xref: /qemu/hw/arm/omap1.c (revision 6f061ea1)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "hw/boards.h"
23 #include "hw/hw.h"
24 #include "hw/arm/arm.h"
25 #include "hw/arm/omap.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/soc_dma.h"
28 #include "sysemu/block-backend.h"
29 #include "sysemu/blockdev.h"
30 #include "qemu/range.h"
31 #include "hw/sysbus.h"
32 
33 /* Should signal the TCMI/GPMC */
34 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
35 {
36     uint8_t ret;
37 
38     OMAP_8B_REG(addr);
39     cpu_physical_memory_read(addr, &ret, 1);
40     return ret;
41 }
42 
43 void omap_badwidth_write8(void *opaque, hwaddr addr,
44                 uint32_t value)
45 {
46     uint8_t val8 = value;
47 
48     OMAP_8B_REG(addr);
49     cpu_physical_memory_write(addr, &val8, 1);
50 }
51 
52 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
53 {
54     uint16_t ret;
55 
56     OMAP_16B_REG(addr);
57     cpu_physical_memory_read(addr, &ret, 2);
58     return ret;
59 }
60 
61 void omap_badwidth_write16(void *opaque, hwaddr addr,
62                 uint32_t value)
63 {
64     uint16_t val16 = value;
65 
66     OMAP_16B_REG(addr);
67     cpu_physical_memory_write(addr, &val16, 2);
68 }
69 
70 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
71 {
72     uint32_t ret;
73 
74     OMAP_32B_REG(addr);
75     cpu_physical_memory_read(addr, &ret, 4);
76     return ret;
77 }
78 
79 void omap_badwidth_write32(void *opaque, hwaddr addr,
80                 uint32_t value)
81 {
82     OMAP_32B_REG(addr);
83     cpu_physical_memory_write(addr, &value, 4);
84 }
85 
86 /* MPU OS timers */
87 struct omap_mpu_timer_s {
88     MemoryRegion iomem;
89     qemu_irq irq;
90     omap_clk clk;
91     uint32_t val;
92     int64_t time;
93     QEMUTimer *timer;
94     QEMUBH *tick;
95     int64_t rate;
96     int it_ena;
97 
98     int enable;
99     int ptv;
100     int ar;
101     int st;
102     uint32_t reset_val;
103 };
104 
105 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
106 {
107     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
108 
109     if (timer->st && timer->enable && timer->rate)
110         return timer->val - muldiv64(distance >> (timer->ptv + 1),
111                                      timer->rate, get_ticks_per_sec());
112     else
113         return timer->val;
114 }
115 
116 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
117 {
118     timer->val = omap_timer_read(timer);
119     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
120 }
121 
122 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
123 {
124     int64_t expires;
125 
126     if (timer->enable && timer->st && timer->rate) {
127         timer->val = timer->reset_val;	/* Should skip this on clk enable */
128         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
129                            get_ticks_per_sec(), timer->rate);
130 
131         /* If timer expiry would be sooner than in about 1 ms and
132          * auto-reload isn't set, then fire immediately.  This is a hack
133          * to make systems like PalmOS run in acceptable time.  PalmOS
134          * sets the interval to a very low value and polls the status bit
135          * in a busy loop when it wants to sleep just a couple of CPU
136          * ticks.  */
137         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
138             timer_mod(timer->timer, timer->time + expires);
139         else
140             qemu_bh_schedule(timer->tick);
141     } else
142         timer_del(timer->timer);
143 }
144 
145 static void omap_timer_fire(void *opaque)
146 {
147     struct omap_mpu_timer_s *timer = opaque;
148 
149     if (!timer->ar) {
150         timer->val = 0;
151         timer->st = 0;
152     }
153 
154     if (timer->it_ena)
155         /* Edge-triggered irq */
156         qemu_irq_pulse(timer->irq);
157 }
158 
159 static void omap_timer_tick(void *opaque)
160 {
161     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
162 
163     omap_timer_sync(timer);
164     omap_timer_fire(timer);
165     omap_timer_update(timer);
166 }
167 
168 static void omap_timer_clk_update(void *opaque, int line, int on)
169 {
170     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
171 
172     omap_timer_sync(timer);
173     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
174     omap_timer_update(timer);
175 }
176 
177 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
178 {
179     omap_clk_adduser(timer->clk,
180                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
181     timer->rate = omap_clk_getrate(timer->clk);
182 }
183 
184 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
185                                     unsigned size)
186 {
187     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
188 
189     if (size != 4) {
190         return omap_badwidth_read32(opaque, addr);
191     }
192 
193     switch (addr) {
194     case 0x00:	/* CNTL_TIMER */
195         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
196 
197     case 0x04:	/* LOAD_TIM */
198         break;
199 
200     case 0x08:	/* READ_TIM */
201         return omap_timer_read(s);
202     }
203 
204     OMAP_BAD_REG(addr);
205     return 0;
206 }
207 
208 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
209                                  uint64_t value, unsigned size)
210 {
211     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
212 
213     if (size != 4) {
214         omap_badwidth_write32(opaque, addr, value);
215         return;
216     }
217 
218     switch (addr) {
219     case 0x00:	/* CNTL_TIMER */
220         omap_timer_sync(s);
221         s->enable = (value >> 5) & 1;
222         s->ptv = (value >> 2) & 7;
223         s->ar = (value >> 1) & 1;
224         s->st = value & 1;
225         omap_timer_update(s);
226         return;
227 
228     case 0x04:	/* LOAD_TIM */
229         s->reset_val = value;
230         return;
231 
232     case 0x08:	/* READ_TIM */
233         OMAP_RO_REG(addr);
234         break;
235 
236     default:
237         OMAP_BAD_REG(addr);
238     }
239 }
240 
241 static const MemoryRegionOps omap_mpu_timer_ops = {
242     .read = omap_mpu_timer_read,
243     .write = omap_mpu_timer_write,
244     .endianness = DEVICE_LITTLE_ENDIAN,
245 };
246 
247 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
248 {
249     timer_del(s->timer);
250     s->enable = 0;
251     s->reset_val = 31337;
252     s->val = 0;
253     s->ptv = 0;
254     s->ar = 0;
255     s->st = 0;
256     s->it_ena = 1;
257 }
258 
259 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
260                 hwaddr base,
261                 qemu_irq irq, omap_clk clk)
262 {
263     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
264 
265     s->irq = irq;
266     s->clk = clk;
267     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
268     s->tick = qemu_bh_new(omap_timer_fire, s);
269     omap_mpu_timer_reset(s);
270     omap_timer_clk_setup(s);
271 
272     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
273                           "omap-mpu-timer", 0x100);
274 
275     memory_region_add_subregion(system_memory, base, &s->iomem);
276 
277     return s;
278 }
279 
280 /* Watchdog timer */
281 struct omap_watchdog_timer_s {
282     struct omap_mpu_timer_s timer;
283     MemoryRegion iomem;
284     uint8_t last_wr;
285     int mode;
286     int free;
287     int reset;
288 };
289 
290 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
291                                    unsigned size)
292 {
293     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
294 
295     if (size != 2) {
296         return omap_badwidth_read16(opaque, addr);
297     }
298 
299     switch (addr) {
300     case 0x00:	/* CNTL_TIMER */
301         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
302                 (s->timer.st << 7) | (s->free << 1);
303 
304     case 0x04:	/* READ_TIMER */
305         return omap_timer_read(&s->timer);
306 
307     case 0x08:	/* TIMER_MODE */
308         return s->mode << 15;
309     }
310 
311     OMAP_BAD_REG(addr);
312     return 0;
313 }
314 
315 static void omap_wd_timer_write(void *opaque, hwaddr addr,
316                                 uint64_t value, unsigned size)
317 {
318     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
319 
320     if (size != 2) {
321         omap_badwidth_write16(opaque, addr, value);
322         return;
323     }
324 
325     switch (addr) {
326     case 0x00:	/* CNTL_TIMER */
327         omap_timer_sync(&s->timer);
328         s->timer.ptv = (value >> 9) & 7;
329         s->timer.ar = (value >> 8) & 1;
330         s->timer.st = (value >> 7) & 1;
331         s->free = (value >> 1) & 1;
332         omap_timer_update(&s->timer);
333         break;
334 
335     case 0x04:	/* LOAD_TIMER */
336         s->timer.reset_val = value & 0xffff;
337         break;
338 
339     case 0x08:	/* TIMER_MODE */
340         if (!s->mode && ((value >> 15) & 1))
341             omap_clk_get(s->timer.clk);
342         s->mode |= (value >> 15) & 1;
343         if (s->last_wr == 0xf5) {
344             if ((value & 0xff) == 0xa0) {
345                 if (s->mode) {
346                     s->mode = 0;
347                     omap_clk_put(s->timer.clk);
348                 }
349             } else {
350                 /* XXX: on T|E hardware somehow this has no effect,
351                  * on Zire 71 it works as specified.  */
352                 s->reset = 1;
353                 qemu_system_reset_request();
354             }
355         }
356         s->last_wr = value & 0xff;
357         break;
358 
359     default:
360         OMAP_BAD_REG(addr);
361     }
362 }
363 
364 static const MemoryRegionOps omap_wd_timer_ops = {
365     .read = omap_wd_timer_read,
366     .write = omap_wd_timer_write,
367     .endianness = DEVICE_NATIVE_ENDIAN,
368 };
369 
370 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
371 {
372     timer_del(s->timer.timer);
373     if (!s->mode)
374         omap_clk_get(s->timer.clk);
375     s->mode = 1;
376     s->free = 1;
377     s->reset = 0;
378     s->timer.enable = 1;
379     s->timer.it_ena = 1;
380     s->timer.reset_val = 0xffff;
381     s->timer.val = 0;
382     s->timer.st = 0;
383     s->timer.ptv = 0;
384     s->timer.ar = 0;
385     omap_timer_update(&s->timer);
386 }
387 
388 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
389                 hwaddr base,
390                 qemu_irq irq, omap_clk clk)
391 {
392     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
393 
394     s->timer.irq = irq;
395     s->timer.clk = clk;
396     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
397     omap_wd_timer_reset(s);
398     omap_timer_clk_setup(&s->timer);
399 
400     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
401                           "omap-wd-timer", 0x100);
402     memory_region_add_subregion(memory, base, &s->iomem);
403 
404     return s;
405 }
406 
407 /* 32-kHz timer */
408 struct omap_32khz_timer_s {
409     struct omap_mpu_timer_s timer;
410     MemoryRegion iomem;
411 };
412 
413 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
414                                    unsigned size)
415 {
416     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
417     int offset = addr & OMAP_MPUI_REG_MASK;
418 
419     if (size != 4) {
420         return omap_badwidth_read32(opaque, addr);
421     }
422 
423     switch (offset) {
424     case 0x00:	/* TVR */
425         return s->timer.reset_val;
426 
427     case 0x04:	/* TCR */
428         return omap_timer_read(&s->timer);
429 
430     case 0x08:	/* CR */
431         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
432 
433     default:
434         break;
435     }
436     OMAP_BAD_REG(addr);
437     return 0;
438 }
439 
440 static void omap_os_timer_write(void *opaque, hwaddr addr,
441                                 uint64_t value, unsigned size)
442 {
443     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
444     int offset = addr & OMAP_MPUI_REG_MASK;
445 
446     if (size != 4) {
447         omap_badwidth_write32(opaque, addr, value);
448         return;
449     }
450 
451     switch (offset) {
452     case 0x00:	/* TVR */
453         s->timer.reset_val = value & 0x00ffffff;
454         break;
455 
456     case 0x04:	/* TCR */
457         OMAP_RO_REG(addr);
458         break;
459 
460     case 0x08:	/* CR */
461         s->timer.ar = (value >> 3) & 1;
462         s->timer.it_ena = (value >> 2) & 1;
463         if (s->timer.st != (value & 1) || (value & 2)) {
464             omap_timer_sync(&s->timer);
465             s->timer.enable = value & 1;
466             s->timer.st = value & 1;
467             omap_timer_update(&s->timer);
468         }
469         break;
470 
471     default:
472         OMAP_BAD_REG(addr);
473     }
474 }
475 
476 static const MemoryRegionOps omap_os_timer_ops = {
477     .read = omap_os_timer_read,
478     .write = omap_os_timer_write,
479     .endianness = DEVICE_NATIVE_ENDIAN,
480 };
481 
482 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
483 {
484     timer_del(s->timer.timer);
485     s->timer.enable = 0;
486     s->timer.it_ena = 0;
487     s->timer.reset_val = 0x00ffffff;
488     s->timer.val = 0;
489     s->timer.st = 0;
490     s->timer.ptv = 0;
491     s->timer.ar = 1;
492 }
493 
494 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
495                 hwaddr base,
496                 qemu_irq irq, omap_clk clk)
497 {
498     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
499 
500     s->timer.irq = irq;
501     s->timer.clk = clk;
502     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
503     omap_os_timer_reset(s);
504     omap_timer_clk_setup(&s->timer);
505 
506     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
507                           "omap-os-timer", 0x800);
508     memory_region_add_subregion(memory, base, &s->iomem);
509 
510     return s;
511 }
512 
513 /* Ultra Low-Power Device Module */
514 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
515                                   unsigned size)
516 {
517     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
518     uint16_t ret;
519 
520     if (size != 2) {
521         return omap_badwidth_read16(opaque, addr);
522     }
523 
524     switch (addr) {
525     case 0x14:	/* IT_STATUS */
526         ret = s->ulpd_pm_regs[addr >> 2];
527         s->ulpd_pm_regs[addr >> 2] = 0;
528         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
529         return ret;
530 
531     case 0x18:	/* Reserved */
532     case 0x1c:	/* Reserved */
533     case 0x20:	/* Reserved */
534     case 0x28:	/* Reserved */
535     case 0x2c:	/* Reserved */
536         OMAP_BAD_REG(addr);
537         /* fall through */
538     case 0x00:	/* COUNTER_32_LSB */
539     case 0x04:	/* COUNTER_32_MSB */
540     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
541     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
542     case 0x10:	/* GAUGING_CTRL */
543     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
544     case 0x30:	/* CLOCK_CTRL */
545     case 0x34:	/* SOFT_REQ */
546     case 0x38:	/* COUNTER_32_FIQ */
547     case 0x3c:	/* DPLL_CTRL */
548     case 0x40:	/* STATUS_REQ */
549         /* XXX: check clk::usecount state for every clock */
550     case 0x48:	/* LOCL_TIME */
551     case 0x4c:	/* APLL_CTRL */
552     case 0x50:	/* POWER_CTRL */
553         return s->ulpd_pm_regs[addr >> 2];
554     }
555 
556     OMAP_BAD_REG(addr);
557     return 0;
558 }
559 
560 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
561                 uint16_t diff, uint16_t value)
562 {
563     if (diff & (1 << 4))				/* USB_MCLK_EN */
564         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
565     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
566         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
567 }
568 
569 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
570                 uint16_t diff, uint16_t value)
571 {
572     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
573         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
574     if (diff & (1 << 1))				/* SOFT_COM_REQ */
575         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
576     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
577         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
578     if (diff & (1 << 3))				/* SOFT_USB_REQ */
579         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
580 }
581 
582 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
583                                uint64_t value, unsigned size)
584 {
585     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
586     int64_t now, ticks;
587     int div, mult;
588     static const int bypass_div[4] = { 1, 2, 4, 4 };
589     uint16_t diff;
