xref: /qemu/hw/arm/omap1.c (revision dc03272d)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "hw/boards.h"
26 #include "hw/hw.h"
27 #include "hw/arm/arm.h"
28 #include "hw/arm/omap.h"
29 #include "sysemu/sysemu.h"
30 #include "hw/arm/soc_dma.h"
31 #include "sysemu/block-backend.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/qtest.h"
34 #include "qemu/range.h"
35 #include "hw/sysbus.h"
36 #include "qemu/cutils.h"
37 #include "qemu/bcd.h"
38 
39 /* Should signal the TCMI/GPMC */
40 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
41 {
42     uint8_t ret;
43 
44     OMAP_8B_REG(addr);
45     cpu_physical_memory_read(addr, &ret, 1);
46     return ret;
47 }
48 
49 void omap_badwidth_write8(void *opaque, hwaddr addr,
50                 uint32_t value)
51 {
52     uint8_t val8 = value;
53 
54     OMAP_8B_REG(addr);
55     cpu_physical_memory_write(addr, &val8, 1);
56 }
57 
58 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
59 {
60     uint16_t ret;
61 
62     OMAP_16B_REG(addr);
63     cpu_physical_memory_read(addr, &ret, 2);
64     return ret;
65 }
66 
67 void omap_badwidth_write16(void *opaque, hwaddr addr,
68                 uint32_t value)
69 {
70     uint16_t val16 = value;
71 
72     OMAP_16B_REG(addr);
73     cpu_physical_memory_write(addr, &val16, 2);
74 }
75 
76 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
77 {
78     uint32_t ret;
79 
80     OMAP_32B_REG(addr);
81     cpu_physical_memory_read(addr, &ret, 4);
82     return ret;
83 }
84 
85 void omap_badwidth_write32(void *opaque, hwaddr addr,
86                 uint32_t value)
87 {
88     OMAP_32B_REG(addr);
89     cpu_physical_memory_write(addr, &value, 4);
90 }
91 
92 /* MPU OS timers */
93 struct omap_mpu_timer_s {
94     MemoryRegion iomem;
95     qemu_irq irq;
96     omap_clk clk;
97     uint32_t val;
98     int64_t time;
99     QEMUTimer *timer;
100     QEMUBH *tick;
101     int64_t rate;
102     int it_ena;
103 
104     int enable;
105     int ptv;
106     int ar;
107     int st;
108     uint32_t reset_val;
109 };
110 
111 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
112 {
113     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
114 
115     if (timer->st && timer->enable && timer->rate)
116         return timer->val - muldiv64(distance >> (timer->ptv + 1),
117                                      timer->rate, NANOSECONDS_PER_SECOND);
118     else
119         return timer->val;
120 }
121 
122 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
123 {
124     timer->val = omap_timer_read(timer);
125     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
126 }
127 
128 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
129 {
130     int64_t expires;
131 
132     if (timer->enable && timer->st && timer->rate) {
133         timer->val = timer->reset_val;	/* Should skip this on clk enable */
134         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
135                            NANOSECONDS_PER_SECOND, timer->rate);
136 
137         /* If timer expiry would be sooner than in about 1 ms and
138          * auto-reload isn't set, then fire immediately.  This is a hack
139          * to make systems like PalmOS run in acceptable time.  PalmOS
140          * sets the interval to a very low value and polls the status bit
141          * in a busy loop when it wants to sleep just a couple of CPU
142          * ticks.  */
143         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
144             timer_mod(timer->timer, timer->time + expires);
145         } else {
146             qemu_bh_schedule(timer->tick);
147         }
148     } else
149         timer_del(timer->timer);
150 }
151 
152 static void omap_timer_fire(void *opaque)
153 {
154     struct omap_mpu_timer_s *timer = opaque;
155 
156     if (!timer->ar) {
157         timer->val = 0;
158         timer->st = 0;
159     }
160 
161     if (timer->it_ena)
162         /* Edge-triggered irq */
163         qemu_irq_pulse(timer->irq);
164 }
165 
166 static void omap_timer_tick(void *opaque)
167 {
168     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
169 
170     omap_timer_sync(timer);
171     omap_timer_fire(timer);
172     omap_timer_update(timer);
173 }
174 
175 static void omap_timer_clk_update(void *opaque, int line, int on)
176 {
177     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
178 
179     omap_timer_sync(timer);
180     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
181     omap_timer_update(timer);
182 }
183 
184 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
185 {
186     omap_clk_adduser(timer->clk,
187                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
188     timer->rate = omap_clk_getrate(timer->clk);
189 }
190 
191 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
192                                     unsigned size)
193 {
194     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
195 
196     if (size != 4) {
197         return omap_badwidth_read32(opaque, addr);
198     }
199 
200     switch (addr) {
201     case 0x00:	/* CNTL_TIMER */
202         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
203 
204     case 0x04:	/* LOAD_TIM */
205         break;
206 
207     case 0x08:	/* READ_TIM */
208         return omap_timer_read(s);
209     }
210 
211     OMAP_BAD_REG(addr);
212     return 0;
213 }
214 
215 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
216                                  uint64_t value, unsigned size)
217 {
218     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
219 
220     if (size != 4) {
221         omap_badwidth_write32(opaque, addr, value);
222         return;
223     }
224 
225     switch (addr) {
226     case 0x00:	/* CNTL_TIMER */
227         omap_timer_sync(s);
228         s->enable = (value >> 5) & 1;
229         s->ptv = (value >> 2) & 7;
230         s->ar = (value >> 1) & 1;
231         s->st = value & 1;
232         omap_timer_update(s);
233         return;
234 
235     case 0x04:	/* LOAD_TIM */
236         s->reset_val = value;
237         return;
238 
239     case 0x08:	/* READ_TIM */
240         OMAP_RO_REG(addr);
241         break;
242 
243     default:
244         OMAP_BAD_REG(addr);
245     }
246 }
247 
248 static const MemoryRegionOps omap_mpu_timer_ops = {
249     .read = omap_mpu_timer_read,
250     .write = omap_mpu_timer_write,
251     .endianness = DEVICE_LITTLE_ENDIAN,
252 };
253 
254 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
255 {
256     timer_del(s->timer);
257     s->enable = 0;
258     s->reset_val = 31337;
259     s->val = 0;
260     s->ptv = 0;
261     s->ar = 0;
262     s->st = 0;
263     s->it_ena = 1;
264 }
265 
266 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
267                 hwaddr base,
268                 qemu_irq irq, omap_clk clk)
269 {
270     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
271 
272     s->irq = irq;
273     s->clk = clk;
274     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
275     s->tick = qemu_bh_new(omap_timer_fire, s);
276     omap_mpu_timer_reset(s);
277     omap_timer_clk_setup(s);
278 
279     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
280                           "omap-mpu-timer", 0x100);
281 
282     memory_region_add_subregion(system_memory, base, &s->iomem);
283 
284     return s;
285 }
286 
287 /* Watchdog timer */
288 struct omap_watchdog_timer_s {
289     struct omap_mpu_timer_s timer;
290     MemoryRegion iomem;
291     uint8_t last_wr;
292     int mode;
293     int free;
294     int reset;
295 };
296 
297 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
298                                    unsigned size)
299 {
300     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
301 
302     if (size != 2) {
303         return omap_badwidth_read16(opaque, addr);
304     }
305 
306     switch (addr) {
307     case 0x00:	/* CNTL_TIMER */
308         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
309                 (s->timer.st << 7) | (s->free << 1);
310 
311     case 0x04:	/* READ_TIMER */
312         return omap_timer_read(&s->timer);
313 
314     case 0x08:	/* TIMER_MODE */
315         return s->mode << 15;
316     }
317 
318     OMAP_BAD_REG(addr);
319     return 0;
320 }
321 
322 static void omap_wd_timer_write(void *opaque, hwaddr addr,
323                                 uint64_t value, unsigned size)
324 {
325     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
326 
327     if (size != 2) {
328         omap_badwidth_write16(opaque, addr, value);
329         return;
330     }
331 
332     switch (addr) {
333     case 0x00:	/* CNTL_TIMER */
334         omap_timer_sync(&s->timer);
335         s->timer.ptv = (value >> 9) & 7;
336         s->timer.ar = (value >> 8) & 1;
337         s->timer.st = (value >> 7) & 1;
338         s->free = (value >> 1) & 1;
339         omap_timer_update(&s->timer);
340         break;
341 
342     case 0x04:	/* LOAD_TIMER */
343         s->timer.reset_val = value & 0xffff;
344         break;
345 
346     case 0x08:	/* TIMER_MODE */
347         if (!s->mode && ((value >> 15) & 1))
348             omap_clk_get(s->timer.clk);
349         s->mode |= (value >> 15) & 1;
350         if (s->last_wr == 0xf5) {
351             if ((value & 0xff) == 0xa0) {
352                 if (s->mode) {
353                     s->mode = 0;
354                     omap_clk_put(s->timer.clk);
355                 }
356             } else {
357                 /* XXX: on T|E hardware somehow this has no effect,
358                  * on Zire 71 it works as specified.  */
359                 s->reset = 1;
360                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
361             }
362         }
363         s->last_wr = value & 0xff;
364         break;
365 
366     default:
367         OMAP_BAD_REG(addr);
368     }
369 }
370 
371 static const MemoryRegionOps omap_wd_timer_ops = {
372     .read = omap_wd_timer_read,
373     .write = omap_wd_timer_write,
374     .endianness = DEVICE_NATIVE_ENDIAN,
375 };
376 
377 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
378 {
379     timer_del(s->timer.timer);
380     if (!s->mode)
381         omap_clk_get(s->timer.clk);
382     s->mode = 1;
383     s->free = 1;
384     s->reset = 0;
385     s->timer.enable = 1;
386     s->timer.it_ena = 1;
387     s->timer.reset_val = 0xffff;
388     s->timer.val = 0;
389     s->timer.st = 0;
390     s->timer.ptv = 0;
391     s->timer.ar = 0;
392     omap_timer_update(&s->timer);
393 }
394 
395 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
396                 hwaddr base,
397                 qemu_irq irq, omap_clk clk)
398 {
399     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
400 
401     s->timer.irq = irq;
402     s->timer.clk = clk;
403     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
404     omap_wd_timer_reset(s);
405     omap_timer_clk_setup(&s->timer);
406 
407     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
408                           "omap-wd-timer", 0x100);
409     memory_region_add_subregion(memory, base, &s->iomem);
410 
411     return s;
412 }
413 
414 /* 32-kHz timer */
415 struct omap_32khz_timer_s {
416     struct omap_mpu_timer_s timer;
417     MemoryRegion iomem;
418 };
419 
420 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
421                                    unsigned size)
422 {
423     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
424     int offset = addr & OMAP_MPUI_REG_MASK;
425 
426     if (size != 4) {
427         return omap_badwidth_read32(opaque, addr);
428     }
429 
430     switch (offset) {
431     case 0x00:	/* TVR */
432         return s->timer.reset_val;
433 
434     case 0x04:	/* TCR */
435         return omap_timer_read(&s->timer);
436 
437     case 0x08:	/* CR */
438         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
439 
440     default:
441         break;
442     }
443     OMAP_BAD_REG(addr);
444     return 0;
445 }
446 
447 static void omap_os_timer_write(void *opaque, hwaddr addr,
448                                 uint64_t value, unsigned size)
449 {
450     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
451     int offset = addr & OMAP_MPUI_REG_MASK;
452 
453     if (size != 4) {
454         omap_badwidth_write32(opaque, addr, value);
455         return;
456     }
457 
458     switch (offset) {
459     case 0x00:	/* TVR */
460         s->timer.reset_val = value & 0x00ffffff;
461         break;
462 
463     case 0x04:	/* TCR */
464         OMAP_RO_REG(addr);
465         break;
466 
467     case 0x08:	/* CR */
468         s->timer.ar = (value >> 3) & 1;
469         s->timer.it_ena = (value >> 2) & 1;
470         if (s->timer.st != (value & 1) || (value & 2)) {
471             omap_timer_sync(&s->timer);
472             s->timer.enable = value & 1;
473             s->timer.st = value & 1;
474             omap_timer_update(&s->timer);
475         }
476         break;
477 
478     default:
479         OMAP_BAD_REG(addr);
480     }
481 }
482 
483 static const MemoryRegionOps omap_os_timer_ops = {
484     .read = omap_os_timer_read,
485     .write = omap_os_timer_write,
486     .endianness = DEVICE_NATIVE_ENDIAN,
487 };
488 
489 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
490 {
491     timer_del(s->timer.timer);
492     s->timer.enable = 0;
493     s->timer.it_ena = 0;
494     s->timer.reset_val = 0x00ffffff;
495     s->timer.val = 0;
496     s->timer.st = 0;
497     s->timer.ptv = 0;
498     s->timer.ar = 1;
499 }
500 
501 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
502                 hwaddr base,
503                 qemu_irq irq, omap_clk clk)
504 {
505     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
506 
507     s->timer.irq = irq;
508     s->timer.clk = clk;
509     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
510     omap_os_timer_reset(s);
511     omap_timer_clk_setup(&s->timer);
