
2527 
2528 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2529                                         hwaddr base,
2530                                         omap_clk clk)
2531 {
2532     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2533     s->clk = clk;
2534     omap_pwt_reset(s);
2535 
2536     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2537                           "omap-pwt", 0x800);
2538     memory_region_add_subregion(system_memory, base, &s->iomem);
2539     return s;
2540 }
2541 
2542 /* Real-time Clock module */
2543 struct omap_rtc_s {
2544     MemoryRegion iomem;
2545     qemu_irq irq;
2546     qemu_irq alarm;
2547     QEMUTimer *clk;
2548 
2549     uint8_t interrupts;
2550     uint8_t status;
2551     int16_t comp_reg;
2552     int running;
2553     int pm_am;
2554     int auto_comp;
2555     int round;
2556     struct tm alarm_tm;
2557     time_t alarm_ti;
2558 
2559     struct tm current_tm;
2560     time_t ti;
2561     uint64_t tick;
2562 };
2563 
2564 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2565 {
2566     /* s->alarm is level-triggered */
2567     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2568 }
2569 
2570 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2571 {
2572     s->alarm_ti = mktimegm(&s->alarm_tm);
2573     if (s->alarm_ti == -1)
2574         printf("%s: conversion failed\n", __func__);
2575 }
2576 
2577 static uint64_t omap_rtc_read(void *opaque, hwaddr addr, unsigned size)
2578 {
2579     struct omap_rtc_s *s = opaque;
2580     int offset = addr & OMAP_MPUI_REG_MASK;
2581     uint8_t i;
2582 
2583     if (size != 1) {
2584         return omap_badwidth_read8(opaque, addr);
2585     }
2586 
2587     switch (offset) {
2588     case 0x00:	/* SECONDS_REG */
2589         return to_bcd(s->current_tm.tm_sec);
2590 
2591     case 0x04:	/* MINUTES_REG */
2592         return to_bcd(s->current_tm.tm_min);
2593 
2594     case 0x08:	/* HOURS_REG */
2595         if (s->pm_am)
2596             return ((s->current_tm.tm_hour > 11) << 7) |
2597                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2598         else
2599             return to_bcd(s->current_tm.tm_hour);
2600 
2601     case 0x0c:	/* DAYS_REG */
2602         return to_bcd(s->current_tm.tm_mday);
2603 
2604     case 0x10:	/* MONTHS_REG */
2605         return to_bcd(s->current_tm.tm_mon + 1);
2606 
2607     case 0x14:	/* YEARS_REG */
2608         return to_bcd(s->current_tm.tm_year % 100);
2609 
2610     case 0x18:	/* WEEK_REG */
2611         return s->current_tm.tm_wday;
2612 
2613     case 0x20:	/* ALARM_SECONDS_REG */
2614         return to_bcd(s->alarm_tm.tm_sec);
2615 
2616     case 0x24:	/* ALARM_MINUTES_REG */
2617         return to_bcd(s->alarm_tm.tm_min);
2618 
2619     case 0x28:	/* ALARM_HOURS_REG */
2620         if (s->pm_am)
2621             return ((s->alarm_tm.tm_hour > 11) << 7) |
2622                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2623         else
2624             return to_bcd(s->alarm_tm.tm_hour);
2625 
2626     case 0x2c:	/* ALARM_DAYS_REG */
2627         return to_bcd(s->alarm_tm.tm_mday);
2628 
2629     case 0x30:	/* ALARM_MONTHS_REG */
2630         return to_bcd(s->alarm_tm.tm_mon + 1);
2631 
2632     case 0x34:	/* ALARM_YEARS_REG */
2633         return to_bcd(s->alarm_tm.tm_year % 100);
2634 
2635     case 0x40:	/* RTC_CTRL_REG */
2636         return (s->pm_am << 3) | (s->auto_comp << 2) |
2637                 (s->round << 1) | s->running;
2638 
2639     case 0x44:	/* RTC_STATUS_REG */
2640         i = s->status;
2641         s->status &= ~0x3d;
2642         return i;
2643 
2644     case 0x48:	/* RTC_INTERRUPTS_REG */
2645         return s->interrupts;
2646 
2647     case 0x4c:	/* RTC_COMP_LSB_REG */
2648         return ((uint16_t) s->comp_reg) & 0xff;
2649 
2650     case 0x50:	/* RTC_COMP_MSB_REG */
2651         return ((uint16_t) s->comp_reg) >> 8;
2652     }
2653 
2654     OMAP_BAD_REG(addr);
2655     return 0;
2656 }
2657 
2658 static void omap_rtc_write(void *opaque, hwaddr addr,
2659                            uint64_t value, unsigned size)
2660 {
2661     struct omap_rtc_s *s = opaque;
2662     int offset = addr & OMAP_MPUI_REG_MASK;
2663     struct tm new_tm;
2664     time_t ti[2];
2665 
2666     if (size != 1) {
2667         omap_badwidth_write8(opaque, addr, value);
2668         return;
2669     }
2670 
2671     switch (offset) {
2672     case 0x00:	/* SECONDS_REG */
2673 #ifdef ALMDEBUG
2674         printf("RTC SEC_REG <-- %02x\n", value);
2675 #endif
2676         s->ti -= s->current_tm.tm_sec;
2677         s->ti += from_bcd(value);
2678         return;
2679 
2680     case 0x04:	/* MINUTES_REG */
2681 #ifdef ALMDEBUG
2682         printf("RTC MIN_REG <-- %02x\n", value);
2683 #endif
2684         s->ti -= s->current_tm.tm_min * 60;
2685         s->ti += from_bcd(value) * 60;
2686         return;
2687 
2688     case 0x08:	/* HOURS_REG */
2689 #ifdef ALMDEBUG
2690         printf("RTC HRS_REG <-- %02x\n", value);
2691 #endif
2692         s->ti -= s->current_tm.tm_hour * 3600;
2693         if (s->pm_am) {
2694             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2695             s->ti += ((value >> 7) & 1) * 43200;
2696         } else
2697             s->ti += from_bcd(value & 0x3f) * 3600;
2698         return;
2699 
2700     case 0x0c:	/* DAYS_REG */
2701 #ifdef ALMDEBUG
2702         printf("RTC DAY_REG <-- %02x\n", value);
2703 #endif
2704         s->ti -= s->current_tm.tm_mday * 86400;
2705         s->ti += from_bcd(value) * 86400;
2706         return;
2707 
2708     case 0x10:	/* MONTHS_REG */
2709 #ifdef ALMDEBUG
2710         printf("RTC MTH_REG <-- %02x\n", value);
2711 #endif
2712         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2713         new_tm.tm_mon = from_bcd(value);
2714         ti[0] = mktimegm(&s->current_tm);
2715         ti[1] = mktimegm(&new_tm);
2716 
2717         if (ti[0] != -1 && ti[1] != -1) {
2718             s->ti -= ti[0];
2719             s->ti += ti[1];