590 
591     if (size != 2) {
592         omap_badwidth_write16(opaque, addr, value);
593         return;
594     }
595 
596     switch (addr) {
597     case 0x00:	/* COUNTER_32_LSB */
598     case 0x04:	/* COUNTER_32_MSB */
599     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
600     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
601     case 0x14:	/* IT_STATUS */
602     case 0x40:	/* STATUS_REQ */
603         OMAP_RO_REG(addr);
604         break;
605 
606     case 0x10:	/* GAUGING_CTRL */
607         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
608         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
609             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
610 
611             if (value & 1)
612                 s->ulpd_gauge_start = now;
613             else {
614                 now -= s->ulpd_gauge_start;
615 
616                 /* 32-kHz ticks */
617                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
618                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
619                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
620                 if (ticks >> 32)	/* OVERFLOW_32K */
621                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
622 
623                 /* High frequency ticks */
624                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
625                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
626                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
627                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
628                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
629 
630                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
631                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
632             }
633         }
634         s->ulpd_pm_regs[addr >> 2] = value;
635         break;
636 
637     case 0x18:	/* Reserved */
638     case 0x1c:	/* Reserved */
639     case 0x20:	/* Reserved */
640     case 0x28:	/* Reserved */
641     case 0x2c:	/* Reserved */
642         OMAP_BAD_REG(addr);
643         /* fall through */
644     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
645     case 0x38:	/* COUNTER_32_FIQ */
646     case 0x48:	/* LOCL_TIME */
647     case 0x50:	/* POWER_CTRL */
648         s->ulpd_pm_regs[addr >> 2] = value;
649         break;
650 
651     case 0x30:	/* CLOCK_CTRL */
652         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
653         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
654         omap_ulpd_clk_update(s, diff, value);
655         break;
656 
657     case 0x34:	/* SOFT_REQ */
658         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
659         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
660         omap_ulpd_req_update(s, diff, value);
661         break;
662 
663     case 0x3c:	/* DPLL_CTRL */
664         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
665          * omitted altogether, probably a typo.  */
666         /* This register has identical semantics with DPLL(1:3) control
667          * registers, see omap_dpll_write() */
668         diff = s->ulpd_pm_regs[addr >> 2] & value;
669         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
670         if (diff & (0x3ff << 2)) {
671             if (value & (1 << 4)) {			/* PLL_ENABLE */
672                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
673                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
674             } else {
675                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
676                 mult = 1;
677             }
678             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
679         }
680 
681         /* Enter the desired mode.  */
682         s->ulpd_pm_regs[addr >> 2] =
683                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
684                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
685 
686         /* Act as if the lock is restored.  */
687         s->ulpd_pm_regs[addr >> 2] |= 2;
688         break;
689 
690     case 0x4c:	/* APLL_CTRL */
691         diff = s->ulpd_pm_regs[addr >> 2] & value;
692         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
693         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
694             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
695                                     (value & (1 << 0)) ? "apll" : "dpll4"));
696         break;
697 
698     default:
699         OMAP_BAD_REG(addr);
700     }
701 }
702 
703 static const MemoryRegionOps omap_ulpd_pm_ops = {
704     .read = omap_ulpd_pm_read,
705     .write = omap_ulpd_pm_write,
706     .endianness = DEVICE_NATIVE_ENDIAN,
707 };
708 
709 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
710 {
711     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
712     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
713     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
714     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
715     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
716     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
717     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
718     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
719     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
720     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
721     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
722     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
723     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
724     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
725     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
726     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
727     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
728     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
729     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
730     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
731     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
732     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
733     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
734 }
735 
736 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
737                 hwaddr base,
738                 struct omap_mpu_state_s *mpu)
739 {
740     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
741                           "omap-ulpd-pm", 0x800);
742     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
743     omap_ulpd_pm_reset(mpu);
744 }
745 
746 /* OMAP Pin Configuration */
747 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
748                                   unsigned size)
749 {
750     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
751 
752     if (size != 4) {
753         return omap_badwidth_read32(opaque, addr);
754     }
755 
756     switch (addr) {
757     case 0x00:	/* FUNC_MUX_CTRL_0 */
758     case 0x04:	/* FUNC_MUX_CTRL_1 */
759     case 0x08:	/* FUNC_MUX_CTRL_2 */
760         return s->func_mux_ctrl[addr >> 2];
761 
762     case 0x0c:	/* COMP_MODE_CTRL_0 */
763         return s->comp_mode_ctrl[0];
764 
765     case 0x10:	/* FUNC_MUX_CTRL_3 */
766     case 0x14:	/* FUNC_MUX_CTRL_4 */
767     case 0x18:	/* FUNC_MUX_CTRL_5 */
768     case 0x1c:	/* FUNC_MUX_CTRL_6 */
769     case 0x20:	/* FUNC_MUX_CTRL_7 */
770     case 0x24:	/* FUNC_MUX_CTRL_8 */
771     case 0x28:	/* FUNC_MUX_CTRL_9 */
772     case 0x2c:	/* FUNC_MUX_CTRL_A */
773     case 0x30:	/* FUNC_MUX_CTRL_B */
774     case 0x34:	/* FUNC_MUX_CTRL_C */
775     case 0x38:	/* FUNC_MUX_CTRL_D */
776         return s->func_mux_ctrl[(addr >> 2) - 1];
777 
778     case 0x40:	/* PULL_DWN_CTRL_0 */
779     case 0x44:	/* PULL_DWN_CTRL_1 */
780     case 0x48:	/* PULL_DWN_CTRL_2 */
781     case 0x4c:	/* PULL_DWN_CTRL_3 */
782         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
783 
784     case 0x50:	/* GATE_INH_CTRL_0 */
785         return s->gate_inh_ctrl[0];
786 
787     case 0x60:	/* VOLTAGE_CTRL_0 */
788         return s->voltage_ctrl[0];
789 
790     case 0x70:	/* TEST_DBG_CTRL_0 */
791         return s->test_dbg_ctrl[0];
792 
793     case 0x80:	/* MOD_CONF_CTRL_0 */
794         return s->mod_conf_ctrl[0];
795     }
796 
797     OMAP_BAD_REG(addr);
798     return 0;
799 }
800 
801 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
802                 uint32_t diff, uint32_t value)
803 {
804     if (s->compat1509) {
805         if (diff & (1 << 9))			/* BLUETOOTH */
806             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
807                             (~value >> 9) & 1);
808         if (diff & (1 << 7))			/* USB.CLKO */
809             omap_clk_onoff(omap_findclk(s, "usb.clko"),
810                             (value >> 7) & 1);
811     }
812 }
813 
814 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
815                 uint32_t diff, uint32_t value)
816 {
817     if (s->compat1509) {
818         if (diff & (1U << 31)) {
819             /* MCBSP3_CLK_HIZ_DI */
820             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
821         }
822         if (diff & (1 << 1)) {
823             /* CLK32K */
824             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
825         }
826     }
827 }
828 
829 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
830                 uint32_t diff, uint32_t value)
831 {
832     if (diff & (1U << 31)) {
833         /* CONF_MOD_UART3_CLK_MODE_R */
834         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
835                           omap_findclk(s, ((value >> 31) & 1) ?
836                                        "ck_48m" : "armper_ck"));
837     }
838     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
839          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
840                          omap_findclk(s, ((value >> 30) & 1) ?
841                                  "ck_48m" : "armper_ck"));
842     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
843          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
844                          omap_findclk(s, ((value >> 29) & 1) ?
845                                  "ck_48m" : "armper_ck"));
846     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
847          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
848                          omap_findclk(s, ((value >> 23) & 1) ?
849                                  "ck_48m" : "armper_ck"));
850     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
851          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
852                          omap_findclk(s, ((value >> 12) & 1) ?
853                                  "ck_48m" : "armper_ck"));
854     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
855          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
856 }
857 
858 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
859                                uint64_t value, unsigned size)
860 {
861     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
862     uint32_t diff;
863 
864     if (size != 4) {
865         omap_badwidth_write32(opaque, addr, value);
866         return;
867     }
868 
869     switch (addr) {
870     case 0x00:	/* FUNC_MUX_CTRL_0 */
871         diff = s->func_mux_ctrl[addr >> 2] ^ value;
872         s->func_mux_ctrl[addr >> 2] = value;
873         omap_pin_funcmux0_update(s, diff, value);
874         return;
875 
876     case 0x04:	/* FUNC_MUX_CTRL_1 */
877         diff = s->func_mux_ctrl[addr >> 2] ^ value;
878         s->func_mux_ctrl[addr >> 2] = value;
879         omap_pin_funcmux1_update(s, diff, value);
880         return;
881 
882     case 0x08:	/* FUNC_MUX_CTRL_2 */
883         s->func_mux_ctrl[addr >> 2] = value;
884         return;
885 
886     case 0x0c:	/* COMP_MODE_CTRL_0 */
887         s->comp_mode_ctrl[0] = value;
888         s->compat1509 = (value != 0x0000eaef);
889         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
890         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
891         return;
892 
893     case 0x10:	/* FUNC_MUX_CTRL_3 */
894     case 0x14:	/* FUNC_MUX_CTRL_4 */
895     case 0x18:	/* FUNC_MUX_CTRL_5 */
896     case 0x1c:	/* FUNC_MUX_CTRL_6 */
897     case 0x20:	/* FUNC_MUX_CTRL_7 */
898     case 0x24:	/* FUNC_MUX_CTRL_8 */
899     case 0x28:	/* FUNC_MUX_CTRL_9 */
900     case 0x2c:	/* FUNC_MUX_CTRL_A */
901     case 0x30:	/* FUNC_MUX_CTRL_B */
902     case 0x34:	/* FUNC_MUX_CTRL_C */
903     case 0x38:	/* FUNC_MUX_CTRL_D */
904         s->func_mux_ctrl[(addr >> 2) - 1] = value;
905         return;
906 
907     case 0x40:	/* PULL_DWN_CTRL_0 */
908     case 0x44:	/* PULL_DWN_CTRL_1 */
909     case 0x48:	/* PULL_DWN_CTRL_2 */
910     case 0x4c:	/* PULL_DWN_CTRL_3 */
911         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
912         return;
913 
914     case 0x50:	/* GATE_INH_CTRL_0 */
915         s->gate_inh_ctrl[0] = value;
916         return;
917 
918     case 0x60:	/* VOLTAGE_CTRL_0 */
919         s->voltage_ctrl[0] = value;
920         return;
921 
922     case 0x70:	/* TEST_DBG_CTRL_0 */
923         s->test_dbg_ctrl[0] = value;
924         return;
925 
926     case 0x80:	/* MOD_CONF_CTRL_0 */
927         diff = s->mod_conf_ctrl[0] ^ value;
928         s->mod_conf_ctrl[0] = value;
929         omap_pin_modconf1_update(s, diff, value);
930         return;
931 
932     default:
933         OMAP_BAD_REG(addr);
934     }
935 }
936 
937 static const MemoryRegionOps omap_pin_cfg_ops = {
938     .read = omap_pin_cfg_read,
939     .write = omap_pin_cfg_write,
940     .endianness = DEVICE_NATIVE_ENDIAN,
941 };
942 
943 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
944 {
945     /* Start in Compatibility Mode.  */
946     mpu->compat1509 = 1;
947     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
948     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
949     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
950     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
951     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
952     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
953     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
954     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
955     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
956     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
957 }
958 
959 static void omap_pin_cfg_init(MemoryRegion *system_memory,
960                 hwaddr base,
961                 struct omap_mpu_state_s *mpu)
962 {
963     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
964                           "omap-pin-cfg", 0x800);
965     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
966     omap_pin_cfg_reset(mpu);
967 }
968 
969 /* Device Identification, Die Identification */
970 static uint64_t omap_id_read(void *opaque, hwaddr addr,
971                              unsigned size)
972 {
973     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
974 
975     if (size != 4) {
976         return omap_badwidth_read32(opaque, addr);
977     }
978 
979     switch (addr) {
980     case 0xfffe1800:	/* DIE_ID_LSB */
981         return 0xc9581f0e;
982     case 0xfffe1804:	/* DIE_ID_MSB */
983         return 0xa8858bfa;
984 
985     case 0xfffe2000:	/* PRODUCT_ID_LSB */
986         return 0x00aaaafc;
987     case 0xfffe2004:	/* PRODUCT_ID_MSB */
988         return 0xcafeb574;
989 
990     case 0xfffed400:	/* JTAG_ID_LSB */
991         switch (s->mpu_model) {
992         case omap310:
993             return 0x03310315;
994         case omap1510:
995             return 0x03310115;
996         default:
997             hw_error("%s: bad mpu model\n", __FUNCTION__);
998         }
999         break;
1000 
1001     case 0xfffed404:	/* JTAG_ID_MSB */
1002         switch (s->mpu_model) {
1003         case omap310:
1004             return 0xfb57402f;
1005         case omap1510:
1006             return 0xfb47002f;
1007         default:
1008             hw_error("%s: bad mpu model\n", __FUNCTION__);
1009         }
1010         break;
1011     }
1012 
1013     OMAP_BAD_REG(addr);
1014     return 0;
1015 }
1016 
1017 static void omap_id_write(void *opaque, hwaddr addr,
1018                           uint64_t value, unsigned size)
1019 {
1020     if (size != 4) {
1021         omap_badwidth_write32(opaque, addr, value);
1022         return;
1023     }
1024 
1025     OMAP_BAD_REG(addr);
1026 }
1027 
1028 static const MemoryRegionOps omap_id_ops = {
1029     .read = omap_id_read,
1030     .write = omap_id_write,
1031     .endianness = DEVICE_NATIVE_ENDIAN,
1032 };
1033 
1034 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1035 {
1036     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1037                           "omap-id", 0x100000000ULL);