512 
513     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
514                           "omap-os-timer", 0x800);
515     memory_region_add_subregion(memory, base, &s->iomem);
516 
517     return s;
518 }
519 
520 /* Ultra Low-Power Device Module */
521 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
522                                   unsigned size)
523 {
524     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
525     uint16_t ret;
526 
527     if (size != 2) {
528         return omap_badwidth_read16(opaque, addr);
529     }
530 
531     switch (addr) {
532     case 0x14:	/* IT_STATUS */
533         ret = s->ulpd_pm_regs[addr >> 2];
534         s->ulpd_pm_regs[addr >> 2] = 0;
535         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
536         return ret;
537 
538     case 0x18:	/* Reserved */
539     case 0x1c:	/* Reserved */
540     case 0x20:	/* Reserved */
541     case 0x28:	/* Reserved */
542     case 0x2c:	/* Reserved */
543         OMAP_BAD_REG(addr);
544         /* fall through */
545     case 0x00:	/* COUNTER_32_LSB */
546     case 0x04:	/* COUNTER_32_MSB */
547     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
548     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
549     case 0x10:	/* GAUGING_CTRL */
550     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
551     case 0x30:	/* CLOCK_CTRL */
552     case 0x34:	/* SOFT_REQ */
553     case 0x38:	/* COUNTER_32_FIQ */
554     case 0x3c:	/* DPLL_CTRL */
555     case 0x40:	/* STATUS_REQ */
556         /* XXX: check clk::usecount state for every clock */
557     case 0x48:	/* LOCL_TIME */
558     case 0x4c:	/* APLL_CTRL */
559     case 0x50:	/* POWER_CTRL */
560         return s->ulpd_pm_regs[addr >> 2];
561     }
562 
563     OMAP_BAD_REG(addr);
564     return 0;
565 }
566 
567 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
568                 uint16_t diff, uint16_t value)
569 {
570     if (diff & (1 << 4))				/* USB_MCLK_EN */
571         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
572     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
573         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
574 }
575 
576 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
577                 uint16_t diff, uint16_t value)
578 {
579     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
580         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
581     if (diff & (1 << 1))				/* SOFT_COM_REQ */
582         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
583     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
584         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
585     if (diff & (1 << 3))				/* SOFT_USB_REQ */
586         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
587 }
588 
589 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
590                                uint64_t value, unsigned size)
591 {
592     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
593     int64_t now, ticks;
594     int div, mult;
595     static const int bypass_div[4] = { 1, 2, 4, 4 };
596     uint16_t diff;
597 
598     if (size != 2) {
599         omap_badwidth_write16(opaque, addr, value);
600         return;
601     }
602 
603     switch (addr) {
604     case 0x00:	/* COUNTER_32_LSB */
605     case 0x04:	/* COUNTER_32_MSB */
606     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
607     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
608     case 0x14:	/* IT_STATUS */
609     case 0x40:	/* STATUS_REQ */
610         OMAP_RO_REG(addr);
611         break;
612 
613     case 0x10:	/* GAUGING_CTRL */
614         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
615         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
616             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
617 
618             if (value & 1)
619                 s->ulpd_gauge_start = now;
620             else {
621                 now -= s->ulpd_gauge_start;
622 
623                 /* 32-kHz ticks */
624                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
625                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
626                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
627                 if (ticks >> 32)	/* OVERFLOW_32K */
628                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
629 
630                 /* High frequency ticks */
631                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
632                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
633                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
634                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
635                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
636 
637                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
638                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
639             }
640         }
641         s->ulpd_pm_regs[addr >> 2] = value;
642         break;
643 
644     case 0x18:	/* Reserved */
645     case 0x1c:	/* Reserved */
646     case 0x20:	/* Reserved */
647     case 0x28:	/* Reserved */
648     case 0x2c:	/* Reserved */
649         OMAP_BAD_REG(addr);
650         /* fall through */
651     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
652     case 0x38:	/* COUNTER_32_FIQ */
653     case 0x48:	/* LOCL_TIME */
654     case 0x50:	/* POWER_CTRL */
655         s->ulpd_pm_regs[addr >> 2] = value;
656         break;
657 
658     case 0x30:	/* CLOCK_CTRL */
659         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
660         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
661         omap_ulpd_clk_update(s, diff, value);
662         break;
663 
664     case 0x34:	/* SOFT_REQ */
665         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
666         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
667         omap_ulpd_req_update(s, diff, value);
668         break;
669 
670     case 0x3c:	/* DPLL_CTRL */
671         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
672          * omitted altogether, probably a typo.  */
673         /* This register has identical semantics with DPLL(1:3) control
674          * registers, see omap_dpll_write() */
675         diff = s->ulpd_pm_regs[addr >> 2] & value;
676         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
677         if (diff & (0x3ff << 2)) {
678             if (value & (1 << 4)) {			/* PLL_ENABLE */
679                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
680                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
681             } else {
682                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
683                 mult = 1;
684             }
685             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
686         }
687 
688         /* Enter the desired mode.  */
689         s->ulpd_pm_regs[addr >> 2] =
690                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
691                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
692 
693         /* Act as if the lock is restored.  */
694         s->ulpd_pm_regs[addr >> 2] |= 2;
695         break;
696 
697     case 0x4c:	/* APLL_CTRL */
698         diff = s->ulpd_pm_regs[addr >> 2] & value;
699         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
700         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
701             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
702                                     (value & (1 << 0)) ? "apll" : "dpll4"));
703         break;
704 
705     default:
706         OMAP_BAD_REG(addr);
707     }
708 }
709 
710 static const MemoryRegionOps omap_ulpd_pm_ops = {
711     .read = omap_ulpd_pm_read,
712     .write = omap_ulpd_pm_write,
713     .endianness = DEVICE_NATIVE_ENDIAN,
714 };
715 
716 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
717 {
718     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
719     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
720     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
721     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
722     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
723     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
724     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
725     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
726     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
727     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
728     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
729     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
730     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
731     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
732     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
733     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
734     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
735     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
736     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
737     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
738     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
739     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
740     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
741 }
742 
743 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
744                 hwaddr base,
745                 struct omap_mpu_state_s *mpu)
746 {
747     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
748                           "omap-ulpd-pm", 0x800);
749     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
750     omap_ulpd_pm_reset(mpu);
751 }
752 
753 /* OMAP Pin Configuration */
754 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
755                                   unsigned size)
756 {
757     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
758 
759     if (size != 4) {
760         return omap_badwidth_read32(opaque, addr);
761     }
762 
763     switch (addr) {
764     case 0x00:	/* FUNC_MUX_CTRL_0 */
765     case 0x04:	/* FUNC_MUX_CTRL_1 */
766     case 0x08:	/* FUNC_MUX_CTRL_2 */
767         return s->func_mux_ctrl[addr >> 2];
768 
769     case 0x0c:	/* COMP_MODE_CTRL_0 */
770         return s->comp_mode_ctrl[0];
771 
772     case 0x10:	/* FUNC_MUX_CTRL_3 */
773     case 0x14:	/* FUNC_MUX_CTRL_4 */
774     case 0x18:	/* FUNC_MUX_CTRL_5 */
775     case 0x1c:	/* FUNC_MUX_CTRL_6 */
776     case 0x20:	/* FUNC_MUX_CTRL_7 */
777     case 0x24:	/* FUNC_MUX_CTRL_8 */
778     case 0x28:	/* FUNC_MUX_CTRL_9 */
779     case 0x2c:	/* FUNC_MUX_CTRL_A */
780     case 0x30:	/* FUNC_MUX_CTRL_B */
781     case 0x34:	/* FUNC_MUX_CTRL_C */
782     case 0x38:	/* FUNC_MUX_CTRL_D */
783         return s->func_mux_ctrl[(addr >> 2) - 1];
784 
785     case 0x40:	/* PULL_DWN_CTRL_0 */
786     case 0x44:	/* PULL_DWN_CTRL_1 */
787     case 0x48:	/* PULL_DWN_CTRL_2 */
788     case 0x4c:	/* PULL_DWN_CTRL_3 */
789         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
790 
791     case 0x50:	/* GATE_INH_CTRL_0 */
792         return s->gate_inh_ctrl[0];
793 
794     case 0x60:	/* VOLTAGE_CTRL_0 */
795         return s->voltage_ctrl[0];
796 
797     case 0x70:	/* TEST_DBG_CTRL_0 */
798         return s->test_dbg_ctrl[0];
799 
800     case 0x80:	/* MOD_CONF_CTRL_0 */
801         return s->mod_conf_ctrl[0];
802     }
803 
804     OMAP_BAD_REG(addr);
805     return 0;
806 }
807 
808 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
809                 uint32_t diff, uint32_t value)
810 {
811     if (s->compat1509) {
812         if (diff & (1 << 9))			/* BLUETOOTH */
813             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
814                             (~value >> 9) & 1);
815         if (diff & (1 << 7))			/* USB.CLKO */
816             omap_clk_onoff(omap_findclk(s, "usb.clko"),
817                             (value >> 7) & 1);
818     }
819 }
820 
821 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
822                 uint32_t diff, uint32_t value)
823 {
824     if (s->compat1509) {
825         if (diff & (1U << 31)) {
826             /* MCBSP3_CLK_HIZ_DI */
827             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
828         }
829         if (diff & (1 << 1)) {
830             /* CLK32K */
831             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
832         }
833     }
834 }
835 
836 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
837                 uint32_t diff, uint32_t value)
838 {
839     if (diff & (1U << 31)) {
840         /* CONF_MOD_UART3_CLK_MODE_R */
841         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
842                           omap_findclk(s, ((value >> 31) & 1) ?
843                                        "ck_48m" : "armper_ck"));
844     }
845     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
846          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
847                          omap_findclk(s, ((value >> 30) & 1) ?
848                                  "ck_48m" : "armper_ck"));
849     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
850          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
851                          omap_findclk(s, ((value >> 29) & 1) ?
852                                  "ck_48m" : "armper_ck"));
853     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
854          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
855                          omap_findclk(s, ((value >> 23) & 1) ?
856                                  "ck_48m" : "armper_ck"));
857     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
858          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
859                          omap_findclk(s, ((value >> 12) & 1) ?
