xref: /qemu/hw/arm/omap1.c (revision 6402cbbb)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "qemu-common.h"
23 #include "cpu.h"
24 #include "hw/boards.h"
25 #include "hw/hw.h"
26 #include "hw/arm/arm.h"
27 #include "hw/arm/omap.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/arm/soc_dma.h"
30 #include "sysemu/block-backend.h"
31 #include "sysemu/blockdev.h"
32 #include "qemu/range.h"
33 #include "hw/sysbus.h"
34 #include "qemu/cutils.h"
35 #include "qemu/bcd.h"
36 
37 /* Should signal the TCMI/GPMC */
38 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
39 {
40     uint8_t ret;
41 
42     OMAP_8B_REG(addr);
43     cpu_physical_memory_read(addr, &ret, 1);
44     return ret;
45 }
46 
47 void omap_badwidth_write8(void *opaque, hwaddr addr,
48                 uint32_t value)
49 {
50     uint8_t val8 = value;
51 
52     OMAP_8B_REG(addr);
53     cpu_physical_memory_write(addr, &val8, 1);
54 }
55 
56 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
57 {
58     uint16_t ret;
59 
60     OMAP_16B_REG(addr);
61     cpu_physical_memory_read(addr, &ret, 2);
62     return ret;
63 }
64 
65 void omap_badwidth_write16(void *opaque, hwaddr addr,
66                 uint32_t value)
67 {
68     uint16_t val16 = value;
69 
70     OMAP_16B_REG(addr);
71     cpu_physical_memory_write(addr, &val16, 2);
72 }
73 
74 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
75 {
76     uint32_t ret;
77 
78     OMAP_32B_REG(addr);
79     cpu_physical_memory_read(addr, &ret, 4);
80     return ret;
81 }
82 
83 void omap_badwidth_write32(void *opaque, hwaddr addr,
84                 uint32_t value)
85 {
86     OMAP_32B_REG(addr);
87     cpu_physical_memory_write(addr, &value, 4);
88 }
89 
90 /* MPU OS timers */
91 struct omap_mpu_timer_s {
92     MemoryRegion iomem;
93     qemu_irq irq;
94     omap_clk clk;
95     uint32_t val;
96     int64_t time;
97     QEMUTimer *timer;
98     QEMUBH *tick;
99     int64_t rate;
100     int it_ena;
101 
102     int enable;
103     int ptv;
104     int ar;
105     int st;
106     uint32_t reset_val;
107 };
108 
109 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
110 {
111     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
112 
113     if (timer->st && timer->enable && timer->rate)
114         return timer->val - muldiv64(distance >> (timer->ptv + 1),
115                                      timer->rate, NANOSECONDS_PER_SECOND);
116     else
117         return timer->val;
118 }
119 
120 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
121 {
122     timer->val = omap_timer_read(timer);
123     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
124 }
125 
126 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
127 {
128     int64_t expires;
129 
130     if (timer->enable && timer->st && timer->rate) {
131         timer->val = timer->reset_val;	/* Should skip this on clk enable */
132         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
133                            NANOSECONDS_PER_SECOND, timer->rate);
134 
135         /* If timer expiry would be sooner than in about 1 ms and
136          * auto-reload isn't set, then fire immediately.  This is a hack
137          * to make systems like PalmOS run in acceptable time.  PalmOS
138          * sets the interval to a very low value and polls the status bit
139          * in a busy loop when it wants to sleep just a couple of CPU
140          * ticks.  */
141         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
142             timer_mod(timer->timer, timer->time + expires);
143         } else {
144             qemu_bh_schedule(timer->tick);
145         }
146     } else
147         timer_del(timer->timer);
148 }
149 
150 static void omap_timer_fire(void *opaque)
151 {
152     struct omap_mpu_timer_s *timer = opaque;
153 
154     if (!timer->ar) {
155         timer->val = 0;
156         timer->st = 0;
157     }
158 
159     if (timer->it_ena)
160         /* Edge-triggered irq */
161         qemu_irq_pulse(timer->irq);
162 }
163 
164 static void omap_timer_tick(void *opaque)
165 {
166     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167 
168     omap_timer_sync(timer);
169     omap_timer_fire(timer);
170     omap_timer_update(timer);
171 }
172 
173 static void omap_timer_clk_update(void *opaque, int line, int on)
174 {
175     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
176 
177     omap_timer_sync(timer);
178     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
179     omap_timer_update(timer);
180 }
181 
182 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
183 {
184     omap_clk_adduser(timer->clk,
185                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
186     timer->rate = omap_clk_getrate(timer->clk);
187 }
188 
189 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
190                                     unsigned size)
191 {
192     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
193 
194     if (size != 4) {
195         return omap_badwidth_read32(opaque, addr);
196     }
197 
198     switch (addr) {
199     case 0x00:	/* CNTL_TIMER */
200         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
201 
202     case 0x04:	/* LOAD_TIM */
203         break;
204 
205     case 0x08:	/* READ_TIM */
206         return omap_timer_read(s);
207     }
208 
209     OMAP_BAD_REG(addr);
210     return 0;
211 }
212 
213 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
214                                  uint64_t value, unsigned size)
215 {
216     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
217 
218     if (size != 4) {
219         omap_badwidth_write32(opaque, addr, value);
220         return;
221     }
222 
223     switch (addr) {
224     case 0x00:	/* CNTL_TIMER */
225         omap_timer_sync(s);
226         s->enable = (value >> 5) & 1;
227         s->ptv = (value >> 2) & 7;
228         s->ar = (value >> 1) & 1;
229         s->st = value & 1;
230         omap_timer_update(s);
231         return;
232 
233     case 0x04:	/* LOAD_TIM */
234         s->reset_val = value;
235         return;
236 
237     case 0x08:	/* READ_TIM */
238         OMAP_RO_REG(addr);
239         break;
240 
241     default:
242         OMAP_BAD_REG(addr);
243     }
244 }
245 
246 static const MemoryRegionOps omap_mpu_timer_ops = {
247     .read = omap_mpu_timer_read,
248     .write = omap_mpu_timer_write,
249     .endianness = DEVICE_LITTLE_ENDIAN,
250 };
251 
252 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
253 {
254     timer_del(s->timer);
255     s->enable = 0;
256     s->reset_val = 31337;
257     s->val = 0;
258     s->ptv = 0;
259     s->ar = 0;
260     s->st = 0;
261     s->it_ena = 1;
262 }
263 
264 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
265                 hwaddr base,
266                 qemu_irq irq, omap_clk clk)
267 {
268     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
269 
270     s->irq = irq;
271     s->clk = clk;
272     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
273     s->tick = qemu_bh_new(omap_timer_fire, s);
274     omap_mpu_timer_reset(s);
275     omap_timer_clk_setup(s);
276 
277     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
278                           "omap-mpu-timer", 0x100);
279 
280     memory_region_add_subregion(system_memory, base, &s->iomem);
281 
282     return s;
283 }
284 
285 /* Watchdog timer */
286 struct omap_watchdog_timer_s {
287     struct omap_mpu_timer_s timer;
288     MemoryRegion iomem;
289     uint8_t last_wr;
290     int mode;
291     int free;
292     int reset;
293 };
294 
295 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
296                                    unsigned size)
297 {
298     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
299 
300     if (size != 2) {
301         return omap_badwidth_read16(opaque, addr);
302     }
303 
304     switch (addr) {
305     case 0x00:	/* CNTL_TIMER */
306         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
307                 (s->timer.st << 7) | (s->free << 1);
308 
309     case 0x04:	/* READ_TIMER */
310         return omap_timer_read(&s->timer);
311 
312     case 0x08:	/* TIMER_MODE */
313         return s->mode << 15;
314     }
315 
316     OMAP_BAD_REG(addr);
317     return 0;
318 }
319 
320 static void omap_wd_timer_write(void *opaque, hwaddr addr,
321                                 uint64_t value, unsigned size)
322 {
323     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
324 
325     if (size != 2) {
326         omap_badwidth_write16(opaque, addr, value);
327         return;
328     }
329 
330     switch (addr) {
331     case 0x00:	/* CNTL_TIMER */
332         omap_timer_sync(&s->timer);
333         s->timer.ptv = (value >> 9) & 7;
334         s->timer.ar = (value >> 8) & 1;
335         s->timer.st = (value >> 7) & 1;
336         s->free = (value >> 1) & 1;
337         omap_timer_update(&s->timer);
338         break;
339 
340     case 0x04:	/* LOAD_TIMER */
341         s->timer.reset_val = value & 0xffff;
342         break;
343 
344     case 0x08:	/* TIMER_MODE */
345         if (!s->mode && ((value >> 15) & 1))
346             omap_clk_get(s->timer.clk);
347         s->mode |= (value >> 15) & 1;
348         if (s->last_wr == 0xf5) {
349             if ((value & 0xff) == 0xa0) {
350                 if (s->mode) {
351                     s->mode = 0;
352                     omap_clk_put(s->timer.clk);
353                 }
354             } else {
355                 /* XXX: on T|E hardware somehow this has no effect,
356                  * on Zire 71 it works as specified.  */
357                 s->reset = 1;
358                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
359             }
360         }
361         s->last_wr = value & 0xff;
362         break;
363 
364     default:
365         OMAP_BAD_REG(addr);
366     }
367 }
368 
369 static const MemoryRegionOps omap_wd_timer_ops = {
370     .read = omap_wd_timer_read,
371     .write = omap_wd_timer_write,
372     .endianness = DEVICE_NATIVE_ENDIAN,
373 };
374 
375 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
376 {
377     timer_del(s->timer.timer);
378     if (!s->mode)
379         omap_clk_get(s->timer.clk);
380     s->mode = 1;
381     s->free = 1;
382     s->reset = 0;
383     s->timer.enable = 1;
384     s->timer.it_ena = 1;
385     s->timer.reset_val = 0xffff;
386     s->timer.val = 0;
387     s->timer.st = 0;
388     s->timer.ptv = 0;
389     s->timer.ar = 0;
390     omap_timer_update(&s->timer);
391 }
392 
393 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
394                 hwaddr base,
395                 qemu_irq irq, omap_clk clk)
396 {
397     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
398 
399     s->timer.irq = irq;
400     s->timer.clk = clk;
401     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
402     omap_wd_timer_reset(s);
403     omap_timer_clk_setup(&s->timer);
404 
405     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
406                           "omap-wd-timer", 0x100);
407     memory_region_add_subregion(memory, base, &s->iomem);
408 
409     return s;
410 }
411 
412 /* 32-kHz timer */
413 struct omap_32khz_timer_s {
414     struct omap_mpu_timer_s timer;
415     MemoryRegion iomem;
416 };
417 
418 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
419                                    unsigned size)
420 {
421     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
422     int offset = addr & OMAP_MPUI_REG_MASK;
423 
424     if (size != 4) {
425         return omap_badwidth_read32(opaque, addr);
426     }
427 
428     switch (offset) {
429     case 0x00:	/* TVR */
430         return s->timer.reset_val;
431 
432     case 0x04:	/* TCR */
433         return omap_timer_read(&s->timer);
434 
435     case 0x08:	/* CR */
436         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
437 
438     default:
439         break;
440     }
441     OMAP_BAD_REG(addr);
442     return 0;
443 }
444 
445 static void omap_os_timer_write(void *opaque, hwaddr addr,
446                                 uint64_t value, unsigned size)
447 {
448     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
449     int offset = addr & OMAP_MPUI_REG_MASK;
450 
451     if (size != 4) {
452         omap_badwidth_write32(opaque, addr, value);
453         return;
454     }
455 
456     switch (offset) {
457     case 0x00:	/* TVR */
458         s->timer.reset_val = value & 0x00ffffff;
459         break;
460 
461     case 0x04:	/* TCR */
462         OMAP_RO_REG(addr);
463         break;
464 
465     case 0x08:	/* CR */
466         s->timer.ar = (value >> 3) & 1;
467         s->timer.it_ena = (value >> 2) & 1;
468         if (s->timer.st != (value & 1) || (value & 2)) {
469             omap_timer_sync(&s->timer);
470             s->timer.enable = value & 1;
471             s->timer.st = value & 1;
472             omap_timer_update(&s->timer);
473         }
474         break;
475 
476     default:
477         OMAP_BAD_REG(addr);
478     }
479 }
480 
481 static const MemoryRegionOps omap_os_timer_ops = {
482     .read = omap_os_timer_read,
483     .write = omap_os_timer_write,
484     .endianness = DEVICE_NATIVE_ENDIAN,
485 };
486 
487 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
488 {
489     timer_del(s->timer.timer);
490     s->timer.enable = 0;
491     s->timer.it_ena = 0;
492     s->timer.reset_val = 0x00ffffff;
493     s->timer.val = 0;
494     s->timer.st = 0;
495     s->timer.ptv = 0;
496     s->timer.ar = 1;
497 }
498 
499 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
500                 hwaddr base,
501                 qemu_irq irq, omap_clk clk)
502 {
503     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
504 
505     s->timer.irq = irq;
506     s->timer.clk = clk;
507     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
508     omap_os_timer_reset(s);
509     omap_timer_clk_setup(&s->timer);
510 
511     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
512                           "omap-os-timer", 0x800);
513     memory_region_add_subregion(memory, base, &s->iomem);
514 
515     return s;
516 }
517 
518 /* Ultra Low-Power Device Module */
519 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
520                                   unsigned size)
521 {
522     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
523     uint16_t ret;
524 
525     if (size != 2) {
526         return omap_badwidth_read16(opaque, addr);
527     }
528 
529     switch (addr) {
530     case 0x14:	/* IT_STATUS */
531         ret = s->ulpd_pm_regs[addr >> 2];
532         s->ulpd_pm_regs[addr >> 2] = 0;
533         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
534         return ret;
535 
536     case 0x18:	/* Reserved */
537     case 0x1c:	/* Reserved */
538     case 0x20:	/* Reserved */
539     case 0x28:	/* Reserved */
540     case 0x2c:	/* Reserved */
541         OMAP_BAD_REG(addr);
542         /* fall through */
543     case 0x00:	/* COUNTER_32_LSB */
544     case 0x04:	/* COUNTER_32_MSB */
545     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
546     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
547     case 0x10:	/* GAUGING_CTRL */
548     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
549     case 0x30:	/* CLOCK_CTRL */
550     case 0x34:	/* SOFT_REQ */
551     case 0x38:	/* COUNTER_32_FIQ */
552     case 0x3c:	/* DPLL_CTRL */
553     case 0x40:	/* STATUS_REQ */
554         /* XXX: check clk::usecount state for every clock */
555     case 0x48:	/* LOCL_TIME */
556     case 0x4c:	/* APLL_CTRL */
557     case 0x50:	/* POWER_CTRL */
558         return s->ulpd_pm_regs[addr >> 2];
559     }
560 
561     OMAP_BAD_REG(addr);
562     return 0;
563 }
564 
565 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
566                 uint16_t diff, uint16_t value)
567 {
568     if (diff & (1 << 4))				/* USB_MCLK_EN */
569         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
570     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
571         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
572 }
573 
574 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
575                 uint16_t diff, uint16_t value)
576 {
577     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
578         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
579     if (diff & (1 << 1))				/* SOFT_COM_REQ */
580         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
581     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
582         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
583     if (diff & (1 << 3))				/* SOFT_USB_REQ */
584         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
585 }
586 
587 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
588                                uint64_t value, unsigned size)
589 {
590     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