2720         } else {
2721             /* A less accurate version */
2722             s->ti -= s->current_tm.tm_mon * 2592000;
2723             s->ti += from_bcd(value) * 2592000;
2724         }
2725         return;
2726 
2727     case 0x14:	/* YEARS_REG */
2728 #ifdef ALMDEBUG
2729         printf("RTC YRS_REG <-- %02x\n", value);
2730 #endif
2731         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2732         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2733         ti[0] = mktimegm(&s->current_tm);
2734         ti[1] = mktimegm(&new_tm);
2735 
2736         if (ti[0] != -1 && ti[1] != -1) {
2737             s->ti -= ti[0];
2738             s->ti += ti[1];
2739         } else {
2740             /* A less accurate version */
2741             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2742             s->ti += (time_t)from_bcd(value) * 31536000;
2743         }
2744         return;
2745 
2746     case 0x18:	/* WEEK_REG */
2747         return;	/* Ignored */
2748 
2749     case 0x20:	/* ALARM_SECONDS_REG */
2750 #ifdef ALMDEBUG
2751         printf("ALM SEC_REG <-- %02x\n", value);
2752 #endif
2753         s->alarm_tm.tm_sec = from_bcd(value);
2754         omap_rtc_alarm_update(s);
2755         return;
2756 
2757     case 0x24:	/* ALARM_MINUTES_REG */
2758 #ifdef ALMDEBUG
2759         printf("ALM MIN_REG <-- %02x\n", value);
2760 #endif
2761         s->alarm_tm.tm_min = from_bcd(value);
2762         omap_rtc_alarm_update(s);
2763         return;
2764 
2765     case 0x28:	/* ALARM_HOURS_REG */
2766 #ifdef ALMDEBUG
2767         printf("ALM HRS_REG <-- %02x\n", value);
2768 #endif
2769         if (s->pm_am)
2770             s->alarm_tm.tm_hour =
2771                     ((from_bcd(value & 0x3f)) % 12) +
2772                     ((value >> 7) & 1) * 12;
2773         else
2774             s->alarm_tm.tm_hour = from_bcd(value);
2775         omap_rtc_alarm_update(s);
2776         return;
2777 
2778     case 0x2c:	/* ALARM_DAYS_REG */
2779 #ifdef ALMDEBUG
2780         printf("ALM DAY_REG <-- %02x\n", value);
2781 #endif
2782         s->alarm_tm.tm_mday = from_bcd(value);
2783         omap_rtc_alarm_update(s);
2784         return;
2785 
2786     case 0x30:	/* ALARM_MONTHS_REG */
2787 #ifdef ALMDEBUG
2788         printf("ALM MON_REG <-- %02x\n", value);
2789 #endif
2790         s->alarm_tm.tm_mon = from_bcd(value);
2791         omap_rtc_alarm_update(s);
2792         return;
2793 
2794     case 0x34:	/* ALARM_YEARS_REG */
2795 #ifdef ALMDEBUG
2796         printf("ALM YRS_REG <-- %02x\n", value);
2797 #endif
2798         s->alarm_tm.tm_year = from_bcd(value);
2799         omap_rtc_alarm_update(s);
2800         return;
2801 
2802     case 0x40:	/* RTC_CTRL_REG */
2803 #ifdef ALMDEBUG
2804         printf("RTC CONTROL <-- %02x\n", value);
2805 #endif
2806         s->pm_am = (value >> 3) & 1;
2807         s->auto_comp = (value >> 2) & 1;
2808         s->round = (value >> 1) & 1;
2809         s->running = value & 1;
2810         s->status &= 0xfd;
2811         s->status |= s->running << 1;
2812         return;
2813 
2814     case 0x44:	/* RTC_STATUS_REG */
2815 #ifdef ALMDEBUG
2816         printf("RTC STATUSL <-- %02x\n", value);
2817 #endif
2818         s->status &= ~((value & 0xc0) ^ 0x80);
2819         omap_rtc_interrupts_update(s);
2820         return;
2821 
2822     case 0x48:	/* RTC_INTERRUPTS_REG */
2823 #ifdef ALMDEBUG
2824         printf("RTC INTRS <-- %02x\n", value);
2825 #endif
2826         s->interrupts = value;
2827         return;
2828 
2829     case 0x4c:	/* RTC_COMP_LSB_REG */
2830 #ifdef ALMDEBUG
2831         printf("RTC COMPLSB <-- %02x\n", value);
2832 #endif
2833         s->comp_reg &= 0xff00;
2834         s->comp_reg |= 0x00ff & value;
2835         return;
2836 
2837     case 0x50:	/* RTC_COMP_MSB_REG */
2838 #ifdef ALMDEBUG
2839         printf("RTC COMPMSB <-- %02x\n", value);
2840 #endif
2841         s->comp_reg &= 0x00ff;
2842         s->comp_reg |= 0xff00 & (value << 8);
2843         return;
2844 
2845     default:
2846         OMAP_BAD_REG(addr);
2847         return;
2848     }
2849 }
2850 
2851 static const MemoryRegionOps omap_rtc_ops = {
2852     .read = omap_rtc_read,
2853     .write = omap_rtc_write,
2854     .endianness = DEVICE_NATIVE_ENDIAN,
2855 };
2856 
2857 static void omap_rtc_tick(void *opaque)
2858 {
2859     struct omap_rtc_s *s = opaque;
2860 
2861     if (s->round) {
2862         /* Round to nearest full minute.  */
2863         if (s->current_tm.tm_sec < 30)
2864             s->ti -= s->current_tm.tm_sec;
2865         else
2866             s->ti += 60 - s->current_tm.tm_sec;
2867 
2868         s->round = 0;
2869     }
2870 
2871     localtime_r(&s->ti, &s->current_tm);
2872 
2873     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2874         s->status |= 0x40;
2875         omap_rtc_interrupts_update(s);
2876     }
2877 
2878     if (s->interrupts & 0x04)
2879         switch (s->interrupts & 3) {
2880         case 0:
2881             s->status |= 0x04;
2882             qemu_irq_pulse(s->irq);
2883             break;
2884         case 1:
2885             if (s->current_tm.tm_sec)
2886                 break;
2887             s->status |= 0x08;
2888             qemu_irq_pulse(s->irq);
2889             break;
2890         case 2:
2891             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2892                 break;
2893             s->status |= 0x10;
2894             qemu_irq_pulse(s->irq);
2895             break;
2896         case 3:
2897             if (s->current_tm.tm_sec ||
2898                             s->current_tm.tm_min || s->current_tm.tm_hour)
2899                 break;
2900             s->status |= 0x20;
2901             qemu_irq_pulse(s->irq);
2902             break;
2903         }
2904 
2905     /* Move on */
2906     if (s->running)
2907         s->ti ++;
2908     s->tick += 1000;
2909 
2910     /*
2911      * Every full hour add a rough approximation of the compensation
2912      * register to the 32kHz Timer (which drives the RTC) value.