860                                  "ck_48m" : "armper_ck"));
861     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
862          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
863 }
864 
865 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
866                                uint64_t value, unsigned size)
867 {
868     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
869     uint32_t diff;
870 
871     if (size != 4) {
872         omap_badwidth_write32(opaque, addr, value);
873         return;
874     }
875 
876     switch (addr) {
877     case 0x00:	/* FUNC_MUX_CTRL_0 */
878         diff = s->func_mux_ctrl[addr >> 2] ^ value;
879         s->func_mux_ctrl[addr >> 2] = value;
880         omap_pin_funcmux0_update(s, diff, value);
881         return;
882 
883     case 0x04:	/* FUNC_MUX_CTRL_1 */
884         diff = s->func_mux_ctrl[addr >> 2] ^ value;
885         s->func_mux_ctrl[addr >> 2] = value;
886         omap_pin_funcmux1_update(s, diff, value);
887         return;
888 
889     case 0x08:	/* FUNC_MUX_CTRL_2 */
890         s->func_mux_ctrl[addr >> 2] = value;
891         return;
892 
893     case 0x0c:	/* COMP_MODE_CTRL_0 */
894         s->comp_mode_ctrl[0] = value;
895         s->compat1509 = (value != 0x0000eaef);
896         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
897         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
898         return;
899 
900     case 0x10:	/* FUNC_MUX_CTRL_3 */
901     case 0x14:	/* FUNC_MUX_CTRL_4 */
902     case 0x18:	/* FUNC_MUX_CTRL_5 */
903     case 0x1c:	/* FUNC_MUX_CTRL_6 */
904     case 0x20:	/* FUNC_MUX_CTRL_7 */
905     case 0x24:	/* FUNC_MUX_CTRL_8 */
906     case 0x28:	/* FUNC_MUX_CTRL_9 */
907     case 0x2c:	/* FUNC_MUX_CTRL_A */
908     case 0x30:	/* FUNC_MUX_CTRL_B */
909     case 0x34:	/* FUNC_MUX_CTRL_C */
910     case 0x38:	/* FUNC_MUX_CTRL_D */
911         s->func_mux_ctrl[(addr >> 2) - 1] = value;
912         return;
913 
914     case 0x40:	/* PULL_DWN_CTRL_0 */
915     case 0x44:	/* PULL_DWN_CTRL_1 */
916     case 0x48:	/* PULL_DWN_CTRL_2 */
917     case 0x4c:	/* PULL_DWN_CTRL_3 */
918         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
919         return;
920 
921     case 0x50:	/* GATE_INH_CTRL_0 */
922         s->gate_inh_ctrl[0] = value;
923         return;
924 
925     case 0x60:	/* VOLTAGE_CTRL_0 */
926         s->voltage_ctrl[0] = value;
927         return;
928 
929     case 0x70:	/* TEST_DBG_CTRL_0 */
930         s->test_dbg_ctrl[0] = value;
931         return;
932 
933     case 0x80:	/* MOD_CONF_CTRL_0 */
934         diff = s->mod_conf_ctrl[0] ^ value;
935         s->mod_conf_ctrl[0] = value;
936         omap_pin_modconf1_update(s, diff, value);
937         return;
938 
939     default:
940         OMAP_BAD_REG(addr);
941     }
942 }
943 
944 static const MemoryRegionOps omap_pin_cfg_ops = {
945     .read = omap_pin_cfg_read,
946     .write = omap_pin_cfg_write,
947     .endianness = DEVICE_NATIVE_ENDIAN,
948 };
949 
950 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
951 {
952     /* Start in Compatibility Mode.  */
953     mpu->compat1509 = 1;
954     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
955     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
956     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
957     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
958     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
959     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
960     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
961     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
962     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
963     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
964 }
965 
966 static void omap_pin_cfg_init(MemoryRegion *system_memory,
967                 hwaddr base,
968                 struct omap_mpu_state_s *mpu)
969 {
970     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
971                           "omap-pin-cfg", 0x800);
972     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
973     omap_pin_cfg_reset(mpu);
974 }
975 
976 /* Device Identification, Die Identification */
977 static uint64_t omap_id_read(void *opaque, hwaddr addr,
978                              unsigned size)
979 {
980     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
981 
982     if (size != 4) {
983         return omap_badwidth_read32(opaque, addr);
984     }
985 
986     switch (addr) {
987     case 0xfffe1800:	/* DIE_ID_LSB */
988         return 0xc9581f0e;
989     case 0xfffe1804:	/* DIE_ID_MSB */
990         return 0xa8858bfa;
991 
992     case 0xfffe2000:	/* PRODUCT_ID_LSB */
993         return 0x00aaaafc;
994     case 0xfffe2004:	/* PRODUCT_ID_MSB */
995         return 0xcafeb574;
996 
997     case 0xfffed400:	/* JTAG_ID_LSB */
998         switch (s->mpu_model) {
999         case omap310:
1000             return 0x03310315;
1001         case omap1510:
1002             return 0x03310115;
1003         default:
1004             hw_error("%s: bad mpu model\n", __func__);
1005         }
1006         break;
1007 
1008     case 0xfffed404:	/* JTAG_ID_MSB */
1009         switch (s->mpu_model) {
1010         case omap310:
1011             return 0xfb57402f;
1012         case omap1510:
1013             return 0xfb47002f;
1014         default:
1015             hw_error("%s: bad mpu model\n", __func__);
1016         }
1017         break;
1018     }
1019 
1020     OMAP_BAD_REG(addr);
1021     return 0;
1022 }
1023 
1024 static void omap_id_write(void *opaque, hwaddr addr,
1025                           uint64_t value, unsigned size)
1026 {
1027     if (size != 4) {
1028         omap_badwidth_write32(opaque, addr, value);
1029         return;
1030     }
1031 
1032     OMAP_BAD_REG(addr);
1033 }
1034 
1035 static const MemoryRegionOps omap_id_ops = {
1036     .read = omap_id_read,
1037     .write = omap_id_write,
1038     .endianness = DEVICE_NATIVE_ENDIAN,
1039 };
1040 
1041 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1042 {
1043     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1044                           "omap-id", 0x100000000ULL);
1045     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1046                              0xfffe1800, 0x800);
1047     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1048     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1049                              0xfffed400, 0x100);
1050     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1051     if (!cpu_is_omap15xx(mpu)) {
1052         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1053                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1054         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1055     }
1056 }
1057 
1058 /* MPUI Control (Dummy) */
1059 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1060                                unsigned size)
1061 {
1062     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1063 
1064     if (size != 4) {
1065         return omap_badwidth_read32(opaque, addr);
1066     }
1067 
1068     switch (addr) {
1069     case 0x00:	/* CTRL */
1070         return s->mpui_ctrl;
1071     case 0x04:	/* DEBUG_ADDR */
1072         return 0x01ffffff;
1073     case 0x08:	/* DEBUG_DATA */
1074         return 0xffffffff;
1075     case 0x0c:	/* DEBUG_FLAG */
1076         return 0x00000800;
1077     case 0x10:	/* STATUS */
1078         return 0x00000000;
1079 
1080     /* Not in OMAP310 */
1081     case 0x14:	/* DSP_STATUS */
1082     case 0x18:	/* DSP_BOOT_CONFIG */
1083         return 0x00000000;
1084     case 0x1c:	/* DSP_MPUI_CONFIG */
1085         return 0x0000ffff;
1086     }
1087 
1088     OMAP_BAD_REG(addr);
1089     return 0;
1090 }
1091 
1092 static void omap_mpui_write(void *opaque, hwaddr addr,
1093                             uint64_t value, unsigned size)
1094 {
1095     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1096 
1097     if (size != 4) {
1098         omap_badwidth_write32(opaque, addr, value);
1099         return;
1100     }
1101 
1102     switch (addr) {
1103     case 0x00:	/* CTRL */
1104         s->mpui_ctrl = value & 0x007fffff;
1105         break;
1106 
1107     case 0x04:	/* DEBUG_ADDR */
1108     case 0x08:	/* DEBUG_DATA */
1109     case 0x0c:	/* DEBUG_FLAG */
1110     case 0x10:	/* STATUS */
1111     /* Not in OMAP310 */
1112     case 0x14:	/* DSP_STATUS */
1113         OMAP_RO_REG(addr);
1114         break;
1115     case 0x18:	/* DSP_BOOT_CONFIG */
1116     case 0x1c:	/* DSP_MPUI_CONFIG */
1117         break;
1118 
1119     default:
1120         OMAP_BAD_REG(addr);
1121     }
1122 }
1123 
1124 static const MemoryRegionOps omap_mpui_ops = {
1125     .read = omap_mpui_read,
1126     .write = omap_mpui_write,
1127     .endianness = DEVICE_NATIVE_ENDIAN,
1128 };
1129 
1130 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1131 {
1132     s->mpui_ctrl = 0x0003ff1b;
1133 }
1134 
1135 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1136                 struct omap_mpu_state_s *mpu)
1137 {
1138     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1139                           "omap-mpui", 0x100);
1140     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1141 
1142     omap_mpui_reset(mpu);
1143 }
1144 
1145 /* TIPB Bridges */
1146 struct omap_tipb_bridge_s {
1147     qemu_irq abort;
1148     MemoryRegion iomem;
1149 
1150     int width_intr;
1151     uint16_t control;
1152     uint16_t alloc;
1153     uint16_t buffer;
1154     uint16_t enh_control;
1155 };
1156 
1157 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1158                                       unsigned size)
1159 {
1160     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1161 
1162     if (size < 2) {
1163         return omap_badwidth_read16(opaque, addr);
1164     }
1165 
1166     switch (addr) {
1167     case 0x00:	/* TIPB_CNTL */
1168         return s->control;
1169     case 0x04:	/* TIPB_BUS_ALLOC */
1170         return s->alloc;
1171     case 0x08:	/* MPU_TIPB_CNTL */
1172         return s->buffer;
1173     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1174         return s->enh_control;
1175     case 0x10:	/* ADDRESS_DBG */
1176     case 0x14:	/* DATA_DEBUG_LOW */
1177     case 0x18:	/* DATA_DEBUG_HIGH */
1178         return 0xffff;
1179     case 0x1c:	/* DEBUG_CNTR_SIG */
1180         return 0x00f8;
1181     }
1182 
1183     OMAP_BAD_REG(addr);
1184     return 0;
1185 }
1186 
1187 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1188                                    uint64_t value, unsigned size)
1189 {
1190     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1191 
1192     if (size < 2) {
1193         omap_badwidth_write16(opaque, addr, value);
1194         return;
1195     }
1196 
1197     switch (addr) {
1198     case 0x00:	/* TIPB_CNTL */
1199         s->control = value & 0xffff;
1200         break;
1201 
1202     case 0x04:	/* TIPB_BUS_ALLOC */
1203         s->alloc = value & 0x003f;
1204         break;
1205 
1206     case 0x08:	/* MPU_TIPB_CNTL */
1207         s->buffer = value & 0x0003;
1208         break;
1209 
1210     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1211         s->width_intr = !(value & 2);
1212         s->enh_control = value & 0x000f;
1213         break;
1214 
1215     case 0x10:	/* ADDRESS_DBG */
1216     case 0x14:	/* DATA_DEBUG_LOW */
1217     case 0x18:	/* DATA_DEBUG_HIGH */
1218     case 0x1c:	/* DEBUG_CNTR_SIG */
1219         OMAP_RO_REG(addr);
1220         break;
1221 
1222     default:
1223         OMAP_BAD_REG(addr);
1224     }
1225 }
1226 
1227 static const MemoryRegionOps omap_tipb_bridge_ops = {
1228     .read = omap_tipb_bridge_read,
1229     .write = omap_tipb_bridge_write,
1230     .endianness = DEVICE_NATIVE_ENDIAN,
1231 };
1232 
1233 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1234 {
1235     s->control = 0xffff;
1236     s->alloc = 0x0009;
1237     s->buffer = 0x0000;
1238     s->enh_control = 0x000f;
1239 }
1240 
1241 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1242     MemoryRegion *memory, hwaddr base,
1243     qemu_irq abort_irq, omap_clk clk)
1244 {
1245     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1246 
1247     s->abort = abort_irq;
1248     omap_tipb_bridge_reset(s);
1249 
1250     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1251                           "omap-tipb-bridge", 0x100);
1252     memory_region_add_subregion(memory, base, &s->iomem);
1253 
1254     return s;
1255 }
1256 
1257 /* Dummy Traffic Controller's Memory Interface */
1258 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1259                                unsigned size)
1260 {
1261     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1262     uint32_t ret;
1263 
1264     if (size != 4) {
1265         return omap_badwidth_read32(opaque, addr);
1266     }
1267 
1268     switch (addr) {
1269     case 0x00:	/* IMIF_PRIO */
1270     case 0x04:	/* EMIFS_PRIO */
1271     case 0x08:	/* EMIFF_PRIO */
1272     case 0x0c:	/* EMIFS_CONFIG */
1273     case 0x10:	/* EMIFS_CS0_CONFIG */