591     int64_t now, ticks;
592     int div, mult;
593     static const int bypass_div[4] = { 1, 2, 4, 4 };
594     uint16_t diff;
595 
596     if (size != 2) {
597         omap_badwidth_write16(opaque, addr, value);
598         return;
599     }
600 
601     switch (addr) {
602     case 0x00:	/* COUNTER_32_LSB */
603     case 0x04:	/* COUNTER_32_MSB */
604     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
605     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
606     case 0x14:	/* IT_STATUS */
607     case 0x40:	/* STATUS_REQ */
608         OMAP_RO_REG(addr);
609         break;
610 
611     case 0x10:	/* GAUGING_CTRL */
612         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
613         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
614             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
615 
616             if (value & 1)
617                 s->ulpd_gauge_start = now;
618             else {
619                 now -= s->ulpd_gauge_start;
620 
621                 /* 32-kHz ticks */
622                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
623                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
624                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
625                 if (ticks >> 32)	/* OVERFLOW_32K */
626                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
627 
628                 /* High frequency ticks */
629                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
630                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
631                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
632                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
633                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
634 
635                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
636                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
637             }
638         }
639         s->ulpd_pm_regs[addr >> 2] = value;
640         break;
641 
642     case 0x18:	/* Reserved */
643     case 0x1c:	/* Reserved */
644     case 0x20:	/* Reserved */
645     case 0x28:	/* Reserved */
646     case 0x2c:	/* Reserved */
647         OMAP_BAD_REG(addr);
648         /* fall through */
649     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
650     case 0x38:	/* COUNTER_32_FIQ */
651     case 0x48:	/* LOCL_TIME */
652     case 0x50:	/* POWER_CTRL */
653         s->ulpd_pm_regs[addr >> 2] = value;
654         break;
655 
656     case 0x30:	/* CLOCK_CTRL */
657         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
658         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
659         omap_ulpd_clk_update(s, diff, value);
660         break;
661 
662     case 0x34:	/* SOFT_REQ */
663         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
664         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
665         omap_ulpd_req_update(s, diff, value);
666         break;
667 
668     case 0x3c:	/* DPLL_CTRL */
669         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
670          * omitted altogether, probably a typo.  */
671         /* This register has identical semantics with DPLL(1:3) control
672          * registers, see omap_dpll_write() */
673         diff = s->ulpd_pm_regs[addr >> 2] & value;
674         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
675         if (diff & (0x3ff << 2)) {
676             if (value & (1 << 4)) {			/* PLL_ENABLE */
677                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
678                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
679             } else {
680                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
681                 mult = 1;
682             }
683             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
684         }
685 
686         /* Enter the desired mode.  */
687         s->ulpd_pm_regs[addr >> 2] =
688                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
689                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
690 
691         /* Act as if the lock is restored.  */
692         s->ulpd_pm_regs[addr >> 2] |= 2;
693         break;
694 
695     case 0x4c:	/* APLL_CTRL */
696         diff = s->ulpd_pm_regs[addr >> 2] & value;
697         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
698         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
699             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
700                                     (value & (1 << 0)) ? "apll" : "dpll4"));
701         break;
702 
703     default:
704         OMAP_BAD_REG(addr);
705     }
706 }
707 
708 static const MemoryRegionOps omap_ulpd_pm_ops = {
709     .read = omap_ulpd_pm_read,
710     .write = omap_ulpd_pm_write,
711     .endianness = DEVICE_NATIVE_ENDIAN,
712 };
713 
714 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
715 {
716     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
717     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
718     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
719     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
720     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
721     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
722     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
723     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
724     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
725     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
726     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
727     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
728     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
729     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
730     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
731     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
732     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
733     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
734     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
735     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
736     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
737     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
738     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
739 }
740 
741 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
742                 hwaddr base,
743                 struct omap_mpu_state_s *mpu)
744 {
745     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
746                           "omap-ulpd-pm", 0x800);
747     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
748     omap_ulpd_pm_reset(mpu);
749 }
750 
751 /* OMAP Pin Configuration */
752 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
753                                   unsigned size)
754 {
755     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
756 
757     if (size != 4) {
758         return omap_badwidth_read32(opaque, addr);
759     }
760 
761     switch (addr) {
762     case 0x00:	/* FUNC_MUX_CTRL_0 */
763     case 0x04:	/* FUNC_MUX_CTRL_1 */
764     case 0x08:	/* FUNC_MUX_CTRL_2 */
765         return s->func_mux_ctrl[addr >> 2];
766 
767     case 0x0c:	/* COMP_MODE_CTRL_0 */
768         return s->comp_mode_ctrl[0];
769 
770     case 0x10:	/* FUNC_MUX_CTRL_3 */
771     case 0x14:	/* FUNC_MUX_CTRL_4 */
772     case 0x18:	/* FUNC_MUX_CTRL_5 */
773     case 0x1c:	/* FUNC_MUX_CTRL_6 */
774     case 0x20:	/* FUNC_MUX_CTRL_7 */
775     case 0x24:	/* FUNC_MUX_CTRL_8 */
776     case 0x28:	/* FUNC_MUX_CTRL_9 */
777     case 0x2c:	/* FUNC_MUX_CTRL_A */
778     case 0x30:	/* FUNC_MUX_CTRL_B */
779     case 0x34:	/* FUNC_MUX_CTRL_C */
780     case 0x38:	/* FUNC_MUX_CTRL_D */
781         return s->func_mux_ctrl[(addr >> 2) - 1];
782 
783     case 0x40:	/* PULL_DWN_CTRL_0 */
784     case 0x44:	/* PULL_DWN_CTRL_1 */
785     case 0x48:	/* PULL_DWN_CTRL_2 */
786     case 0x4c:	/* PULL_DWN_CTRL_3 */
787         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
788 
789     case 0x50:	/* GATE_INH_CTRL_0 */
790         return s->gate_inh_ctrl[0];
791 
792     case 0x60:	/* VOLTAGE_CTRL_0 */
793         return s->voltage_ctrl[0];
794 
795     case 0x70:	/* TEST_DBG_CTRL_0 */
796         return s->test_dbg_ctrl[0];
797 
798     case 0x80:	/* MOD_CONF_CTRL_0 */
799         return s->mod_conf_ctrl[0];
800     }
801 
802     OMAP_BAD_REG(addr);
803     return 0;
804 }
805 
806 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
807                 uint32_t diff, uint32_t value)
808 {
809     if (s->compat1509) {
810         if (diff & (1 << 9))			/* BLUETOOTH */
811             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
812                             (~value >> 9) & 1);
813         if (diff & (1 << 7))			/* USB.CLKO */
814             omap_clk_onoff(omap_findclk(s, "usb.clko"),
815                             (value >> 7) & 1);
816     }
817 }
818 
819 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
820                 uint32_t diff, uint32_t value)
821 {
822     if (s->compat1509) {
823         if (diff & (1U << 31)) {
824             /* MCBSP3_CLK_HIZ_DI */
825             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
826         }
827         if (diff & (1 << 1)) {
828             /* CLK32K */
829             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
830         }
831     }
832 }
833 
834 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
835                 uint32_t diff, uint32_t value)
836 {
837     if (diff & (1U << 31)) {
838         /* CONF_MOD_UART3_CLK_MODE_R */
839         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
840                           omap_findclk(s, ((value >> 31) & 1) ?
841                                        "ck_48m" : "armper_ck"));
842     }
843     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
844          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
845                          omap_findclk(s, ((value >> 30) & 1) ?
846                                  "ck_48m" : "armper_ck"));
847     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
848          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
849                          omap_findclk(s, ((value >> 29) & 1) ?
850                                  "ck_48m" : "armper_ck"));
851     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
852          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
853                          omap_findclk(s, ((value >> 23) & 1) ?
854                                  "ck_48m" : "armper_ck"));
855     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
856          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
857                          omap_findclk(s, ((value >> 12) & 1) ?
858                                  "ck_48m" : "armper_ck"));
859     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
860          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
861 }
862 
863 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
864                                uint64_t value, unsigned size)
865 {
866     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
867     uint32_t diff;
868 
869     if (size != 4) {
870         omap_badwidth_write32(opaque, addr, value);
871         return;
872     }
873 
874     switch (addr) {
875     case 0x00:	/* FUNC_MUX_CTRL_0 */
876         diff = s->func_mux_ctrl[addr >> 2] ^ value;
877         s->func_mux_ctrl[addr >> 2] = value;
878         omap_pin_funcmux0_update(s, diff, value);
879         return;
880 
881     case 0x04:	/* FUNC_MUX_CTRL_1 */
882         diff = s->func_mux_ctrl[addr >> 2] ^ value;
883         s->func_mux_ctrl[addr >> 2] = value;
884         omap_pin_funcmux1_update(s, diff, value);
885         return;
886 
887     case 0x08:	/* FUNC_MUX_CTRL_2 */
888         s->func_mux_ctrl[addr >> 2] = value;
889         return;
890 
891     case 0x0c:	/* COMP_MODE_CTRL_0 */
892         s->comp_mode_ctrl[0] = value;
893         s->compat1509 = (value != 0x0000eaef);
894         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
895         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
896         return;
897 
898     case 0x10:	/* FUNC_MUX_CTRL_3 */
899     case 0x14:	/* FUNC_MUX_CTRL_4 */
900     case 0x18:	/* FUNC_MUX_CTRL_5 */
901     case 0x1c:	/* FUNC_MUX_CTRL_6 */
902     case 0x20:	/* FUNC_MUX_CTRL_7 */
903     case 0x24:	/* FUNC_MUX_CTRL_8 */
904     case 0x28:	/* FUNC_MUX_CTRL_9 */
905     case 0x2c:	/* FUNC_MUX_CTRL_A */
906     case 0x30:	/* FUNC_MUX_CTRL_B */
907     case 0x34:	/* FUNC_MUX_CTRL_C */
908     case 0x38:	/* FUNC_MUX_CTRL_D */
909         s->func_mux_ctrl[(addr >> 2) - 1] = value;
910         return;
911 
912     case 0x40:	/* PULL_DWN_CTRL_0 */
913     case 0x44:	/* PULL_DWN_CTRL_1 */
914     case 0x48:	/* PULL_DWN_CTRL_2 */
915     case 0x4c:	/* PULL_DWN_CTRL_3 */
916         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
917         return;
918 
919     case 0x50:	/* GATE_INH_CTRL_0 */
920         s->gate_inh_ctrl[0] = value;
921         return;
922 
923     case 0x60:	/* VOLTAGE_CTRL_0 */
924         s->voltage_ctrl[0] = value;
925         return;
926 
927     case 0x70:	/* TEST_DBG_CTRL_0 */
928         s->test_dbg_ctrl[0] = value;
929         return;
930 
931     case 0x80:	/* MOD_CONF_CTRL_0 */
932         diff = s->mod_conf_ctrl[0] ^ value;
933         s->mod_conf_ctrl[0] = value;
934         omap_pin_modconf1_update(s, diff, value);
935         return;
936 
937     default:
938         OMAP_BAD_REG(addr);
939     }
940 }
941 
942 static const MemoryRegionOps omap_pin_cfg_ops = {
943     .read = omap_pin_cfg_read,
944     .write = omap_pin_cfg_write,
945     .endianness = DEVICE_NATIVE_ENDIAN,
946 };
947 
948 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
949 {
950     /* Start in Compatibility Mode.  */
951     mpu->compat1509 = 1;
952     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
953     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
954     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
955     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
956     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
957     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
958     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
959     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
960     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
961     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
962 }
963 
964 static void omap_pin_cfg_init(MemoryRegion *system_memory,
965                 hwaddr base,
966                 struct omap_mpu_state_s *mpu)
967 {
968     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
969                           "omap-pin-cfg", 0x800);
970     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
971     omap_pin_cfg_reset(mpu);
972 }
973 
974 /* Device Identification, Die Identification */
975 static uint64_t omap_id_read(void *opaque, hwaddr addr,
976                              unsigned size)
977 {
978     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
979 
980     if (size != 4) {
981         return omap_badwidth_read32(opaque, addr);
982     }
983 
984     switch (addr) {
985     case 0xfffe1800:	/* DIE_ID_LSB */
986         return 0xc9581f0e;
987     case 0xfffe1804:	/* DIE_ID_MSB */
988         return 0xa8858bfa;
989 
990     case 0xfffe2000:	/* PRODUCT_ID_LSB */
991         return 0x00aaaafc;
992     case 0xfffe2004:	/* PRODUCT_ID_MSB */
993         return 0xcafeb574;
994 
995     case 0xfffed400:	/* JTAG_ID_LSB */
996         switch (s->mpu_model) {
997         case omap310:
998             return 0x03310315;
999         case omap1510:
1000             return 0x03310115;
1001         default:
1002             hw_error("%s: bad mpu model\n", __FUNCTION__);
1003         }
1004         break;
1005 
1006     case 0xfffed404:	/* JTAG_ID_MSB */
1007         switch (s->mpu_model) {
1008         case omap310:
1009             return 0xfb57402f;
1010         case omap1510:
1011             return 0xfb47002f;
1012         default:
1013             hw_error("%s: bad mpu model\n", __FUNCTION__);
1014         }
1015         break;
1016     }
1017 
1018     OMAP_BAD_REG(addr);
1019     return 0;
1020 }
1021 
1022 static void omap_id_write(void *opaque, hwaddr addr,
1023                           uint64_t value, unsigned size)
1024 {
1025     if (size != 4) {
1026         omap_badwidth_write32(opaque, addr, value);
1027         return;
1028     }
1029 
1030     OMAP_BAD_REG(addr);
1031 }
1032 
1033 static const MemoryRegionOps omap_id_ops = {
1034     .read = omap_id_read,
1035     .write = omap_id_write,
1036     .endianness = DEVICE_NATIVE_ENDIAN,
1037 };
1038 
1039 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1040 {