2913      */
2914     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2915         s->tick += s->comp_reg * 1000 / 32768;
2916 
2917     timer_mod(s->clk, s->tick);
2918 }
2919 
2920 static void omap_rtc_reset(struct omap_rtc_s *s)
2921 {
2922     struct tm tm;
2923 
2924     s->interrupts = 0;
2925     s->comp_reg = 0;
2926     s->running = 0;
2927     s->pm_am = 0;
2928     s->auto_comp = 0;
2929     s->round = 0;
2930     s->tick = qemu_clock_get_ms(rtc_clock);
2931     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2932     s->alarm_tm.tm_mday = 0x01;
2933     s->status = 1 << 7;
2934     qemu_get_timedate(&tm, 0);
2935     s->ti = mktimegm(&tm);
2936 
2937     omap_rtc_alarm_update(s);
2938     omap_rtc_tick(s);
2939 }
2940 
2941 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2942                                         hwaddr base,
2943                                         qemu_irq timerirq, qemu_irq alarmirq,
2944                                         omap_clk clk)
2945 {
2946     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2947 
2948     s->irq = timerirq;
2949     s->alarm = alarmirq;
2950     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2951 
2952     omap_rtc_reset(s);
2953 
2954     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2955                           "omap-rtc", 0x800);
2956     memory_region_add_subregion(system_memory, base, &s->iomem);
2957 
2958     return s;
2959 }
2960 
2961 /* Multi-channel Buffered Serial Port interfaces */
2962 struct omap_mcbsp_s {
2963     MemoryRegion iomem;
2964     qemu_irq txirq;
2965     qemu_irq rxirq;
2966     qemu_irq txdrq;
2967     qemu_irq rxdrq;
2968 
2969     uint16_t spcr[2];
2970     uint16_t rcr[2];
2971     uint16_t xcr[2];
2972     uint16_t srgr[2];
2973     uint16_t mcr[2];
2974     uint16_t pcr;
2975     uint16_t rcer[8];
2976     uint16_t xcer[8];
2977     int tx_rate;
2978     int rx_rate;
2979     int tx_req;
2980     int rx_req;
2981 
2982     I2SCodec *codec;
2983     QEMUTimer *source_timer;
2984     QEMUTimer *sink_timer;
2985 };
2986 
2987 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2988 {
2989     int irq;
2990 
2991     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2992     case 0:
2993         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2994         break;
2995     case 3:
2996         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2997         break;
2998     default:
2999         irq = 0;
3000         break;
3001     }
3002 
3003     if (irq)
3004         qemu_irq_pulse(s->rxirq);
3005 
3006     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
3007     case 0:
3008         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
3009         break;
3010     case 3:
3011         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3012         break;
3013     default:
3014         irq = 0;
3015         break;
3016     }
3017 
3018     if (irq)
3019         qemu_irq_pulse(s->txirq);
3020 }
3021 
3022 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3023 {
3024     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3025         s->spcr[0] |= 1 << 2;				/* RFULL */
3026     s->spcr[0] |= 1 << 1;				/* RRDY */
3027     qemu_irq_raise(s->rxdrq);
3028     omap_mcbsp_intr_update(s);
3029 }
3030 
3031 static void omap_mcbsp_source_tick(void *opaque)
3032 {
3033     struct omap_mcbsp_s *s = opaque;
3034     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3035 
3036     if (!s->rx_rate)
3037         return;
3038     if (s->rx_req)
3039         printf("%s: Rx FIFO overrun\n", __func__);
3040 
3041     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3042 
3043     omap_mcbsp_rx_newdata(s);
3044     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3045                    NANOSECONDS_PER_SECOND);
3046 }
3047 
3048 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3049 {
3050     if (!s->codec || !s->codec->rts)
3051         omap_mcbsp_source_tick(s);
3052     else if (s->codec->in.len) {
3053         s->rx_req = s->codec->in.len;
3054         omap_mcbsp_rx_newdata(s);
3055     }
3056 }
3057 
3058 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3059 {
3060     timer_del(s->source_timer);
3061 }
3062 
3063 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3064 {
3065     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3066     qemu_irq_lower(s->rxdrq);
3067     omap_mcbsp_intr_update(s);
3068 }
3069 
3070 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3071 {
3072     s->spcr[1] |= 1 << 1;				/* XRDY */
3073     qemu_irq_raise(s->txdrq);
3074     omap_mcbsp_intr_update(s);
3075 }
3076 
3077 static void omap_mcbsp_sink_tick(void *opaque)
3078 {
3079     struct omap_mcbsp_s *s = opaque;
3080     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3081 
3082     if (!s->tx_rate)
3083         return;
3084     if (s->tx_req)
3085         printf("%s: Tx FIFO underrun\n", __func__);
3086 
3087     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3088 
3089     omap_mcbsp_tx_newdata(s);
3090     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3091                    NANOSECONDS_PER_SECOND);
3092 }
3093 
3094 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3095 {
3096     if (!s->codec || !s->codec->cts)
3097         omap_mcbsp_sink_tick(s);
3098     else if (s->codec->out.size) {
3099         s->tx_req = s->codec->out.size;
3100         omap_mcbsp_tx_newdata(s);
3101     }
3102 }
3103 
3104 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3105 {
3106     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3107     qemu_irq_lower(s->txdrq);
3108     omap_mcbsp_intr_update(s);
3109     if (s->codec && s->codec->cts)
3110         s->codec->tx_swallow(s->codec->opaque);
3111 }
3112 
3113 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3114 {
3115     s->tx_req = 0;
3116     omap_mcbsp_tx_done(s);
3117     timer_del(s->sink_timer);
3118 }
3119 
3120 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3121 {
3122     int prev_rx_rate, prev_tx_rate;
3123     int rx_rate = 0, tx_rate = 0;
3124     int cpu_rate = 1500000;	/* XXX */
3125 
3126     /* TODO: check CLKSTP bit */
3127     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3128         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3129             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3130                             (s->pcr & (1 << 8))) {	/* CLKRM */
3131                 if (~s->pcr & (1 << 7))			/* SCLKME */
3132                     rx_rate = cpu_rate /
3133                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3134             } else
3135                 if (s->codec)
3136                     rx_rate = s->codec->rx_rate;
3137         }
3138 
3139         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3140             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3141                             (s->pcr & (1 << 9))) {	/* CLKXM */