1274     case 0x14:	/* EMIFS_CS1_CONFIG */
1275     case 0x18:	/* EMIFS_CS2_CONFIG */
1276     case 0x1c:	/* EMIFS_CS3_CONFIG */
1277     case 0x24:	/* EMIFF_MRS */
1278     case 0x28:	/* TIMEOUT1 */
1279     case 0x2c:	/* TIMEOUT2 */
1280     case 0x30:	/* TIMEOUT3 */
1281     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1282     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1283         return s->tcmi_regs[addr >> 2];
1284 
1285     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1286         ret = s->tcmi_regs[addr >> 2];
1287         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1288         /* XXX: We can try using the VGA_DIRTY flag for this */
1289         return ret;
1290     }
1291 
1292     OMAP_BAD_REG(addr);
1293     return 0;
1294 }
1295 
1296 static void omap_tcmi_write(void *opaque, hwaddr addr,
1297                             uint64_t value, unsigned size)
1298 {
1299     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1300 
1301     if (size != 4) {
1302         omap_badwidth_write32(opaque, addr, value);
1303         return;
1304     }
1305 
1306     switch (addr) {
1307     case 0x00:	/* IMIF_PRIO */
1308     case 0x04:	/* EMIFS_PRIO */
1309     case 0x08:	/* EMIFF_PRIO */
1310     case 0x10:	/* EMIFS_CS0_CONFIG */
1311     case 0x14:	/* EMIFS_CS1_CONFIG */
1312     case 0x18:	/* EMIFS_CS2_CONFIG */
1313     case 0x1c:	/* EMIFS_CS3_CONFIG */
1314     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1315     case 0x24:	/* EMIFF_MRS */
1316     case 0x28:	/* TIMEOUT1 */
1317     case 0x2c:	/* TIMEOUT2 */
1318     case 0x30:	/* TIMEOUT3 */
1319     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1320     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1321         s->tcmi_regs[addr >> 2] = value;
1322         break;
1323     case 0x0c:	/* EMIFS_CONFIG */
1324         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1325         break;
1326 
1327     default:
1328         OMAP_BAD_REG(addr);
1329     }
1330 }
1331 
1332 static const MemoryRegionOps omap_tcmi_ops = {
1333     .read = omap_tcmi_read,
1334     .write = omap_tcmi_write,
1335     .endianness = DEVICE_NATIVE_ENDIAN,
1336 };
1337 
1338 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1339 {
1340     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1341     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1342     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1343     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1344     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1345     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1346     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1347     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1348     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1349     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1350     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1351     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1352     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1353     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1354     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1355 }
1356 
1357 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1358                 struct omap_mpu_state_s *mpu)
1359 {
1360     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1361                           "omap-tcmi", 0x100);
1362     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1363     omap_tcmi_reset(mpu);
1364 }
1365 
1366 /* Digital phase-locked loops control */
1367 struct dpll_ctl_s {
1368     MemoryRegion iomem;
1369     uint16_t mode;
1370     omap_clk dpll;
1371 };
1372 
1373 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1374                                unsigned size)
1375 {
1376     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1377 
1378     if (size != 2) {
1379         return omap_badwidth_read16(opaque, addr);
1380     }
1381 
1382     if (addr == 0x00)	/* CTL_REG */
1383         return s->mode;
1384 
1385     OMAP_BAD_REG(addr);
1386     return 0;
1387 }
1388 
1389 static void omap_dpll_write(void *opaque, hwaddr addr,
1390                             uint64_t value, unsigned size)
1391 {
1392     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1393     uint16_t diff;
1394     static const int bypass_div[4] = { 1, 2, 4, 4 };
1395     int div, mult;
1396 
1397     if (size != 2) {
1398         omap_badwidth_write16(opaque, addr, value);
1399         return;
1400     }
1401 
1402     if (addr == 0x00) {	/* CTL_REG */
1403         /* See omap_ulpd_pm_write() too */
1404         diff = s->mode & value;
1405         s->mode = value & 0x2fff;
1406         if (diff & (0x3ff << 2)) {
1407             if (value & (1 << 4)) {			/* PLL_ENABLE */
1408                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1409                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1410             } else {
1411                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1412                 mult = 1;
1413             }
1414             omap_clk_setrate(s->dpll, div, mult);
1415         }
1416 
1417         /* Enter the desired mode.  */
1418         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1419 
1420         /* Act as if the lock is restored.  */
1421         s->mode |= 2;
1422     } else {
1423         OMAP_BAD_REG(addr);
1424     }
1425 }
1426 
1427 static const MemoryRegionOps omap_dpll_ops = {
1428     .read = omap_dpll_read,
1429     .write = omap_dpll_write,
1430     .endianness = DEVICE_NATIVE_ENDIAN,
1431 };
1432 
1433 static void omap_dpll_reset(struct dpll_ctl_s *s)
1434 {
1435     s->mode = 0x2002;
1436     omap_clk_setrate(s->dpll, 1, 1);
1437 }
1438 
1439 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1440                            hwaddr base, omap_clk clk)
1441 {
1442     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1443     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1444 
1445     s->dpll = clk;
1446     omap_dpll_reset(s);
1447 
1448     memory_region_add_subregion(memory, base, &s->iomem);
1449     return s;
1450 }
1451 
1452 /* MPU Clock/Reset/Power Mode Control */
1453 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1454                                unsigned size)
1455 {
1456     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1457 
1458     if (size != 2) {
1459         return omap_badwidth_read16(opaque, addr);
1460     }
1461 
1462     switch (addr) {
1463     case 0x00:	/* ARM_CKCTL */
1464         return s->clkm.arm_ckctl;
1465 
1466     case 0x04:	/* ARM_IDLECT1 */
1467         return s->clkm.arm_idlect1;
1468 
1469     case 0x08:	/* ARM_IDLECT2 */
1470         return s->clkm.arm_idlect2;
1471 
1472     case 0x0c:	/* ARM_EWUPCT */
1473         return s->clkm.arm_ewupct;
1474 
1475     case 0x10:	/* ARM_RSTCT1 */
1476         return s->clkm.arm_rstct1;
1477 
1478     case 0x14:	/* ARM_RSTCT2 */
1479         return s->clkm.arm_rstct2;
1480 
1481     case 0x18:	/* ARM_SYSST */
1482         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1483 
1484     case 0x1c:	/* ARM_CKOUT1 */
1485         return s->clkm.arm_ckout1;
1486 
1487     case 0x20:	/* ARM_CKOUT2 */
1488         break;
1489     }
1490 
1491     OMAP_BAD_REG(addr);
1492     return 0;
1493 }
1494 
1495 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1496                 uint16_t diff, uint16_t value)
1497 {
1498     omap_clk clk;
1499 
1500     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1501         if (value & (1 << 14))
1502             /* Reserved */;
1503         else {
1504             clk = omap_findclk(s, "arminth_ck");
1505             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1506         }
1507     }
1508     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1509         clk = omap_findclk(s, "armtim_ck");
1510         if (value & (1 << 12))
1511             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1512         else
1513             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1514     }
1515     /* XXX: en_dspck */
1516     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1517         clk = omap_findclk(s, "dspmmu_ck");
1518         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1519     }
1520     if (diff & (3 << 8)) {				/* TCDIV */
1521         clk = omap_findclk(s, "tc_ck");
1522         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1523     }
1524     if (diff & (3 << 6)) {				/* DSPDIV */
1525         clk = omap_findclk(s, "dsp_ck");
1526         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1527     }
1528     if (diff & (3 << 4)) {				/* ARMDIV */
1529         clk = omap_findclk(s, "arm_ck");
1530         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1531     }
1532     if (diff & (3 << 2)) {				/* LCDDIV */
1533         clk = omap_findclk(s, "lcd_ck");
1534         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1535     }
1536     if (diff & (3 << 0)) {				/* PERDIV */
1537         clk = omap_findclk(s, "armper_ck");
1538         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1539     }
1540 }
1541 
1542 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1543                 uint16_t diff, uint16_t value)
1544 {
1545     omap_clk clk;
1546 
1547     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1548         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1549     }
1550     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1551         /* XXX: disable wakeup from IRQ */
1552         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1553     }
1554 
1555 #define SET_CANIDLE(clock, bit)				\
1556     if (diff & (1 << bit)) {				\
1557         clk = omap_findclk(s, clock);			\
1558         omap_clk_canidle(clk, (value >> bit) & 1);	\
1559     }
1560     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1561     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1562     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1563     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1564     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1565     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1566     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1567     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1568     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1569     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1570     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1571     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1572     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1573     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1574 }
1575 
1576 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1577                 uint16_t diff, uint16_t value)
1578 {
1579     omap_clk clk;
1580 
1581 #define SET_ONOFF(clock, bit)				\
1582     if (diff & (1 << bit)) {				\
1583         clk = omap_findclk(s, clock);			\
1584         omap_clk_onoff(clk, (value >> bit) & 1);	\
1585     }
1586     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1587     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1588     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1589     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1590     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1591     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1592     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1593     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1594     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1595     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1596     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1597 }
1598 
1599 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1600                 uint16_t diff, uint16_t value)
1601 {
1602     omap_clk clk;
1603 
1604     if (diff & (3 << 4)) {				/* TCLKOUT */
1605         clk = omap_findclk(s, "tclk_out");
1606         switch ((value >> 4) & 3) {
1607         case 1:
1608             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1609             omap_clk_onoff(clk, 1);
1610             break;
1611         case 2:
1612             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1613             omap_clk_onoff(clk, 1);
1614             break;
1615         default:
1616             omap_clk_onoff(clk, 0);
1617         }
1618     }
1619     if (diff & (3 << 2)) {				/* DCLKOUT */
1620         clk = omap_findclk(s, "dclk_out");
1621         switch ((value >> 2) & 3) {
1622         case 0:
1623             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1624             break;
1625         case 1:
1626             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1627             break;
1628         case 2:
1629             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1630             break;
1631         case 3:
1632             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1633             break;