1041     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1042                           "omap-id", 0x100000000ULL);
1043     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1044                              0xfffe1800, 0x800);
1045     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1046     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1047                              0xfffed400, 0x100);
1048     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1049     if (!cpu_is_omap15xx(mpu)) {
1050         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1051                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1052         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1053     }
1054 }
1055 
1056 /* MPUI Control (Dummy) */
1057 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1058                                unsigned size)
1059 {
1060     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1061 
1062     if (size != 4) {
1063         return omap_badwidth_read32(opaque, addr);
1064     }
1065 
1066     switch (addr) {
1067     case 0x00:	/* CTRL */
1068         return s->mpui_ctrl;
1069     case 0x04:	/* DEBUG_ADDR */
1070         return 0x01ffffff;
1071     case 0x08:	/* DEBUG_DATA */
1072         return 0xffffffff;
1073     case 0x0c:	/* DEBUG_FLAG */
1074         return 0x00000800;
1075     case 0x10:	/* STATUS */
1076         return 0x00000000;
1077 
1078     /* Not in OMAP310 */
1079     case 0x14:	/* DSP_STATUS */
1080     case 0x18:	/* DSP_BOOT_CONFIG */
1081         return 0x00000000;
1082     case 0x1c:	/* DSP_MPUI_CONFIG */
1083         return 0x0000ffff;
1084     }
1085 
1086     OMAP_BAD_REG(addr);
1087     return 0;
1088 }
1089 
1090 static void omap_mpui_write(void *opaque, hwaddr addr,
1091                             uint64_t value, unsigned size)
1092 {
1093     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1094 
1095     if (size != 4) {
1096         omap_badwidth_write32(opaque, addr, value);
1097         return;
1098     }
1099 
1100     switch (addr) {
1101     case 0x00:	/* CTRL */
1102         s->mpui_ctrl = value & 0x007fffff;
1103         break;
1104 
1105     case 0x04:	/* DEBUG_ADDR */
1106     case 0x08:	/* DEBUG_DATA */
1107     case 0x0c:	/* DEBUG_FLAG */
1108     case 0x10:	/* STATUS */
1109     /* Not in OMAP310 */
1110     case 0x14:	/* DSP_STATUS */
1111         OMAP_RO_REG(addr);
1112         break;
1113     case 0x18:	/* DSP_BOOT_CONFIG */
1114     case 0x1c:	/* DSP_MPUI_CONFIG */
1115         break;
1116 
1117     default:
1118         OMAP_BAD_REG(addr);
1119     }
1120 }
1121 
1122 static const MemoryRegionOps omap_mpui_ops = {
1123     .read = omap_mpui_read,
1124     .write = omap_mpui_write,
1125     .endianness = DEVICE_NATIVE_ENDIAN,
1126 };
1127 
1128 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1129 {
1130     s->mpui_ctrl = 0x0003ff1b;
1131 }
1132 
1133 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1134                 struct omap_mpu_state_s *mpu)
1135 {
1136     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1137                           "omap-mpui", 0x100);
1138     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1139 
1140     omap_mpui_reset(mpu);
1141 }
1142 
1143 /* TIPB Bridges */
1144 struct omap_tipb_bridge_s {
1145     qemu_irq abort;
1146     MemoryRegion iomem;
1147 
1148     int width_intr;
1149     uint16_t control;
1150     uint16_t alloc;
1151     uint16_t buffer;
1152     uint16_t enh_control;
1153 };
1154 
1155 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1156                                       unsigned size)
1157 {
1158     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1159 
1160     if (size < 2) {
1161         return omap_badwidth_read16(opaque, addr);
1162     }
1163 
1164     switch (addr) {
1165     case 0x00:	/* TIPB_CNTL */
1166         return s->control;
1167     case 0x04:	/* TIPB_BUS_ALLOC */
1168         return s->alloc;
1169     case 0x08:	/* MPU_TIPB_CNTL */
1170         return s->buffer;
1171     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1172         return s->enh_control;
1173     case 0x10:	/* ADDRESS_DBG */
1174     case 0x14:	/* DATA_DEBUG_LOW */
1175     case 0x18:	/* DATA_DEBUG_HIGH */
1176         return 0xffff;
1177     case 0x1c:	/* DEBUG_CNTR_SIG */
1178         return 0x00f8;
1179     }
1180 
1181     OMAP_BAD_REG(addr);
1182     return 0;
1183 }
1184 
1185 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1186                                    uint64_t value, unsigned size)
1187 {
1188     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1189 
1190     if (size < 2) {
1191         omap_badwidth_write16(opaque, addr, value);
1192         return;
1193     }
1194 
1195     switch (addr) {
1196     case 0x00:	/* TIPB_CNTL */
1197         s->control = value & 0xffff;
1198         break;
1199 
1200     case 0x04:	/* TIPB_BUS_ALLOC */
1201         s->alloc = value & 0x003f;
1202         break;
1203 
1204     case 0x08:	/* MPU_TIPB_CNTL */
1205         s->buffer = value & 0x0003;
1206         break;
1207 
1208     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1209         s->width_intr = !(value & 2);
1210         s->enh_control = value & 0x000f;
1211         break;
1212 
1213     case 0x10:	/* ADDRESS_DBG */
1214     case 0x14:	/* DATA_DEBUG_LOW */
1215     case 0x18:	/* DATA_DEBUG_HIGH */
1216     case 0x1c:	/* DEBUG_CNTR_SIG */
1217         OMAP_RO_REG(addr);
1218         break;
1219 
1220     default:
1221         OMAP_BAD_REG(addr);
1222     }
1223 }
1224 
1225 static const MemoryRegionOps omap_tipb_bridge_ops = {
1226     .read = omap_tipb_bridge_read,
1227     .write = omap_tipb_bridge_write,
1228     .endianness = DEVICE_NATIVE_ENDIAN,
1229 };
1230 
1231 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1232 {
1233     s->control = 0xffff;
1234     s->alloc = 0x0009;
1235     s->buffer = 0x0000;
1236     s->enh_control = 0x000f;
1237 }
1238 
1239 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1240     MemoryRegion *memory, hwaddr base,
1241     qemu_irq abort_irq, omap_clk clk)
1242 {
1243     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1244 
1245     s->abort = abort_irq;
1246     omap_tipb_bridge_reset(s);
1247 
1248     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1249                           "omap-tipb-bridge", 0x100);
1250     memory_region_add_subregion(memory, base, &s->iomem);
1251 
1252     return s;
1253 }
1254 
1255 /* Dummy Traffic Controller's Memory Interface */
1256 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1257                                unsigned size)
1258 {
1259     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1260     uint32_t ret;
1261 
1262     if (size != 4) {
1263         return omap_badwidth_read32(opaque, addr);
1264     }
1265 
1266     switch (addr) {
1267     case 0x00:	/* IMIF_PRIO */
1268     case 0x04:	/* EMIFS_PRIO */
1269     case 0x08:	/* EMIFF_PRIO */
1270     case 0x0c:	/* EMIFS_CONFIG */
1271     case 0x10:	/* EMIFS_CS0_CONFIG */
1272     case 0x14:	/* EMIFS_CS1_CONFIG */
1273     case 0x18:	/* EMIFS_CS2_CONFIG */
1274     case 0x1c:	/* EMIFS_CS3_CONFIG */
1275     case 0x24:	/* EMIFF_MRS */
1276     case 0x28:	/* TIMEOUT1 */
1277     case 0x2c:	/* TIMEOUT2 */
1278     case 0x30:	/* TIMEOUT3 */
1279     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1280     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1281         return s->tcmi_regs[addr >> 2];
1282 
1283     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1284         ret = s->tcmi_regs[addr >> 2];
1285         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1286         /* XXX: We can try using the VGA_DIRTY flag for this */
1287         return ret;
1288     }
1289 
1290     OMAP_BAD_REG(addr);
1291     return 0;
1292 }
1293 
1294 static void omap_tcmi_write(void *opaque, hwaddr addr,
1295                             uint64_t value, unsigned size)
1296 {
1297     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1298 
1299     if (size != 4) {
1300         omap_badwidth_write32(opaque, addr, value);
1301         return;
1302     }
1303 
1304     switch (addr) {
1305     case 0x00:	/* IMIF_PRIO */
1306     case 0x04:	/* EMIFS_PRIO */
1307     case 0x08:	/* EMIFF_PRIO */
1308     case 0x10:	/* EMIFS_CS0_CONFIG */
1309     case 0x14:	/* EMIFS_CS1_CONFIG */
1310     case 0x18:	/* EMIFS_CS2_CONFIG */
1311     case 0x1c:	/* EMIFS_CS3_CONFIG */
1312     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1313     case 0x24:	/* EMIFF_MRS */
1314     case 0x28:	/* TIMEOUT1 */
1315     case 0x2c:	/* TIMEOUT2 */
1316     case 0x30:	/* TIMEOUT3 */
1317     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1318     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1319         s->tcmi_regs[addr >> 2] = value;
1320         break;
1321     case 0x0c:	/* EMIFS_CONFIG */
1322         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1323         break;
1324 
1325     default:
1326         OMAP_BAD_REG(addr);
1327     }
1328 }
1329 
1330 static const MemoryRegionOps omap_tcmi_ops = {
1331     .read = omap_tcmi_read,
1332     .write = omap_tcmi_write,
1333     .endianness = DEVICE_NATIVE_ENDIAN,
1334 };
1335 
1336 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1337 {
1338     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1339     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1340     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1341     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1342     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1343     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1344     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1345     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1346     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1347     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1348     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1349     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1350     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1351     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1352     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1353 }
1354 
1355 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1356                 struct omap_mpu_state_s *mpu)
1357 {
1358     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1359                           "omap-tcmi", 0x100);
1360     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1361     omap_tcmi_reset(mpu);
1362 }
1363 
1364 /* Digital phase-locked loops control */
1365 struct dpll_ctl_s {
1366     MemoryRegion iomem;
1367     uint16_t mode;
1368     omap_clk dpll;
1369 };
1370 
1371 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1372                                unsigned size)
1373 {
1374     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1375 
1376     if (size != 2) {
1377         return omap_badwidth_read16(opaque, addr);
1378     }
1379 
1380     if (addr == 0x00)	/* CTL_REG */
1381         return s->mode;
1382 
1383     OMAP_BAD_REG(addr);
1384     return 0;
1385 }
1386 
1387 static void omap_dpll_write(void *opaque, hwaddr addr,
1388                             uint64_t value, unsigned size)
1389 {
1390     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1391     uint16_t diff;
1392     static const int bypass_div[4] = { 1, 2, 4, 4 };
1393     int div, mult;
1394 
1395     if (size != 2) {
1396         omap_badwidth_write16(opaque, addr, value);
1397         return;
1398     }
1399 
1400     if (addr == 0x00) {	/* CTL_REG */
1401         /* See omap_ulpd_pm_write() too */
1402         diff = s->mode & value;
1403         s->mode = value & 0x2fff;
1404         if (diff & (0x3ff << 2)) {
1405             if (value & (1 << 4)) {			/* PLL_ENABLE */
1406                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1407                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1408             } else {
1409                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1410                 mult = 1;
1411             }
1412             omap_clk_setrate(s->dpll, div, mult);
1413         }
1414 
1415         /* Enter the desired mode.  */
1416         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1417 
1418         /* Act as if the lock is restored.  */
1419         s->mode |= 2;
1420     } else {
1421         OMAP_BAD_REG(addr);
1422     }
1423 }
1424 
1425 static const MemoryRegionOps omap_dpll_ops = {
1426     .read = omap_dpll_read,
1427     .write = omap_dpll_write,
1428     .endianness = DEVICE_NATIVE_ENDIAN,
1429 };
1430 
1431 static void omap_dpll_reset(struct dpll_ctl_s *s)
1432 {
1433     s->mode = 0x2002;
1434     omap_clk_setrate(s->dpll, 1, 1);
1435 }
1436 
1437 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1438                            hwaddr base, omap_clk clk)
1439 {
1440     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1441     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1442 
1443     s->dpll = clk;
1444     omap_dpll_reset(s);
1445 
1446     memory_region_add_subregion(memory, base, &s->iomem);
1447     return s;
1448 }
1449 
1450 /* MPU Clock/Reset/Power Mode Control */
1451 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1452                                unsigned size)
1453 {
1454     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1455 
1456     if (size != 2) {
1457         return omap_badwidth_read16(opaque, addr);
1458     }
1459 
1460     switch (addr) {
1461     case 0x00:	/* ARM_CKCTL */
1462         return s->clkm.arm_ckctl;
1463 
1464     case 0x04:	/* ARM_IDLECT1 */
1465         return s->clkm.arm_idlect1;
1466 
1467     case 0x08:	/* ARM_IDLECT2 */
1468         return s->clkm.arm_idlect2;
1469 
1470     case 0x0c:	/* ARM_EWUPCT */
1471         return s->clkm.arm_ewupct;
1472 
1473     case 0x10:	/* ARM_RSTCT1 */
1474         return s->clkm.arm_rstct1;
1475 
1476     case 0x14:	/* ARM_RSTCT2 */
1477         return s->clkm.arm_rstct2;
1478 
1479     case 0x18:	/* ARM_SYSST */
1480         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1481 
1482     case 0x1c:	/* ARM_CKOUT1 */
1483         return s->clkm.arm_ckout1;
1484 
1485     case 0x20:	/* ARM_CKOUT2 */
1486         break;
1487     }
1488 
1489     OMAP_BAD_REG(addr);
1490     return 0;
1491 }
1492 
1493 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1494                 uint16_t diff, uint16_t value)
1495 {
1496     omap_clk clk;
1497 
1498     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1499         if (value & (1 << 14))
1500             /* Reserved */;
1501         else {
1502             clk = omap_findclk(s, "arminth_ck");
1503             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1504         }
1505     }
1506     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1507         clk = omap_findclk(s, "armtim_ck");
1508         if (value & (1 << 12))
1509             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1510         else
1511             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1512     }
1513     /* XXX: en_dspck */
1514     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1515         clk = omap_findclk(s, "dspmmu_ck");
1516         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1517     }
1518     if (diff & (3 << 8)) {				/* TCDIV */
1519         clk = omap_findclk(s, "tc_ck");
1520         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1521     }
1522     if (diff & (3 << 6)) {				/* DSPDIV */
1523         clk = omap_findclk(s, "dsp_ck");
1524         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1525     }
1526     if (diff & (3 << 4)) {				/* ARMDIV */
1527         clk = omap_findclk(s, "arm_ck");
1528         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1529     }
1530     if (diff & (3 << 2)) {				/* LCDDIV */
1531         clk = omap_findclk(s, "lcd_ck");
1532         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1533     }
1534     if (diff & (3 << 0)) {				/* PERDIV */
1535         clk = omap_findclk(s, "armper_ck");
1536         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1537     }
1538 }
1539 
1540 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1541                 uint16_t diff, uint16_t value)
1542 {
1543     omap_clk clk;
1544 
1545     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1546         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1547     }
1548     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1549         /* XXX: disable wakeup from IRQ */
1550         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1551     }
1552 
1553 #define SET_CANIDLE(clock, bit)				\
1554     if (diff & (1 << bit)) {				\
1555         clk = omap_findclk(s, clock);			\