3142                 if (~s->pcr & (1 << 7))			/* SCLKME */
3143                     tx_rate = cpu_rate /
3144                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3145             } else
3146                 if (s->codec)
3147                     tx_rate = s->codec->tx_rate;
3148         }
3149     }
3150     prev_tx_rate = s->tx_rate;
3151     prev_rx_rate = s->rx_rate;
3152     s->tx_rate = tx_rate;
3153     s->rx_rate = rx_rate;
3154 
3155     if (s->codec)
3156         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3157 
3158     if (!prev_tx_rate && tx_rate)
3159         omap_mcbsp_tx_start(s);
3160     else if (s->tx_rate && !tx_rate)
3161         omap_mcbsp_tx_stop(s);
3162 
3163     if (!prev_rx_rate && rx_rate)
3164         omap_mcbsp_rx_start(s);
3165     else if (prev_tx_rate && !tx_rate)
3166         omap_mcbsp_rx_stop(s);
3167 }
3168 
3169 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3170                                 unsigned size)
3171 {
3172     struct omap_mcbsp_s *s = opaque;
3173     int offset = addr & OMAP_MPUI_REG_MASK;
3174     uint16_t ret;
3175 
3176     if (size != 2) {
3177         return omap_badwidth_read16(opaque, addr);
3178     }
3179 
3180     switch (offset) {
3181     case 0x00:	/* DRR2 */
3182         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3183             return 0x0000;
3184         /* Fall through.  */
3185     case 0x02:	/* DRR1 */
3186         if (s->rx_req < 2) {
3187             printf("%s: Rx FIFO underrun\n", __func__);
3188             omap_mcbsp_rx_done(s);
3189         } else {
3190             s->tx_req -= 2;
3191             if (s->codec && s->codec->in.len >= 2) {
3192                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3193                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3194                 s->codec->in.len -= 2;
3195             } else
3196                 ret = 0x0000;
3197             if (!s->tx_req)
3198                 omap_mcbsp_rx_done(s);
3199             return ret;
3200         }
3201         return 0x0000;
3202 
3203     case 0x04:	/* DXR2 */
3204     case 0x06:	/* DXR1 */
3205         return 0x0000;
3206 
3207     case 0x08:	/* SPCR2 */
3208         return s->spcr[1];
3209     case 0x0a:	/* SPCR1 */
3210         return s->spcr[0];
3211     case 0x0c:	/* RCR2 */
3212         return s->rcr[1];
3213     case 0x0e:	/* RCR1 */
3214         return s->rcr[0];
3215     case 0x10:	/* XCR2 */
3216         return s->xcr[1];
3217     case 0x12:	/* XCR1 */
3218         return s->xcr[0];
3219     case 0x14:	/* SRGR2 */
3220         return s->srgr[1];
3221     case 0x16:	/* SRGR1 */
3222         return s->srgr[0];
3223     case 0x18:	/* MCR2 */
3224         return s->mcr[1];
3225     case 0x1a:	/* MCR1 */
3226         return s->mcr[0];
3227     case 0x1c:	/* RCERA */
3228         return s->rcer[0];
3229     case 0x1e:	/* RCERB */
3230         return s->rcer[1];
3231     case 0x20:	/* XCERA */
3232         return s->xcer[0];
3233     case 0x22:	/* XCERB */
3234         return s->xcer[1];
3235     case 0x24:	/* PCR0 */
3236         return s->pcr;
3237     case 0x26:	/* RCERC */
3238         return s->rcer[2];
3239     case 0x28:	/* RCERD */
3240         return s->rcer[3];
3241     case 0x2a:	/* XCERC */
3242         return s->xcer[2];
3243     case 0x2c:	/* XCERD */
3244         return s->xcer[3];
3245     case 0x2e:	/* RCERE */
3246         return s->rcer[4];
3247     case 0x30:	/* RCERF */
3248         return s->rcer[5];
3249     case 0x32:	/* XCERE */
3250         return s->xcer[4];
3251     case 0x34:	/* XCERF */
3252         return s->xcer[5];
3253     case 0x36:	/* RCERG */
3254         return s->rcer[6];
3255     case 0x38:	/* RCERH */
3256         return s->rcer[7];
3257     case 0x3a:	/* XCERG */
3258         return s->xcer[6];
3259     case 0x3c:	/* XCERH */
3260         return s->xcer[7];
3261     }
3262 
3263     OMAP_BAD_REG(addr);
3264     return 0;
3265 }
3266 
3267 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3268                 uint32_t value)
3269 {
3270     struct omap_mcbsp_s *s = opaque;
3271     int offset = addr & OMAP_MPUI_REG_MASK;
3272 
3273     switch (offset) {
3274     case 0x00:	/* DRR2 */
3275     case 0x02:	/* DRR1 */
3276         OMAP_RO_REG(addr);
3277         return;
3278 
3279     case 0x04:	/* DXR2 */
3280         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3281             return;
3282         /* Fall through.  */
3283     case 0x06:	/* DXR1 */
3284         if (s->tx_req > 1) {
3285             s->tx_req -= 2;
3286             if (s->codec && s->codec->cts) {
3287                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3288                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3289             }
3290             if (s->tx_req < 2)
3291                 omap_mcbsp_tx_done(s);
3292         } else
3293             printf("%s: Tx FIFO overrun\n", __func__);
3294         return;
3295 
3296     case 0x08:	/* SPCR2 */
3297         s->spcr[1] &= 0x0002;
3298         s->spcr[1] |= 0x03f9 & value;
3299         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3300         if (~value & 1)					/* XRST */
3301             s->spcr[1] &= ~6;
3302         omap_mcbsp_req_update(s);
3303         return;
3304     case 0x0a:	/* SPCR1 */
3305         s->spcr[0] &= 0x0006;
3306         s->spcr[0] |= 0xf8f9 & value;
3307         if (value & (1 << 15))				/* DLB */
3308             printf("%s: Digital Loopback mode enable attempt\n", __func__);
3309         if (~value & 1) {				/* RRST */
3310             s->spcr[0] &= ~6;
3311             s->rx_req = 0;
3312             omap_mcbsp_rx_done(s);
3313         }
3314         omap_mcbsp_req_update(s);
3315         return;
3316 
3317     case 0x0c:	/* RCR2 */
3318         s->rcr[1] = value & 0xffff;
3319         return;
3320     case 0x0e:	/* RCR1 */
3321         s->rcr[0] = value & 0x7fe0;
3322         return;
3323     case 0x10:	/* XCR2 */
3324         s->xcr[1] = value & 0xffff;
3325         return;
3326     case 0x12:	/* XCR1 */
3327         s->xcr[0] = value & 0x7fe0;
3328         return;
3329     case 0x14:	/* SRGR2 */
3330         s->srgr[1] = value & 0xffff;
3331         omap_mcbsp_req_update(s);
3332         return;
3333     case 0x16:	/* SRGR1 */
3334         s->srgr[0] = value & 0xffff;
3335         omap_mcbsp_req_update(s);
3336         return;
3337     case 0x18:	/* MCR2 */
3338         s->mcr[1] = value & 0x03e3;
3339         if (value & 3)					/* XMCM */
3340             printf("%s: Tx channel selection mode enable attempt\n", __func__);
3341         return;
3342     case 0x1a:	/* MCR1 */
3343         s->mcr[0] = value & 0x03e1;
3344         if (value & 1)					/* RMCM */
3345             printf("%s: Rx channel selection mode enable attempt\n", __func__);