1634         }
1635     }
1636     if (diff & (3 << 0)) {				/* ACLKOUT */
1637         clk = omap_findclk(s, "aclk_out");
1638         switch ((value >> 0) & 3) {
1639         case 1:
1640             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1641             omap_clk_onoff(clk, 1);
1642             break;
1643         case 2:
1644             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1645             omap_clk_onoff(clk, 1);
1646             break;
1647         case 3:
1648             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1649             omap_clk_onoff(clk, 1);
1650             break;
1651         default:
1652             omap_clk_onoff(clk, 0);
1653         }
1654     }
1655 }
1656 
1657 static void omap_clkm_write(void *opaque, hwaddr addr,
1658                             uint64_t value, unsigned size)
1659 {
1660     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1661     uint16_t diff;
1662     omap_clk clk;
1663     static const char *clkschemename[8] = {
1664         "fully synchronous", "fully asynchronous", "synchronous scalable",
1665         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1666     };
1667 
1668     if (size != 2) {
1669         omap_badwidth_write16(opaque, addr, value);
1670         return;
1671     }
1672 
1673     switch (addr) {
1674     case 0x00:	/* ARM_CKCTL */
1675         diff = s->clkm.arm_ckctl ^ value;
1676         s->clkm.arm_ckctl = value & 0x7fff;
1677         omap_clkm_ckctl_update(s, diff, value);
1678         return;
1679 
1680     case 0x04:	/* ARM_IDLECT1 */
1681         diff = s->clkm.arm_idlect1 ^ value;
1682         s->clkm.arm_idlect1 = value & 0x0fff;
1683         omap_clkm_idlect1_update(s, diff, value);
1684         return;
1685 
1686     case 0x08:	/* ARM_IDLECT2 */
1687         diff = s->clkm.arm_idlect2 ^ value;
1688         s->clkm.arm_idlect2 = value & 0x07ff;
1689         omap_clkm_idlect2_update(s, diff, value);
1690         return;
1691 
1692     case 0x0c:	/* ARM_EWUPCT */
1693         s->clkm.arm_ewupct = value & 0x003f;
1694         return;
1695 
1696     case 0x10:	/* ARM_RSTCT1 */
1697         diff = s->clkm.arm_rstct1 ^ value;
1698         s->clkm.arm_rstct1 = value & 0x0007;
1699         if (value & 9) {
1700             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1701             s->clkm.cold_start = 0xa;
1702         }
1703         if (diff & ~value & 4) {				/* DSP_RST */
1704             omap_mpui_reset(s);
1705             omap_tipb_bridge_reset(s->private_tipb);
1706             omap_tipb_bridge_reset(s->public_tipb);
1707         }
1708         if (diff & 2) {						/* DSP_EN */
1709             clk = omap_findclk(s, "dsp_ck");
1710             omap_clk_canidle(clk, (~value >> 1) & 1);
1711         }
1712         return;
1713 
1714     case 0x14:	/* ARM_RSTCT2 */
1715         s->clkm.arm_rstct2 = value & 0x0001;
1716         return;
1717 
1718     case 0x18:	/* ARM_SYSST */
1719         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1720             s->clkm.clocking_scheme = (value >> 11) & 7;
1721             printf("%s: clocking scheme set to %s\n", __func__,
1722                    clkschemename[s->clkm.clocking_scheme]);
1723         }
1724         s->clkm.cold_start &= value & 0x3f;
1725         return;
1726 
1727     case 0x1c:	/* ARM_CKOUT1 */
1728         diff = s->clkm.arm_ckout1 ^ value;
1729         s->clkm.arm_ckout1 = value & 0x003f;
1730         omap_clkm_ckout1_update(s, diff, value);
1731         return;
1732 
1733     case 0x20:	/* ARM_CKOUT2 */
1734     default:
1735         OMAP_BAD_REG(addr);
1736     }
1737 }
1738 
1739 static const MemoryRegionOps omap_clkm_ops = {
1740     .read = omap_clkm_read,
1741     .write = omap_clkm_write,
1742     .endianness = DEVICE_NATIVE_ENDIAN,
1743 };
1744 
1745 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1746                                  unsigned size)
1747 {
1748     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1749     CPUState *cpu = CPU(s->cpu);
1750 
1751     if (size != 2) {
1752         return omap_badwidth_read16(opaque, addr);
1753     }
1754 
1755     switch (addr) {
1756     case 0x04:	/* DSP_IDLECT1 */
1757         return s->clkm.dsp_idlect1;
1758 
1759     case 0x08:	/* DSP_IDLECT2 */
1760         return s->clkm.dsp_idlect2;
1761 
1762     case 0x14:	/* DSP_RSTCT2 */
1763         return s->clkm.dsp_rstct2;
1764 
1765     case 0x18:	/* DSP_SYSST */
1766         cpu = CPU(s->cpu);
1767         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1768                 (cpu->halted << 6);      /* Quite useless... */
1769     }
1770 
1771     OMAP_BAD_REG(addr);
1772     return 0;
1773 }
1774 
1775 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1776                 uint16_t diff, uint16_t value)
1777 {
1778     omap_clk clk;
1779 
1780     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1781 }
1782 
1783 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1784                 uint16_t diff, uint16_t value)
1785 {
1786     omap_clk clk;
1787 
1788     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1789 }
1790 
1791 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1792                               uint64_t value, unsigned size)
1793 {
1794     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1795     uint16_t diff;
1796 
1797     if (size != 2) {
1798         omap_badwidth_write16(opaque, addr, value);
1799         return;
1800     }
1801 
1802     switch (addr) {
1803     case 0x04:	/* DSP_IDLECT1 */
1804         diff = s->clkm.dsp_idlect1 ^ value;
1805         s->clkm.dsp_idlect1 = value & 0x01f7;
1806         omap_clkdsp_idlect1_update(s, diff, value);
1807         break;
1808 
1809     case 0x08:	/* DSP_IDLECT2 */
1810         s->clkm.dsp_idlect2 = value & 0x0037;
1811         diff = s->clkm.dsp_idlect1 ^ value;
1812         omap_clkdsp_idlect2_update(s, diff, value);
1813         break;
1814 
1815     case 0x14:	/* DSP_RSTCT2 */
1816         s->clkm.dsp_rstct2 = value & 0x0001;
1817         break;
1818 
1819     case 0x18:	/* DSP_SYSST */
1820         s->clkm.cold_start &= value & 0x3f;
1821         break;
1822 
1823     default:
1824         OMAP_BAD_REG(addr);
1825     }
1826 }
1827 
1828 static const MemoryRegionOps omap_clkdsp_ops = {
1829     .read = omap_clkdsp_read,
1830     .write = omap_clkdsp_write,
1831     .endianness = DEVICE_NATIVE_ENDIAN,
1832 };
1833 
1834 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1835 {
1836     if (s->wdt && s->wdt->reset)
1837         s->clkm.cold_start = 0x6;
1838     s->clkm.clocking_scheme = 0;
1839     omap_clkm_ckctl_update(s, ~0, 0x3000);
1840     s->clkm.arm_ckctl = 0x3000;
1841     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1842     s->clkm.arm_idlect1 = 0x0400;
1843     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1844     s->clkm.arm_idlect2 = 0x0100;
1845     s->clkm.arm_ewupct = 0x003f;
1846     s->clkm.arm_rstct1 = 0x0000;
1847     s->clkm.arm_rstct2 = 0x0000;
1848     s->clkm.arm_ckout1 = 0x0015;
1849     s->clkm.dpll1_mode = 0x2002;
1850     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1851     s->clkm.dsp_idlect1 = 0x0040;
1852     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1853     s->clkm.dsp_idlect2 = 0x0000;
1854     s->clkm.dsp_rstct2 = 0x0000;
1855 }
1856 
1857 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1858                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1859 {
1860     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1861                           "omap-clkm", 0x100);
1862     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1863                           "omap-clkdsp", 0x1000);
1864 
1865     s->clkm.arm_idlect1 = 0x03ff;
1866     s->clkm.arm_idlect2 = 0x0100;
1867     s->clkm.dsp_idlect1 = 0x0002;
1868     omap_clkm_reset(s);
1869     s->clkm.cold_start = 0x3a;
1870 
1871     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1872     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1873 }
1874 
1875 /* MPU I/O */
1876 struct omap_mpuio_s {
1877     qemu_irq irq;
1878     qemu_irq kbd_irq;
1879     qemu_irq *in;
1880     qemu_irq handler[16];
1881     qemu_irq wakeup;
1882     MemoryRegion iomem;
1883 
1884     uint16_t inputs;
1885     uint16_t outputs;
1886     uint16_t dir;
1887     uint16_t edge;
1888     uint16_t mask;
1889     uint16_t ints;
1890 
1891     uint16_t debounce;
1892     uint16_t latch;
1893     uint8_t event;
1894 
1895     uint8_t buttons[5];
1896     uint8_t row_latch;
1897     uint8_t cols;
1898     int kbd_mask;
1899     int clk;
1900 };
1901 
1902 static void omap_mpuio_set(void *opaque, int line, int level)
1903 {
1904     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1905     uint16_t prev = s->inputs;
1906 
1907     if (level)
1908         s->inputs |= 1 << line;
1909     else
1910         s->inputs &= ~(1 << line);
1911 
1912     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1913         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1914             s->ints |= 1 << line;
1915             qemu_irq_raise(s->irq);
1916             /* TODO: wakeup */
1917         }
1918         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1919                 (s->event >> 1) == line)	/* PIN_SELECT */
1920             s->latch = s->inputs;
1921     }
1922 }
1923 
1924 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1925 {
1926     int i;
1927     uint8_t *row, rows = 0, cols = ~s->cols;
1928 
1929     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1930         if (*row & cols)
1931             rows |= i;
1932 
1933     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1934     s->row_latch = ~rows;
1935 }
1936 
1937 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1938                                 unsigned size)
1939 {
1940     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1941     int offset = addr & OMAP_MPUI_REG_MASK;
1942     uint16_t ret;
1943 
1944     if (size != 2) {
1945         return omap_badwidth_read16(opaque, addr);
1946     }
1947 
1948     switch (offset) {
1949     case 0x00:	/* INPUT_LATCH */
1950         return s->inputs;
1951 
1952     case 0x04:	/* OUTPUT_REG */
1953         return s->outputs;
1954 
1955     case 0x08:	/* IO_CNTL */
1956         return s->dir;
1957 
1958     case 0x10:	/* KBR_LATCH */
1959         return s->row_latch;
1960 
1961     case 0x14:	/* KBC_REG */
1962         return s->cols;
1963 
1964     case 0x18:	/* GPIO_EVENT_MODE_REG */
1965         return s->event;
1966 
1967     case 0x1c:	/* GPIO_INT_EDGE_REG */
1968         return s->edge;
1969 
1970     case 0x20:	/* KBD_INT */
1971         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1972 
1973     case 0x24:	/* GPIO_INT */
1974         ret = s->ints;
1975         s->ints &= s->mask;
1976         if (ret)
1977             qemu_irq_lower(s->irq);
1978         return ret;
1979 
1980     case 0x28:	/* KBD_MASKIT */
1981         return s->kbd_mask;
1982 
1983     case 0x2c:	/* GPIO_MASKIT */
1984         return s->mask;
1985 
1986     case 0x30:	/* GPIO_DEBOUNCING_REG */
1987         return s->debounce;
1988 
1989     case 0x34:	/* GPIO_LATCH_REG */
1990         return s->latch;
1991     }
1992 
1993     OMAP_BAD_REG(addr);
1994     return 0;
1995 }
1996 
1997 static void omap_mpuio_write(void *opaque, hwaddr addr,
1998                              uint64_t value, unsigned size)
1999 {
2000     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2001     int offset = addr & OMAP_MPUI_REG_MASK;
2002     uint16_t diff;
2003     int ln;
2004 
2005     if (size != 2) {
2006         omap_badwidth_write16(opaque, addr, value);
2007         return;
2008     }
2009 
2010     switch (offset) {
2011     case 0x04:	/* OUTPUT_REG */
2012         diff = (s->outputs ^ value) & ~s->dir;
2013         s->outputs = value;
2014         while ((ln = ctz32(diff)) != 32) {
2015             if (s->handler[ln])
2016                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2017             diff &= ~(1 << ln);
2018         }
2019         break;
2020 
2021     case 0x08:	/* IO_CNTL */
2022         diff = s->outputs & (s->dir ^ value);
2023         s->dir = value;
2024 
2025         value = s->outputs & ~s->dir;
2026         while ((ln = ctz32(diff)) != 32) {
2027             if (s->handler[ln])
2028                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2029             diff &= ~(1 << ln);
2030         }
2031         break;
2032 
2033     case 0x14:	/* KBC_REG */
2034         s->cols = value;
2035         omap_mpuio_kbd_update(s);
2036         break;
2037 
2038     case 0x18:	/* GPIO_EVENT_MODE_REG */
2039         s->event = value & 0x1f;
2040         break;
2041 
2042     case 0x1c:	/* GPIO_INT_EDGE_REG */
2043         s->edge = value;
2044         break;
2045 
2046     case 0x28:	/* KBD_MASKIT */
2047         s->kbd_mask = value & 1;
2048         omap_mpuio_kbd_update(s);
2049         break;
2050 
2051     case 0x2c:	/* GPIO_MASKIT */
2052         s->mask = value;
2053         break;