1556         omap_clk_canidle(clk, (value >> bit) & 1);	\
1557     }
1558     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1559     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1560     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1561     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1562     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1563     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1564     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1565     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1566     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1567     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1568     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1569     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1570     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1571     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1572 }
1573 
1574 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1575                 uint16_t diff, uint16_t value)
1576 {
1577     omap_clk clk;
1578 
1579 #define SET_ONOFF(clock, bit)				\
1580     if (diff & (1 << bit)) {				\
1581         clk = omap_findclk(s, clock);			\
1582         omap_clk_onoff(clk, (value >> bit) & 1);	\
1583     }
1584     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1585     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1586     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1587     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1588     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1589     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1590     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1591     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1592     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1593     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1594     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1595 }
1596 
1597 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1598                 uint16_t diff, uint16_t value)
1599 {
1600     omap_clk clk;
1601 
1602     if (diff & (3 << 4)) {				/* TCLKOUT */
1603         clk = omap_findclk(s, "tclk_out");
1604         switch ((value >> 4) & 3) {
1605         case 1:
1606             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1607             omap_clk_onoff(clk, 1);
1608             break;
1609         case 2:
1610             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1611             omap_clk_onoff(clk, 1);
1612             break;
1613         default:
1614             omap_clk_onoff(clk, 0);
1615         }
1616     }
1617     if (diff & (3 << 2)) {				/* DCLKOUT */
1618         clk = omap_findclk(s, "dclk_out");
1619         switch ((value >> 2) & 3) {
1620         case 0:
1621             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1622             break;
1623         case 1:
1624             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1625             break;
1626         case 2:
1627             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1628             break;
1629         case 3:
1630             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1631             break;
1632         }
1633     }
1634     if (diff & (3 << 0)) {				/* ACLKOUT */
1635         clk = omap_findclk(s, "aclk_out");
1636         switch ((value >> 0) & 3) {
1637         case 1:
1638             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1639             omap_clk_onoff(clk, 1);
1640             break;
1641         case 2:
1642             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1643             omap_clk_onoff(clk, 1);
1644             break;
1645         case 3:
1646             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1647             omap_clk_onoff(clk, 1);
1648             break;
1649         default:
1650             omap_clk_onoff(clk, 0);
1651         }
1652     }
1653 }
1654 
1655 static void omap_clkm_write(void *opaque, hwaddr addr,
1656                             uint64_t value, unsigned size)
1657 {
1658     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1659     uint16_t diff;
1660     omap_clk clk;
1661     static const char *clkschemename[8] = {
1662         "fully synchronous", "fully asynchronous", "synchronous scalable",
1663         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1664     };
1665 
1666     if (size != 2) {
1667         omap_badwidth_write16(opaque, addr, value);
1668         return;
1669     }
1670 
1671     switch (addr) {
1672     case 0x00:	/* ARM_CKCTL */
1673         diff = s->clkm.arm_ckctl ^ value;
1674         s->clkm.arm_ckctl = value & 0x7fff;
1675         omap_clkm_ckctl_update(s, diff, value);
1676         return;
1677 
1678     case 0x04:	/* ARM_IDLECT1 */
1679         diff = s->clkm.arm_idlect1 ^ value;
1680         s->clkm.arm_idlect1 = value & 0x0fff;
1681         omap_clkm_idlect1_update(s, diff, value);
1682         return;
1683 
1684     case 0x08:	/* ARM_IDLECT2 */
1685         diff = s->clkm.arm_idlect2 ^ value;
1686         s->clkm.arm_idlect2 = value & 0x07ff;
1687         omap_clkm_idlect2_update(s, diff, value);
1688         return;
1689 
1690     case 0x0c:	/* ARM_EWUPCT */
1691         s->clkm.arm_ewupct = value & 0x003f;
1692         return;
1693 
1694     case 0x10:	/* ARM_RSTCT1 */
1695         diff = s->clkm.arm_rstct1 ^ value;
1696         s->clkm.arm_rstct1 = value & 0x0007;
1697         if (value & 9) {
1698             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1699             s->clkm.cold_start = 0xa;
1700         }
1701         if (diff & ~value & 4) {				/* DSP_RST */
1702             omap_mpui_reset(s);
1703             omap_tipb_bridge_reset(s->private_tipb);
1704             omap_tipb_bridge_reset(s->public_tipb);
1705         }
1706         if (diff & 2) {						/* DSP_EN */
1707             clk = omap_findclk(s, "dsp_ck");
1708             omap_clk_canidle(clk, (~value >> 1) & 1);
1709         }
1710         return;
1711 
1712     case 0x14:	/* ARM_RSTCT2 */
1713         s->clkm.arm_rstct2 = value & 0x0001;
1714         return;
1715 
1716     case 0x18:	/* ARM_SYSST */
1717         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1718             s->clkm.clocking_scheme = (value >> 11) & 7;
1719             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1720                             clkschemename[s->clkm.clocking_scheme]);
1721         }
1722         s->clkm.cold_start &= value & 0x3f;
1723         return;
1724 
1725     case 0x1c:	/* ARM_CKOUT1 */
1726         diff = s->clkm.arm_ckout1 ^ value;
1727         s->clkm.arm_ckout1 = value & 0x003f;
1728         omap_clkm_ckout1_update(s, diff, value);
1729         return;
1730 
1731     case 0x20:	/* ARM_CKOUT2 */
1732     default:
1733         OMAP_BAD_REG(addr);
1734     }
1735 }
1736 
1737 static const MemoryRegionOps omap_clkm_ops = {
1738     .read = omap_clkm_read,
1739     .write = omap_clkm_write,
1740     .endianness = DEVICE_NATIVE_ENDIAN,
1741 };
1742 
1743 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1744                                  unsigned size)
1745 {
1746     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1747     CPUState *cpu = CPU(s->cpu);
1748 
1749     if (size != 2) {
1750         return omap_badwidth_read16(opaque, addr);
1751     }
1752 
1753     switch (addr) {
1754     case 0x04:	/* DSP_IDLECT1 */
1755         return s->clkm.dsp_idlect1;
1756 
1757     case 0x08:	/* DSP_IDLECT2 */
1758         return s->clkm.dsp_idlect2;
1759 
1760     case 0x14:	/* DSP_RSTCT2 */
1761         return s->clkm.dsp_rstct2;
1762 
1763     case 0x18:	/* DSP_SYSST */
1764         cpu = CPU(s->cpu);
1765         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1766                 (cpu->halted << 6);      /* Quite useless... */
1767     }
1768 
1769     OMAP_BAD_REG(addr);
1770     return 0;
1771 }
1772 
1773 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1774                 uint16_t diff, uint16_t value)
1775 {
1776     omap_clk clk;
1777 
1778     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1779 }
1780 
1781 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1782                 uint16_t diff, uint16_t value)
1783 {
1784     omap_clk clk;
1785 
1786     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1787 }
1788 
1789 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1790                               uint64_t value, unsigned size)
1791 {
1792     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1793     uint16_t diff;
1794 
1795     if (size != 2) {
1796         omap_badwidth_write16(opaque, addr, value);
1797         return;
1798     }
1799 
1800     switch (addr) {
1801     case 0x04:	/* DSP_IDLECT1 */
1802         diff = s->clkm.dsp_idlect1 ^ value;
1803         s->clkm.dsp_idlect1 = value & 0x01f7;
1804         omap_clkdsp_idlect1_update(s, diff, value);
1805         break;
1806 
1807     case 0x08:	/* DSP_IDLECT2 */
1808         s->clkm.dsp_idlect2 = value & 0x0037;
1809         diff = s->clkm.dsp_idlect1 ^ value;
1810         omap_clkdsp_idlect2_update(s, diff, value);
1811         break;
1812 
1813     case 0x14:	/* DSP_RSTCT2 */
1814         s->clkm.dsp_rstct2 = value & 0x0001;
1815         break;
1816 
1817     case 0x18:	/* DSP_SYSST */
1818         s->clkm.cold_start &= value & 0x3f;
1819         break;
1820 
1821     default:
1822         OMAP_BAD_REG(addr);
1823     }
1824 }
1825 
1826 static const MemoryRegionOps omap_clkdsp_ops = {
1827     .read = omap_clkdsp_read,
1828     .write = omap_clkdsp_write,
1829     .endianness = DEVICE_NATIVE_ENDIAN,
1830 };
1831 
1832 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1833 {
1834     if (s->wdt && s->wdt->reset)
1835         s->clkm.cold_start = 0x6;
1836     s->clkm.clocking_scheme = 0;
1837     omap_clkm_ckctl_update(s, ~0, 0x3000);
1838     s->clkm.arm_ckctl = 0x3000;
1839     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1840     s->clkm.arm_idlect1 = 0x0400;
1841     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1842     s->clkm.arm_idlect2 = 0x0100;
1843     s->clkm.arm_ewupct = 0x003f;
1844     s->clkm.arm_rstct1 = 0x0000;
1845     s->clkm.arm_rstct2 = 0x0000;
1846     s->clkm.arm_ckout1 = 0x0015;
1847     s->clkm.dpll1_mode = 0x2002;
1848     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1849     s->clkm.dsp_idlect1 = 0x0040;
1850     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1851     s->clkm.dsp_idlect2 = 0x0000;
1852     s->clkm.dsp_rstct2 = 0x0000;
1853 }
1854 
1855 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1856                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1857 {
1858     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1859                           "omap-clkm", 0x100);
1860     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1861                           "omap-clkdsp", 0x1000);
1862 
1863     s->clkm.arm_idlect1 = 0x03ff;
1864     s->clkm.arm_idlect2 = 0x0100;
1865     s->clkm.dsp_idlect1 = 0x0002;
1866     omap_clkm_reset(s);
1867     s->clkm.cold_start = 0x3a;
1868 
1869     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1870     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1871 }
1872 
1873 /* MPU I/O */
1874 struct omap_mpuio_s {
1875     qemu_irq irq;
1876     qemu_irq kbd_irq;
1877     qemu_irq *in;
1878     qemu_irq handler[16];
1879     qemu_irq wakeup;
1880     MemoryRegion iomem;
1881 
1882     uint16_t inputs;
1883     uint16_t outputs;
1884     uint16_t dir;
1885     uint16_t edge;
1886     uint16_t mask;
1887     uint16_t ints;
1888 
1889     uint16_t debounce;
1890     uint16_t latch;
1891     uint8_t event;
1892 
1893     uint8_t buttons[5];
1894     uint8_t row_latch;
1895     uint8_t cols;
1896     int kbd_mask;
1897     int clk;
1898 };
1899 
1900 static void omap_mpuio_set(void *opaque, int line, int level)
1901 {
1902     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1903     uint16_t prev = s->inputs;
1904 
1905     if (level)
1906         s->inputs |= 1 << line;
1907     else
1908         s->inputs &= ~(1 << line);
1909 
1910     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1911         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1912             s->ints |= 1 << line;
1913             qemu_irq_raise(s->irq);
1914             /* TODO: wakeup */
1915         }
1916         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1917                 (s->event >> 1) == line)	/* PIN_SELECT */
1918             s->latch = s->inputs;
1919     }
1920 }
1921 
1922 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1923 {
1924     int i;
1925     uint8_t *row, rows = 0, cols = ~s->cols;
1926 
1927     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1928         if (*row & cols)
1929             rows |= i;
1930 
1931     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1932     s->row_latch = ~rows;
1933 }
1934 
1935 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1936                                 unsigned size)
1937 {
1938     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1939     int offset = addr & OMAP_MPUI_REG_MASK;
1940     uint16_t ret;
1941 
1942     if (size != 2) {
1943         return omap_badwidth_read16(opaque, addr);
1944     }
1945 
1946     switch (offset) {
1947     case 0x00:	/* INPUT_LATCH */
1948         return s->inputs;
1949 
1950     case 0x04:	/* OUTPUT_REG */
1951         return s->outputs;
1952 
1953     case 0x08:	/* IO_CNTL */
1954         return s->dir;
1955 
1956     case 0x10:	/* KBR_LATCH */
1957         return s->row_latch;
1958 
1959     case 0x14:	/* KBC_REG */
1960         return s->cols;
1961 
1962     case 0x18:	/* GPIO_EVENT_MODE_REG */
1963         return s->event;
1964 
1965     case 0x1c:	/* GPIO_INT_EDGE_REG */
1966         return s->edge;
1967 
1968     case 0x20:	/* KBD_INT */
1969         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1970 
1971     case 0x24:	/* GPIO_INT */
1972         ret = s->ints;
1973         s->ints &= s->mask;
1974         if (ret)
1975             qemu_irq_lower(s->irq);
1976         return ret;
1977 
1978     case 0x28:	/* KBD_MASKIT */
1979         return s->kbd_mask;
1980 
1981     case 0x2c:	/* GPIO_MASKIT */
1982         return s->mask;
1983 
1984     case 0x30:	/* GPIO_DEBOUNCING_REG */
1985         return s->debounce;
1986 
1987     case 0x34:	/* GPIO_LATCH_REG */
1988         return s->latch;
1989     }
1990 
1991     OMAP_BAD_REG(addr);
1992     return 0;
1993 }
1994 
1995 static void omap_mpuio_write(void *opaque, hwaddr addr,
1996                              uint64_t value, unsigned size)
1997 {
1998     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1999     int offset = addr & OMAP_MPUI_REG_MASK;
2000     uint16_t diff;
2001     int ln;
2002 
2003     if (size != 2) {
2004         omap_badwidth_write16(opaque, addr, value);
2005         return;
2006     }
2007 
2008     switch (offset) {
2009     case 0x04:	/* OUTPUT_REG */
2010         diff = (s->outputs ^ value) & ~s->dir;
2011         s->outputs = value;
2012         while ((ln = ctz32(diff)) != 32) {
2013             if (s->handler[ln])
2014                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2015             diff &= ~(1 << ln);
2016         }
2017         break;
2018 
2019     case 0x08:	/* IO_CNTL */
2020         diff = s->outputs & (s->dir ^ value);
2021         s->dir = value;
2022 
2023         value = s->outputs & ~s->dir;
2024         while ((ln = ctz32(diff)) != 32) {
2025             if (s->handler[ln])
2026                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2027             diff &= ~(1 << ln);
2028         }
2029         break;
2030 
2031     case 0x14:	/* KBC_REG */
2032         s->cols = value;
2033         omap_mpuio_kbd_update(s);
2034         break;
2035 
2036     case 0x18:	/* GPIO_EVENT_MODE_REG */
2037         s->event = value & 0x1f;
2038         break;
2039 
2040     case 0x1c:	/* GPIO_INT_EDGE_REG */
2041         s->edge = value;
2042         break;
2043 
2044     case 0x28:	/* KBD_MASKIT */
2045         s->kbd_mask = value & 1;
2046         omap_mpuio_kbd_update(s);
2047         break;
2048 
2049     case 0x2c:	/* GPIO_MASKIT */
2050         s->mask = value;
2051         break;
2052 
2053     case 0x30:	/* GPIO_DEBOUNCING_REG */
2054         s->debounce = value & 0x1ff;
2055         break;
2056 
2057     case 0x00:	/* INPUT_LATCH */
2058     case 0x10:	/* KBR_LATCH */
2059     case 0x20:	/* KBD_INT */
2060     case 0x24:	/* GPIO_INT */
2061     case 0x34:	/* GPIO_LATCH_REG */
2062         OMAP_RO_REG(addr);
2063         return;
2064 
2065     default:
2066         OMAP_BAD_REG(addr);
2067         return;
2068     }
2069 }
2070 
2071 static const MemoryRegionOps omap_mpuio_ops  = {
2072     .read = omap_mpuio_read,