3346         return;
3347     case 0x1c:	/* RCERA */
3348         s->rcer[0] = value & 0xffff;
3349         return;
3350     case 0x1e:	/* RCERB */
3351         s->rcer[1] = value & 0xffff;
3352         return;
3353     case 0x20:	/* XCERA */
3354         s->xcer[0] = value & 0xffff;
3355         return;
3356     case 0x22:	/* XCERB */
3357         s->xcer[1] = value & 0xffff;
3358         return;
3359     case 0x24:	/* PCR0 */
3360         s->pcr = value & 0x7faf;
3361         return;
3362     case 0x26:	/* RCERC */
3363         s->rcer[2] = value & 0xffff;
3364         return;
3365     case 0x28:	/* RCERD */
3366         s->rcer[3] = value & 0xffff;
3367         return;
3368     case 0x2a:	/* XCERC */
3369         s->xcer[2] = value & 0xffff;
3370         return;
3371     case 0x2c:	/* XCERD */
3372         s->xcer[3] = value & 0xffff;
3373         return;
3374     case 0x2e:	/* RCERE */
3375         s->rcer[4] = value & 0xffff;
3376         return;
3377     case 0x30:	/* RCERF */
3378         s->rcer[5] = value & 0xffff;
3379         return;
3380     case 0x32:	/* XCERE */
3381         s->xcer[4] = value & 0xffff;
3382         return;
3383     case 0x34:	/* XCERF */
3384         s->xcer[5] = value & 0xffff;
3385         return;
3386     case 0x36:	/* RCERG */
3387         s->rcer[6] = value & 0xffff;
3388         return;
3389     case 0x38:	/* RCERH */
3390         s->rcer[7] = value & 0xffff;
3391         return;
3392     case 0x3a:	/* XCERG */
3393         s->xcer[6] = value & 0xffff;
3394         return;
3395     case 0x3c:	/* XCERH */
3396         s->xcer[7] = value & 0xffff;
3397         return;
3398     }
3399 
3400     OMAP_BAD_REG(addr);
3401 }
3402 
3403 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3404                 uint32_t value)
3405 {
3406     struct omap_mcbsp_s *s = opaque;
3407     int offset = addr & OMAP_MPUI_REG_MASK;
3408 
3409     if (offset == 0x04) {				/* DXR */
3410         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3411             return;
3412         if (s->tx_req > 3) {
3413             s->tx_req -= 4;
3414             if (s->codec && s->codec->cts) {
3415                 s->codec->out.fifo[s->codec->out.len ++] =
3416                         (value >> 24) & 0xff;
3417                 s->codec->out.fifo[s->codec->out.len ++] =
3418                         (value >> 16) & 0xff;
3419                 s->codec->out.fifo[s->codec->out.len ++] =
3420                         (value >> 8) & 0xff;
3421                 s->codec->out.fifo[s->codec->out.len ++] =
3422                         (value >> 0) & 0xff;
3423             }
3424             if (s->tx_req < 4)
3425                 omap_mcbsp_tx_done(s);
3426         } else
3427             printf("%s: Tx FIFO overrun\n", __func__);
3428         return;
3429     }
3430 
3431     omap_badwidth_write16(opaque, addr, value);
3432 }
3433 
3434 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3435                              uint64_t value, unsigned size)
3436 {
3437     switch (size) {
3438     case 2:
3439         omap_mcbsp_writeh(opaque, addr, value);
3440         break;
3441     case 4:
3442         omap_mcbsp_writew(opaque, addr, value);
3443         break;
3444     default:
3445         omap_badwidth_write16(opaque, addr, value);
3446     }
3447 }
3448 
3449 static const MemoryRegionOps omap_mcbsp_ops = {
3450     .read = omap_mcbsp_read,
3451     .write = omap_mcbsp_write,
3452     .endianness = DEVICE_NATIVE_ENDIAN,
3453 };
3454 
3455 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3456 {
3457     memset(&s->spcr, 0, sizeof(s->spcr));
3458     memset(&s->rcr, 0, sizeof(s->rcr));
3459     memset(&s->xcr, 0, sizeof(s->xcr));
3460     s->srgr[0] = 0x0001;
3461     s->srgr[1] = 0x2000;
3462     memset(&s->mcr, 0, sizeof(s->mcr));
3463     memset(&s->pcr, 0, sizeof(s->pcr));
3464     memset(&s->rcer, 0, sizeof(s->rcer));
3465     memset(&s->xcer, 0, sizeof(s->xcer));
3466     s->tx_req = 0;
3467     s->rx_req = 0;
3468     s->tx_rate = 0;
3469     s->rx_rate = 0;
3470     timer_del(s->source_timer);
3471     timer_del(s->sink_timer);
3472 }
3473 
3474 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3475                                             hwaddr base,
3476                                             qemu_irq txirq, qemu_irq rxirq,
3477                                             qemu_irq *dma, omap_clk clk)
3478 {
3479     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3480 
3481     s->txirq = txirq;
3482     s->rxirq = rxirq;
3483     s->txdrq = dma[0];
3484     s->rxdrq = dma[1];
3485     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3486     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3487     omap_mcbsp_reset(s);
3488 
3489     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3490     memory_region_add_subregion(system_memory, base, &s->iomem);
3491 
3492     return s;
3493 }
3494 
3495 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3496 {
3497     struct omap_mcbsp_s *s = opaque;
3498 
3499     if (s->rx_rate) {
3500         s->rx_req = s->codec->in.len;
3501         omap_mcbsp_rx_newdata(s);
3502     }
3503 }
3504 
3505 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3506 {
3507     struct omap_mcbsp_s *s = opaque;
3508 
3509     if (s->tx_rate) {
3510         s->tx_req = s->codec->out.size;
3511         omap_mcbsp_tx_newdata(s);
3512     }
3513 }
3514 
3515 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3516 {
3517     s->codec = slave;
3518     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3519     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3520 }
3521 
3522 /* LED Pulse Generators */
3523 struct omap_lpg_s {
3524     MemoryRegion iomem;
3525     QEMUTimer *tm;
3526 
3527     uint8_t control;
3528     uint8_t power;
3529     int64_t on;
3530     int64_t period;
3531     int clk;
3532     int cycle;
3533 };
3534 
3535 static void omap_lpg_tick(void *opaque)
3536 {
3537     struct omap_lpg_s *s = opaque;
3538 
3539     if (s->cycle)
3540         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3541     else
3542         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3543 
3544     s->cycle = !s->cycle;
3545     printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3546 }
3547 
3548 static void omap_lpg_update(struct omap_lpg_s *s)
3549 {
3550     int64_t on, period = 1, ticks = 1000;
3551     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3552 
3553     if (~s->control & (1 << 6))					/* LPGRES */
3554         on = 0;
3555     else if (s->control & (1 << 7))				/* PERM_ON */
3556         on = period;
3557     else {
3558         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3559                         256 / 32);
3560         on = (s->clk && s->power) ? muldiv64(ticks,
3561                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3562     }