2054 
2055     case 0x30:	/* GPIO_DEBOUNCING_REG */
2056         s->debounce = value & 0x1ff;
2057         break;
2058 
2059     case 0x00:	/* INPUT_LATCH */
2060     case 0x10:	/* KBR_LATCH */
2061     case 0x20:	/* KBD_INT */
2062     case 0x24:	/* GPIO_INT */
2063     case 0x34:	/* GPIO_LATCH_REG */
2064         OMAP_RO_REG(addr);
2065         return;
2066 
2067     default:
2068         OMAP_BAD_REG(addr);
2069         return;
2070     }
2071 }
2072 
2073 static const MemoryRegionOps omap_mpuio_ops  = {
2074     .read = omap_mpuio_read,
2075     .write = omap_mpuio_write,
2076     .endianness = DEVICE_NATIVE_ENDIAN,
2077 };
2078 
2079 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2080 {
2081     s->inputs = 0;
2082     s->outputs = 0;
2083     s->dir = ~0;
2084     s->event = 0;
2085     s->edge = 0;
2086     s->kbd_mask = 0;
2087     s->mask = 0;
2088     s->debounce = 0;
2089     s->latch = 0;
2090     s->ints = 0;
2091     s->row_latch = 0x1f;
2092     s->clk = 1;
2093 }
2094 
2095 static void omap_mpuio_onoff(void *opaque, int line, int on)
2096 {
2097     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2098 
2099     s->clk = on;
2100     if (on)
2101         omap_mpuio_kbd_update(s);
2102 }
2103 
2104 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2105                 hwaddr base,
2106                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2107                 omap_clk clk)
2108 {
2109     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2110 
2111     s->irq = gpio_int;
2112     s->kbd_irq = kbd_int;
2113     s->wakeup = wakeup;
2114     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2115     omap_mpuio_reset(s);
2116 
2117     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2118                           "omap-mpuio", 0x800);
2119     memory_region_add_subregion(memory, base, &s->iomem);
2120 
2121     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2122 
2123     return s;
2124 }
2125 
2126 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2127 {
2128     return s->in;
2129 }
2130 
2131 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2132 {
2133     if (line >= 16 || line < 0)
2134         hw_error("%s: No GPIO line %i\n", __func__, line);
2135     s->handler[line] = handler;
2136 }
2137 
2138 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2139 {
2140     if (row >= 5 || row < 0)
2141         hw_error("%s: No key %i-%i\n", __func__, col, row);
2142 
2143     if (down)
2144         s->buttons[row] |= 1 << col;
2145     else
2146         s->buttons[row] &= ~(1 << col);
2147 
2148     omap_mpuio_kbd_update(s);
2149 }
2150 
2151 /* MicroWire Interface */
2152 struct omap_uwire_s {
2153     MemoryRegion iomem;
2154     qemu_irq txirq;
2155     qemu_irq rxirq;
2156     qemu_irq txdrq;
2157 
2158     uint16_t txbuf;
2159     uint16_t rxbuf;
2160     uint16_t control;
2161     uint16_t setup[5];
2162 
2163     uWireSlave *chip[4];
2164 };
2165 
2166 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2167 {
2168     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2169     uWireSlave *slave = s->chip[chipselect];
2170 
2171     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2172         if (s->control & (1 << 12))			/* CS_CMD */
2173             if (slave && slave->send)
2174                 slave->send(slave->opaque,
2175                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2176         s->control &= ~(1 << 14);			/* CSRB */
2177         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2178          * a DRQ.  When is the level IRQ supposed to be reset?  */
2179     }
2180 
2181     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2182         if (s->control & (1 << 12))			/* CS_CMD */
2183             if (slave && slave->receive)
2184                 s->rxbuf = slave->receive(slave->opaque);
2185         s->control |= 1 << 15;				/* RDRB */
2186         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2187          * a DRQ.  When is the level IRQ supposed to be reset?  */
2188     }
2189 }
2190 
2191 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2192                                 unsigned size)
2193 {
2194     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2195     int offset = addr & OMAP_MPUI_REG_MASK;
2196 
2197     if (size != 2) {
2198         return omap_badwidth_read16(opaque, addr);
2199     }
2200 
2201     switch (offset) {
2202     case 0x00:	/* RDR */
2203         s->control &= ~(1 << 15);			/* RDRB */
2204         return s->rxbuf;
2205 
2206     case 0x04:	/* CSR */
2207         return s->control;
2208 
2209     case 0x08:	/* SR1 */
2210         return s->setup[0];
2211     case 0x0c:	/* SR2 */
2212         return s->setup[1];
2213     case 0x10:	/* SR3 */
2214         return s->setup[2];
2215     case 0x14:	/* SR4 */
2216         return s->setup[3];
2217     case 0x18:	/* SR5 */
2218         return s->setup[4];
2219     }
2220 
2221     OMAP_BAD_REG(addr);
2222     return 0;
2223 }
2224 
2225 static void omap_uwire_write(void *opaque, hwaddr addr,
2226                              uint64_t value, unsigned size)
2227 {
2228     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2229     int offset = addr & OMAP_MPUI_REG_MASK;
2230 
2231     if (size != 2) {
2232         omap_badwidth_write16(opaque, addr, value);
2233         return;
2234     }
2235 
2236     switch (offset) {
2237     case 0x00:	/* TDR */
2238         s->txbuf = value;				/* TD */
2239         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2240                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2241                          (s->control & (1 << 12)))) {	/* CS_CMD */
2242             s->control |= 1 << 14;			/* CSRB */
2243             omap_uwire_transfer_start(s);
2244         }
2245         break;
2246 
2247     case 0x04:	/* CSR */
2248         s->control = value & 0x1fff;
2249         if (value & (1 << 13))				/* START */
2250             omap_uwire_transfer_start(s);
2251         break;
2252 
2253     case 0x08:	/* SR1 */
2254         s->setup[0] = value & 0x003f;
2255         break;
2256 
2257     case 0x0c:	/* SR2 */
2258         s->setup[1] = value & 0x0fc0;
2259         break;
2260 
2261     case 0x10:	/* SR3 */
2262         s->setup[2] = value & 0x0003;
2263         break;
2264 
2265     case 0x14:	/* SR4 */
2266         s->setup[3] = value & 0x0001;
2267         break;
2268 
2269     case 0x18:	/* SR5 */
2270         s->setup[4] = value & 0x000f;
2271         break;
2272 
2273     default:
2274         OMAP_BAD_REG(addr);
2275         return;
2276     }
2277 }
2278 
2279 static const MemoryRegionOps omap_uwire_ops = {
2280     .read = omap_uwire_read,
2281     .write = omap_uwire_write,
2282     .endianness = DEVICE_NATIVE_ENDIAN,
2283 };
2284 
2285 static void omap_uwire_reset(struct omap_uwire_s *s)
2286 {
2287     s->control = 0;
2288     s->setup[0] = 0;
2289     s->setup[1] = 0;
2290     s->setup[2] = 0;
2291     s->setup[3] = 0;
2292     s->setup[4] = 0;
2293 }
2294 
2295 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2296                                             hwaddr base,
2297                                             qemu_irq txirq, qemu_irq rxirq,
2298                                             qemu_irq dma,
2299                                             omap_clk clk)
2300 {
2301     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2302 
2303     s->txirq = txirq;
2304     s->rxirq = rxirq;
2305     s->txdrq = dma;
2306     omap_uwire_reset(s);
2307 
2308     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2309     memory_region_add_subregion(system_memory, base, &s->iomem);
2310 
2311     return s;
2312 }
2313 
2314 void omap_uwire_attach(struct omap_uwire_s *s,
2315                 uWireSlave *slave, int chipselect)
2316 {
2317     if (chipselect < 0 || chipselect > 3) {
2318         error_report("%s: Bad chipselect %i", __func__, chipselect);
2319         exit(-1);
2320     }
2321 
2322     s->chip[chipselect] = slave;
2323 }
2324 
2325 /* Pseudonoise Pulse-Width Light Modulator */
2326 struct omap_pwl_s {
2327     MemoryRegion iomem;
2328     uint8_t output;
2329     uint8_t level;
2330     uint8_t enable;
2331     int clk;
2332 };
2333 
2334 static void omap_pwl_update(struct omap_pwl_s *s)
2335 {
2336     int output = (s->clk && s->enable) ? s->level : 0;
2337 
2338     if (output != s->output) {
2339         s->output = output;
2340         printf("%s: Backlight now at %i/256\n", __func__, output);
2341     }
2342 }
2343 
2344 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2345                               unsigned size)
2346 {
2347     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2348     int offset = addr & OMAP_MPUI_REG_MASK;
2349 
2350     if (size != 1) {
2351         return omap_badwidth_read8(opaque, addr);
2352     }
2353 
2354     switch (offset) {
2355     case 0x00:	/* PWL_LEVEL */
2356         return s->level;
2357     case 0x04:	/* PWL_CTRL */
2358         return s->enable;
2359     }
2360     OMAP_BAD_REG(addr);
2361     return 0;
2362 }
2363 
2364 static void omap_pwl_write(void *opaque, hwaddr addr,
2365                            uint64_t value, unsigned size)
2366 {
2367     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2368     int offset = addr & OMAP_MPUI_REG_MASK;
2369 
2370     if (size != 1) {
2371         omap_badwidth_write8(opaque, addr, value);
2372         return;
2373     }
2374 
2375     switch (offset) {
2376     case 0x00:	/* PWL_LEVEL */
2377         s->level = value;
2378         omap_pwl_update(s);
2379         break;
2380     case 0x04:	/* PWL_CTRL */
2381         s->enable = value & 1;
2382         omap_pwl_update(s);
2383         break;
2384     default:
2385         OMAP_BAD_REG(addr);
2386         return;
2387     }
2388 }
2389 
2390 static const MemoryRegionOps omap_pwl_ops = {
2391     .read = omap_pwl_read,
2392     .write = omap_pwl_write,
2393     .endianness = DEVICE_NATIVE_ENDIAN,
2394 };
2395 
2396 static void omap_pwl_reset(struct omap_pwl_s *s)
2397 {
2398     s->output = 0;
2399     s->level = 0;
2400     s->enable = 0;
2401     s->clk = 1;
2402     omap_pwl_update(s);
2403 }
2404 
2405 static void omap_pwl_clk_update(void *opaque, int line, int on)
2406 {
2407     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2408 
2409     s->clk = on;
2410     omap_pwl_update(s);
2411 }
2412 
2413 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2414                                         hwaddr base,
2415                                         omap_clk clk)
2416 {
2417     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2418 
2419     omap_pwl_reset(s);
2420 
2421     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2422                           "omap-pwl", 0x800);
2423     memory_region_add_subregion(system_memory, base, &s->iomem);
2424 
2425     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2426     return s;
2427 }
2428 
2429 /* Pulse-Width Tone module */
2430 struct omap_pwt_s {
2431     MemoryRegion iomem;
2432     uint8_t frc;
2433     uint8_t vrc;
2434     uint8_t gcr;
2435     omap_clk clk;
2436 };
2437 
2438 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2439                               unsigned size)
2440 {
2441     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2442     int offset = addr & OMAP_MPUI_REG_MASK;
2443 
2444     if (size != 1) {
2445         return omap_badwidth_read8(opaque, addr);
2446     }
2447 
2448     switch (offset) {
2449     case 0x00:	/* FRC */
2450         return s->frc;
2451     case 0x04:	/* VCR */
2452         return s->vrc;
2453     case 0x08:	/* GCR */
2454         return s->gcr;
2455     }
2456     OMAP_BAD_REG(addr);
2457     return 0;
2458 }
2459 
2460 static void omap_pwt_write(void *opaque, hwaddr addr,
2461                            uint64_t value, unsigned size)
2462 {
2463     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2464     int offset = addr & OMAP_MPUI_REG_MASK;
2465 
2466     if (size != 1) {
2467         omap_badwidth_write8(opaque, addr, value);
2468         return;
2469     }
2470 
2471     switch (offset) {
2472     case 0x00:	/* FRC */
2473         s->frc = value & 0x3f;
2474         break;
2475     case 0x04:	/* VRC */
2476         if ((value ^ s->vrc) & 1) {
2477             if (value & 1)
2478                 printf("%s: %iHz buzz on\n", __func__, (int)
2479                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2480                                 ((omap_clk_getrate(s->clk) >> 3) /
2481                                  /* Pre-multiplexer divider */
2482                                  ((s->gcr & 2) ? 1 : 154) /
2483                                  /* Octave multiplexer */
2484                                  (2 << (value & 3)) *
2485                                  /* 101/107 divider */
2486                                  ((value & (1 << 2)) ? 101 : 107) *
2487                                  /*  49/55 divider */
2488                                  ((value & (1 << 3)) ?  49 : 55) *