1038     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1039                              0xfffe1800, 0x800);
1040     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1041     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1042                              0xfffed400, 0x100);
1043     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1044     if (!cpu_is_omap15xx(mpu)) {
1045         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1046                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1047         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1048     }
1049 }
1050 
1051 /* MPUI Control (Dummy) */
1052 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1053                                unsigned size)
1054 {
1055     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1056 
1057     if (size != 4) {
1058         return omap_badwidth_read32(opaque, addr);
1059     }
1060 
1061     switch (addr) {
1062     case 0x00:	/* CTRL */
1063         return s->mpui_ctrl;
1064     case 0x04:	/* DEBUG_ADDR */
1065         return 0x01ffffff;
1066     case 0x08:	/* DEBUG_DATA */
1067         return 0xffffffff;
1068     case 0x0c:	/* DEBUG_FLAG */
1069         return 0x00000800;
1070     case 0x10:	/* STATUS */
1071         return 0x00000000;
1072 
1073     /* Not in OMAP310 */
1074     case 0x14:	/* DSP_STATUS */
1075     case 0x18:	/* DSP_BOOT_CONFIG */
1076         return 0x00000000;
1077     case 0x1c:	/* DSP_MPUI_CONFIG */
1078         return 0x0000ffff;
1079     }
1080 
1081     OMAP_BAD_REG(addr);
1082     return 0;
1083 }
1084 
1085 static void omap_mpui_write(void *opaque, hwaddr addr,
1086                             uint64_t value, unsigned size)
1087 {
1088     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1089 
1090     if (size != 4) {
1091         omap_badwidth_write32(opaque, addr, value);
1092         return;
1093     }
1094 
1095     switch (addr) {
1096     case 0x00:	/* CTRL */
1097         s->mpui_ctrl = value & 0x007fffff;
1098         break;
1099 
1100     case 0x04:	/* DEBUG_ADDR */
1101     case 0x08:	/* DEBUG_DATA */
1102     case 0x0c:	/* DEBUG_FLAG */
1103     case 0x10:	/* STATUS */
1104     /* Not in OMAP310 */
1105     case 0x14:	/* DSP_STATUS */
1106         OMAP_RO_REG(addr);
1107         break;
1108     case 0x18:	/* DSP_BOOT_CONFIG */
1109     case 0x1c:	/* DSP_MPUI_CONFIG */
1110         break;
1111 
1112     default:
1113         OMAP_BAD_REG(addr);
1114     }
1115 }
1116 
1117 static const MemoryRegionOps omap_mpui_ops = {
1118     .read = omap_mpui_read,
1119     .write = omap_mpui_write,
1120     .endianness = DEVICE_NATIVE_ENDIAN,
1121 };
1122 
1123 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1124 {
1125     s->mpui_ctrl = 0x0003ff1b;
1126 }
1127 
1128 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1129                 struct omap_mpu_state_s *mpu)
1130 {
1131     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1132                           "omap-mpui", 0x100);
1133     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1134 
1135     omap_mpui_reset(mpu);
1136 }
1137 
1138 /* TIPB Bridges */
1139 struct omap_tipb_bridge_s {
1140     qemu_irq abort;
1141     MemoryRegion iomem;
1142 
1143     int width_intr;
1144     uint16_t control;
1145     uint16_t alloc;
1146     uint16_t buffer;
1147     uint16_t enh_control;
1148 };
1149 
1150 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1151                                       unsigned size)
1152 {
1153     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1154 
1155     if (size < 2) {
1156         return omap_badwidth_read16(opaque, addr);
1157     }
1158 
1159     switch (addr) {
1160     case 0x00:	/* TIPB_CNTL */
1161         return s->control;
1162     case 0x04:	/* TIPB_BUS_ALLOC */
1163         return s->alloc;
1164     case 0x08:	/* MPU_TIPB_CNTL */
1165         return s->buffer;
1166     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1167         return s->enh_control;
1168     case 0x10:	/* ADDRESS_DBG */
1169     case 0x14:	/* DATA_DEBUG_LOW */
1170     case 0x18:	/* DATA_DEBUG_HIGH */
1171         return 0xffff;
1172     case 0x1c:	/* DEBUG_CNTR_SIG */
1173         return 0x00f8;
1174     }
1175 
1176     OMAP_BAD_REG(addr);
1177     return 0;
1178 }
1179 
1180 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1181                                    uint64_t value, unsigned size)
1182 {
1183     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1184 
1185     if (size < 2) {
1186         omap_badwidth_write16(opaque, addr, value);
1187         return;
1188     }
1189 
1190     switch (addr) {
1191     case 0x00:	/* TIPB_CNTL */
1192         s->control = value & 0xffff;
1193         break;
1194 
1195     case 0x04:	/* TIPB_BUS_ALLOC */
1196         s->alloc = value & 0x003f;
1197         break;
1198 
1199     case 0x08:	/* MPU_TIPB_CNTL */
1200         s->buffer = value & 0x0003;
1201         break;
1202 
1203     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1204         s->width_intr = !(value & 2);
1205         s->enh_control = value & 0x000f;
1206         break;
1207 
1208     case 0x10:	/* ADDRESS_DBG */
1209     case 0x14:	/* DATA_DEBUG_LOW */
1210     case 0x18:	/* DATA_DEBUG_HIGH */
1211     case 0x1c:	/* DEBUG_CNTR_SIG */
1212         OMAP_RO_REG(addr);
1213         break;
1214 
1215     default:
1216         OMAP_BAD_REG(addr);
1217     }
1218 }
1219 
1220 static const MemoryRegionOps omap_tipb_bridge_ops = {
1221     .read = omap_tipb_bridge_read,
1222     .write = omap_tipb_bridge_write,
1223     .endianness = DEVICE_NATIVE_ENDIAN,
1224 };
1225 
1226 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1227 {
1228     s->control = 0xffff;
1229     s->alloc = 0x0009;
1230     s->buffer = 0x0000;
1231     s->enh_control = 0x000f;
1232 }
1233 
1234 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1235     MemoryRegion *memory, hwaddr base,
1236     qemu_irq abort_irq, omap_clk clk)
1237 {
1238     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1239 
1240     s->abort = abort_irq;
1241     omap_tipb_bridge_reset(s);
1242 
1243     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1244                           "omap-tipb-bridge", 0x100);
1245     memory_region_add_subregion(memory, base, &s->iomem);
1246 
1247     return s;
1248 }
1249 
1250 /* Dummy Traffic Controller's Memory Interface */
1251 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1252                                unsigned size)
1253 {
1254     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1255     uint32_t ret;
1256 
1257     if (size != 4) {
1258         return omap_badwidth_read32(opaque, addr);
1259     }
1260 
1261     switch (addr) {
1262     case 0x00:	/* IMIF_PRIO */
1263     case 0x04:	/* EMIFS_PRIO */
1264     case 0x08:	/* EMIFF_PRIO */
1265     case 0x0c:	/* EMIFS_CONFIG */
1266     case 0x10:	/* EMIFS_CS0_CONFIG */
1267     case 0x14:	/* EMIFS_CS1_CONFIG */
1268     case 0x18:	/* EMIFS_CS2_CONFIG */
1269     case 0x1c:	/* EMIFS_CS3_CONFIG */
1270     case 0x24:	/* EMIFF_MRS */
1271     case 0x28:	/* TIMEOUT1 */
1272     case 0x2c:	/* TIMEOUT2 */
1273     case 0x30:	/* TIMEOUT3 */
1274     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1275     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1276         return s->tcmi_regs[addr >> 2];
1277 
1278     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1279         ret = s->tcmi_regs[addr >> 2];
1280         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1281         /* XXX: We can try using the VGA_DIRTY flag for this */
1282         return ret;
1283     }
1284 
1285     OMAP_BAD_REG(addr);
1286     return 0;
1287 }
1288 
1289 static void omap_tcmi_write(void *opaque, hwaddr addr,
1290                             uint64_t value, unsigned size)
1291 {
1292     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1293 
1294     if (size != 4) {
1295         omap_badwidth_write32(opaque, addr, value);
1296         return;
1297     }
1298 
1299     switch (addr) {
1300     case 0x00:	/* IMIF_PRIO */
1301     case 0x04:	/* EMIFS_PRIO */
1302     case 0x08:	/* EMIFF_PRIO */
1303     case 0x10:	/* EMIFS_CS0_CONFIG */
1304     case 0x14:	/* EMIFS_CS1_CONFIG */
1305     case 0x18:	/* EMIFS_CS2_CONFIG */
1306     case 0x1c:	/* EMIFS_CS3_CONFIG */
1307     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1308     case 0x24:	/* EMIFF_MRS */
1309     case 0x28:	/* TIMEOUT1 */
1310     case 0x2c:	/* TIMEOUT2 */
1311     case 0x30:	/* TIMEOUT3 */
1312     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1313     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1314         s->tcmi_regs[addr >> 2] = value;
1315         break;
1316     case 0x0c:	/* EMIFS_CONFIG */
1317         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1318         break;
1319 
1320     default:
1321         OMAP_BAD_REG(addr);
1322     }
1323 }
1324 
1325 static const MemoryRegionOps omap_tcmi_ops = {
1326     .read = omap_tcmi_read,
1327     .write = omap_tcmi_write,
1328     .endianness = DEVICE_NATIVE_ENDIAN,
1329 };
1330 
1331 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1332 {
1333     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1334     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1335     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1336     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1337     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1338     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1339     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1340     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1341     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1342     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1343     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1344     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1345     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1346     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1347     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1348 }
1349 
1350 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1351                 struct omap_mpu_state_s *mpu)
1352 {
1353     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1354                           "omap-tcmi", 0x100);
1355     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1356     omap_tcmi_reset(mpu);
1357 }
1358 
1359 /* Digital phase-locked loops control */
1360 struct dpll_ctl_s {
1361     MemoryRegion iomem;
1362     uint16_t mode;
1363     omap_clk dpll;
1364 };
1365 
1366 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1367                                unsigned size)
1368 {
1369     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1370 
1371     if (size != 2) {
1372         return omap_badwidth_read16(opaque, addr);
1373     }
1374 
1375     if (addr == 0x00)	/* CTL_REG */
1376         return s->mode;
1377 
1378     OMAP_BAD_REG(addr);
1379     return 0;
1380 }
1381 
1382 static void omap_dpll_write(void *opaque, hwaddr addr,
1383                             uint64_t value, unsigned size)
1384 {
1385     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1386     uint16_t diff;
1387     static const int bypass_div[4] = { 1, 2, 4, 4 };
1388     int div, mult;
1389 
1390     if (size != 2) {
1391         omap_badwidth_write16(opaque, addr, value);
1392         return;
1393     }
1394 
1395     if (addr == 0x00) {	/* CTL_REG */
1396         /* See omap_ulpd_pm_write() too */
1397         diff = s->mode & value;
1398         s->mode = value & 0x2fff;
1399         if (diff & (0x3ff << 2)) {
1400             if (value & (1 << 4)) {			/* PLL_ENABLE */
1401                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1402                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1403             } else {
1404                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1405                 mult = 1;
1406             }
1407             omap_clk_setrate(s->dpll, div, mult);
1408         }
1409 
1410         /* Enter the desired mode.  */
1411         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1412 
1413         /* Act as if the lock is restored.  */
1414         s->mode |= 2;
1415     } else {
1416         OMAP_BAD_REG(addr);
1417     }
1418 }
1419 
1420 static const MemoryRegionOps omap_dpll_ops = {
1421     .read = omap_dpll_read,
1422     .write = omap_dpll_write,
1423     .endianness = DEVICE_NATIVE_ENDIAN,
1424 };
1425 
1426 static void omap_dpll_reset(struct dpll_ctl_s *s)
1427 {
1428     s->mode = 0x2002;
1429     omap_clk_setrate(s->dpll, 1, 1);
1430 }
1431 
1432 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1433                            hwaddr base, omap_clk clk)
1434 {
1435     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1436     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1437 
1438     s->dpll = clk;
1439     omap_dpll_reset(s);
1440 
1441     memory_region_add_subregion(memory, base, &s->iomem);
1442     return s;
1443 }
1444 
1445 /* MPU Clock/Reset/Power Mode Control */
1446 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1447                                unsigned size)
1448 {
1449     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1450 
1451     if (size != 2) {
1452         return omap_badwidth_read16(opaque, addr);
1453     }
1454 
1455     switch (addr) {
1456     case 0x00:	/* ARM_CKCTL */
1457         return s->clkm.arm_ckctl;
1458 
1459     case 0x04:	/* ARM_IDLECT1 */
1460         return s->clkm.arm_idlect1;
1461 
1462     case 0x08:	/* ARM_IDLECT2 */
1463         return s->clkm.arm_idlect2;
1464 
1465     case 0x0c:	/* ARM_EWUPCT */
1466         return s->clkm.arm_ewupct;
1467 
1468     case 0x10:	/* ARM_RSTCT1 */
1469         return s->clkm.arm_rstct1;
1470 
1471     case 0x14:	/* ARM_RSTCT2 */
1472         return s->clkm.arm_rstct2;
1473 
1474     case 0x18:	/* ARM_SYSST */
1475         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1476 
1477     case 0x1c:	/* ARM_CKOUT1 */
1478         return s->clkm.arm_ckout1;
1479 
1480     case 0x20:	/* ARM_CKOUT2 */
1481         break;
1482     }
1483 
1484     OMAP_BAD_REG(addr);
1485     return 0;
1486 }
1487 
1488 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1489                 uint16_t diff, uint16_t value)
1490 {
1491     omap_clk clk;
1492 
1493     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1494         if (value & (1 << 14))
1495             /* Reserved */;
1496         else {
1497             clk = omap_findclk(s, "arminth_ck");
1498             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1499         }
1500     }
1501     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1502         clk = omap_findclk(s, "armtim_ck");
1503         if (value & (1 << 12))
1504             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1505         else
1506             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1507     }
1508     /* XXX: en_dspck */
1509     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1510         clk = omap_findclk(s, "dspmmu_ck");
1511         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1512     }
1513     if (diff & (3 << 8)) {				/* TCDIV */
1514         clk = omap_findclk(s, "tc_ck");
1515         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1516     }
1517     if (diff & (3 << 6)) {				/* DSPDIV */
1518         clk = omap_findclk(s, "dsp_ck");
1519         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1520     }
1521     if (diff & (3 << 4)) {				/* ARMDIV */
1522         clk = omap_findclk(s, "arm_ck");
1523         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1524     }
1525     if (diff & (3 << 2)) {				/* LCDDIV */
1526         clk = omap_findclk(s, "lcd_ck");
1527         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1528     }
1529     if (diff & (3 << 0)) {				/* PERDIV */
1530         clk = omap_findclk(s, "armper_ck");
1531         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1532     }
1533 }
1534 
1535 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1536                 uint16_t diff, uint16_t value)
1537 {
1538     omap_clk clk;
1539 
1540     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1541         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1542     }
1543     if (!(value & (1 << 10)))				/* WKUP_MODE */
1544         qemu_system_shutdown_request();	/* XXX: disable wakeup from IRQ */
1545 
1546 #define SET_CANIDLE(clock, bit)				\
1547     if (diff & (1 << bit)) {				\
1548         clk = omap_findclk(s, clock);			\
1549         omap_clk_canidle(clk, (value >> bit) & 1);	\
1550     }