3563 
3564     timer_del(s->tm);
3565     if (on == period && s->on < s->period)
3566         printf("%s: LED is on\n", __func__);
3567     else if (on == 0 && s->on)
3568         printf("%s: LED is off\n", __func__);
3569     else if (on && (on != s->on || period != s->period)) {
3570         s->cycle = 0;
3571         s->on = on;
3572         s->period = period;
3573         omap_lpg_tick(s);
3574         return;
3575     }
3576 
3577     s->on = on;
3578     s->period = period;
3579 }
3580 
3581 static void omap_lpg_reset(struct omap_lpg_s *s)
3582 {
3583     s->control = 0x00;
3584     s->power = 0x00;
3585     s->clk = 1;
3586     omap_lpg_update(s);
3587 }
3588 
3589 static uint64_t omap_lpg_read(void *opaque, hwaddr addr, unsigned size)
3590 {
3591     struct omap_lpg_s *s = opaque;
3592     int offset = addr & OMAP_MPUI_REG_MASK;
3593 
3594     if (size != 1) {
3595         return omap_badwidth_read8(opaque, addr);
3596     }
3597 
3598     switch (offset) {
3599     case 0x00:	/* LCR */
3600         return s->control;
3601 
3602     case 0x04:	/* PMR */
3603         return s->power;
3604     }
3605 
3606     OMAP_BAD_REG(addr);
3607     return 0;
3608 }
3609 
3610 static void omap_lpg_write(void *opaque, hwaddr addr,
3611                            uint64_t value, unsigned size)
3612 {
3613     struct omap_lpg_s *s = opaque;
3614     int offset = addr & OMAP_MPUI_REG_MASK;
3615 
3616     if (size != 1) {
3617         omap_badwidth_write8(opaque, addr, value);
3618         return;
3619     }
3620 
3621     switch (offset) {
3622     case 0x00:	/* LCR */
3623         if (~value & (1 << 6))					/* LPGRES */
3624             omap_lpg_reset(s);
3625         s->control = value & 0xff;
3626         omap_lpg_update(s);
3627         return;
3628 
3629     case 0x04:	/* PMR */
3630         s->power = value & 0x01;
3631         omap_lpg_update(s);
3632         return;
3633 
3634     default:
3635         OMAP_BAD_REG(addr);
3636         return;
3637     }
3638 }
3639 
3640 static const MemoryRegionOps omap_lpg_ops = {
3641     .read = omap_lpg_read,
3642     .write = omap_lpg_write,
3643     .endianness = DEVICE_NATIVE_ENDIAN,
3644 };
3645 
3646 static void omap_lpg_clk_update(void *opaque, int line, int on)
3647 {
3648     struct omap_lpg_s *s = opaque;
3649 
3650     s->clk = on;
3651     omap_lpg_update(s);
3652 }
3653 
3654 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3655                                         hwaddr base, omap_clk clk)
3656 {
3657     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3658 
3659     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3660 
3661     omap_lpg_reset(s);
3662 
3663     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3664     memory_region_add_subregion(system_memory, base, &s->iomem);
3665 
3666     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3667 
3668     return s;
3669 }
3670 
3671 /* MPUI Peripheral Bridge configuration */
3672 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3673                                   unsigned size)
3674 {
3675     if (size != 2) {
3676         return omap_badwidth_read16(opaque, addr);
3677     }
3678 
3679     if (addr == OMAP_MPUI_BASE)	/* CMR */
3680         return 0xfe4d;
3681 
3682     OMAP_BAD_REG(addr);
3683     return 0;
3684 }
3685 
3686 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3687                                uint64_t value, unsigned size)
3688 {
3689     /* FIXME: infinite loop */
3690     omap_badwidth_write16(opaque, addr, value);
3691 }
3692 
3693 static const MemoryRegionOps omap_mpui_io_ops = {
3694     .read = omap_mpui_io_read,
3695     .write = omap_mpui_io_write,
3696     .endianness = DEVICE_NATIVE_ENDIAN,
3697 };
3698 
3699 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3700                                struct omap_mpu_state_s *mpu)
3701 {
3702     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3703                           "omap-mpui-io", 0x7fff);
3704     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3705                                 &mpu->mpui_io_iomem);
3706 }
3707 
3708 /* General chip reset */
3709 static void omap1_mpu_reset(void *opaque)
3710 {
3711     struct omap_mpu_state_s *mpu = opaque;
3712 
3713     omap_dma_reset(mpu->dma);
3714     omap_mpu_timer_reset(mpu->timer[0]);
3715     omap_mpu_timer_reset(mpu->timer[1]);
3716     omap_mpu_timer_reset(mpu->timer[2]);
3717     omap_wd_timer_reset(mpu->wdt);
3718     omap_os_timer_reset(mpu->os_timer);
3719     omap_lcdc_reset(mpu->lcd);
3720     omap_ulpd_pm_reset(mpu);
3721     omap_pin_cfg_reset(mpu);
3722     omap_mpui_reset(mpu);
3723     omap_tipb_bridge_reset(mpu->private_tipb);
3724     omap_tipb_bridge_reset(mpu->public_tipb);
3725     omap_dpll_reset(mpu->dpll[0]);
3726     omap_dpll_reset(mpu->dpll[1]);
3727     omap_dpll_reset(mpu->dpll[2]);
3728     omap_uart_reset(mpu->uart[0]);
3729     omap_uart_reset(mpu->uart[1]);
3730     omap_uart_reset(mpu->uart[2]);
3731     omap_mmc_reset(mpu->mmc);
3732     omap_mpuio_reset(mpu->mpuio);
3733     omap_uwire_reset(mpu->microwire);
3734     omap_pwl_reset(mpu->pwl);
3735     omap_pwt_reset(mpu->pwt);
3736     omap_rtc_reset(mpu->rtc);
3737     omap_mcbsp_reset(mpu->mcbsp1);
3738     omap_mcbsp_reset(mpu->mcbsp2);
3739     omap_mcbsp_reset(mpu->mcbsp3);
3740     omap_lpg_reset(mpu->led[0]);
3741     omap_lpg_reset(mpu->led[1]);
3742     omap_clkm_reset(mpu);
3743     cpu_reset(CPU(mpu->cpu));
3744 }
3745 
3746 static const struct omap_map_s {
3747     hwaddr phys_dsp;
3748     hwaddr phys_mpu;
3749     uint32_t size;
3750     const char *name;
3751 } omap15xx_dsp_mm[] = {
3752     /* Strobe 0 */
3753     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3754     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3755     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3756     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3757     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3758     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3759     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3760     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3761     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3762     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3763     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3764     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3765     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3766     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3767     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3768     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3769     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3770     /* Strobe 1 */
3771     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3772 
3773     { 0 }
3774 };
3775 