2489                                  /*  50/63 divider */
2490                                  ((value & (1 << 4)) ?  50 : 63) *
2491                                  /*  80/127 divider */
2492                                  ((value & (1 << 5)) ?  80 : 127) /
2493                                  (107 * 55 * 63 * 127)));
2494             else
2495                 printf("%s: silence!\n", __func__);
2496         }
2497         s->vrc = value & 0x7f;
2498         break;
2499     case 0x08:	/* GCR */
2500         s->gcr = value & 3;
2501         break;
2502     default:
2503         OMAP_BAD_REG(addr);
2504         return;
2505     }
2506 }
2507 
2508 static const MemoryRegionOps omap_pwt_ops = {
2509     .read =omap_pwt_read,
2510     .write = omap_pwt_write,
2511     .endianness = DEVICE_NATIVE_ENDIAN,
2512 };
2513 
2514 static void omap_pwt_reset(struct omap_pwt_s *s)
2515 {
2516     s->frc = 0;
2517     s->vrc = 0;
2518     s->gcr = 0;
2519 }
2520 
2521 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2522                                         hwaddr base,
2523                                         omap_clk clk)
2524 {
2525     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2526     s->clk = clk;
2527     omap_pwt_reset(s);
2528 
2529     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2530                           "omap-pwt", 0x800);
2531     memory_region_add_subregion(system_memory, base, &s->iomem);
2532     return s;
2533 }
2534 
2535 /* Real-time Clock module */
2536 struct omap_rtc_s {
2537     MemoryRegion iomem;
2538     qemu_irq irq;
2539     qemu_irq alarm;
2540     QEMUTimer *clk;
2541 
2542     uint8_t interrupts;
2543     uint8_t status;
2544     int16_t comp_reg;
2545     int running;
2546     int pm_am;
2547     int auto_comp;
2548     int round;
2549     struct tm alarm_tm;
2550     time_t alarm_ti;
2551 
2552     struct tm current_tm;
2553     time_t ti;
2554     uint64_t tick;
2555 };
2556 
2557 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2558 {
2559     /* s->alarm is level-triggered */
2560     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2561 }
2562 
2563 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2564 {
2565     s->alarm_ti = mktimegm(&s->alarm_tm);
2566     if (s->alarm_ti == -1)
2567         printf("%s: conversion failed\n", __func__);
2568 }
2569 
2570 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2571                               unsigned size)
2572 {
2573     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2574     int offset = addr & OMAP_MPUI_REG_MASK;
2575     uint8_t i;
2576 
2577     if (size != 1) {
2578         return omap_badwidth_read8(opaque, addr);
2579     }
2580 
2581     switch (offset) {
2582     case 0x00:	/* SECONDS_REG */
2583         return to_bcd(s->current_tm.tm_sec);
2584 
2585     case 0x04:	/* MINUTES_REG */
2586         return to_bcd(s->current_tm.tm_min);
2587 
2588     case 0x08:	/* HOURS_REG */
2589         if (s->pm_am)
2590             return ((s->current_tm.tm_hour > 11) << 7) |
2591                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2592         else
2593             return to_bcd(s->current_tm.tm_hour);
2594 
2595     case 0x0c:	/* DAYS_REG */
2596         return to_bcd(s->current_tm.tm_mday);
2597 
2598     case 0x10:	/* MONTHS_REG */
2599         return to_bcd(s->current_tm.tm_mon + 1);
2600 
2601     case 0x14:	/* YEARS_REG */
2602         return to_bcd(s->current_tm.tm_year % 100);
2603 
2604     case 0x18:	/* WEEK_REG */
2605         return s->current_tm.tm_wday;
2606 
2607     case 0x20:	/* ALARM_SECONDS_REG */
2608         return to_bcd(s->alarm_tm.tm_sec);
2609 
2610     case 0x24:	/* ALARM_MINUTES_REG */
2611         return to_bcd(s->alarm_tm.tm_min);
2612 
2613     case 0x28:	/* ALARM_HOURS_REG */
2614         if (s->pm_am)
2615             return ((s->alarm_tm.tm_hour > 11) << 7) |
2616                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2617         else
2618             return to_bcd(s->alarm_tm.tm_hour);
2619 
2620     case 0x2c:	/* ALARM_DAYS_REG */
2621         return to_bcd(s->alarm_tm.tm_mday);
2622 
2623     case 0x30:	/* ALARM_MONTHS_REG */
2624         return to_bcd(s->alarm_tm.tm_mon + 1);
2625 
2626     case 0x34:	/* ALARM_YEARS_REG */
2627         return to_bcd(s->alarm_tm.tm_year % 100);
2628 
2629     case 0x40:	/* RTC_CTRL_REG */
2630         return (s->pm_am << 3) | (s->auto_comp << 2) |
2631                 (s->round << 1) | s->running;
2632 
2633     case 0x44:	/* RTC_STATUS_REG */
2634         i = s->status;
2635         s->status &= ~0x3d;
2636         return i;
2637 
2638     case 0x48:	/* RTC_INTERRUPTS_REG */
2639         return s->interrupts;
2640 
2641     case 0x4c:	/* RTC_COMP_LSB_REG */
2642         return ((uint16_t) s->comp_reg) & 0xff;
2643 
2644     case 0x50:	/* RTC_COMP_MSB_REG */
2645         return ((uint16_t) s->comp_reg) >> 8;
2646     }
2647 
2648     OMAP_BAD_REG(addr);
2649     return 0;
2650 }
2651 
2652 static void omap_rtc_write(void *opaque, hwaddr addr,
2653                            uint64_t value, unsigned size)
2654 {
2655     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2656     int offset = addr & OMAP_MPUI_REG_MASK;
2657     struct tm new_tm;
2658     time_t ti[2];
2659 
2660     if (size != 1) {
2661         omap_badwidth_write8(opaque, addr, value);
2662         return;
2663     }
2664 
2665     switch (offset) {
2666     case 0x00:	/* SECONDS_REG */
2667 #ifdef ALMDEBUG
2668         printf("RTC SEC_REG <-- %02x\n", value);
2669 #endif
2670         s->ti -= s->current_tm.tm_sec;
2671         s->ti += from_bcd(value);
2672         return;
2673 
2674     case 0x04:	/* MINUTES_REG */
2675 #ifdef ALMDEBUG
2676         printf("RTC MIN_REG <-- %02x\n", value);
2677 #endif
2678         s->ti -= s->current_tm.tm_min * 60;
2679         s->ti += from_bcd(value) * 60;
2680         return;
2681 
2682     case 0x08:	/* HOURS_REG */
2683 #ifdef ALMDEBUG
2684         printf("RTC HRS_REG <-- %02x\n", value);
2685 #endif
2686         s->ti -= s->current_tm.tm_hour * 3600;
2687         if (s->pm_am) {
2688             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2689             s->ti += ((value >> 7) & 1) * 43200;
2690         } else
2691             s->ti += from_bcd(value & 0x3f) * 3600;
2692         return;
2693 
2694     case 0x0c:	/* DAYS_REG */
2695 #ifdef ALMDEBUG
2696         printf("RTC DAY_REG <-- %02x\n", value);
2697 #endif
2698         s->ti -= s->current_tm.tm_mday * 86400;
2699         s->ti += from_bcd(value) * 86400;
2700         return;
2701 
2702     case 0x10:	/* MONTHS_REG */
2703 #ifdef ALMDEBUG
2704         printf("RTC MTH_REG <-- %02x\n", value);
2705 #endif
2706         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2707         new_tm.tm_mon = from_bcd(value);
2708         ti[0] = mktimegm(&s->current_tm);
2709         ti[1] = mktimegm(&new_tm);
2710 
2711         if (ti[0] != -1 && ti[1] != -1) {
2712             s->ti -= ti[0];
2713             s->ti += ti[1];
2714         } else {
2715             /* A less accurate version */
2716             s->ti -= s->current_tm.tm_mon * 2592000;
2717             s->ti += from_bcd(value) * 2592000;
2718         }
2719         return;
2720 
2721     case 0x14:	/* YEARS_REG */
2722 #ifdef ALMDEBUG
2723         printf("RTC YRS_REG <-- %02x\n", value);
2724 #endif
2725         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2726         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2727         ti[0] = mktimegm(&s->current_tm);
2728         ti[1] = mktimegm(&new_tm);
2729 
2730         if (ti[0] != -1 && ti[1] != -1) {
2731             s->ti -= ti[0];
2732             s->ti += ti[1];
2733         } else {
2734             /* A less accurate version */
2735             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2736             s->ti += (time_t)from_bcd(value) * 31536000;
2737         }
2738         return;
2739 
2740     case 0x18:	/* WEEK_REG */
2741         return;	/* Ignored */
2742 
2743     case 0x20:	/* ALARM_SECONDS_REG */
2744 #ifdef ALMDEBUG
2745         printf("ALM SEC_REG <-- %02x\n", value);
2746 #endif
2747         s->alarm_tm.tm_sec = from_bcd(value);
2748         omap_rtc_alarm_update(s);
2749         return;
2750 
2751     case 0x24:	/* ALARM_MINUTES_REG */
2752 #ifdef ALMDEBUG
2753         printf("ALM MIN_REG <-- %02x\n", value);
2754 #endif
2755         s->alarm_tm.tm_min = from_bcd(value);
2756         omap_rtc_alarm_update(s);
2757         return;
2758 
2759     case 0x28:	/* ALARM_HOURS_REG */
2760 #ifdef ALMDEBUG
2761         printf("ALM HRS_REG <-- %02x\n", value);
2762 #endif
2763         if (s->pm_am)
2764             s->alarm_tm.tm_hour =
2765                     ((from_bcd(value & 0x3f)) % 12) +
2766                     ((value >> 7) & 1) * 12;
2767         else
2768             s->alarm_tm.tm_hour = from_bcd(value);
2769         omap_rtc_alarm_update(s);
2770         return;
2771 
2772     case 0x2c:	/* ALARM_DAYS_REG */
2773 #ifdef ALMDEBUG
2774         printf("ALM DAY_REG <-- %02x\n", value);
2775 #endif
2776         s->alarm_tm.tm_mday = from_bcd(value);
2777         omap_rtc_alarm_update(s);
2778         return;
2779 
2780     case 0x30:	/* ALARM_MONTHS_REG */
2781 #ifdef ALMDEBUG
2782         printf("ALM MON_REG <-- %02x\n", value);
2783 #endif
2784         s->alarm_tm.tm_mon = from_bcd(value);
2785         omap_rtc_alarm_update(s);
2786         return;
2787 
2788     case 0x34:	/* ALARM_YEARS_REG */
2789 #ifdef ALMDEBUG
2790         printf("ALM YRS_REG <-- %02x\n", value);
2791 #endif
2792         s->alarm_tm.tm_year = from_bcd(value);
2793         omap_rtc_alarm_update(s);
2794         return;
2795 
2796     case 0x40:	/* RTC_CTRL_REG */
2797 #ifdef ALMDEBUG
2798         printf("RTC CONTROL <-- %02x\n", value);
2799 #endif
2800         s->pm_am = (value >> 3) & 1;
2801         s->auto_comp = (value >> 2) & 1;
2802         s->round = (value >> 1) & 1;
2803         s->running = value & 1;
2804         s->status &= 0xfd;
2805         s->status |= s->running << 1;
2806         return;
2807 
2808     case 0x44:	/* RTC_STATUS_REG */
2809 #ifdef ALMDEBUG
2810         printf("RTC STATUSL <-- %02x\n", value);
2811 #endif
2812         s->status &= ~((value & 0xc0) ^ 0x80);
2813         omap_rtc_interrupts_update(s);
2814         return;
2815 
2816     case 0x48:	/* RTC_INTERRUPTS_REG */
2817 #ifdef ALMDEBUG
2818         printf("RTC INTRS <-- %02x\n", value);
2819 #endif
2820         s->interrupts = value;
2821         return;
2822 
2823     case 0x4c:	/* RTC_COMP_LSB_REG */
2824 #ifdef ALMDEBUG
2825         printf("RTC COMPLSB <-- %02x\n", value);
2826 #endif
2827         s->comp_reg &= 0xff00;
2828         s->comp_reg |= 0x00ff & value;
2829         return;
2830 
2831     case 0x50:	/* RTC_COMP_MSB_REG */
2832 #ifdef ALMDEBUG
2833         printf("RTC COMPMSB <-- %02x\n", value);
2834 #endif
2835         s->comp_reg &= 0x00ff;
2836         s->comp_reg |= 0xff00 & (value << 8);
2837         return;
2838 
2839     default:
2840         OMAP_BAD_REG(addr);
2841         return;
2842     }
2843 }
2844 
2845 static const MemoryRegionOps omap_rtc_ops = {
2846     .read = omap_rtc_read,
2847     .write = omap_rtc_write,
2848     .endianness = DEVICE_NATIVE_ENDIAN,
2849 };
2850 
2851 static void omap_rtc_tick(void *opaque)
2852 {
2853     struct omap_rtc_s *s = opaque;
2854 
2855     if (s->round) {
2856         /* Round to nearest full minute.  */
2857         if (s->current_tm.tm_sec < 30)
2858             s->ti -= s->current_tm.tm_sec;
2859         else
2860             s->ti += 60 - s->current_tm.tm_sec;
2861 
2862         s->round = 0;
2863     }
2864 
2865     localtime_r(&s->ti, &s->current_tm);
2866 
2867     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2868         s->status |= 0x40;
2869         omap_rtc_interrupts_update(s);
2870     }
2871 
2872     if (s->interrupts & 0x04)
2873         switch (s->interrupts & 3) {
2874         case 0:
2875             s->status |= 0x04;
2876             qemu_irq_pulse(s->irq);
2877             break;
2878         case 1:
2879             if (s->current_tm.tm_sec)
2880                 break;
2881             s->status |= 0x08;
2882             qemu_irq_pulse(s->irq);
2883             break;
2884         case 2:
2885             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2886                 break;
2887             s->status |= 0x10;
2888             qemu_irq_pulse(s->irq);
2889             break;
2890         case 3:
2891             if (s->current_tm.tm_sec ||
2892                             s->current_tm.tm_min || s->current_tm.tm_hour)
2893                 break;
2894             s->status |= 0x20;
2895             qemu_irq_pulse(s->irq);
2896             break;
2897         }
2898 
2899     /* Move on */
2900     if (s->running)
2901         s->ti ++;
2902     s->tick += 1000;
2903 
2904     /*
2905      * Every full hour add a rough approximation of the compensation
2906      * register to the 32kHz Timer (which drives the RTC) value.