2073     .write = omap_mpuio_write,
2074     .endianness = DEVICE_NATIVE_ENDIAN,
2075 };
2076 
2077 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2078 {
2079     s->inputs = 0;
2080     s->outputs = 0;
2081     s->dir = ~0;
2082     s->event = 0;
2083     s->edge = 0;
2084     s->kbd_mask = 0;
2085     s->mask = 0;
2086     s->debounce = 0;
2087     s->latch = 0;
2088     s->ints = 0;
2089     s->row_latch = 0x1f;
2090     s->clk = 1;
2091 }
2092 
2093 static void omap_mpuio_onoff(void *opaque, int line, int on)
2094 {
2095     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2096 
2097     s->clk = on;
2098     if (on)
2099         omap_mpuio_kbd_update(s);
2100 }
2101 
2102 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2103                 hwaddr base,
2104                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2105                 omap_clk clk)
2106 {
2107     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2108 
2109     s->irq = gpio_int;
2110     s->kbd_irq = kbd_int;
2111     s->wakeup = wakeup;
2112     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2113     omap_mpuio_reset(s);
2114 
2115     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2116                           "omap-mpuio", 0x800);
2117     memory_region_add_subregion(memory, base, &s->iomem);
2118 
2119     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2120 
2121     return s;
2122 }
2123 
2124 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2125 {
2126     return s->in;
2127 }
2128 
2129 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2130 {
2131     if (line >= 16 || line < 0)
2132         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2133     s->handler[line] = handler;
2134 }
2135 
2136 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2137 {
2138     if (row >= 5 || row < 0)
2139         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2140 
2141     if (down)
2142         s->buttons[row] |= 1 << col;
2143     else
2144         s->buttons[row] &= ~(1 << col);
2145 
2146     omap_mpuio_kbd_update(s);
2147 }
2148 
2149 /* MicroWire Interface */
2150 struct omap_uwire_s {
2151     MemoryRegion iomem;
2152     qemu_irq txirq;
2153     qemu_irq rxirq;
2154     qemu_irq txdrq;
2155 
2156     uint16_t txbuf;
2157     uint16_t rxbuf;
2158     uint16_t control;
2159     uint16_t setup[5];
2160 
2161     uWireSlave *chip[4];
2162 };
2163 
2164 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2165 {
2166     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2167     uWireSlave *slave = s->chip[chipselect];
2168 
2169     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2170         if (s->control & (1 << 12))			/* CS_CMD */
2171             if (slave && slave->send)
2172                 slave->send(slave->opaque,
2173                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2174         s->control &= ~(1 << 14);			/* CSRB */
2175         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2176          * a DRQ.  When is the level IRQ supposed to be reset?  */
2177     }
2178 
2179     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2180         if (s->control & (1 << 12))			/* CS_CMD */
2181             if (slave && slave->receive)
2182                 s->rxbuf = slave->receive(slave->opaque);
2183         s->control |= 1 << 15;				/* RDRB */
2184         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2185          * a DRQ.  When is the level IRQ supposed to be reset?  */
2186     }
2187 }
2188 
2189 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2190                                 unsigned size)
2191 {
2192     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2193     int offset = addr & OMAP_MPUI_REG_MASK;
2194 
2195     if (size != 2) {
2196         return omap_badwidth_read16(opaque, addr);
2197     }
2198 
2199     switch (offset) {
2200     case 0x00:	/* RDR */
2201         s->control &= ~(1 << 15);			/* RDRB */
2202         return s->rxbuf;
2203 
2204     case 0x04:	/* CSR */
2205         return s->control;
2206 
2207     case 0x08:	/* SR1 */
2208         return s->setup[0];
2209     case 0x0c:	/* SR2 */
2210         return s->setup[1];
2211     case 0x10:	/* SR3 */
2212         return s->setup[2];
2213     case 0x14:	/* SR4 */
2214         return s->setup[3];
2215     case 0x18:	/* SR5 */
2216         return s->setup[4];
2217     }
2218 
2219     OMAP_BAD_REG(addr);
2220     return 0;
2221 }
2222 
2223 static void omap_uwire_write(void *opaque, hwaddr addr,
2224                              uint64_t value, unsigned size)
2225 {
2226     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2227     int offset = addr & OMAP_MPUI_REG_MASK;
2228 
2229     if (size != 2) {
2230         omap_badwidth_write16(opaque, addr, value);
2231         return;
2232     }
2233 
2234     switch (offset) {
2235     case 0x00:	/* TDR */
2236         s->txbuf = value;				/* TD */
2237         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2238                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2239                          (s->control & (1 << 12)))) {	/* CS_CMD */
2240             s->control |= 1 << 14;			/* CSRB */
2241             omap_uwire_transfer_start(s);
2242         }
2243         break;
2244 
2245     case 0x04:	/* CSR */
2246         s->control = value & 0x1fff;
2247         if (value & (1 << 13))				/* START */
2248             omap_uwire_transfer_start(s);
2249         break;
2250 
2251     case 0x08:	/* SR1 */
2252         s->setup[0] = value & 0x003f;
2253         break;
2254 
2255     case 0x0c:	/* SR2 */
2256         s->setup[1] = value & 0x0fc0;
2257         break;
2258 
2259     case 0x10:	/* SR3 */
2260         s->setup[2] = value & 0x0003;
2261         break;
2262 
2263     case 0x14:	/* SR4 */
2264         s->setup[3] = value & 0x0001;
2265         break;
2266 
2267     case 0x18:	/* SR5 */
2268         s->setup[4] = value & 0x000f;
2269         break;
2270 
2271     default:
2272         OMAP_BAD_REG(addr);
2273         return;
2274     }
2275 }
2276 
2277 static const MemoryRegionOps omap_uwire_ops = {
2278     .read = omap_uwire_read,
2279     .write = omap_uwire_write,
2280     .endianness = DEVICE_NATIVE_ENDIAN,
2281 };
2282 
2283 static void omap_uwire_reset(struct omap_uwire_s *s)
2284 {
2285     s->control = 0;
2286     s->setup[0] = 0;
2287     s->setup[1] = 0;
2288     s->setup[2] = 0;
2289     s->setup[3] = 0;
2290     s->setup[4] = 0;
2291 }
2292 
2293 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2294                                             hwaddr base,
2295                                             qemu_irq txirq, qemu_irq rxirq,
2296                                             qemu_irq dma,
2297                                             omap_clk clk)
2298 {
2299     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2300 
2301     s->txirq = txirq;
2302     s->rxirq = rxirq;
2303     s->txdrq = dma;
2304     omap_uwire_reset(s);
2305 
2306     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2307     memory_region_add_subregion(system_memory, base, &s->iomem);
2308 
2309     return s;
2310 }
2311 
2312 void omap_uwire_attach(struct omap_uwire_s *s,
2313                 uWireSlave *slave, int chipselect)
2314 {
2315     if (chipselect < 0 || chipselect > 3) {
2316         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2317         exit(-1);
2318     }
2319 
2320     s->chip[chipselect] = slave;
2321 }
2322 
2323 /* Pseudonoise Pulse-Width Light Modulator */
2324 struct omap_pwl_s {
2325     MemoryRegion iomem;
2326     uint8_t output;
2327     uint8_t level;
2328     uint8_t enable;
2329     int clk;
2330 };
2331 
2332 static void omap_pwl_update(struct omap_pwl_s *s)
2333 {
2334     int output = (s->clk && s->enable) ? s->level : 0;
2335 
2336     if (output != s->output) {
2337         s->output = output;
2338         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2339     }
2340 }
2341 
2342 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2343                               unsigned size)
2344 {
2345     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2346     int offset = addr & OMAP_MPUI_REG_MASK;
2347 
2348     if (size != 1) {
2349         return omap_badwidth_read8(opaque, addr);
2350     }
2351 
2352     switch (offset) {
2353     case 0x00:	/* PWL_LEVEL */
2354         return s->level;
2355     case 0x04:	/* PWL_CTRL */
2356         return s->enable;
2357     }
2358     OMAP_BAD_REG(addr);
2359     return 0;
2360 }
2361 
2362 static void omap_pwl_write(void *opaque, hwaddr addr,
2363                            uint64_t value, unsigned size)
2364 {
2365     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2366     int offset = addr & OMAP_MPUI_REG_MASK;
2367 
2368     if (size != 1) {
2369         omap_badwidth_write8(opaque, addr, value);
2370         return;
2371     }
2372 
2373     switch (offset) {
2374     case 0x00:	/* PWL_LEVEL */
2375         s->level = value;
2376         omap_pwl_update(s);
2377         break;
2378     case 0x04:	/* PWL_CTRL */
2379         s->enable = value & 1;
2380         omap_pwl_update(s);
2381         break;
2382     default:
2383         OMAP_BAD_REG(addr);
2384         return;
2385     }
2386 }
2387 
2388 static const MemoryRegionOps omap_pwl_ops = {
2389     .read = omap_pwl_read,
2390     .write = omap_pwl_write,
2391     .endianness = DEVICE_NATIVE_ENDIAN,
2392 };
2393 
2394 static void omap_pwl_reset(struct omap_pwl_s *s)
2395 {
2396     s->output = 0;
2397     s->level = 0;
2398     s->enable = 0;
2399     s->clk = 1;
2400     omap_pwl_update(s);
2401 }
2402 
2403 static void omap_pwl_clk_update(void *opaque, int line, int on)
2404 {
2405     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2406 
2407     s->clk = on;
2408     omap_pwl_update(s);
2409 }
2410 
2411 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2412                                         hwaddr base,
2413                                         omap_clk clk)
2414 {
2415     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2416 
2417     omap_pwl_reset(s);
2418 
2419     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2420                           "omap-pwl", 0x800);
2421     memory_region_add_subregion(system_memory, base, &s->iomem);
2422 
2423     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2424     return s;
2425 }
2426 
2427 /* Pulse-Width Tone module */
2428 struct omap_pwt_s {
2429     MemoryRegion iomem;
2430     uint8_t frc;
2431     uint8_t vrc;
2432     uint8_t gcr;
2433     omap_clk clk;
2434 };
2435 
2436 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2437                               unsigned size)
2438 {
2439     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2440     int offset = addr & OMAP_MPUI_REG_MASK;
2441 
2442     if (size != 1) {
2443         return omap_badwidth_read8(opaque, addr);
2444     }
2445 
2446     switch (offset) {
2447     case 0x00:	/* FRC */
2448         return s->frc;
2449     case 0x04:	/* VCR */
2450         return s->vrc;
2451     case 0x08:	/* GCR */
2452         return s->gcr;
2453     }
2454     OMAP_BAD_REG(addr);
2455     return 0;
2456 }
2457 
2458 static void omap_pwt_write(void *opaque, hwaddr addr,
2459                            uint64_t value, unsigned size)
2460 {
2461     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2462     int offset = addr & OMAP_MPUI_REG_MASK;
2463 
2464     if (size != 1) {
2465         omap_badwidth_write8(opaque, addr, value);
2466         return;
2467     }
2468 
2469     switch (offset) {
2470     case 0x00:	/* FRC */
2471         s->frc = value & 0x3f;
2472         break;
2473     case 0x04:	/* VRC */
2474         if ((value ^ s->vrc) & 1) {
2475             if (value & 1)
2476                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2477                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2478                                 ((omap_clk_getrate(s->clk) >> 3) /
2479                                  /* Pre-multiplexer divider */
2480                                  ((s->gcr & 2) ? 1 : 154) /
2481                                  /* Octave multiplexer */
2482                                  (2 << (value & 3)) *
2483                                  /* 101/107 divider */
2484                                  ((value & (1 << 2)) ? 101 : 107) *
2485                                  /*  49/55 divider */
2486                                  ((value & (1 << 3)) ?  49 : 55) *
2487                                  /*  50/63 divider */
2488                                  ((value & (1 << 4)) ?  50 : 63) *
2489                                  /*  80/127 divider */
2490                                  ((value & (1 << 5)) ?  80 : 127) /
2491                                  (107 * 55 * 63 * 127)));
2492             else
2493                 printf("%s: silence!\n", __FUNCTION__);
2494         }
2495         s->vrc = value & 0x7f;
2496         break;
2497     case 0x08:	/* GCR */
2498         s->gcr = value & 3;
2499         break;
2500     default:
2501         OMAP_BAD_REG(addr);
2502         return;
2503     }
2504 }
2505 
2506 static const MemoryRegionOps omap_pwt_ops = {
2507     .read =omap_pwt_read,
2508     .write = omap_pwt_write,
2509     .endianness = DEVICE_NATIVE_ENDIAN,
2510 };
2511 
2512 static void omap_pwt_reset(struct omap_pwt_s *s)
2513 {
2514     s->frc = 0;
2515     s->vrc = 0;
2516     s->gcr = 0;
2517 }
2518 
2519 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2520                                         hwaddr base,
2521                                         omap_clk clk)
2522 {
2523     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2524     s->clk = clk;
2525     omap_pwt_reset(s);
2526 
2527     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2528                           "omap-pwt", 0x800);
2529     memory_region_add_subregion(system_memory, base, &s->iomem);
2530     return s;
2531 }
2532 
2533 /* Real-time Clock module */
2534 struct omap_rtc_s {
2535     MemoryRegion iomem;
2536     qemu_irq irq;
2537     qemu_irq alarm;
2538     QEMUTimer *clk;
2539 
2540     uint8_t interrupts;
2541     uint8_t status;
2542     int16_t comp_reg;
2543     int running;
2544     int pm_am;
2545     int auto_comp;
2546     int round;
2547     struct tm alarm_tm;
2548     time_t alarm_ti;
2549 
2550     struct tm current_tm;
2551     time_t ti;
2552     uint64_t tick;
2553 };
2554 
2555 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2556 {
2557     /* s->alarm is level-triggered */
2558     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2559 }
2560 
2561 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2562 {
2563     s->alarm_ti = mktimegm(&s->alarm_tm);
2564     if (s->alarm_ti == -1)
2565         printf("%s: conversion failed\n", __FUNCTION__);
2566 }
2567 
2568 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2569                               unsigned size)
2570 {
2571     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2572     int offset = addr & OMAP_MPUI_REG_MASK;
2573     uint8_t i;
2574 
2575     if (size != 1) {
2576         return omap_badwidth_read8(opaque, addr);
2577     }
2578 
2579     switch (offset) {
2580     case 0x00:	/* SECONDS_REG */
2581         return to_bcd(s->current_tm.tm_sec);
2582 
2583     case 0x04:	/* MINUTES_REG */
2584         return to_bcd(s->current_tm.tm_min);
2585 
2586     case 0x08:	/* HOURS_REG */
2587         if (s->pm_am)
2588             return ((s->current_tm.tm_hour > 11) << 7) |
2589                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2590         else
2591             return to_bcd(s->current_tm.tm_hour);
2592 
2593     case 0x0c:	/* DAYS_REG */
2594         return to_bcd(s->current_tm.tm_mday);
2595 
2596     case 0x10:	/* MONTHS_REG */
2597         return to_bcd(s->current_tm.tm_mon + 1);
2598 
2599     case 0x14:	/* YEARS_REG */
2600         return to_bcd(s->current_tm.tm_year % 100);
2601 
2602     case 0x18:	/* WEEK_REG */
2603         return s->current_tm.tm_wday;
2604 
2605     case 0x20:	/* ALARM_SECONDS_REG */
2606         return to_bcd(s->alarm_tm.tm_sec);
2607 
2608     case 0x24:	/* ALARM_MINUTES_REG */
2609         return to_bcd(s->alarm_tm.tm_min);
2610 
2611     case 0x28:	/* ALARM_HOURS_REG */
2612         if (s->pm_am)
2613             return ((s->alarm_tm.tm_hour > 11) << 7) |
2614                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2615         else
2616             return to_bcd(s->alarm_tm.tm_hour);
2617 
2618     case 0x2c:	/* ALARM_DAYS_REG */
2619         return to_bcd(s->alarm_tm.tm_mday);
2620 
2621     case 0x30:	/* ALARM_MONTHS_REG */
2622         return to_bcd(s->alarm_tm.tm_mon + 1);
2623 
2624     case 0x34:	/* ALARM_YEARS_REG */
2625         return to_bcd(s->alarm_tm.tm_year % 100);