1551     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1552     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1553     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1554     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1555     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1556     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1557     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1558     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1559     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1560     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1561     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1562     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1563     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1564     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1565 }
1566 
1567 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1568                 uint16_t diff, uint16_t value)
1569 {
1570     omap_clk clk;
1571 
1572 #define SET_ONOFF(clock, bit)				\
1573     if (diff & (1 << bit)) {				\
1574         clk = omap_findclk(s, clock);			\
1575         omap_clk_onoff(clk, (value >> bit) & 1);	\
1576     }
1577     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1578     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1579     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1580     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1581     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1582     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1583     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1584     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1585     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1586     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1587     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1588 }
1589 
1590 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1591                 uint16_t diff, uint16_t value)
1592 {
1593     omap_clk clk;
1594 
1595     if (diff & (3 << 4)) {				/* TCLKOUT */
1596         clk = omap_findclk(s, "tclk_out");
1597         switch ((value >> 4) & 3) {
1598         case 1:
1599             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1600             omap_clk_onoff(clk, 1);
1601             break;
1602         case 2:
1603             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1604             omap_clk_onoff(clk, 1);
1605             break;
1606         default:
1607             omap_clk_onoff(clk, 0);
1608         }
1609     }
1610     if (diff & (3 << 2)) {				/* DCLKOUT */
1611         clk = omap_findclk(s, "dclk_out");
1612         switch ((value >> 2) & 3) {
1613         case 0:
1614             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1615             break;
1616         case 1:
1617             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1618             break;
1619         case 2:
1620             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1621             break;
1622         case 3:
1623             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1624             break;
1625         }
1626     }
1627     if (diff & (3 << 0)) {				/* ACLKOUT */
1628         clk = omap_findclk(s, "aclk_out");
1629         switch ((value >> 0) & 3) {
1630         case 1:
1631             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1632             omap_clk_onoff(clk, 1);
1633             break;
1634         case 2:
1635             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1636             omap_clk_onoff(clk, 1);
1637             break;
1638         case 3:
1639             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1640             omap_clk_onoff(clk, 1);
1641             break;
1642         default:
1643             omap_clk_onoff(clk, 0);
1644         }
1645     }
1646 }
1647 
1648 static void omap_clkm_write(void *opaque, hwaddr addr,
1649                             uint64_t value, unsigned size)
1650 {
1651     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1652     uint16_t diff;
1653     omap_clk clk;
1654     static const char *clkschemename[8] = {
1655         "fully synchronous", "fully asynchronous", "synchronous scalable",
1656         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1657     };
1658 
1659     if (size != 2) {
1660         omap_badwidth_write16(opaque, addr, value);
1661         return;
1662     }
1663 
1664     switch (addr) {
1665     case 0x00:	/* ARM_CKCTL */
1666         diff = s->clkm.arm_ckctl ^ value;
1667         s->clkm.arm_ckctl = value & 0x7fff;
1668         omap_clkm_ckctl_update(s, diff, value);
1669         return;
1670 
1671     case 0x04:	/* ARM_IDLECT1 */
1672         diff = s->clkm.arm_idlect1 ^ value;
1673         s->clkm.arm_idlect1 = value & 0x0fff;
1674         omap_clkm_idlect1_update(s, diff, value);
1675         return;
1676 
1677     case 0x08:	/* ARM_IDLECT2 */
1678         diff = s->clkm.arm_idlect2 ^ value;
1679         s->clkm.arm_idlect2 = value & 0x07ff;
1680         omap_clkm_idlect2_update(s, diff, value);
1681         return;
1682 
1683     case 0x0c:	/* ARM_EWUPCT */
1684         s->clkm.arm_ewupct = value & 0x003f;
1685         return;
1686 
1687     case 0x10:	/* ARM_RSTCT1 */
1688         diff = s->clkm.arm_rstct1 ^ value;
1689         s->clkm.arm_rstct1 = value & 0x0007;
1690         if (value & 9) {
1691             qemu_system_reset_request();
1692             s->clkm.cold_start = 0xa;
1693         }
1694         if (diff & ~value & 4) {				/* DSP_RST */
1695             omap_mpui_reset(s);
1696             omap_tipb_bridge_reset(s->private_tipb);
1697             omap_tipb_bridge_reset(s->public_tipb);
1698         }
1699         if (diff & 2) {						/* DSP_EN */
1700             clk = omap_findclk(s, "dsp_ck");
1701             omap_clk_canidle(clk, (~value >> 1) & 1);
1702         }
1703         return;
1704 
1705     case 0x14:	/* ARM_RSTCT2 */
1706         s->clkm.arm_rstct2 = value & 0x0001;
1707         return;
1708 
1709     case 0x18:	/* ARM_SYSST */
1710         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1711             s->clkm.clocking_scheme = (value >> 11) & 7;
1712             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1713                             clkschemename[s->clkm.clocking_scheme]);
1714         }
1715         s->clkm.cold_start &= value & 0x3f;
1716         return;
1717 
1718     case 0x1c:	/* ARM_CKOUT1 */
1719         diff = s->clkm.arm_ckout1 ^ value;
1720         s->clkm.arm_ckout1 = value & 0x003f;
1721         omap_clkm_ckout1_update(s, diff, value);
1722         return;
1723 
1724     case 0x20:	/* ARM_CKOUT2 */
1725     default:
1726         OMAP_BAD_REG(addr);
1727     }
1728 }
1729 
1730 static const MemoryRegionOps omap_clkm_ops = {
1731     .read = omap_clkm_read,
1732     .write = omap_clkm_write,
1733     .endianness = DEVICE_NATIVE_ENDIAN,
1734 };
1735 
1736 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1737                                  unsigned size)
1738 {
1739     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1740     CPUState *cpu = CPU(s->cpu);
1741 
1742     if (size != 2) {
1743         return omap_badwidth_read16(opaque, addr);
1744     }
1745 
1746     switch (addr) {
1747     case 0x04:	/* DSP_IDLECT1 */
1748         return s->clkm.dsp_idlect1;
1749 
1750     case 0x08:	/* DSP_IDLECT2 */
1751         return s->clkm.dsp_idlect2;
1752 
1753     case 0x14:	/* DSP_RSTCT2 */
1754         return s->clkm.dsp_rstct2;
1755 
1756     case 0x18:	/* DSP_SYSST */
1757         cpu = CPU(s->cpu);
1758         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1759                 (cpu->halted << 6);      /* Quite useless... */
1760     }
1761 
1762     OMAP_BAD_REG(addr);
1763     return 0;
1764 }
1765 
1766 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1767                 uint16_t diff, uint16_t value)
1768 {
1769     omap_clk clk;
1770 
1771     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1772 }
1773 
1774 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1775                 uint16_t diff, uint16_t value)
1776 {
1777     omap_clk clk;
1778 
1779     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1780 }
1781 
1782 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1783                               uint64_t value, unsigned size)
1784 {
1785     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1786     uint16_t diff;
1787 
1788     if (size != 2) {
1789         omap_badwidth_write16(opaque, addr, value);
1790         return;
1791     }
1792 
1793     switch (addr) {
1794     case 0x04:	/* DSP_IDLECT1 */
1795         diff = s->clkm.dsp_idlect1 ^ value;
1796         s->clkm.dsp_idlect1 = value & 0x01f7;
1797         omap_clkdsp_idlect1_update(s, diff, value);
1798         break;
1799 
1800     case 0x08:	/* DSP_IDLECT2 */
1801         s->clkm.dsp_idlect2 = value & 0x0037;
1802         diff = s->clkm.dsp_idlect1 ^ value;
1803         omap_clkdsp_idlect2_update(s, diff, value);
1804         break;
1805 
1806     case 0x14:	/* DSP_RSTCT2 */
1807         s->clkm.dsp_rstct2 = value & 0x0001;
1808         break;
1809 
1810     case 0x18:	/* DSP_SYSST */
1811         s->clkm.cold_start &= value & 0x3f;
1812         break;
1813 
1814     default:
1815         OMAP_BAD_REG(addr);
1816     }
1817 }
1818 
1819 static const MemoryRegionOps omap_clkdsp_ops = {
1820     .read = omap_clkdsp_read,
1821     .write = omap_clkdsp_write,
1822     .endianness = DEVICE_NATIVE_ENDIAN,
1823 };
1824 
1825 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1826 {
1827     if (s->wdt && s->wdt->reset)
1828         s->clkm.cold_start = 0x6;
1829     s->clkm.clocking_scheme = 0;
1830     omap_clkm_ckctl_update(s, ~0, 0x3000);
1831     s->clkm.arm_ckctl = 0x3000;
1832     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1833     s->clkm.arm_idlect1 = 0x0400;
1834     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1835     s->clkm.arm_idlect2 = 0x0100;
1836     s->clkm.arm_ewupct = 0x003f;
1837     s->clkm.arm_rstct1 = 0x0000;
1838     s->clkm.arm_rstct2 = 0x0000;
1839     s->clkm.arm_ckout1 = 0x0015;
1840     s->clkm.dpll1_mode = 0x2002;
1841     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1842     s->clkm.dsp_idlect1 = 0x0040;
1843     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1844     s->clkm.dsp_idlect2 = 0x0000;
1845     s->clkm.dsp_rstct2 = 0x0000;
1846 }
1847 
1848 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1849                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1850 {
1851     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1852                           "omap-clkm", 0x100);
1853     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1854                           "omap-clkdsp", 0x1000);
1855 
1856     s->clkm.arm_idlect1 = 0x03ff;
1857     s->clkm.arm_idlect2 = 0x0100;
1858     s->clkm.dsp_idlect1 = 0x0002;
1859     omap_clkm_reset(s);
1860     s->clkm.cold_start = 0x3a;
1861 
1862     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1863     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1864 }
1865 
1866 /* MPU I/O */
1867 struct omap_mpuio_s {
1868     qemu_irq irq;
1869     qemu_irq kbd_irq;
1870     qemu_irq *in;
1871     qemu_irq handler[16];
1872     qemu_irq wakeup;
1873     MemoryRegion iomem;
1874 
1875     uint16_t inputs;
1876     uint16_t outputs;
1877     uint16_t dir;
1878     uint16_t edge;
1879     uint16_t mask;
1880     uint16_t ints;
1881 
1882     uint16_t debounce;
1883     uint16_t latch;
1884     uint8_t event;
1885 
1886     uint8_t buttons[5];
1887     uint8_t row_latch;
1888     uint8_t cols;
1889     int kbd_mask;
1890     int clk;
1891 };
1892 
1893 static void omap_mpuio_set(void *opaque, int line, int level)
1894 {
1895     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1896     uint16_t prev = s->inputs;
1897 
1898     if (level)
1899         s->inputs |= 1 << line;
1900     else
1901         s->inputs &= ~(1 << line);
1902 
1903     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1904         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1905             s->ints |= 1 << line;
1906             qemu_irq_raise(s->irq);
1907             /* TODO: wakeup */
1908         }
1909         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1910                 (s->event >> 1) == line)	/* PIN_SELECT */
1911             s->latch = s->inputs;
1912     }
1913 }
1914 
1915 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1916 {
1917     int i;
1918     uint8_t *row, rows = 0, cols = ~s->cols;
1919 
1920     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1921         if (*row & cols)
1922             rows |= i;
1923 
1924     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1925     s->row_latch = ~rows;
1926 }
1927 
1928 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1929                                 unsigned size)
1930 {
1931     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1932     int offset = addr & OMAP_MPUI_REG_MASK;
1933     uint16_t ret;
1934 
1935     if (size != 2) {
1936         return omap_badwidth_read16(opaque, addr);
1937     }
1938 
1939     switch (offset) {
1940     case 0x00:	/* INPUT_LATCH */
1941         return s->inputs;
1942 
1943     case 0x04:	/* OUTPUT_REG */
1944         return s->outputs;
1945 
1946     case 0x08:	/* IO_CNTL */
1947         return s->dir;
1948 
1949     case 0x10:	/* KBR_LATCH */
1950         return s->row_latch;
1951 
1952     case 0x14:	/* KBC_REG */
1953         return s->cols;
1954 
1955     case 0x18:	/* GPIO_EVENT_MODE_REG */
1956         return s->event;
1957 
1958     case 0x1c:	/* GPIO_INT_EDGE_REG */
1959         return s->edge;
1960 
1961     case 0x20:	/* KBD_INT */
1962         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1963 
1964     case 0x24:	/* GPIO_INT */
1965         ret = s->ints;
1966         s->ints &= s->mask;
1967         if (ret)
1968             qemu_irq_lower(s->irq);
1969         return ret;
1970 
1971     case 0x28:	/* KBD_MASKIT */
1972         return s->kbd_mask;
1973 
1974     case 0x2c:	/* GPIO_MASKIT */
1975         return s->mask;
1976 
1977     case 0x30:	/* GPIO_DEBOUNCING_REG */
1978         return s->debounce;
1979 
1980     case 0x34:	/* GPIO_LATCH_REG */
1981         return s->latch;
1982     }
1983 
1984     OMAP_BAD_REG(addr);
1985     return 0;
1986 }
1987 
1988 static void omap_mpuio_write(void *opaque, hwaddr addr,
1989                              uint64_t value, unsigned size)
1990 {
1991     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1992     int offset = addr & OMAP_MPUI_REG_MASK;
1993     uint16_t diff;
1994     int ln;
1995 
1996     if (size != 2) {
1997         omap_badwidth_write16(opaque, addr, value);
1998         return;
1999     }
2000 
2001     switch (offset) {
2002     case 0x04:	/* OUTPUT_REG */
2003         diff = (s->outputs ^ value) & ~s->dir;
2004         s->outputs = value;
2005         while ((ln = ctz32(diff)) != 32) {
2006             if (s->handler[ln])
2007                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2008             diff &= ~(1 << ln);
2009         }
2010         break;
2011 
2012     case 0x08:	/* IO_CNTL */
2013         diff = s->outputs & (s->dir ^ value);
2014         s->dir = value;
2015 
2016         value = s->outputs & ~s->dir;
2017         while ((ln = ctz32(diff)) != 32) {
2018             if (s->handler[ln])
2019                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2020             diff &= ~(1 << ln);
2021         }
2022         break;
2023 
2024     case 0x14:	/* KBC_REG */
2025         s->cols = value;
2026         omap_mpuio_kbd_update(s);
2027         break;
2028 
2029     case 0x18:	/* GPIO_EVENT_MODE_REG */
2030         s->event = value & 0x1f;
2031         break;
2032 
2033     case 0x1c:	/* GPIO_INT_EDGE_REG */
2034         s->edge = value;
2035         break;
2036 
2037     case 0x28:	/* KBD_MASKIT */
2038         s->kbd_mask = value & 1;
2039         omap_mpuio_kbd_update(s);
2040         break;
2041 
2042     case 0x2c:	/* GPIO_MASKIT */
2043         s->mask = value;
2044         break;
2045 
2046     case 0x30:	/* GPIO_DEBOUNCING_REG */
2047         s->debounce = value & 0x1ff;
2048         break;
2049 
2050     case 0x00:	/* INPUT_LATCH */
2051     case 0x10:	/* KBR_LATCH */
2052     case 0x20:	/* KBD_INT */
2053     case 0x24:	/* GPIO_INT */
2054     case 0x34:	/* GPIO_LATCH_REG */
2055         OMAP_RO_REG(addr);
2056         return;
2057 
2058     default:
2059         OMAP_BAD_REG(addr);
2060         return;
2061     }
2062 }
2063 
2064 static const MemoryRegionOps omap_mpuio_ops  = {
2065     .read = omap_mpuio_read,
2066     .write = omap_mpuio_write,
2067     .endianness = DEVICE_NATIVE_ENDIAN,
2068 };
2069 
2070 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2071 {