3776 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3777                                    const struct omap_map_s *map)
3778 {
3779     MemoryRegion *io;
3780 
3781     for (; map->phys_dsp; map ++) {
3782         io = g_new(MemoryRegion, 1);
3783         memory_region_init_alias(io, NULL, map->name,
3784                                  system_memory, map->phys_mpu, map->size);
3785         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3786     }
3787 }
3788 
3789 void omap_mpu_wakeup(void *opaque, int irq, int req)
3790 {
3791     struct omap_mpu_state_s *mpu = opaque;
3792     CPUState *cpu = CPU(mpu->cpu);
3793 
3794     if (cpu->halted) {
3795         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3796     }
3797 }
3798 
3799 static const struct dma_irq_map omap1_dma_irq_map[] = {
3800     { 0, OMAP_INT_DMA_CH0_6 },
3801     { 0, OMAP_INT_DMA_CH1_7 },
3802     { 0, OMAP_INT_DMA_CH2_8 },
3803     { 0, OMAP_INT_DMA_CH3 },
3804     { 0, OMAP_INT_DMA_CH4 },
3805     { 0, OMAP_INT_DMA_CH5 },
3806     { 1, OMAP_INT_1610_DMA_CH6 },
3807     { 1, OMAP_INT_1610_DMA_CH7 },
3808     { 1, OMAP_INT_1610_DMA_CH8 },
3809     { 1, OMAP_INT_1610_DMA_CH9 },
3810     { 1, OMAP_INT_1610_DMA_CH10 },
3811     { 1, OMAP_INT_1610_DMA_CH11 },
3812     { 1, OMAP_INT_1610_DMA_CH12 },
3813     { 1, OMAP_INT_1610_DMA_CH13 },
3814     { 1, OMAP_INT_1610_DMA_CH14 },
3815     { 1, OMAP_INT_1610_DMA_CH15 }
3816 };
3817 
3818 /* DMA ports for OMAP1 */
3819 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3820                 hwaddr addr)
3821 {
3822     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3823 }
3824 
3825 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3826                 hwaddr addr)
3827 {
3828     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3829                              addr);
3830 }
3831 
3832 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3833                 hwaddr addr)
3834 {
3835     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3836 }
3837 
3838 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3839                 hwaddr addr)
3840 {
3841     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3842 }
3843 
3844 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3845                 hwaddr addr)
3846 {
3847     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3848 }
3849 
3850 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3851                 hwaddr addr)
3852 {
3853     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3854 }
3855 
3856 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3857                 const char *cpu_type)
3858 {
3859     int i;
3860     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3861     qemu_irq dma_irqs[6];
3862     DriveInfo *dinfo;
3863     SysBusDevice *busdev;
3864     MemoryRegion *system_memory = get_system_memory();
3865 
3866     /* Core */
3867     s->mpu_model = omap310;
3868     s->cpu = ARM_CPU(cpu_create(cpu_type));
3869     s->sdram_size = memory_region_size(dram);
3870     s->sram_size = OMAP15XX_SRAM_SIZE;
3871 
3872     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3873 
3874     /* Clocks */
3875     omap_clk_init(s);
3876 
3877     /* Memory-mapped stuff */
3878     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3879                            &error_fatal);
3880     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3881 
3882     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3883 
3884     s->ih[0] = qdev_new("omap-intc");
3885     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3886     omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
3887     busdev = SYS_BUS_DEVICE(s->ih[0]);
3888     sysbus_realize_and_unref(busdev, &error_fatal);
3889     sysbus_connect_irq(busdev, 0,
3890                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3891     sysbus_connect_irq(busdev, 1,
3892                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3893     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3894     s->ih[1] = qdev_new("omap-intc");
3895     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3896     omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
3897     busdev = SYS_BUS_DEVICE(s->ih[1]);
3898     sysbus_realize_and_unref(busdev, &error_fatal);
3899     sysbus_connect_irq(busdev, 0,
3900                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3901     /* The second interrupt controller's FIQ output is not wired up */
3902     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3903 
3904     for (i = 0; i < 6; i++) {
3905         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3906                                        omap1_dma_irq_map[i].intr);
3907     }
3908     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3909                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3910                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3911 
3912     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3913     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3914     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3915     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3916     s->port[local    ].addr_valid = omap_validate_local_addr;
3917     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3918 
3919     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3920     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3921                          OMAP_EMIFF_BASE, s->sdram_size);
3922     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3923                          OMAP_IMIF_BASE, s->sram_size);
3924 
3925     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3926                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3927                     omap_findclk(s, "mputim_ck"));
3928     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3929                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3930                     omap_findclk(s, "mputim_ck"));
3931     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3932                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3933                     omap_findclk(s, "mputim_ck"));
3934 
3935     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3936                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3937                     omap_findclk(s, "armwdt_ck"));
3938 
3939     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3940                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3941                     omap_findclk(s, "clk32-kHz"));
3942 
3943     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3944                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3945                             omap_dma_get_lcdch(s->dma),
3946                             omap_findclk(s, "lcd_ck"));
3947 