2626 
2627     case 0x40:	/* RTC_CTRL_REG */
2628         return (s->pm_am << 3) | (s->auto_comp << 2) |
2629                 (s->round << 1) | s->running;
2630 
2631     case 0x44:	/* RTC_STATUS_REG */
2632         i = s->status;
2633         s->status &= ~0x3d;
2634         return i;
2635 
2636     case 0x48:	/* RTC_INTERRUPTS_REG */
2637         return s->interrupts;
2638 
2639     case 0x4c:	/* RTC_COMP_LSB_REG */
2640         return ((uint16_t) s->comp_reg) & 0xff;
2641 
2642     case 0x50:	/* RTC_COMP_MSB_REG */
2643         return ((uint16_t) s->comp_reg) >> 8;
2644     }
2645 
2646     OMAP_BAD_REG(addr);
2647     return 0;
2648 }
2649 
2650 static void omap_rtc_write(void *opaque, hwaddr addr,
2651                            uint64_t value, unsigned size)
2652 {
2653     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2654     int offset = addr & OMAP_MPUI_REG_MASK;
2655     struct tm new_tm;
2656     time_t ti[2];
2657 
2658     if (size != 1) {
2659         omap_badwidth_write8(opaque, addr, value);
2660         return;
2661     }
2662 
2663     switch (offset) {
2664     case 0x00:	/* SECONDS_REG */
2665 #ifdef ALMDEBUG
2666         printf("RTC SEC_REG <-- %02x\n", value);
2667 #endif
2668         s->ti -= s->current_tm.tm_sec;
2669         s->ti += from_bcd(value);
2670         return;
2671 
2672     case 0x04:	/* MINUTES_REG */
2673 #ifdef ALMDEBUG
2674         printf("RTC MIN_REG <-- %02x\n", value);
2675 #endif
2676         s->ti -= s->current_tm.tm_min * 60;
2677         s->ti += from_bcd(value) * 60;
2678         return;
2679 
2680     case 0x08:	/* HOURS_REG */
2681 #ifdef ALMDEBUG
2682         printf("RTC HRS_REG <-- %02x\n", value);
2683 #endif
2684         s->ti -= s->current_tm.tm_hour * 3600;
2685         if (s->pm_am) {
2686             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2687             s->ti += ((value >> 7) & 1) * 43200;
2688         } else
2689             s->ti += from_bcd(value & 0x3f) * 3600;
2690         return;
2691 
2692     case 0x0c:	/* DAYS_REG */
2693 #ifdef ALMDEBUG
2694         printf("RTC DAY_REG <-- %02x\n", value);
2695 #endif
2696         s->ti -= s->current_tm.tm_mday * 86400;
2697         s->ti += from_bcd(value) * 86400;
2698         return;
2699 
2700     case 0x10:	/* MONTHS_REG */
2701 #ifdef ALMDEBUG
2702         printf("RTC MTH_REG <-- %02x\n", value);
2703 #endif
2704         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2705         new_tm.tm_mon = from_bcd(value);
2706         ti[0] = mktimegm(&s->current_tm);
2707         ti[1] = mktimegm(&new_tm);
2708 
2709         if (ti[0] != -1 && ti[1] != -1) {
2710             s->ti -= ti[0];
2711             s->ti += ti[1];
2712         } else {
2713             /* A less accurate version */
2714             s->ti -= s->current_tm.tm_mon * 2592000;
2715             s->ti += from_bcd(value) * 2592000;
2716         }
2717         return;
2718 
2719     case 0x14:	/* YEARS_REG */
2720 #ifdef ALMDEBUG
2721         printf("RTC YRS_REG <-- %02x\n", value);
2722 #endif
2723         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2724         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2725         ti[0] = mktimegm(&s->current_tm);
2726         ti[1] = mktimegm(&new_tm);
2727 
2728         if (ti[0] != -1 && ti[1] != -1) {
2729             s->ti -= ti[0];
2730             s->ti += ti[1];
2731         } else {
2732             /* A less accurate version */
2733             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2734             s->ti += (time_t)from_bcd(value) * 31536000;
2735         }
2736         return;
2737 
2738     case 0x18:	/* WEEK_REG */
2739         return;	/* Ignored */
2740 
2741     case 0x20:	/* ALARM_SECONDS_REG */
2742 #ifdef ALMDEBUG
2743         printf("ALM SEC_REG <-- %02x\n", value);
2744 #endif
2745         s->alarm_tm.tm_sec = from_bcd(value);
2746         omap_rtc_alarm_update(s);
2747         return;
2748 
2749     case 0x24:	/* ALARM_MINUTES_REG */
2750 #ifdef ALMDEBUG
2751         printf("ALM MIN_REG <-- %02x\n", value);
2752 #endif
2753         s->alarm_tm.tm_min = from_bcd(value);
2754         omap_rtc_alarm_update(s);
2755         return;
2756 
2757     case 0x28:	/* ALARM_HOURS_REG */
2758 #ifdef ALMDEBUG
2759         printf("ALM HRS_REG <-- %02x\n", value);
2760 #endif
2761         if (s->pm_am)
2762             s->alarm_tm.tm_hour =
2763                     ((from_bcd(value & 0x3f)) % 12) +
2764                     ((value >> 7) & 1) * 12;
2765         else
2766             s->alarm_tm.tm_hour = from_bcd(value);
2767         omap_rtc_alarm_update(s);
2768         return;
2769 
2770     case 0x2c:	/* ALARM_DAYS_REG */
2771 #ifdef ALMDEBUG
2772         printf("ALM DAY_REG <-- %02x\n", value);
2773 #endif
2774         s->alarm_tm.tm_mday = from_bcd(value);
2775         omap_rtc_alarm_update(s);
2776         return;
2777 
2778     case 0x30:	/* ALARM_MONTHS_REG */
2779 #ifdef ALMDEBUG
2780         printf("ALM MON_REG <-- %02x\n", value);
2781 #endif
2782         s->alarm_tm.tm_mon = from_bcd(value);
2783         omap_rtc_alarm_update(s);
2784         return;
2785 
2786     case 0x34:	/* ALARM_YEARS_REG */
2787 #ifdef ALMDEBUG
2788         printf("ALM YRS_REG <-- %02x\n", value);
2789 #endif
2790         s->alarm_tm.tm_year = from_bcd(value);
2791         omap_rtc_alarm_update(s);
2792         return;
2793 
2794     case 0x40:	/* RTC_CTRL_REG */
2795 #ifdef ALMDEBUG
2796         printf("RTC CONTROL <-- %02x\n", value);
2797 #endif
2798         s->pm_am = (value >> 3) & 1;
2799         s->auto_comp = (value >> 2) & 1;
2800         s->round = (value >> 1) & 1;
2801         s->running = value & 1;
2802         s->status &= 0xfd;
2803         s->status |= s->running << 1;
2804         return;
2805 
2806     case 0x44:	/* RTC_STATUS_REG */
2807 #ifdef ALMDEBUG
2808         printf("RTC STATUSL <-- %02x\n", value);
2809 #endif
2810         s->status &= ~((value & 0xc0) ^ 0x80);
2811         omap_rtc_interrupts_update(s);
2812         return;
2813 
2814     case 0x48:	/* RTC_INTERRUPTS_REG */
2815 #ifdef ALMDEBUG
2816         printf("RTC INTRS <-- %02x\n", value);
2817 #endif
2818         s->interrupts = value;
2819         return;
2820 
2821     case 0x4c:	/* RTC_COMP_LSB_REG */
2822 #ifdef ALMDEBUG
2823         printf("RTC COMPLSB <-- %02x\n", value);
2824 #endif
2825         s->comp_reg &= 0xff00;
2826         s->comp_reg |= 0x00ff & value;
2827         return;
2828 
2829     case 0x50:	/* RTC_COMP_MSB_REG */
2830 #ifdef ALMDEBUG
2831         printf("RTC COMPMSB <-- %02x\n", value);
2832 #endif
2833         s->comp_reg &= 0x00ff;
2834         s->comp_reg |= 0xff00 & (value << 8);
2835         return;
2836 
2837     default:
2838         OMAP_BAD_REG(addr);
2839         return;
2840     }
2841 }
2842 
2843 static const MemoryRegionOps omap_rtc_ops = {
2844     .read = omap_rtc_read,
2845     .write = omap_rtc_write,
2846     .endianness = DEVICE_NATIVE_ENDIAN,
2847 };
2848 
2849 static void omap_rtc_tick(void *opaque)
2850 {
2851     struct omap_rtc_s *s = opaque;
2852 
2853     if (s->round) {
2854         /* Round to nearest full minute.  */
2855         if (s->current_tm.tm_sec < 30)
2856             s->ti -= s->current_tm.tm_sec;
2857         else
2858             s->ti += 60 - s->current_tm.tm_sec;
2859 
2860         s->round = 0;
2861     }
2862 
2863     localtime_r(&s->ti, &s->current_tm);
2864 
2865     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2866         s->status |= 0x40;
2867         omap_rtc_interrupts_update(s);
2868     }
2869 
2870     if (s->interrupts & 0x04)
2871         switch (s->interrupts & 3) {
2872         case 0:
2873             s->status |= 0x04;
2874             qemu_irq_pulse(s->irq);
2875             break;
2876         case 1:
2877             if (s->current_tm.tm_sec)
2878                 break;
2879             s->status |= 0x08;
2880             qemu_irq_pulse(s->irq);
2881             break;
2882         case 2:
2883             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2884                 break;
2885             s->status |= 0x10;
2886             qemu_irq_pulse(s->irq);
2887             break;
2888         case 3:
2889             if (s->current_tm.tm_sec ||
2890                             s->current_tm.tm_min || s->current_tm.tm_hour)
2891                 break;
2892             s->status |= 0x20;
2893             qemu_irq_pulse(s->irq);
2894             break;
2895         }
2896 
2897     /* Move on */
2898     if (s->running)
2899         s->ti ++;
2900     s->tick += 1000;
2901 
2902     /*
2903      * Every full hour add a rough approximation of the compensation
2904      * register to the 32kHz Timer (which drives the RTC) value.
2905      */
2906     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2907         s->tick += s->comp_reg * 1000 / 32768;
2908 
2909     timer_mod(s->clk, s->tick);
2910 }
2911 
2912 static void omap_rtc_reset(struct omap_rtc_s *s)
2913 {
2914     struct tm tm;
2915 
2916     s->interrupts = 0;
2917     s->comp_reg = 0;
2918     s->running = 0;
2919     s->pm_am = 0;
2920     s->auto_comp = 0;
2921     s->round = 0;
2922     s->tick = qemu_clock_get_ms(rtc_clock);
2923     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2924     s->alarm_tm.tm_mday = 0x01;
2925     s->status = 1 << 7;
2926     qemu_get_timedate(&tm, 0);
2927     s->ti = mktimegm(&tm);
2928 
2929     omap_rtc_alarm_update(s);
2930     omap_rtc_tick(s);
2931 }
2932 
2933 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2934                                         hwaddr base,
2935                                         qemu_irq timerirq, qemu_irq alarmirq,
2936                                         omap_clk clk)
2937 {
2938     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2939 
2940     s->irq = timerirq;
2941     s->alarm = alarmirq;
2942     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2943 
2944     omap_rtc_reset(s);
2945 
2946     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2947                           "omap-rtc", 0x800);
2948     memory_region_add_subregion(system_memory, base, &s->iomem);
2949 
2950     return s;
2951 }
2952 
2953 /* Multi-channel Buffered Serial Port interfaces */
2954 struct omap_mcbsp_s {
2955     MemoryRegion iomem;
2956     qemu_irq txirq;
2957     qemu_irq rxirq;
2958     qemu_irq txdrq;
2959     qemu_irq rxdrq;
2960 
2961     uint16_t spcr[2];
2962     uint16_t rcr[2];
2963     uint16_t xcr[2];
2964     uint16_t srgr[2];
2965     uint16_t mcr[2];
2966     uint16_t pcr;
2967     uint16_t rcer[8];
2968     uint16_t xcer[8];
2969     int tx_rate;
2970     int rx_rate;
2971     int tx_req;
2972     int rx_req;
2973 
2974     I2SCodec *codec;
2975     QEMUTimer *source_timer;
2976     QEMUTimer *sink_timer;
2977 };
2978 
2979 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2980 {
2981     int irq;
2982 
2983     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2984     case 0:
2985         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2986         break;
2987     case 3:
2988         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2989         break;
2990     default:
2991         irq = 0;
2992         break;
2993     }
2994 
2995     if (irq)
2996         qemu_irq_pulse(s->rxirq);
2997 
2998     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2999     case 0:
3000         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
3001         break;
3002     case 3:
3003         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3004         break;
3005     default:
3006         irq = 0;
3007         break;
3008     }
3009 
3010     if (irq)
3011         qemu_irq_pulse(s->txirq);
3012 }
3013 
3014 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3015 {
3016     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3017         s->spcr[0] |= 1 << 2;				/* RFULL */
3018     s->spcr[0] |= 1 << 1;				/* RRDY */
3019     qemu_irq_raise(s->rxdrq);
3020     omap_mcbsp_intr_update(s);
3021 }
3022 
3023 static void omap_mcbsp_source_tick(void *opaque)
3024 {
3025     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3026     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3027 
3028     if (!s->rx_rate)
3029         return;
3030     if (s->rx_req)
3031         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3032 
3033     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3034 
3035     omap_mcbsp_rx_newdata(s);
3036     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3037                    NANOSECONDS_PER_SECOND);
3038 }
3039 
3040 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3041 {
3042     if (!s->codec || !s->codec->rts)
3043         omap_mcbsp_source_tick(s);
3044     else if (s->codec->in.len) {
3045         s->rx_req = s->codec->in.len;
3046         omap_mcbsp_rx_newdata(s);
3047     }
3048 }
3049 
3050 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3051 {
3052     timer_del(s->source_timer);
3053 }
3054 
3055 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3056 {
3057     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3058     qemu_irq_lower(s->rxdrq);
3059     omap_mcbsp_intr_update(s);
3060 }
3061 
3062 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3063 {
3064     s->spcr[1] |= 1 << 1;				/* XRDY */
3065     qemu_irq_raise(s->txdrq);
3066     omap_mcbsp_intr_update(s);
3067 }
3068 
3069 static void omap_mcbsp_sink_tick(void *opaque)
3070 {
3071     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3072     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3073 
3074     if (!s->tx_rate)
3075         return;
3076     if (s->tx_req)
3077         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3078 
3079     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3080 
3081     omap_mcbsp_tx_newdata(s);
3082     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3083                    NANOSECONDS_PER_SECOND);
3084 }
3085 
3086 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3087 {
3088     if (!s->codec || !s->codec->cts)
3089         omap_mcbsp_sink_tick(s);
3090     else if (s->codec->out.size) {
3091         s->tx_req = s->codec->out.size;
3092         omap_mcbsp_tx_newdata(s);
3093     }
3094 }
3095 
3096 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3097 {
3098     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3099     qemu_irq_lower(s->txdrq);
3100     omap_mcbsp_intr_update(s);
3101     if (s->codec && s->codec->cts)
3102         s->codec->tx_swallow(s->codec->opaque);
3103 }
3104 
3105 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3106 {
3107     s->tx_req = 0;
3108     omap_mcbsp_tx_done(s);
3109     timer_del(s->sink_timer);
3110 }
3111 
3112 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3113 {
3114     int prev_rx_rate, prev_tx_rate;
3115     int rx_rate = 0, tx_rate = 0;
3116     int cpu_rate = 1500000;	/* XXX */
3117 
3118     /* TODO: check CLKSTP bit */
3119     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3120         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3121             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3122                             (s->pcr & (1 << 8))) {	/* CLKRM */
3123                 if (~s->pcr & (1 << 7))			/* SCLKME */
3124                     rx_rate = cpu_rate /
3125                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3126             } else
3127                 if (s->codec)
3128                     rx_rate = s->codec->rx_rate;
3129         }
3130 
3131         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3132             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3133                             (s->pcr & (1 << 9))) {	/* CLKXM */
3134                 if (~s->pcr & (1 << 7))			/* SCLKME */
3135                     tx_rate = cpu_rate /
3136                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3137             } else
3138                 if (s->codec)
3139                     tx_rate = s->codec->tx_rate;
3140         }
3141     }
3142     prev_tx_rate = s->tx_rate;
3143     prev_rx_rate = s->rx_rate;
3144     s->tx_rate = tx_rate;
3145     s->rx_rate = rx_rate;
3146 
3147     if (s->codec)
3148         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3149 
3150     if (!prev_tx_rate && tx_rate)
3151         omap_mcbsp_tx_start(s);
3152     else if (s->tx_rate && !tx_rate)
3153         omap_mcbsp_tx_stop(s);
3154 
3155     if (!prev_rx_rate && rx_rate)
3156         omap_mcbsp_rx_start(s);
3157     else if (prev_tx_rate && !tx_rate)
3158         omap_mcbsp_rx_stop(s);
3159 }
3160 
3161 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3162                                 unsigned size)
3163 {
3164     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3165     int offset = addr & OMAP_MPUI_REG_MASK;
3166     uint16_t ret;
3167 
3168     if (size != 2) {