2072     s->inputs = 0;
2073     s->outputs = 0;
2074     s->dir = ~0;
2075     s->event = 0;
2076     s->edge = 0;
2077     s->kbd_mask = 0;
2078     s->mask = 0;
2079     s->debounce = 0;
2080     s->latch = 0;
2081     s->ints = 0;
2082     s->row_latch = 0x1f;
2083     s->clk = 1;
2084 }
2085 
2086 static void omap_mpuio_onoff(void *opaque, int line, int on)
2087 {
2088     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2089 
2090     s->clk = on;
2091     if (on)
2092         omap_mpuio_kbd_update(s);
2093 }
2094 
2095 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2096                 hwaddr base,
2097                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2098                 omap_clk clk)
2099 {
2100     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2101 
2102     s->irq = gpio_int;
2103     s->kbd_irq = kbd_int;
2104     s->wakeup = wakeup;
2105     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2106     omap_mpuio_reset(s);
2107 
2108     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2109                           "omap-mpuio", 0x800);
2110     memory_region_add_subregion(memory, base, &s->iomem);
2111 
2112     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2113 
2114     return s;
2115 }
2116 
2117 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2118 {
2119     return s->in;
2120 }
2121 
2122 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2123 {
2124     if (line >= 16 || line < 0)
2125         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2126     s->handler[line] = handler;
2127 }
2128 
2129 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2130 {
2131     if (row >= 5 || row < 0)
2132         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2133 
2134     if (down)
2135         s->buttons[row] |= 1 << col;
2136     else
2137         s->buttons[row] &= ~(1 << col);
2138 
2139     omap_mpuio_kbd_update(s);
2140 }
2141 
2142 /* MicroWire Interface */
2143 struct omap_uwire_s {
2144     MemoryRegion iomem;
2145     qemu_irq txirq;
2146     qemu_irq rxirq;
2147     qemu_irq txdrq;
2148 
2149     uint16_t txbuf;
2150     uint16_t rxbuf;
2151     uint16_t control;
2152     uint16_t setup[5];
2153 
2154     uWireSlave *chip[4];
2155 };
2156 
2157 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2158 {
2159     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2160     uWireSlave *slave = s->chip[chipselect];
2161 
2162     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2163         if (s->control & (1 << 12))			/* CS_CMD */
2164             if (slave && slave->send)
2165                 slave->send(slave->opaque,
2166                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2167         s->control &= ~(1 << 14);			/* CSRB */
2168         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2169          * a DRQ.  When is the level IRQ supposed to be reset?  */
2170     }
2171 
2172     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2173         if (s->control & (1 << 12))			/* CS_CMD */
2174             if (slave && slave->receive)
2175                 s->rxbuf = slave->receive(slave->opaque);
2176         s->control |= 1 << 15;				/* RDRB */
2177         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2178          * a DRQ.  When is the level IRQ supposed to be reset?  */
2179     }
2180 }
2181 
2182 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2183                                 unsigned size)
2184 {
2185     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2186     int offset = addr & OMAP_MPUI_REG_MASK;
2187 
2188     if (size != 2) {
2189         return omap_badwidth_read16(opaque, addr);
2190     }
2191 
2192     switch (offset) {
2193     case 0x00:	/* RDR */
2194         s->control &= ~(1 << 15);			/* RDRB */
2195         return s->rxbuf;
2196 
2197     case 0x04:	/* CSR */
2198         return s->control;
2199 
2200     case 0x08:	/* SR1 */
2201         return s->setup[0];
2202     case 0x0c:	/* SR2 */
2203         return s->setup[1];
2204     case 0x10:	/* SR3 */
2205         return s->setup[2];
2206     case 0x14:	/* SR4 */
2207         return s->setup[3];
2208     case 0x18:	/* SR5 */
2209         return s->setup[4];
2210     }
2211 
2212     OMAP_BAD_REG(addr);
2213     return 0;
2214 }
2215 
2216 static void omap_uwire_write(void *opaque, hwaddr addr,
2217                              uint64_t value, unsigned size)
2218 {
2219     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2220     int offset = addr & OMAP_MPUI_REG_MASK;
2221 
2222     if (size != 2) {
2223         omap_badwidth_write16(opaque, addr, value);
2224         return;
2225     }
2226 
2227     switch (offset) {
2228     case 0x00:	/* TDR */
2229         s->txbuf = value;				/* TD */
2230         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2231                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2232                          (s->control & (1 << 12)))) {	/* CS_CMD */
2233             s->control |= 1 << 14;			/* CSRB */
2234             omap_uwire_transfer_start(s);
2235         }
2236         break;
2237 
2238     case 0x04:	/* CSR */
2239         s->control = value & 0x1fff;
2240         if (value & (1 << 13))				/* START */
2241             omap_uwire_transfer_start(s);
2242         break;
2243 
2244     case 0x08:	/* SR1 */
2245         s->setup[0] = value & 0x003f;
2246         break;
2247 
2248     case 0x0c:	/* SR2 */
2249         s->setup[1] = value & 0x0fc0;
2250         break;
2251 
2252     case 0x10:	/* SR3 */
2253         s->setup[2] = value & 0x0003;
2254         break;
2255 
2256     case 0x14:	/* SR4 */
2257         s->setup[3] = value & 0x0001;
2258         break;
2259 
2260     case 0x18:	/* SR5 */
2261         s->setup[4] = value & 0x000f;
2262         break;
2263 
2264     default:
2265         OMAP_BAD_REG(addr);
2266         return;
2267     }
2268 }
2269 
2270 static const MemoryRegionOps omap_uwire_ops = {
2271     .read = omap_uwire_read,
2272     .write = omap_uwire_write,
2273     .endianness = DEVICE_NATIVE_ENDIAN,
2274 };
2275 
2276 static void omap_uwire_reset(struct omap_uwire_s *s)
2277 {
2278     s->control = 0;
2279     s->setup[0] = 0;
2280     s->setup[1] = 0;
2281     s->setup[2] = 0;
2282     s->setup[3] = 0;
2283     s->setup[4] = 0;
2284 }
2285 
2286 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2287                                             hwaddr base,
2288                                             qemu_irq txirq, qemu_irq rxirq,
2289                                             qemu_irq dma,
2290                                             omap_clk clk)
2291 {
2292     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2293 
2294     s->txirq = txirq;
2295     s->rxirq = rxirq;
2296     s->txdrq = dma;
2297     omap_uwire_reset(s);
2298 
2299     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2300     memory_region_add_subregion(system_memory, base, &s->iomem);
2301 
2302     return s;
2303 }
2304 
2305 void omap_uwire_attach(struct omap_uwire_s *s,
2306                 uWireSlave *slave, int chipselect)
2307 {
2308     if (chipselect < 0 || chipselect > 3) {
2309         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2310         exit(-1);
2311     }
2312 
2313     s->chip[chipselect] = slave;
2314 }
2315 
2316 /* Pseudonoise Pulse-Width Light Modulator */
2317 struct omap_pwl_s {
2318     MemoryRegion iomem;
2319     uint8_t output;
2320     uint8_t level;
2321     uint8_t enable;
2322     int clk;
2323 };
2324 
2325 static void omap_pwl_update(struct omap_pwl_s *s)
2326 {
2327     int output = (s->clk && s->enable) ? s->level : 0;
2328 
2329     if (output != s->output) {
2330         s->output = output;
2331         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2332     }
2333 }
2334 
2335 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2336                               unsigned size)
2337 {
2338     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2339     int offset = addr & OMAP_MPUI_REG_MASK;
2340 
2341     if (size != 1) {
2342         return omap_badwidth_read8(opaque, addr);
2343     }
2344 
2345     switch (offset) {
2346     case 0x00:	/* PWL_LEVEL */
2347         return s->level;
2348     case 0x04:	/* PWL_CTRL */
2349         return s->enable;
2350     }
2351     OMAP_BAD_REG(addr);
2352     return 0;
2353 }
2354 
2355 static void omap_pwl_write(void *opaque, hwaddr addr,
2356                            uint64_t value, unsigned size)
2357 {
2358     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2359     int offset = addr & OMAP_MPUI_REG_MASK;
2360 
2361     if (size != 1) {
2362         omap_badwidth_write8(opaque, addr, value);
2363         return;
2364     }
2365 
2366     switch (offset) {
2367     case 0x00:	/* PWL_LEVEL */
2368         s->level = value;
2369         omap_pwl_update(s);
2370         break;
2371     case 0x04:	/* PWL_CTRL */
2372         s->enable = value & 1;
2373         omap_pwl_update(s);
2374         break;
2375     default:
2376         OMAP_BAD_REG(addr);
2377         return;
2378     }
2379 }
2380 
2381 static const MemoryRegionOps omap_pwl_ops = {
2382     .read = omap_pwl_read,
2383     .write = omap_pwl_write,
2384     .endianness = DEVICE_NATIVE_ENDIAN,
2385 };
2386 
2387 static void omap_pwl_reset(struct omap_pwl_s *s)
2388 {
2389     s->output = 0;
2390     s->level = 0;
2391     s->enable = 0;
2392     s->clk = 1;
2393     omap_pwl_update(s);
2394 }
2395 
2396 static void omap_pwl_clk_update(void *opaque, int line, int on)
2397 {
2398     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2399 
2400     s->clk = on;
2401     omap_pwl_update(s);
2402 }
2403 
2404 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2405                                         hwaddr base,
2406                                         omap_clk clk)
2407 {
2408     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2409 
2410     omap_pwl_reset(s);
2411 
2412     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2413                           "omap-pwl", 0x800);
2414     memory_region_add_subregion(system_memory, base, &s->iomem);
2415 
2416     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2417     return s;
2418 }
2419 
2420 /* Pulse-Width Tone module */
2421 struct omap_pwt_s {
2422     MemoryRegion iomem;
2423     uint8_t frc;
2424     uint8_t vrc;
2425     uint8_t gcr;
2426     omap_clk clk;
2427 };
2428 
2429 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2430                               unsigned size)
2431 {
2432     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2433     int offset = addr & OMAP_MPUI_REG_MASK;
2434 
2435     if (size != 1) {
2436         return omap_badwidth_read8(opaque, addr);
2437     }
2438 
2439     switch (offset) {
2440     case 0x00:	/* FRC */
2441         return s->frc;
2442     case 0x04:	/* VCR */
2443         return s->vrc;
2444     case 0x08:	/* GCR */
2445         return s->gcr;
2446     }
2447     OMAP_BAD_REG(addr);
2448     return 0;
2449 }
2450 
2451 static void omap_pwt_write(void *opaque, hwaddr addr,
2452                            uint64_t value, unsigned size)
2453 {
2454     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2455     int offset = addr & OMAP_MPUI_REG_MASK;
2456 
2457     if (size != 1) {
2458         omap_badwidth_write8(opaque, addr, value);
2459         return;
2460     }
2461 
2462     switch (offset) {
2463     case 0x00:	/* FRC */
2464         s->frc = value & 0x3f;
2465         break;
2466     case 0x04:	/* VRC */
2467         if ((value ^ s->vrc) & 1) {
2468             if (value & 1)
2469                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2470                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2471                                 ((omap_clk_getrate(s->clk) >> 3) /
2472                                  /* Pre-multiplexer divider */
2473                                  ((s->gcr & 2) ? 1 : 154) /
2474                                  /* Octave multiplexer */
2475                                  (2 << (value & 3)) *
2476                                  /* 101/107 divider */
2477                                  ((value & (1 << 2)) ? 101 : 107) *
2478                                  /*  49/55 divider */
2479                                  ((value & (1 << 3)) ?  49 : 55) *
2480                                  /*  50/63 divider */
2481                                  ((value & (1 << 4)) ?  50 : 63) *
2482                                  /*  80/127 divider */
2483                                  ((value & (1 << 5)) ?  80 : 127) /
2484                                  (107 * 55 * 63 * 127)));
2485             else
2486                 printf("%s: silence!\n", __FUNCTION__);
2487         }
2488         s->vrc = value & 0x7f;
2489         break;
2490     case 0x08:	/* GCR */
2491         s->gcr = value & 3;
2492         break;
2493     default:
2494         OMAP_BAD_REG(addr);
2495         return;
2496     }
2497 }
2498 
2499 static const MemoryRegionOps omap_pwt_ops = {
2500     .read =omap_pwt_read,
2501     .write = omap_pwt_write,
2502     .endianness = DEVICE_NATIVE_ENDIAN,
2503 };
2504 
2505 static void omap_pwt_reset(struct omap_pwt_s *s)
2506 {
2507     s->frc = 0;
2508     s->vrc = 0;
2509     s->gcr = 0;
2510 }
2511 
2512 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2513                                         hwaddr base,
2514                                         omap_clk clk)
2515 {
2516     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2517     s->clk = clk;
2518     omap_pwt_reset(s);
2519 
2520     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2521                           "omap-pwt", 0x800);
2522     memory_region_add_subregion(system_memory, base, &s->iomem);
2523     return s;
2524 }
2525 
2526 /* Real-time Clock module */
2527 struct omap_rtc_s {
2528     MemoryRegion iomem;
2529     qemu_irq irq;
2530     qemu_irq alarm;
2531     QEMUTimer *clk;
2532 
2533     uint8_t interrupts;
2534     uint8_t status;
2535     int16_t comp_reg;
2536     int running;
2537     int pm_am;
2538     int auto_comp;
2539     int round;
2540     struct tm alarm_tm;
2541     time_t alarm_ti;
2542 
2543     struct tm current_tm;
2544     time_t ti;
2545     uint64_t tick;
2546 };
2547 
2548 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2549 {
2550     /* s->alarm is level-triggered */
2551     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2552 }
2553 
2554 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2555 {
2556     s->alarm_ti = mktimegm(&s->alarm_tm);
2557     if (s->alarm_ti == -1)
2558         printf("%s: conversion failed\n", __FUNCTION__);
2559 }
2560 
2561 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2562                               unsigned size)
2563 {
2564     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2565     int offset = addr & OMAP_MPUI_REG_MASK;
2566     uint8_t i;
2567 
2568     if (size != 1) {
2569         return omap_badwidth_read8(opaque, addr);
2570     }
2571 
2572     switch (offset) {
2573     case 0x00:	/* SECONDS_REG */
2574         return to_bcd(s->current_tm.tm_sec);
2575 
2576     case 0x04:	/* MINUTES_REG */
2577         return to_bcd(s->current_tm.tm_min);
2578 
2579     case 0x08:	/* HOURS_REG */
2580         if (s->pm_am)
2581             return ((s->current_tm.tm_hour > 11) << 7) |
2582                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2583         else
2584             return to_bcd(s->current_tm.tm_hour);
2585 
2586     case 0x0c:	/* DAYS_REG */
2587         return to_bcd(s->current_tm.tm_mday);
2588 
2589     case 0x10:	/* MONTHS_REG */
2590         return to_bcd(s->current_tm.tm_mon + 1);
2591 
2592     case 0x14:	/* YEARS_REG */
2593         return to_bcd(s->current_tm.tm_year % 100);
2594 
2595     case 0x18:	/* WEEK_REG */
2596         return s->current_tm.tm_wday;
2597 
2598     case 0x20:	/* ALARM_SECONDS_REG */
2599         return to_bcd(s->alarm_tm.tm_sec);
2600 
2601     case 0x24:	/* ALARM_MINUTES_REG */
2602         return to_bcd(s->alarm_tm.tm_min);
2603 
2604     case 0x28:	/* ALARM_HOURS_REG */
2605         if (s->pm_am)
2606             return ((s->alarm_tm.tm_hour > 11) << 7) |
2607                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2608         else
2609             return to_bcd(s->alarm_tm.tm_hour);
2610 
2611     case 0x2c:	/* ALARM_DAYS_REG */
2612         return to_bcd(s->alarm_tm.tm_mday);
2613 
2614     case 0x30:	/* ALARM_MONTHS_REG */
2615         return to_bcd(s->alarm_tm.tm_mon + 1);
2616 
2617     case 0x34:	/* ALARM_YEARS_REG */
2618         return to_bcd(s->alarm_tm.tm_year % 100);
2619 
2620     case 0x40:	/* RTC_CTRL_REG */
2621         return (s->pm_am << 3) | (s->auto_comp << 2) |