3948     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3949     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3950     omap_id_init(system_memory, s);
3951 
3952     omap_mpui_init(system_memory, 0xfffec900, s);
3953 
3954     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3955                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3956                     omap_findclk(s, "tipb_ck"));
3957     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3958                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3959                     omap_findclk(s, "tipb_ck"));
3960 
3961     omap_tcmi_init(system_memory, 0xfffecc00, s);
3962 
3963     s->uart[0] = omap_uart_init(0xfffb0000,
3964                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3965                     omap_findclk(s, "uart1_ck"),
3966                     omap_findclk(s, "uart1_ck"),
3967                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3968                     "uart1",
3969                     serial_hd(0));
3970     s->uart[1] = omap_uart_init(0xfffb0800,
3971                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3972                     omap_findclk(s, "uart2_ck"),
3973                     omap_findclk(s, "uart2_ck"),
3974                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3975                     "uart2",
3976                     serial_hd(0) ? serial_hd(1) : NULL);
3977     s->uart[2] = omap_uart_init(0xfffb9800,
3978                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3979                     omap_findclk(s, "uart3_ck"),
3980                     omap_findclk(s, "uart3_ck"),
3981                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3982                     "uart3",
3983                     serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3984 
3985     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3986                                 omap_findclk(s, "dpll1"));
3987     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3988                                 omap_findclk(s, "dpll2"));
3989     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3990                                 omap_findclk(s, "dpll3"));
3991 
3992     dinfo = drive_get(IF_SD, 0, 0);
3993     if (!dinfo && !qtest_enabled()) {
3994         warn_report("missing SecureDigital device");
3995     }
3996     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3997                            dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
3998                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3999                            &s->drq[OMAP_DMA_MMC_TX],
4000                     omap_findclk(s, "mmc_ck"));
4001 
4002     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4003                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4004                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4005                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4006 
4007     s->gpio = qdev_new("omap-gpio");
4008     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4009     omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
4010     sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
4011     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4012                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4013     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4014 
4015     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4016                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4017                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4018                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4019 
4020     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4021                            omap_findclk(s, "armxor_ck"));
4022     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4023                            omap_findclk(s, "armxor_ck"));
4024 
4025     s->i2c[0] = qdev_new("omap_i2c");
4026     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4027     omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
4028     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4029     sysbus_realize_and_unref(busdev, &error_fatal);
4030     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4031     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4032     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4033     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4034 
4035     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4036                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4037                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4038                     omap_findclk(s, "clk32-kHz"));
4039 
4040     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4041                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4042                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4043                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4044     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4045                                 qdev_get_gpio_in(s->ih[0],
4046                                                  OMAP_INT_310_McBSP2_TX),
4047                                 qdev_get_gpio_in(s->ih[0],
4048                                                  OMAP_INT_310_McBSP2_RX),
4049                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4050     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4051                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4052                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4053                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4054 
4055     s->led[0] = omap_lpg_init(system_memory,
4056                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4057     s->led[1] = omap_lpg_init(system_memory,
4058                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4059 
4060     /* Register mappings not currenlty implemented:
4061      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4062      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4063      * USB W2FC		fffb4000 - fffb47ff
4064      * Camera Interface	fffb6800 - fffb6fff
4065      * USB Host		fffba000 - fffba7ff
4066      * FAC		fffba800 - fffbafff
4067      * HDQ/1-Wire	fffbc000 - fffbc7ff
4068      * TIPB switches	fffbc800 - fffbcfff
4069      * Mailbox		fffcf000 - fffcf7ff
4070      * Local bus IF	fffec100 - fffec1ff
4071      * Local bus MMU	fffec200 - fffec2ff
4072      * DSP MMU		fffed200 - fffed2ff
4073      */
4074 
4075     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4076     omap_setup_mpui_io(system_memory, s);
4077 
4078     qemu_register_reset(omap1_mpu_reset, s);
4079 
4080     return s;
4081 }
4082