3169         return omap_badwidth_read16(opaque, addr);
3170     }
3171 
3172     switch (offset) {
3173     case 0x00:	/* DRR2 */
3174         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3175             return 0x0000;
3176         /* Fall through.  */
3177     case 0x02:	/* DRR1 */
3178         if (s->rx_req < 2) {
3179             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3180             omap_mcbsp_rx_done(s);
3181         } else {
3182             s->tx_req -= 2;
3183             if (s->codec && s->codec->in.len >= 2) {
3184                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3185                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3186                 s->codec->in.len -= 2;
3187             } else
3188                 ret = 0x0000;
3189             if (!s->tx_req)
3190                 omap_mcbsp_rx_done(s);
3191             return ret;
3192         }
3193         return 0x0000;
3194 
3195     case 0x04:	/* DXR2 */
3196     case 0x06:	/* DXR1 */
3197         return 0x0000;
3198 
3199     case 0x08:	/* SPCR2 */
3200         return s->spcr[1];
3201     case 0x0a:	/* SPCR1 */
3202         return s->spcr[0];
3203     case 0x0c:	/* RCR2 */
3204         return s->rcr[1];
3205     case 0x0e:	/* RCR1 */
3206         return s->rcr[0];
3207     case 0x10:	/* XCR2 */
3208         return s->xcr[1];
3209     case 0x12:	/* XCR1 */
3210         return s->xcr[0];
3211     case 0x14:	/* SRGR2 */
3212         return s->srgr[1];
3213     case 0x16:	/* SRGR1 */
3214         return s->srgr[0];
3215     case 0x18:	/* MCR2 */
3216         return s->mcr[1];
3217     case 0x1a:	/* MCR1 */
3218         return s->mcr[0];
3219     case 0x1c:	/* RCERA */
3220         return s->rcer[0];
3221     case 0x1e:	/* RCERB */
3222         return s->rcer[1];
3223     case 0x20:	/* XCERA */
3224         return s->xcer[0];
3225     case 0x22:	/* XCERB */
3226         return s->xcer[1];
3227     case 0x24:	/* PCR0 */
3228         return s->pcr;
3229     case 0x26:	/* RCERC */
3230         return s->rcer[2];
3231     case 0x28:	/* RCERD */
3232         return s->rcer[3];
3233     case 0x2a:	/* XCERC */
3234         return s->xcer[2];
3235     case 0x2c:	/* XCERD */
3236         return s->xcer[3];
3237     case 0x2e:	/* RCERE */
3238         return s->rcer[4];
3239     case 0x30:	/* RCERF */
3240         return s->rcer[5];
3241     case 0x32:	/* XCERE */
3242         return s->xcer[4];
3243     case 0x34:	/* XCERF */
3244         return s->xcer[5];
3245     case 0x36:	/* RCERG */
3246         return s->rcer[6];
3247     case 0x38:	/* RCERH */
3248         return s->rcer[7];
3249     case 0x3a:	/* XCERG */
3250         return s->xcer[6];
3251     case 0x3c:	/* XCERH */
3252         return s->xcer[7];
3253     }
3254 
3255     OMAP_BAD_REG(addr);
3256     return 0;
3257 }
3258 
3259 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3260                 uint32_t value)
3261 {
3262     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3263     int offset = addr & OMAP_MPUI_REG_MASK;
3264 
3265     switch (offset) {
3266     case 0x00:	/* DRR2 */
3267     case 0x02:	/* DRR1 */
3268         OMAP_RO_REG(addr);
3269         return;
3270 
3271     case 0x04:	/* DXR2 */
3272         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3273             return;
3274         /* Fall through.  */
3275     case 0x06:	/* DXR1 */
3276         if (s->tx_req > 1) {
3277             s->tx_req -= 2;
3278             if (s->codec && s->codec->cts) {
3279                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3280                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3281             }
3282             if (s->tx_req < 2)
3283                 omap_mcbsp_tx_done(s);
3284         } else
3285             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3286         return;
3287 
3288     case 0x08:	/* SPCR2 */
3289         s->spcr[1] &= 0x0002;
3290         s->spcr[1] |= 0x03f9 & value;
3291         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3292         if (~value & 1)					/* XRST */
3293             s->spcr[1] &= ~6;
3294         omap_mcbsp_req_update(s);
3295         return;
3296     case 0x0a:	/* SPCR1 */
3297         s->spcr[0] &= 0x0006;
3298         s->spcr[0] |= 0xf8f9 & value;
3299         if (value & (1 << 15))				/* DLB */
3300             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3301         if (~value & 1) {				/* RRST */
3302             s->spcr[0] &= ~6;
3303             s->rx_req = 0;
3304             omap_mcbsp_rx_done(s);
3305         }
3306         omap_mcbsp_req_update(s);
3307         return;
3308 
3309     case 0x0c:	/* RCR2 */
3310         s->rcr[1] = value & 0xffff;
3311         return;
3312     case 0x0e:	/* RCR1 */
3313         s->rcr[0] = value & 0x7fe0;
3314         return;
3315     case 0x10:	/* XCR2 */
3316         s->xcr[1] = value & 0xffff;
3317         return;
3318     case 0x12:	/* XCR1 */
3319         s->xcr[0] = value & 0x7fe0;
3320         return;
3321     case 0x14:	/* SRGR2 */
3322         s->srgr[1] = value & 0xffff;
3323         omap_mcbsp_req_update(s);
3324         return;
3325     case 0x16:	/* SRGR1 */
3326         s->srgr[0] = value & 0xffff;
3327         omap_mcbsp_req_update(s);
3328         return;
3329     case 0x18:	/* MCR2 */
3330         s->mcr[1] = value & 0x03e3;
3331         if (value & 3)					/* XMCM */
3332             printf("%s: Tx channel selection mode enable attempt\n",
3333                             __FUNCTION__);
3334         return;
3335     case 0x1a:	/* MCR1 */
3336         s->mcr[0] = value & 0x03e1;
3337         if (value & 1)					/* RMCM */
3338             printf("%s: Rx channel selection mode enable attempt\n",
3339                             __FUNCTION__);
3340         return;
3341     case 0x1c:	/* RCERA */
3342         s->rcer[0] = value & 0xffff;
3343         return;
3344     case 0x1e:	/* RCERB */
3345         s->rcer[1] = value & 0xffff;
3346         return;
3347     case 0x20:	/* XCERA */
3348         s->xcer[0] = value & 0xffff;
3349         return;
3350     case 0x22:	/* XCERB */
3351         s->xcer[1] = value & 0xffff;
3352         return;
3353     case 0x24:	/* PCR0 */
3354         s->pcr = value & 0x7faf;
3355         return;
3356     case 0x26:	/* RCERC */
3357         s->rcer[2] = value & 0xffff;
3358         return;
3359     case 0x28:	/* RCERD */
3360         s->rcer[3] = value & 0xffff;
3361         return;
3362     case 0x2a:	/* XCERC */
3363         s->xcer[2] = value & 0xffff;
3364         return;
3365     case 0x2c:	/* XCERD */
3366         s->xcer[3] = value & 0xffff;
3367         return;
3368     case 0x2e:	/* RCERE */
3369         s->rcer[4] = value & 0xffff;
3370         return;
3371     case 0x30:	/* RCERF */
3372         s->rcer[5] = value & 0xffff;
3373         return;
3374     case 0x32:	/* XCERE */
3375         s->xcer[4] = value & 0xffff;
3376         return;
3377     case 0x34:	/* XCERF */
3378         s->xcer[5] = value & 0xffff;
3379         return;
3380     case 0x36:	/* RCERG */
3381         s->rcer[6] = value & 0xffff;
3382         return;
3383     case 0x38:	/* RCERH */
3384         s->rcer[7] = value & 0xffff;
3385         return;
3386     case 0x3a:	/* XCERG */
3387         s->xcer[6] = value & 0xffff;
3388         return;
3389     case 0x3c:	/* XCERH */
3390         s->xcer[7] = value & 0xffff;
3391         return;
3392     }
3393 
3394     OMAP_BAD_REG(addr);
3395 }
3396 
3397 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3398                 uint32_t value)
3399 {
3400     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3401     int offset = addr & OMAP_MPUI_REG_MASK;
3402 
3403     if (offset == 0x04) {				/* DXR */
3404         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3405             return;
3406         if (s->tx_req > 3) {
3407             s->tx_req -= 4;
3408             if (s->codec && s->codec->cts) {
3409                 s->codec->out.fifo[s->codec->out.len ++] =
3410                         (value >> 24) & 0xff;
3411                 s->codec->out.fifo[s->codec->out.len ++] =
3412                         (value >> 16) & 0xff;
3413                 s->codec->out.fifo[s->codec->out.len ++] =
3414                         (value >> 8) & 0xff;
3415                 s->codec->out.fifo[s->codec->out.len ++] =
3416                         (value >> 0) & 0xff;
3417             }
3418             if (s->tx_req < 4)
3419                 omap_mcbsp_tx_done(s);
3420         } else
3421             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3422         return;
3423     }
3424 
3425     omap_badwidth_write16(opaque, addr, value);
3426 }
3427 
3428 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3429                              uint64_t value, unsigned size)
3430 {
3431     switch (size) {
3432     case 2:
3433         omap_mcbsp_writeh(opaque, addr, value);
3434         break;
3435     case 4:
3436         omap_mcbsp_writew(opaque, addr, value);
3437         break;
3438     default:
3439         omap_badwidth_write16(opaque, addr, value);
3440     }
3441 }
3442 
3443 static const MemoryRegionOps omap_mcbsp_ops = {
3444     .read = omap_mcbsp_read,
3445     .write = omap_mcbsp_write,
3446     .endianness = DEVICE_NATIVE_ENDIAN,
3447 };
3448 
3449 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3450 {
3451     memset(&s->spcr, 0, sizeof(s->spcr));
3452     memset(&s->rcr, 0, sizeof(s->rcr));
3453     memset(&s->xcr, 0, sizeof(s->xcr));
3454     s->srgr[0] = 0x0001;
3455     s->srgr[1] = 0x2000;
3456     memset(&s->mcr, 0, sizeof(s->mcr));
3457     memset(&s->pcr, 0, sizeof(s->pcr));
3458     memset(&s->rcer, 0, sizeof(s->rcer));
3459     memset(&s->xcer, 0, sizeof(s->xcer));
3460     s->tx_req = 0;
3461     s->rx_req = 0;
3462     s->tx_rate = 0;
3463     s->rx_rate = 0;
3464     timer_del(s->source_timer);
3465     timer_del(s->sink_timer);
3466 }
3467 
3468 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3469                                             hwaddr base,
3470                                             qemu_irq txirq, qemu_irq rxirq,
3471                                             qemu_irq *dma, omap_clk clk)
3472 {
3473     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3474 
3475     s->txirq = txirq;
3476     s->rxirq = rxirq;
3477     s->txdrq = dma[0];
3478     s->rxdrq = dma[1];
3479     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3480     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3481     omap_mcbsp_reset(s);
3482 
3483     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3484     memory_region_add_subregion(system_memory, base, &s->iomem);
3485 
3486     return s;
3487 }
3488 
3489 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3490 {
3491     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3492 
3493     if (s->rx_rate) {
3494         s->rx_req = s->codec->in.len;
3495         omap_mcbsp_rx_newdata(s);
3496     }
3497 }
3498 
3499 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3500 {
3501     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3502 
3503     if (s->tx_rate) {
3504         s->tx_req = s->codec->out.size;
3505         omap_mcbsp_tx_newdata(s);
3506     }
3507 }
3508 
3509 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3510 {
3511     s->codec = slave;
3512     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3513     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3514 }
3515 
3516 /* LED Pulse Generators */
3517 struct omap_lpg_s {
3518     MemoryRegion iomem;
3519     QEMUTimer *tm;
3520 
3521     uint8_t control;
3522     uint8_t power;
3523     int64_t on;
3524     int64_t period;
3525     int clk;
3526     int cycle;
3527 };
3528 
3529 static void omap_lpg_tick(void *opaque)
3530 {
3531     struct omap_lpg_s *s = opaque;
3532 
3533     if (s->cycle)
3534         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3535     else
3536         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3537 
3538     s->cycle = !s->cycle;
3539     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3540 }
3541 
3542 static void omap_lpg_update(struct omap_lpg_s *s)
3543 {
3544     int64_t on, period = 1, ticks = 1000;
3545     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3546 
3547     if (~s->control & (1 << 6))					/* LPGRES */
3548         on = 0;
3549     else if (s->control & (1 << 7))				/* PERM_ON */
3550         on = period;
3551     else {
3552         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3553                         256 / 32);
3554         on = (s->clk && s->power) ? muldiv64(ticks,
3555                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3556     }
3557 
3558     timer_del(s->tm);
3559     if (on == period && s->on < s->period)
3560         printf("%s: LED is on\n", __FUNCTION__);
3561     else if (on == 0 && s->on)
3562         printf("%s: LED is off\n", __FUNCTION__);
3563     else if (on && (on != s->on || period != s->period)) {
3564         s->cycle = 0;
3565         s->on = on;
3566         s->period = period;
3567         omap_lpg_tick(s);
3568         return;
3569     }
3570 
3571     s->on = on;
3572     s->period = period;
3573 }
3574 
3575 static void omap_lpg_reset(struct omap_lpg_s *s)
3576 {
3577     s->control = 0x00;
3578     s->power = 0x00;
3579     s->clk = 1;
3580     omap_lpg_update(s);
3581 }
3582 
3583 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3584                               unsigned size)
3585 {
3586     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3587     int offset = addr & OMAP_MPUI_REG_MASK;
3588 
3589     if (size != 1) {
3590         return omap_badwidth_read8(opaque, addr);
3591     }
3592 
3593     switch (offset) {
3594     case 0x00:	/* LCR */
3595         return s->control;
3596 
3597     case 0x04:	/* PMR */
3598         return s->power;
3599     }
3600 
3601     OMAP_BAD_REG(addr);
3602     return 0;
3603 }
3604 
3605 static void omap_lpg_write(void *opaque, hwaddr addr,
3606                            uint64_t value, unsigned size)
3607 {
3608     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3609     int offset = addr & OMAP_MPUI_REG_MASK;
3610 
3611     if (size != 1) {
3612         omap_badwidth_write8(opaque, addr, value);
3613         return;
3614     }
3615 
3616     switch (offset) {
3617     case 0x00:	/* LCR */
3618         if (~value & (1 << 6))					/* LPGRES */
3619             omap_lpg_reset(s);
3620         s->control = value & 0xff;
3621         omap_lpg_update(s);
3622         return;
3623 
3624     case 0x04:	/* PMR */
3625         s->power = value & 0x01;
3626         omap_lpg_update(s);
3627         return;
3628 
3629     default:
3630         OMAP_BAD_REG(addr);
3631         return;
3632     }
3633 }
3634 
3635 static const MemoryRegionOps omap_lpg_ops = {
3636     .read = omap_lpg_read,
3637     .write = omap_lpg_write,
3638     .endianness = DEVICE_NATIVE_ENDIAN,
3639 };
3640 
3641 static void omap_lpg_clk_update(void *opaque, int line, int on)
3642 {
3643     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3644 
3645     s->clk = on;
3646     omap_lpg_update(s);
3647 }
3648 
3649 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3650                                         hwaddr base, omap_clk clk)
3651 {
3652     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3653 
3654     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3655 
3656     omap_lpg_reset(s);
3657 
3658     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3659     memory_region_add_subregion(system_memory, base, &s->iomem);
3660 
3661     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3662 
3663     return s;
3664 }
3665 
3666 /* MPUI Peripheral Bridge configuration */
3667 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3668                                   unsigned size)
3669 {
3670     if (size != 2) {
3671         return omap_badwidth_read16(opaque, addr);
3672     }
3673 
3674     if (addr == OMAP_MPUI_BASE)	/* CMR */
3675         return 0xfe4d;
3676 
3677     OMAP_BAD_REG(addr);
3678     return 0;
3679 }
3680 
3681 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3682                                uint64_t value, unsigned size)
3683 {
3684     /* FIXME: infinite loop */
3685     omap_badwidth_write16(opaque, addr, value);
3686 }
3687 
3688 static const MemoryRegionOps omap_mpui_io_ops = {
3689     .read = omap_mpui_io_read,
3690     .write = omap_mpui_io_write,
3691     .endianness = DEVICE_NATIVE_ENDIAN,
3692 };
3693 
3694 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3695                                struct omap_mpu_state_s *mpu)
3696 {
3697     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3698                           "omap-mpui-io", 0x7fff);
3699     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3700                                 &mpu->mpui_io_iomem);