2622                 (s->round << 1) | s->running;
2623 
2624     case 0x44:	/* RTC_STATUS_REG */
2625         i = s->status;
2626         s->status &= ~0x3d;
2627         return i;
2628 
2629     case 0x48:	/* RTC_INTERRUPTS_REG */
2630         return s->interrupts;
2631 
2632     case 0x4c:	/* RTC_COMP_LSB_REG */
2633         return ((uint16_t) s->comp_reg) & 0xff;
2634 
2635     case 0x50:	/* RTC_COMP_MSB_REG */
2636         return ((uint16_t) s->comp_reg) >> 8;
2637     }
2638 
2639     OMAP_BAD_REG(addr);
2640     return 0;
2641 }
2642 
2643 static void omap_rtc_write(void *opaque, hwaddr addr,
2644                            uint64_t value, unsigned size)
2645 {
2646     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2647     int offset = addr & OMAP_MPUI_REG_MASK;
2648     struct tm new_tm;
2649     time_t ti[2];
2650 
2651     if (size != 1) {
2652         omap_badwidth_write8(opaque, addr, value);
2653         return;
2654     }
2655 
2656     switch (offset) {
2657     case 0x00:	/* SECONDS_REG */
2658 #ifdef ALMDEBUG
2659         printf("RTC SEC_REG <-- %02x\n", value);
2660 #endif
2661         s->ti -= s->current_tm.tm_sec;
2662         s->ti += from_bcd(value);
2663         return;
2664 
2665     case 0x04:	/* MINUTES_REG */
2666 #ifdef ALMDEBUG
2667         printf("RTC MIN_REG <-- %02x\n", value);
2668 #endif
2669         s->ti -= s->current_tm.tm_min * 60;
2670         s->ti += from_bcd(value) * 60;
2671         return;
2672 
2673     case 0x08:	/* HOURS_REG */
2674 #ifdef ALMDEBUG
2675         printf("RTC HRS_REG <-- %02x\n", value);
2676 #endif
2677         s->ti -= s->current_tm.tm_hour * 3600;
2678         if (s->pm_am) {
2679             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2680             s->ti += ((value >> 7) & 1) * 43200;
2681         } else
2682             s->ti += from_bcd(value & 0x3f) * 3600;
2683         return;
2684 
2685     case 0x0c:	/* DAYS_REG */
2686 #ifdef ALMDEBUG
2687         printf("RTC DAY_REG <-- %02x\n", value);
2688 #endif
2689         s->ti -= s->current_tm.tm_mday * 86400;
2690         s->ti += from_bcd(value) * 86400;
2691         return;
2692 
2693     case 0x10:	/* MONTHS_REG */
2694 #ifdef ALMDEBUG
2695         printf("RTC MTH_REG <-- %02x\n", value);
2696 #endif
2697         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2698         new_tm.tm_mon = from_bcd(value);
2699         ti[0] = mktimegm(&s->current_tm);
2700         ti[1] = mktimegm(&new_tm);
2701 
2702         if (ti[0] != -1 && ti[1] != -1) {
2703             s->ti -= ti[0];
2704             s->ti += ti[1];
2705         } else {
2706             /* A less accurate version */
2707             s->ti -= s->current_tm.tm_mon * 2592000;
2708             s->ti += from_bcd(value) * 2592000;
2709         }
2710         return;
2711 
2712     case 0x14:	/* YEARS_REG */
2713 #ifdef ALMDEBUG
2714         printf("RTC YRS_REG <-- %02x\n", value);
2715 #endif
2716         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2717         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2718         ti[0] = mktimegm(&s->current_tm);
2719         ti[1] = mktimegm(&new_tm);
2720 
2721         if (ti[0] != -1 && ti[1] != -1) {
2722             s->ti -= ti[0];
2723             s->ti += ti[1];
2724         } else {
2725             /* A less accurate version */
2726             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2727             s->ti += (time_t)from_bcd(value) * 31536000;
2728         }
2729         return;
2730 
2731     case 0x18:	/* WEEK_REG */
2732         return;	/* Ignored */
2733 
2734     case 0x20:	/* ALARM_SECONDS_REG */
2735 #ifdef ALMDEBUG
2736         printf("ALM SEC_REG <-- %02x\n", value);
2737 #endif
2738         s->alarm_tm.tm_sec = from_bcd(value);
2739         omap_rtc_alarm_update(s);
2740         return;
2741 
2742     case 0x24:	/* ALARM_MINUTES_REG */
2743 #ifdef ALMDEBUG
2744         printf("ALM MIN_REG <-- %02x\n", value);
2745 #endif
2746         s->alarm_tm.tm_min = from_bcd(value);
2747         omap_rtc_alarm_update(s);
2748         return;
2749 
2750     case 0x28:	/* ALARM_HOURS_REG */
2751 #ifdef ALMDEBUG
2752         printf("ALM HRS_REG <-- %02x\n", value);
2753 #endif
2754         if (s->pm_am)
2755             s->alarm_tm.tm_hour =
2756                     ((from_bcd(value & 0x3f)) % 12) +
2757                     ((value >> 7) & 1) * 12;
2758         else
2759             s->alarm_tm.tm_hour = from_bcd(value);
2760         omap_rtc_alarm_update(s);
2761         return;
2762 
2763     case 0x2c:	/* ALARM_DAYS_REG */
2764 #ifdef ALMDEBUG
2765         printf("ALM DAY_REG <-- %02x\n", value);
2766 #endif
2767         s->alarm_tm.tm_mday = from_bcd(value);
2768         omap_rtc_alarm_update(s);
2769         return;
2770 
2771     case 0x30:	/* ALARM_MONTHS_REG */
2772 #ifdef ALMDEBUG
2773         printf("ALM MON_REG <-- %02x\n", value);
2774 #endif
2775         s->alarm_tm.tm_mon = from_bcd(value);
2776         omap_rtc_alarm_update(s);
2777         return;
2778 
2779     case 0x34:	/* ALARM_YEARS_REG */
2780 #ifdef ALMDEBUG
2781         printf("ALM YRS_REG <-- %02x\n", value);
2782 #endif
2783         s->alarm_tm.tm_year = from_bcd(value);
2784         omap_rtc_alarm_update(s);
2785         return;
2786 
2787     case 0x40:	/* RTC_CTRL_REG */
2788 #ifdef ALMDEBUG
2789         printf("RTC CONTROL <-- %02x\n", value);
2790 #endif
2791         s->pm_am = (value >> 3) & 1;
2792         s->auto_comp = (value >> 2) & 1;
2793         s->round = (value >> 1) & 1;
2794         s->running = value & 1;
2795         s->status &= 0xfd;
2796         s->status |= s->running << 1;
2797         return;
2798 
2799     case 0x44:	/* RTC_STATUS_REG */
2800 #ifdef ALMDEBUG
2801         printf("RTC STATUSL <-- %02x\n", value);
2802 #endif
2803         s->status &= ~((value & 0xc0) ^ 0x80);
2804         omap_rtc_interrupts_update(s);
2805         return;
2806 
2807     case 0x48:	/* RTC_INTERRUPTS_REG */
2808 #ifdef ALMDEBUG
2809         printf("RTC INTRS <-- %02x\n", value);
2810 #endif
2811         s->interrupts = value;
2812         return;
2813 
2814     case 0x4c:	/* RTC_COMP_LSB_REG */
2815 #ifdef ALMDEBUG
2816         printf("RTC COMPLSB <-- %02x\n", value);
2817 #endif
2818         s->comp_reg &= 0xff00;
2819         s->comp_reg |= 0x00ff & value;
2820         return;
2821 
2822     case 0x50:	/* RTC_COMP_MSB_REG */
2823 #ifdef ALMDEBUG
2824         printf("RTC COMPMSB <-- %02x\n", value);
2825 #endif
2826         s->comp_reg &= 0x00ff;
2827         s->comp_reg |= 0xff00 & (value << 8);
2828         return;
2829 
2830     default:
2831         OMAP_BAD_REG(addr);
2832         return;
2833     }
2834 }
2835 
2836 static const MemoryRegionOps omap_rtc_ops = {
2837     .read = omap_rtc_read,
2838     .write = omap_rtc_write,
2839     .endianness = DEVICE_NATIVE_ENDIAN,
2840 };
2841 
2842 static void omap_rtc_tick(void *opaque)
2843 {
2844     struct omap_rtc_s *s = opaque;
2845 
2846     if (s->round) {
2847         /* Round to nearest full minute.  */
2848         if (s->current_tm.tm_sec < 30)
2849             s->ti -= s->current_tm.tm_sec;
2850         else
2851             s->ti += 60 - s->current_tm.tm_sec;
2852 
2853         s->round = 0;
2854     }
2855 
2856     localtime_r(&s->ti, &s->current_tm);
2857 
2858     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2859         s->status |= 0x40;
2860         omap_rtc_interrupts_update(s);
2861     }
2862 
2863     if (s->interrupts & 0x04)
2864         switch (s->interrupts & 3) {
2865         case 0:
2866             s->status |= 0x04;
2867             qemu_irq_pulse(s->irq);
2868             break;
2869         case 1:
2870             if (s->current_tm.tm_sec)
2871                 break;
2872             s->status |= 0x08;
2873             qemu_irq_pulse(s->irq);
2874             break;
2875         case 2:
2876             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2877                 break;
2878             s->status |= 0x10;
2879             qemu_irq_pulse(s->irq);
2880             break;
2881         case 3:
2882             if (s->current_tm.tm_sec ||
2883                             s->current_tm.tm_min || s->current_tm.tm_hour)
2884                 break;
2885             s->status |= 0x20;
2886             qemu_irq_pulse(s->irq);
2887             break;
2888         }
2889 
2890     /* Move on */
2891     if (s->running)
2892         s->ti ++;
2893     s->tick += 1000;
2894 
2895     /*
2896      * Every full hour add a rough approximation of the compensation
2897      * register to the 32kHz Timer (which drives the RTC) value.
2898      */
2899     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2900         s->tick += s->comp_reg * 1000 / 32768;
2901 
2902     timer_mod(s->clk, s->tick);
2903 }
2904 
2905 static void omap_rtc_reset(struct omap_rtc_s *s)
2906 {
2907     struct tm tm;
2908 
2909     s->interrupts = 0;
2910     s->comp_reg = 0;
2911     s->running = 0;
2912     s->pm_am = 0;
2913     s->auto_comp = 0;
2914     s->round = 0;
2915     s->tick = qemu_clock_get_ms(rtc_clock);
2916     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2917     s->alarm_tm.tm_mday = 0x01;
2918     s->status = 1 << 7;
2919     qemu_get_timedate(&tm, 0);
2920     s->ti = mktimegm(&tm);
2921 
2922     omap_rtc_alarm_update(s);
2923     omap_rtc_tick(s);
2924 }
2925 
2926 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2927                                         hwaddr base,
2928                                         qemu_irq timerirq, qemu_irq alarmirq,
2929                                         omap_clk clk)
2930 {
2931     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2932 
2933     s->irq = timerirq;
2934     s->alarm = alarmirq;
2935     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2936 
2937     omap_rtc_reset(s);
2938 
2939     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2940                           "omap-rtc", 0x800);
2941     memory_region_add_subregion(system_memory, base, &s->iomem);
2942 
2943     return s;
2944 }
2945 
2946 /* Multi-channel Buffered Serial Port interfaces */
2947 struct omap_mcbsp_s {
2948     MemoryRegion iomem;
2949     qemu_irq txirq;
2950     qemu_irq rxirq;
2951     qemu_irq txdrq;
2952     qemu_irq rxdrq;
2953 
2954     uint16_t spcr[2];
2955     uint16_t rcr[2];
2956     uint16_t xcr[2];
2957     uint16_t srgr[2];
2958     uint16_t mcr[2];
2959     uint16_t pcr;
2960     uint16_t rcer[8];
2961     uint16_t xcer[8];
2962     int tx_rate;
2963     int rx_rate;
2964     int tx_req;
2965     int rx_req;
2966 
2967     I2SCodec *codec;
2968     QEMUTimer *source_timer;
2969     QEMUTimer *sink_timer;
2970 };
2971 
2972 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2973 {
2974     int irq;
2975 
2976     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2977     case 0:
2978         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2979         break;
2980     case 3:
2981         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2982         break;
2983     default:
2984         irq = 0;
2985         break;
2986     }
2987 
2988     if (irq)
2989         qemu_irq_pulse(s->rxirq);
2990 
2991     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2992     case 0:
2993         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2994         break;
2995     case 3:
2996         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
2997         break;
2998     default:
2999         irq = 0;
3000         break;
3001     }
3002 
3003     if (irq)
3004         qemu_irq_pulse(s->txirq);
3005 }
3006 
3007 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3008 {
3009     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3010         s->spcr[0] |= 1 << 2;				/* RFULL */
3011     s->spcr[0] |= 1 << 1;				/* RRDY */
3012     qemu_irq_raise(s->rxdrq);
3013     omap_mcbsp_intr_update(s);
3014 }
3015 
3016 static void omap_mcbsp_source_tick(void *opaque)
3017 {
3018     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3019     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3020 
3021     if (!s->rx_rate)
3022         return;
3023     if (s->rx_req)
3024         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3025 
3026     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3027 
3028     omap_mcbsp_rx_newdata(s);
3029     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3030                    get_ticks_per_sec());
3031 }
3032 
3033 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3034 {
3035     if (!s->codec || !s->codec->rts)
3036         omap_mcbsp_source_tick(s);
3037     else if (s->codec->in.len) {
3038         s->rx_req = s->codec->in.len;
3039         omap_mcbsp_rx_newdata(s);
3040     }
3041 }
3042 
3043 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3044 {
3045     timer_del(s->source_timer);
3046 }
3047 
3048 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3049 {
3050     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3051     qemu_irq_lower(s->rxdrq);
3052     omap_mcbsp_intr_update(s);
3053 }
3054 
3055 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3056 {
3057     s->spcr[1] |= 1 << 1;				/* XRDY */
3058     qemu_irq_raise(s->txdrq);
3059     omap_mcbsp_intr_update(s);
3060 }
3061 
3062 static void omap_mcbsp_sink_tick(void *opaque)
3063 {
3064     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3065     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3066 
3067     if (!s->tx_rate)
3068         return;
3069     if (s->tx_req)
3070         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3071 
3072     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3073 
3074     omap_mcbsp_tx_newdata(s);
3075     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3076                    get_ticks_per_sec());
3077 }
3078 
3079 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3080 {
3081     if (!s->codec || !s->codec->cts)
3082         omap_mcbsp_sink_tick(s);
3083     else if (s->codec->out.size) {
3084         s->tx_req = s->codec->out.size;
3085         omap_mcbsp_tx_newdata(s);
3086     }
3087 }
3088 
3089 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3090 {
3091     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3092     qemu_irq_lower(s->txdrq);
3093     omap_mcbsp_intr_update(s);
3094     if (s->codec && s->codec->cts)
3095         s->codec->tx_swallow(s->codec->opaque);
3096 }
3097 
3098 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3099 {
3100     s->tx_req = 0;
3101     omap_mcbsp_tx_done(s);
3102     timer_del(s->sink_timer);
3103 }
3104 
3105 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3106 {
3107     int prev_rx_rate, prev_tx_rate;
3108     int rx_rate = 0, tx_rate = 0;
3109     int cpu_rate = 1500000;	/* XXX */
3110 
3111     /* TODO: check CLKSTP bit */
3112     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3113         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3114             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3115                             (s->pcr & (1 << 8))) {	/* CLKRM */
3116                 if (~s->pcr & (1 << 7))			/* SCLKME */
3117                     rx_rate = cpu_rate /
3118                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3119             } else
3120                 if (s->codec)
3121                     rx_rate = s->codec->rx_rate;
3122         }
3123 
3124         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3125             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3126                             (s->pcr & (1 << 9))) {	/* CLKXM */
3127                 if (~s->pcr & (1 << 7))			/* SCLKME */
3128                     tx_rate = cpu_rate /
3129                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3130             } else
3131                 if (s->codec)
3132                     tx_rate = s->codec->tx_rate;
3133         }
3134     }
3135     prev_tx_rate = s->tx_rate;
3136     prev_rx_rate = s->rx_rate;
3137     s->tx_rate = tx_rate;
3138     s->rx_rate = rx_rate;
3139 
3140     if (s->codec)
3141         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3142 
3143     if (!prev_tx_rate && tx_rate)
3144         omap_mcbsp_tx_start(s);
3145     else if (s->tx_rate && !tx_rate)
3146         omap_mcbsp_tx_stop(s);
3147 
3148     if (!prev_rx_rate && rx_rate)
3149         omap_mcbsp_rx_start(s);
3150     else if (prev_tx_rate && !tx_rate)
3151         omap_mcbsp_rx_stop(s);
3152 }
3153 
3154 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3155                                 unsigned size)
3156 {
3157     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3158     int offset = addr & OMAP_MPUI_REG_MASK;
3159     uint16_t ret;
3160 
3161     if (size != 2) {
3162         return omap_badwidth_read16(opaque, addr);
3163     }
3164 
3165     switch (offset) {
3166     case 0x00:	/* DRR2 */
3167         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3168             return 0x0000;
3169         /* Fall through.  */
3170     case 0x02:	/* DRR1 */
3171         if (s->rx_req < 2) {
3172             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3173             omap_mcbsp_rx_done(s);
3174         } else {
3175             s->tx_req -= 2;
3176             if (s->codec && s->codec->in.len >= 2) {
3177                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3178                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3179                 s->codec->in.len -= 2;
3180             } else
3181                 ret = 0x0000;
3182             if (!s->tx_req)
3183                 omap_mcbsp_rx_done(s);
3184             return ret;
3185         }
3186         return 0x0000;
3187 
3188     case 0x04:	/* DXR2 */
3189     case 0x06:	/* DXR1 */
3190         return 0x0000;
3191 
3192     case 0x08:	/* SPCR2 */
3193         return s->spcr[1];
3194     case 0x0a:	/* SPCR1 */
3195         return s->spcr[0];
3196     case 0x0c:	/* RCR2 */
3197         return s->rcr[1];
3198     case 0x0e:	/* RCR1 */
3199         return s->rcr[0];
3200     case 0x10:	/* XCR2 */
3201         return s->xcr[1];
3202     case 0x12:	/* XCR1 */
3203         return s->xcr[0];
3204     case 0x14:	/* SRGR2 */
3205         return s->srgr[1];
3206     case 0x16:	/* SRGR1 */
3207         return s->srgr[0];
3208     case 0x18:	/* MCR2 */
3209         return s->mcr[1];
3210     case 0x1a:	/* MCR1 */
3211         return s->mcr[0];
3212     case 0x1c:	/* RCERA */
3213         return s->rcer[0];
3214     case 0x1e:	/* RCERB */
3215         return s->rcer[1];
3216     case 0x20:	/* XCERA */
3217         return s->xcer[0];
3218     case 0x22:	/* XCERB */
3219         return s->xcer[1];
3220     case 0x24:	/* PCR0 */
3221         return s->pcr;
3222     case 0x26:	/* RCERC */
3223         return s->rcer[2];
3224     case 0x28:	/* RCERD */
3225         return s->rcer[3];
3226     case 0x2a:	/* XCERC */
3227         return s->xcer[2];
3228     case 0x2c:	/* XCERD */
3229         return s->xcer[3];
3230     case 0x2e:	/* RCERE */
3231         return s->rcer[4];
3232     case 0x30:	/* RCERF */
3233         return s->rcer[5];
3234     case 0x32:	/* XCERE */
3235         return s->xcer[4];
3236     case 0x34:	/* XCERF */
3237         return s->xcer[5];
3238     case 0x36:	/* RCERG */
3239         return s->rcer[6];
3240     case 0x38:	/* RCERH */
3241         return s->rcer[7];
3242     case 0x3a:	/* XCERG */
3243         return s->xcer[6];
3244     case 0x3c:	/* XCERH */
3245         return s->xcer[7];
3246     }
3247 
3248     OMAP_BAD_REG(addr);
3249     return 0;
3250 }
3251 
3252 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3253                 uint32_t value)
3254 {
3255     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3256     int offset = addr & OMAP_MPUI_REG_MASK;
3257 
3258     switch (offset) {
3259     case 0x00:	/* DRR2 */
3260     case 0x02:	/* DRR1 */
3261         OMAP_RO_REG(addr);
3262         return;
3263 
3264     case 0x04:	/* DXR2 */
3265         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3266             return;
3267         /* Fall through.  */
3268     case 0x06:	/* DXR1 */
3269         if (s->tx_req > 1) {
3270             s->tx_req -= 2;
3271             if (s->codec && s->codec->cts) {
3272                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3273                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3274             }
3275             if (s->tx_req < 2)
3276                 omap_mcbsp_tx_done(s);
3277         } else
3278             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3279         return;
3280 
3281     case 0x08:	/* SPCR2 */
3282         s->spcr[1] &= 0x0002;
3283         s->spcr[1] |= 0x03f9 & value;
3284         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3285         if (~value & 1)					/* XRST */
3286             s->spcr[1] &= ~6;
3287         omap_mcbsp_req_update(s);
3288         return;
3289     case 0x0a:	/* SPCR1 */
3290         s->spcr[0] &= 0x0006;
3291         s->spcr[0] |= 0xf8f9 & value;
3292         if (value & (1 << 15))				/* DLB */
3293             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3294         if (~value & 1) {				/* RRST */
3295             s->spcr[0] &= ~6;
3296             s->rx_req = 0;
3297             omap_mcbsp_rx_done(s);
3298         }
3299         omap_mcbsp_req_update(s);
3300         return;
3301 
3302     case 0x0c:	/* RCR2 */
3303         s->rcr[1] = value & 0xffff;
3304         return;
3305     case 0x0e:	/* RCR1 */
3306         s->rcr[0] = value & 0x7fe0;
3307         return;
3308     case 0x10:	/* XCR2 */
3309         s->xcr[1] = value & 0xffff;
3310         return;
3311     case 0x12:	/* XCR1 */
3312         s->xcr[0] = value & 0x7fe0;
3313         return;
3314     case 0x14:	/* SRGR2 */
3315         s->srgr[1] = value & 0xffff;
3316         omap_mcbsp_req_update(s);
3317         return;
3318     case 0x16:	/* SRGR1 */
3319         s->srgr[0] = value & 0xffff;
3320         omap_mcbsp_req_update(s);
3321         return;
3322     case 0x18:	/* MCR2 */
3323         s->mcr[1] = value & 0x03e3;
3324         if (value & 3)					/* XMCM */
3325             printf("%s: Tx channel selection mode enable attempt\n",
3326                             __FUNCTION__);
3327         return;
3328     case 0x1a:	/* MCR1 */
3329         s->mcr[0] = value & 0x03e1;
3330         if (value & 1)					/* RMCM */
3331             printf("%s: Rx channel selection mode enable attempt\n",
3332                             __FUNCTION__);
3333         return;
3334     case 0x1c:	/* RCERA */
3335         s->rcer[0] = value & 0xffff;
3336         return;
3337     case 0x1e:	/* RCERB */
3338         s->rcer[1] = value & 0xffff;
3339         return;
3340     case 0x20:	/* XCERA */
3341         s->xcer[0] = value & 0xffff;
3342         return;
3343     case 0x22:	/* XCERB */
3344         s->xcer[1] = value & 0xffff;
3345         return;
3346     case 0x24:	/* PCR0 */
3347         s->pcr = value & 0x7faf;
3348         return;
3349     case 0x26:	/* RCERC */
3350         s->rcer[2] = value & 0xffff;
3351         return;
3352     case 0x28:	/* RCERD */
3353         s->rcer[3] = value & 0xffff;
3354         return;
3355     case 0x2a:	/* XCERC */
3356         s->xcer[2] = value & 0xffff;
3357         return;
3358     case 0x2c:	/* XCERD */
3359         s->xcer[3] = value & 0xffff;
3360         return;
3361     case 0x2e:	/* RCERE */
3362         s->rcer[4] = value & 0xffff;
3363         return;
3364     case 0x30:	/* RCERF */
3365         s->rcer[5] = value & 0xffff;
3366         return;
3367     case 0x32:	/* XCERE */
3368         s->xcer[4] = value & 0xffff;
3369         return;
3370     case 0x34:	/* XCERF */
3371         s->xcer[5] = value & 0xffff;
3372         return;
3373     case 0x36:	/* RCERG */
3374         s->rcer[6] = value & 0xffff;
3375         return;
3376     case 0x38:	/* RCERH */
3377         s->rcer[7] = value & 0xffff;
3378         return;
3379     case 0x3a:	/* XCERG */
3380         s->xcer[6] = value & 0xffff;
3381         return;
3382     case 0x3c:	/* XCERH */
3383         s->xcer[7] = value & 0xffff;
3384         return;
3385     }
3386 
3387     OMAP_BAD_REG(addr);
3388 }
3389 
3390 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3391                 uint32_t value)
3392 {
3393     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3394     int offset = addr & OMAP_MPUI_REG_MASK;
3395 
3396     if (offset == 0x04) {				/* DXR */
3397         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3398             return;
3399         if (s->tx_req > 3) {
3400             s->tx_req -= 4;
3401             if (s->codec && s->codec->cts) {
3402                 s->codec->out.fifo[s->codec->out.len ++] =
3403                         (value >> 24) & 0xff;
3404                 s->codec->out.fifo[s->codec->out.len ++] =
3405                         (value >> 16) & 0xff;
3406                 s->codec->out.fifo[s->codec->out.len ++] =
3407                         (value >> 8) & 0xff;
3408                 s->codec->out.fifo[s->codec->out.len ++] =
3409                         (value >> 0) & 0xff;
3410             }
3411             if (s->tx_req < 4)
3412                 omap_mcbsp_tx_done(s);
3413         } else
3414             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3415         return;
3416     }
3417 
3418     omap_badwidth_write16(opaque, addr, value);
3419 }
3420 
3421 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3422                              uint64_t value, unsigned size)
3423 {
3424     switch (size) {
3425     case 2:
3426         omap_mcbsp_writeh(opaque, addr, value);
3427         break;
3428     case 4:
3429         omap_mcbsp_writew(opaque, addr, value);
3430         break;
3431     default:
3432         omap_badwidth_write16(opaque, addr, value);
3433     }
3434 }
3435 
3436 static const MemoryRegionOps omap_mcbsp_ops = {
3437     .read = omap_mcbsp_read,
3438     .write = omap_mcbsp_write,
3439     .endianness = DEVICE_NATIVE_ENDIAN,
3440 };
3441 
3442 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3443 {
3444     memset(&s->spcr, 0, sizeof(s->spcr));
3445     memset(&s->rcr, 0, sizeof(s->rcr));
3446     memset(&s->xcr, 0, sizeof(s->xcr));
3447     s->srgr[0] = 0x0001;
3448     s->srgr[1] = 0x2000;
3449     memset(&s->mcr, 0, sizeof(s->mcr));
3450     memset(&s->pcr, 0, sizeof(s->pcr));
3451     memset(&s->rcer, 0, sizeof(s->rcer));
3452     memset(&s->xcer, 0, sizeof(s->xcer));
3453     s->tx_req = 0;
3454     s->rx_req = 0;
3455     s->tx_rate = 0;
3456     s->rx_rate = 0;
3457     timer_del(s->source_timer);
3458     timer_del(s->sink_timer);
3459 }
3460 
3461 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3462                                             hwaddr base,
3463                                             qemu_irq txirq, qemu_irq rxirq,
3464                                             qemu_irq *dma, omap_clk clk)
3465 {
3466     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3467 
3468     s->txirq = txirq;
3469     s->rxirq = rxirq;
3470     s->txdrq = dma[0];
3471     s->rxdrq = dma[1];
3472     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3473     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3474     omap_mcbsp_reset(s);
3475 
3476     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3477     memory_region_add_subregion(system_memory, base, &s->iomem);
3478 
3479     return s;
3480 }
3481 
3482 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3483 {
3484     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3485 
3486     if (s->rx_rate) {
3487         s->rx_req = s->codec->in.len;
3488         omap_mcbsp_rx_newdata(s);
3489     }
3490 }
3491 
3492 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3493 {
3494     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3495 
3496     if (s->tx_rate) {
3497         s->tx_req = s->codec->out.size;
3498         omap_mcbsp_tx_newdata(s);
3499     }
3500 }
3501 
3502 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3503 {
3504     s->codec = slave;
3505     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3506     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3507 }
3508 
3509 /* LED Pulse Generators */
3510 struct omap_lpg_s {
3511     MemoryRegion iomem;
3512     QEMUTimer *tm;
3513 
3514     uint8_t control;
3515     uint8_t power;
3516     int64_t on;
3517     int64_t period;
3518     int clk;
3519     int cycle;
3520 };
3521 
3522 static void omap_lpg_tick(void *opaque)
3523 {
3524     struct omap_lpg_s *s = opaque;
3525 
3526     if (s->cycle)
3527         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3528     else
3529         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3530 
3531     s->cycle = !s->cycle;
3532     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3533 }
3534 
3535 static void omap_lpg_update(struct omap_lpg_s *s)
3536 {
3537     int64_t on, period = 1, ticks = 1000;
3538     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3539 
3540     if (~s->control & (1 << 6))					/* LPGRES */
3541         on = 0;
3542     else if (s->control & (1 << 7))				/* PERM_ON */
3543         on = period;
3544     else {
3545         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3546                         256 / 32);
3547         on = (s->clk && s->power) ? muldiv64(ticks,
3548                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3549     }
3550 
3551     timer_del(s->tm);
3552     if (on == period && s->on < s->period)
3553         printf("%s: LED is on\n", __FUNCTION__);
3554     else if (on == 0 && s->on)
3555         printf("%s: LED is off\n", __FUNCTION__);
3556     else if (on && (on != s->on || period != s->period)) {
3557         s->cycle = 0;
3558         s->on = on;
3559         s->period = period;
3560         omap_lpg_tick(s);
3561         return;
3562     }
3563 
3564     s->on = on;
3565     s->period = period;
3566 }
3567 
3568 static void omap_lpg_reset(struct omap_lpg_s *s)
3569 {
3570     s->control = 0x00;
3571     s->power = 0x00;
3572     s->clk = 1;
3573     omap_lpg_update(s);
3574 }
3575 
3576 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3577                               unsigned size)
3578 {
3579     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3580     int offset = addr & OMAP_MPUI_REG_MASK;
3581 
3582     if (size != 1) {
3583         return omap_badwidth_read8(opaque, addr);
3584     }
3585 
3586     switch (offset) {
3587     case 0x00:	/* LCR */
3588         return s->control;
3589 
3590     case 0x04:	/* PMR */
3591         return s->power;
3592     }
3593 
3594     OMAP_BAD_REG(addr);
3595     return 0;
3596 }
3597 
3598 static void omap_lpg_write(void *opaque, hwaddr addr,
3599                            uint64_t value, unsigned size)
3600 {
3601     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3602     int offset = addr & OMAP_MPUI_REG_MASK;
3603 
3604     if (size != 1) {
3605         omap_badwidth_write8(opaque, addr, value);
3606         return;
3607     }
3608 
3609     switch (offset) {
3610     case 0x00:	/* LCR */
3611         if (~value & (1 << 6))					/* LPGRES */
3612             omap_lpg_reset(s);
3613         s->control = value & 0xff;
3614         omap_lpg_update(s);
3615         return;
3616 
3617     case 0x04:	/* PMR */
3618         s->power = value & 0x01;
3619         omap_lpg_update(s);
3620         return;
3621 
3622     default:
3623         OMAP_BAD_REG(addr);
3624         return;
3625     }
3626 }
3627 
3628 static const MemoryRegionOps omap_lpg_ops = {
3629     .read = omap_lpg_read,
3630     .write = omap_lpg_write,
3631     .endianness = DEVICE_NATIVE_ENDIAN,
3632 };
3633 
3634 static void omap_lpg_clk_update(void *opaque, int line, int on)
3635 {
3636     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3637 
3638     s->clk = on;
3639     omap_lpg_update(s);
3640 }
3641 
3642 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3643                                         hwaddr base, omap_clk clk)
3644 {
3645     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3646 
3647     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3648 
3649     omap_lpg_reset(s);
3650 
3651     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3652     memory_region_add_subregion(system_memory, base, &s->iomem);
3653 
3654     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3655 
3656     return s;
3657 }
3658 
3659 /* MPUI Peripheral Bridge configuration */
3660 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3661                                   unsigned size)
3662 {
3663     if (size != 2) {
3664         return omap_badwidth_read16(opaque, addr);
3665     }
3666 
3667     if (addr == OMAP_MPUI_BASE)	/* CMR */
3668         return 0xfe4d;
3669 
3670     OMAP_BAD_REG(addr);
3671     return 0;
3672 }
3673 
3674 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3675                                uint64_t value, unsigned size)
3676 {
3677     /* FIXME: infinite loop */
3678     omap_badwidth_write16(opaque, addr, value);
3679 }
3680 
3681 static const MemoryRegionOps omap_mpui_io_ops = {
3682     .read = omap_mpui_io_read,
3683     .write = omap_mpui_io_write,
3684     .endianness = DEVICE_NATIVE_ENDIAN,
3685 };
3686 
3687 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3688                                struct omap_mpu_state_s *mpu)
3689 {
3690     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3691                           "omap-mpui-io", 0x7fff);
3692     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3693                                 &mpu->mpui_io_iomem);
3694 }
3695 