3701 }
3702 
3703 /* General chip reset */
3704 static void omap1_mpu_reset(void *opaque)
3705 {
3706     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3707 
3708     omap_dma_reset(mpu->dma);
3709     omap_mpu_timer_reset(mpu->timer[0]);
3710     omap_mpu_timer_reset(mpu->timer[1]);
3711     omap_mpu_timer_reset(mpu->timer[2]);
3712     omap_wd_timer_reset(mpu->wdt);
3713     omap_os_timer_reset(mpu->os_timer);
3714     omap_lcdc_reset(mpu->lcd);
3715     omap_ulpd_pm_reset(mpu);
3716     omap_pin_cfg_reset(mpu);
3717     omap_mpui_reset(mpu);
3718     omap_tipb_bridge_reset(mpu->private_tipb);
3719     omap_tipb_bridge_reset(mpu->public_tipb);
3720     omap_dpll_reset(mpu->dpll[0]);
3721     omap_dpll_reset(mpu->dpll[1]);
3722     omap_dpll_reset(mpu->dpll[2]);
3723     omap_uart_reset(mpu->uart[0]);
3724     omap_uart_reset(mpu->uart[1]);
3725     omap_uart_reset(mpu->uart[2]);
3726     omap_mmc_reset(mpu->mmc);
3727     omap_mpuio_reset(mpu->mpuio);
3728     omap_uwire_reset(mpu->microwire);
3729     omap_pwl_reset(mpu->pwl);
3730     omap_pwt_reset(mpu->pwt);
3731     omap_rtc_reset(mpu->rtc);
3732     omap_mcbsp_reset(mpu->mcbsp1);
3733     omap_mcbsp_reset(mpu->mcbsp2);
3734     omap_mcbsp_reset(mpu->mcbsp3);
3735     omap_lpg_reset(mpu->led[0]);
3736     omap_lpg_reset(mpu->led[1]);
3737     omap_clkm_reset(mpu);
3738     cpu_reset(CPU(mpu->cpu));
3739 }
3740 
3741 static const struct omap_map_s {
3742     hwaddr phys_dsp;
3743     hwaddr phys_mpu;
3744     uint32_t size;
3745     const char *name;
3746 } omap15xx_dsp_mm[] = {
3747     /* Strobe 0 */
3748     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3749     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3750     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3751     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3752     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3753     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3754     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3755     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3756     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3757     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3758     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3759     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3760     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3761     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3762     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3763     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3764     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3765     /* Strobe 1 */
3766     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3767 
3768     { 0 }
3769 };
3770 
3771 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3772                                    const struct omap_map_s *map)
3773 {
3774     MemoryRegion *io;
3775 
3776     for (; map->phys_dsp; map ++) {
3777         io = g_new(MemoryRegion, 1);
3778         memory_region_init_alias(io, NULL, map->name,
3779                                  system_memory, map->phys_mpu, map->size);
3780         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3781     }
3782 }
3783 
3784 void omap_mpu_wakeup(void *opaque, int irq, int req)
3785 {
3786     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3787     CPUState *cpu = CPU(mpu->cpu);
3788 
3789     if (cpu->halted) {
3790         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3791     }
3792 }
3793 
3794 static const struct dma_irq_map omap1_dma_irq_map[] = {
3795     { 0, OMAP_INT_DMA_CH0_6 },
3796     { 0, OMAP_INT_DMA_CH1_7 },
3797     { 0, OMAP_INT_DMA_CH2_8 },
3798     { 0, OMAP_INT_DMA_CH3 },
3799     { 0, OMAP_INT_DMA_CH4 },
3800     { 0, OMAP_INT_DMA_CH5 },
3801     { 1, OMAP_INT_1610_DMA_CH6 },
3802     { 1, OMAP_INT_1610_DMA_CH7 },
3803     { 1, OMAP_INT_1610_DMA_CH8 },
3804     { 1, OMAP_INT_1610_DMA_CH9 },
3805     { 1, OMAP_INT_1610_DMA_CH10 },
3806     { 1, OMAP_INT_1610_DMA_CH11 },
3807     { 1, OMAP_INT_1610_DMA_CH12 },
3808     { 1, OMAP_INT_1610_DMA_CH13 },
3809     { 1, OMAP_INT_1610_DMA_CH14 },
3810     { 1, OMAP_INT_1610_DMA_CH15 }
3811 };
3812 
3813 /* DMA ports for OMAP1 */
3814 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3815                 hwaddr addr)
3816 {
3817     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3818 }
3819 
3820 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3821                 hwaddr addr)
3822 {
3823     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3824                              addr);
3825 }
3826 
3827 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3828                 hwaddr addr)
3829 {
3830     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3831 }
3832 
3833 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3834                 hwaddr addr)
3835 {
3836     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3837 }
3838 
3839 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3840                 hwaddr addr)
3841 {
3842     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3843 }
3844 
3845 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3846                 hwaddr addr)
3847 {
3848     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3849 }
3850 
3851 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3852                 unsigned long sdram_size,
3853                 const char *core)
3854 {
3855     int i;
3856     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3857     qemu_irq dma_irqs[6];
3858     DriveInfo *dinfo;
3859     SysBusDevice *busdev;
3860 
3861     if (!core)
3862         core = "ti925t";
3863 
3864     /* Core */
3865     s->mpu_model = omap310;
3866     s->cpu = cpu_arm_init(core);
3867     if (s->cpu == NULL) {
3868         fprintf(stderr, "Unable to find CPU definition\n");
3869         exit(1);
3870     }
3871     s->sdram_size = sdram_size;
3872     s->sram_size = OMAP15XX_SRAM_SIZE;
3873 
3874     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3875 
3876     /* Clocks */
3877     omap_clk_init(s);
3878 
3879     /* Memory-mapped stuff */
3880     memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3881                                          s->sdram_size);
3882     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3883     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3884                            &error_fatal);
3885     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3886 
3887     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3888 
3889     s->ih[0] = qdev_create(NULL, "omap-intc");
3890     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3891     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3892     qdev_init_nofail(s->ih[0]);
3893     busdev = SYS_BUS_DEVICE(s->ih[0]);
3894     sysbus_connect_irq(busdev, 0,
3895                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3896     sysbus_connect_irq(busdev, 1,
3897                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3898     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3899     s->ih[1] = qdev_create(NULL, "omap-intc");
3900     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3901     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3902     qdev_init_nofail(s->ih[1]);
3903     busdev = SYS_BUS_DEVICE(s->ih[1]);
3904     sysbus_connect_irq(busdev, 0,
3905                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3906     /* The second interrupt controller's FIQ output is not wired up */
3907     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3908 
3909     for (i = 0; i < 6; i++) {
3910         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3911                                        omap1_dma_irq_map[i].intr);
3912     }
3913     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3914                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3915                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3916 
3917     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3918     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3919     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3920     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3921     s->port[local    ].addr_valid = omap_validate_local_addr;
3922     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3923 
3924     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3925     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3926                          OMAP_EMIFF_BASE, s->sdram_size);
3927     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3928                          OMAP_IMIF_BASE, s->sram_size);
3929 
3930     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3931                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3932                     omap_findclk(s, "mputim_ck"));
3933     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3934                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3935                     omap_findclk(s, "mputim_ck"));
3936     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3937                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3938                     omap_findclk(s, "mputim_ck"));
3939 
3940     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3941                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3942                     omap_findclk(s, "armwdt_ck"));
3943 
3944     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3945                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3946                     omap_findclk(s, "clk32-kHz"));
3947 
3948     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3949                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3950                             omap_dma_get_lcdch(s->dma),
3951                             omap_findclk(s, "lcd_ck"));
3952 
3953     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3954     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3955     omap_id_init(system_memory, s);
3956 
3957     omap_mpui_init(system_memory, 0xfffec900, s);
3958 
3959     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3960                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3961                     omap_findclk(s, "tipb_ck"));
3962     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3963                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3964                     omap_findclk(s, "tipb_ck"));
3965 
3966     omap_tcmi_init(system_memory, 0xfffecc00, s);
3967 
3968     s->uart[0] = omap_uart_init(0xfffb0000,
3969                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3970                     omap_findclk(s, "uart1_ck"),
3971                     omap_findclk(s, "uart1_ck"),
3972                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3973                     "uart1",
3974                     serial_hds[0]);
3975     s->uart[1] = omap_uart_init(0xfffb0800,
3976                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3977                     omap_findclk(s, "uart2_ck"),
3978                     omap_findclk(s, "uart2_ck"),
3979                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3980                     "uart2",
3981                     serial_hds[0] ? serial_hds[1] : NULL);
3982     s->uart[2] = omap_uart_init(0xfffb9800,
3983                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3984                     omap_findclk(s, "uart3_ck"),
3985                     omap_findclk(s, "uart3_ck"),
3986                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3987                     "uart3",
3988                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3989 
3990     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3991                                 omap_findclk(s, "dpll1"));
3992     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3993                                 omap_findclk(s, "dpll2"));
3994     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3995                                 omap_findclk(s, "dpll3"));
3996 
3997     dinfo = drive_get(IF_SD, 0, 0);
3998     if (!dinfo) {
3999         fprintf(stderr, "qemu: missing SecureDigital device\n");
4000         exit(1);
4001     }
4002     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4003                            blk_by_legacy_dinfo(dinfo),
4004                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4005                            &s->drq[OMAP_DMA_MMC_TX],
4006                     omap_findclk(s, "mmc_ck"));
4007 
4008     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4009                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4010                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4011                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4012 
4013     s->gpio = qdev_create(NULL, "omap-gpio");
4014     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4015     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4016     qdev_init_nofail(s->gpio);
4017     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4018                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4019     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4020 
4021     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4022                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4023                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4024                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4025 
4026     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4027                            omap_findclk(s, "armxor_ck"));
4028     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4029                            omap_findclk(s, "armxor_ck"));
4030 
4031     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4032     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4033     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4034     qdev_init_nofail(s->i2c[0]);
4035     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4036     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4037     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4038     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4039     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4040 
4041     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4042                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4043                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4044                     omap_findclk(s, "clk32-kHz"));
4045 
4046     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4047                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4048                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4049                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4050     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4051                                 qdev_get_gpio_in(s->ih[0],
4052                                                  OMAP_INT_310_McBSP2_TX),
4053                                 qdev_get_gpio_in(s->ih[0],
4054                                                  OMAP_INT_310_McBSP2_RX),
4055                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4056     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4057                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4058                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4059                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4060 
4061     s->led[0] = omap_lpg_init(system_memory,
4062                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4063     s->led[1] = omap_lpg_init(system_memory,
4064                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4065 
4066     /* Register mappings not currenlty implemented:
4067      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4068      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4069      * USB W2FC		fffb4000 - fffb47ff
4070      * Camera Interface	fffb6800 - fffb6fff
4071      * USB Host		fffba000 - fffba7ff
4072      * FAC		fffba800 - fffbafff
4073      * HDQ/1-Wire	fffbc000 - fffbc7ff
4074      * TIPB switches	fffbc800 - fffbcfff
4075      * Mailbox		fffcf000 - fffcf7ff
4076      * Local bus IF	fffec100 - fffec1ff
4077      * Local bus MMU	fffec200 - fffec2ff
4078      * DSP MMU		fffed200 - fffed2ff
4079      */
4080 
4081     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4082     omap_setup_mpui_io(system_memory, s);
4083 
4084     qemu_register_reset(omap1_mpu_reset, s);
4085 
4086     return s;
4087 }
4088