3696 /* General chip reset */
3697 static void omap1_mpu_reset(void *opaque)
3698 {
3699     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3700 
3701     omap_dma_reset(mpu->dma);
3702     omap_mpu_timer_reset(mpu->timer[0]);
3703     omap_mpu_timer_reset(mpu->timer[1]);
3704     omap_mpu_timer_reset(mpu->timer[2]);
3705     omap_wd_timer_reset(mpu->wdt);
3706     omap_os_timer_reset(mpu->os_timer);
3707     omap_lcdc_reset(mpu->lcd);
3708     omap_ulpd_pm_reset(mpu);
3709     omap_pin_cfg_reset(mpu);
3710     omap_mpui_reset(mpu);
3711     omap_tipb_bridge_reset(mpu->private_tipb);
3712     omap_tipb_bridge_reset(mpu->public_tipb);
3713     omap_dpll_reset(mpu->dpll[0]);
3714     omap_dpll_reset(mpu->dpll[1]);
3715     omap_dpll_reset(mpu->dpll[2]);
3716     omap_uart_reset(mpu->uart[0]);
3717     omap_uart_reset(mpu->uart[1]);
3718     omap_uart_reset(mpu->uart[2]);
3719     omap_mmc_reset(mpu->mmc);
3720     omap_mpuio_reset(mpu->mpuio);
3721     omap_uwire_reset(mpu->microwire);
3722     omap_pwl_reset(mpu->pwl);
3723     omap_pwt_reset(mpu->pwt);
3724     omap_rtc_reset(mpu->rtc);
3725     omap_mcbsp_reset(mpu->mcbsp1);
3726     omap_mcbsp_reset(mpu->mcbsp2);
3727     omap_mcbsp_reset(mpu->mcbsp3);
3728     omap_lpg_reset(mpu->led[0]);
3729     omap_lpg_reset(mpu->led[1]);
3730     omap_clkm_reset(mpu);
3731     cpu_reset(CPU(mpu->cpu));
3732 }
3733 
3734 static const struct omap_map_s {
3735     hwaddr phys_dsp;
3736     hwaddr phys_mpu;
3737     uint32_t size;
3738     const char *name;
3739 } omap15xx_dsp_mm[] = {
3740     /* Strobe 0 */
3741     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3742     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3743     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3744     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3745     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3746     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3747     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3748     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3749     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3750     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3751     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3752     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3753     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3754     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3755     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3756     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3757     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3758     /* Strobe 1 */
3759     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3760 
3761     { 0 }
3762 };
3763 
3764 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3765                                    const struct omap_map_s *map)
3766 {
3767     MemoryRegion *io;
3768 
3769     for (; map->phys_dsp; map ++) {
3770         io = g_new(MemoryRegion, 1);
3771         memory_region_init_alias(io, NULL, map->name,
3772                                  system_memory, map->phys_mpu, map->size);
3773         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3774     }
3775 }
3776 
3777 void omap_mpu_wakeup(void *opaque, int irq, int req)
3778 {
3779     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3780     CPUState *cpu = CPU(mpu->cpu);
3781 
3782     if (cpu->halted) {
3783         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3784     }
3785 }
3786 
3787 static const struct dma_irq_map omap1_dma_irq_map[] = {
3788     { 0, OMAP_INT_DMA_CH0_6 },
3789     { 0, OMAP_INT_DMA_CH1_7 },
3790     { 0, OMAP_INT_DMA_CH2_8 },
3791     { 0, OMAP_INT_DMA_CH3 },
3792     { 0, OMAP_INT_DMA_CH4 },
3793     { 0, OMAP_INT_DMA_CH5 },
3794     { 1, OMAP_INT_1610_DMA_CH6 },
3795     { 1, OMAP_INT_1610_DMA_CH7 },
3796     { 1, OMAP_INT_1610_DMA_CH8 },
3797     { 1, OMAP_INT_1610_DMA_CH9 },
3798     { 1, OMAP_INT_1610_DMA_CH10 },
3799     { 1, OMAP_INT_1610_DMA_CH11 },
3800     { 1, OMAP_INT_1610_DMA_CH12 },
3801     { 1, OMAP_INT_1610_DMA_CH13 },
3802     { 1, OMAP_INT_1610_DMA_CH14 },
3803     { 1, OMAP_INT_1610_DMA_CH15 }
3804 };
3805 
3806 /* DMA ports for OMAP1 */
3807 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3808                 hwaddr addr)
3809 {
3810     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3811 }
3812 
3813 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3814                 hwaddr addr)
3815 {
3816     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3817                              addr);
3818 }
3819 
3820 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3821                 hwaddr addr)
3822 {
3823     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3824 }
3825 
3826 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3827                 hwaddr addr)
3828 {
3829     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3830 }
3831 
3832 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3833                 hwaddr addr)
3834 {
3835     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3836 }
3837 
3838 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3839                 hwaddr addr)
3840 {
3841     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3842 }
3843 
3844 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3845                 unsigned long sdram_size,
3846                 const char *core)
3847 {
3848     int i;
3849     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3850     qemu_irq dma_irqs[6];
3851     DriveInfo *dinfo;
3852     SysBusDevice *busdev;
3853 
3854     if (!core)
3855         core = "ti925t";
3856 
3857     /* Core */
3858     s->mpu_model = omap310;
3859     s->cpu = cpu_arm_init(core);
3860     if (s->cpu == NULL) {
3861         fprintf(stderr, "Unable to find CPU definition\n");
3862         exit(1);
3863     }
3864     s->sdram_size = sdram_size;
3865     s->sram_size = OMAP15XX_SRAM_SIZE;
3866 
3867     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3868 
3869     /* Clocks */
3870     omap_clk_init(s);
3871 
3872     /* Memory-mapped stuff */
3873     memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3874                                          s->sdram_size);
3875     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3876     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3877                            &error_fatal);
3878     vmstate_register_ram_global(&s->imif_ram);
3879     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3880 
3881     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3882 
3883     s->ih[0] = qdev_create(NULL, "omap-intc");
3884     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3885     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3886     qdev_init_nofail(s->ih[0]);
3887     busdev = SYS_BUS_DEVICE(s->ih[0]);
3888     sysbus_connect_irq(busdev, 0,
3889                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3890     sysbus_connect_irq(busdev, 1,
3891                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3892     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3893     s->ih[1] = qdev_create(NULL, "omap-intc");
3894     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3895     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3896     qdev_init_nofail(s->ih[1]);
3897     busdev = SYS_BUS_DEVICE(s->ih[1]);
3898     sysbus_connect_irq(busdev, 0,
3899                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3900     /* The second interrupt controller's FIQ output is not wired up */
3901     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3902 
3903     for (i = 0; i < 6; i++) {
3904         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3905                                        omap1_dma_irq_map[i].intr);
3906     }
3907     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3908                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3909                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3910 
3911     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3912     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3913     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3914     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3915     s->port[local    ].addr_valid = omap_validate_local_addr;
3916     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3917 
3918     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3919     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3920                          OMAP_EMIFF_BASE, s->sdram_size);
3921     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3922                          OMAP_IMIF_BASE, s->sram_size);
3923 
3924     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3925                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3926                     omap_findclk(s, "mputim_ck"));
3927     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3928                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3929                     omap_findclk(s, "mputim_ck"));
3930     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3931                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3932                     omap_findclk(s, "mputim_ck"));
3933 
3934     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3935                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3936                     omap_findclk(s, "armwdt_ck"));
3937 
3938     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3939                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3940                     omap_findclk(s, "clk32-kHz"));
3941 
3942     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3943                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3944                             omap_dma_get_lcdch(s->dma),
3945                             omap_findclk(s, "lcd_ck"));
3946 
3947     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3948     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3949     omap_id_init(system_memory, s);
3950 
3951     omap_mpui_init(system_memory, 0xfffec900, s);
3952 
3953     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3954                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3955                     omap_findclk(s, "tipb_ck"));
3956     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3957                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3958                     omap_findclk(s, "tipb_ck"));
3959 
3960     omap_tcmi_init(system_memory, 0xfffecc00, s);
3961 
3962     s->uart[0] = omap_uart_init(0xfffb0000,
3963                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3964                     omap_findclk(s, "uart1_ck"),
3965                     omap_findclk(s, "uart1_ck"),
3966                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3967                     "uart1",
3968                     serial_hds[0]);
3969     s->uart[1] = omap_uart_init(0xfffb0800,
3970                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3971                     omap_findclk(s, "uart2_ck"),
3972                     omap_findclk(s, "uart2_ck"),
3973                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3974                     "uart2",
3975                     serial_hds[0] ? serial_hds[1] : NULL);
3976     s->uart[2] = omap_uart_init(0xfffb9800,
3977                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3978                     omap_findclk(s, "uart3_ck"),
3979                     omap_findclk(s, "uart3_ck"),
3980                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3981                     "uart3",
3982                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3983 
3984     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3985                                 omap_findclk(s, "dpll1"));
3986     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3987                                 omap_findclk(s, "dpll2"));
3988     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3989                                 omap_findclk(s, "dpll3"));
3990 
3991     dinfo = drive_get(IF_SD, 0, 0);
3992     if (!dinfo) {
3993         fprintf(stderr, "qemu: missing SecureDigital device\n");
3994         exit(1);
3995     }
3996     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3997                            blk_by_legacy_dinfo(dinfo),
3998                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3999                            &s->drq[OMAP_DMA_MMC_TX],
4000                     omap_findclk(s, "mmc_ck"));
4001 
4002     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4003                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4004                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4005                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4006 
4007     s->gpio = qdev_create(NULL, "omap-gpio");
4008     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4009     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4010     qdev_init_nofail(s->gpio);
4011     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4012                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4013     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4014 
4015     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4016                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4017                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4018                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4019 
4020     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4021                            omap_findclk(s, "armxor_ck"));
4022     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4023                            omap_findclk(s, "armxor_ck"));
4024 
4025     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4026     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4027     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4028     qdev_init_nofail(s->i2c[0]);
4029     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4030     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4031     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4032     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4033     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4034 
4035     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4036                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4037                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4038                     omap_findclk(s, "clk32-kHz"));
4039 
4040     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4041                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4042                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4043                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4044     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4045                                 qdev_get_gpio_in(s->ih[0],
4046                                                  OMAP_INT_310_McBSP2_TX),
4047                                 qdev_get_gpio_in(s->ih[0],
4048                                                  OMAP_INT_310_McBSP2_RX),
4049                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4050     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4051                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4052                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4053                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4054 
4055     s->led[0] = omap_lpg_init(system_memory,
4056                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4057     s->led[1] = omap_lpg_init(system_memory,
4058                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4059 
4060     /* Register mappings not currenlty implemented:
4061      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4062      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4063      * USB W2FC		fffb4000 - fffb47ff
4064      * Camera Interface	fffb6800 - fffb6fff
4065      * USB Host		fffba000 - fffba7ff
4066      * FAC		fffba800 - fffbafff
4067      * HDQ/1-Wire	fffbc000 - fffbc7ff
4068      * TIPB switches	fffbc800 - fffbcfff
4069      * Mailbox		fffcf000 - fffcf7ff
4070      * Local bus IF	fffec100 - fffec1ff
4071      * Local bus MMU	fffec200 - fffec2ff
4072      * DSP MMU		fffed200 - fffed2ff
4073      */
4074 
4075     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4076     omap_setup_mpui_io(system_memory, s);
4077 
4078     qemu_register_reset(omap1_mpu_reset, s);
4079 
4080     return s;
4081 }
4082