2907      */
2908     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2909         s->tick += s->comp_reg * 1000 / 32768;
2910 
2911     timer_mod(s->clk, s->tick);
2912 }
2913 
2914 static void omap_rtc_reset(struct omap_rtc_s *s)
2915 {
2916     struct tm tm;
2917 
2918     s->interrupts = 0;
2919     s->comp_reg = 0;
2920     s->running = 0;
2921     s->pm_am = 0;
2922     s->auto_comp = 0;
2923     s->round = 0;
2924     s->tick = qemu_clock_get_ms(rtc_clock);
2925     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2926     s->alarm_tm.tm_mday = 0x01;
2927     s->status = 1 << 7;
2928     qemu_get_timedate(&tm, 0);
2929     s->ti = mktimegm(&tm);
2930 
2931     omap_rtc_alarm_update(s);
2932     omap_rtc_tick(s);
2933 }
2934 
2935 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2936                                         hwaddr base,
2937                                         qemu_irq timerirq, qemu_irq alarmirq,
2938                                         omap_clk clk)
2939 {
2940     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2941 
2942     s->irq = timerirq;
2943     s->alarm = alarmirq;
2944     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2945 
2946     omap_rtc_reset(s);
2947 
2948     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2949                           "omap-rtc", 0x800);
2950     memory_region_add_subregion(system_memory, base, &s->iomem);
2951 
2952     return s;
2953 }
2954 
2955 /* Multi-channel Buffered Serial Port interfaces */
2956 struct omap_mcbsp_s {
2957     MemoryRegion iomem;
2958     qemu_irq txirq;
2959     qemu_irq rxirq;
2960     qemu_irq txdrq;
2961     qemu_irq rxdrq;
2962 
2963     uint16_t spcr[2];
2964     uint16_t rcr[2];
2965     uint16_t xcr[2];
2966     uint16_t srgr[2];
2967     uint16_t mcr[2];
2968     uint16_t pcr;
2969     uint16_t rcer[8];
2970     uint16_t xcer[8];
2971     int tx_rate;
2972     int rx_rate;
2973     int tx_req;
2974     int rx_req;
2975 
2976     I2SCodec *codec;
2977     QEMUTimer *source_timer;
2978     QEMUTimer *sink_timer;
2979 };
2980 
2981 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2982 {
2983     int irq;
2984 
2985     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2986     case 0:
2987         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2988         break;
2989     case 3:
2990         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2991         break;
2992     default:
2993         irq = 0;
2994         break;
2995     }
2996 
2997     if (irq)
2998         qemu_irq_pulse(s->rxirq);
2999 
3000     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
3001     case 0:
3002         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
3003         break;
3004     case 3:
3005         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3006         break;
3007     default:
3008         irq = 0;
3009         break;
3010     }
3011 
3012     if (irq)
3013         qemu_irq_pulse(s->txirq);
3014 }
3015 
3016 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3017 {
3018     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3019         s->spcr[0] |= 1 << 2;				/* RFULL */
3020     s->spcr[0] |= 1 << 1;				/* RRDY */
3021     qemu_irq_raise(s->rxdrq);
3022     omap_mcbsp_intr_update(s);
3023 }
3024 
3025 static void omap_mcbsp_source_tick(void *opaque)
3026 {
3027     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3028     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3029 
3030     if (!s->rx_rate)
3031         return;
3032     if (s->rx_req)
3033         printf("%s: Rx FIFO overrun\n", __func__);
3034 
3035     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3036 
3037     omap_mcbsp_rx_newdata(s);
3038     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3039                    NANOSECONDS_PER_SECOND);
3040 }
3041 
3042 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3043 {
3044     if (!s->codec || !s->codec->rts)
3045         omap_mcbsp_source_tick(s);
3046     else if (s->codec->in.len) {
3047         s->rx_req = s->codec->in.len;
3048         omap_mcbsp_rx_newdata(s);
3049     }
3050 }
3051 
3052 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3053 {
3054     timer_del(s->source_timer);
3055 }
3056 
3057 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3058 {
3059     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3060     qemu_irq_lower(s->rxdrq);
3061     omap_mcbsp_intr_update(s);
3062 }
3063 
3064 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3065 {
3066     s->spcr[1] |= 1 << 1;				/* XRDY */
3067     qemu_irq_raise(s->txdrq);
3068     omap_mcbsp_intr_update(s);
3069 }
3070 
3071 static void omap_mcbsp_sink_tick(void *opaque)
3072 {
3073     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3074     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3075 
3076     if (!s->tx_rate)
3077         return;
3078     if (s->tx_req)
3079         printf("%s: Tx FIFO underrun\n", __func__);
3080 
3081     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3082 
3083     omap_mcbsp_tx_newdata(s);
3084     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3085                    NANOSECONDS_PER_SECOND);
3086 }
3087 
3088 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3089 {
3090     if (!s->codec || !s->codec->cts)
3091         omap_mcbsp_sink_tick(s);
3092     else if (s->codec->out.size) {
3093         s->tx_req = s->codec->out.size;
3094         omap_mcbsp_tx_newdata(s);
3095     }
3096 }
3097 
3098 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3099 {
3100     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3101     qemu_irq_lower(s->txdrq);
3102     omap_mcbsp_intr_update(s);
3103     if (s->codec && s->codec->cts)
3104         s->codec->tx_swallow(s->codec->opaque);
3105 }
3106 
3107 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3108 {
3109     s->tx_req = 0;
3110     omap_mcbsp_tx_done(s);
3111     timer_del(s->sink_timer);
3112 }
3113 
3114 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3115 {
3116     int prev_rx_rate, prev_tx_rate;
3117     int rx_rate = 0, tx_rate = 0;
3118     int cpu_rate = 1500000;	/* XXX */
3119 
3120     /* TODO: check CLKSTP bit */
3121     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3122         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3123             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3124                             (s->pcr & (1 << 8))) {	/* CLKRM */
3125                 if (~s->pcr & (1 << 7))			/* SCLKME */
3126                     rx_rate = cpu_rate /
3127                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3128             } else
3129                 if (s->codec)
3130                     rx_rate = s->codec->rx_rate;
3131         }
3132 
3133         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3134             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3135                             (s->pcr & (1 << 9))) {	/* CLKXM */
3136                 if (~s->pcr & (1 << 7))			/* SCLKME */
3137                     tx_rate = cpu_rate /
3138                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3139             } else
3140                 if (s->codec)
3141                     tx_rate = s->codec->tx_rate;
3142         }
3143     }
3144     prev_tx_rate = s->tx_rate;
3145     prev_rx_rate = s->rx_rate;
3146     s->tx_rate = tx_rate;
3147     s->rx_rate = rx_rate;
3148 
3149     if (s->codec)
3150         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3151 
3152     if (!prev_tx_rate && tx_rate)
3153         omap_mcbsp_tx_start(s);
3154     else if (s->tx_rate && !tx_rate)
3155         omap_mcbsp_tx_stop(s);
3156 
3157     if (!prev_rx_rate && rx_rate)
3158         omap_mcbsp_rx_start(s);
3159     else if (prev_tx_rate && !tx_rate)
3160         omap_mcbsp_rx_stop(s);
3161 }
3162 
3163 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3164                                 unsigned size)
3165 {
3166     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3167     int offset = addr & OMAP_MPUI_REG_MASK;
3168     uint16_t ret;
3169 
3170     if (size != 2) {
3171         return omap_badwidth_read16(opaque, addr);
3172     }
3173 
3174     switch (offset) {
3175     case 0x00:	/* DRR2 */
3176         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3177             return 0x0000;
3178         /* Fall through.  */
3179     case 0x02:	/* DRR1 */
3180         if (s->rx_req < 2) {
3181             printf("%s: Rx FIFO underrun\n", __func__);
3182             omap_mcbsp_rx_done(s);
3183         } else {
3184             s->tx_req -= 2;
3185             if (s->codec && s->codec->in.len >= 2) {
3186                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3187                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3188                 s->codec->in.len -= 2;
3189             } else
3190                 ret = 0x0000;
3191             if (!s->tx_req)
3192                 omap_mcbsp_rx_done(s);
3193             return ret;
3194         }
3195         return 0x0000;
3196 
3197     case 0x04:	/* DXR2 */
3198     case 0x06:	/* DXR1 */
3199         return 0x0000;
3200 
3201     case 0x08:	/* SPCR2 */
3202         return s->spcr[1];
3203     case 0x0a:	/* SPCR1 */
3204         return s->spcr[0];
3205     case 0x0c:	/* RCR2 */
3206         return s->rcr[1];
3207     case 0x0e:	/* RCR1 */
3208         return s->rcr[0];
3209     case 0x10:	/* XCR2 */
3210         return s->xcr[1];
3211     case 0x12:	/* XCR1 */
3212         return s->xcr[0];
3213     case 0x14:	/* SRGR2 */
3214         return s->srgr[1];
3215     case 0x16:	/* SRGR1 */
3216         return s->srgr[0];
3217     case 0x18:	/* MCR2 */
3218         return s->mcr[1];
3219     case 0x1a:	/* MCR1 */
3220         return s->mcr[0];
3221     case 0x1c:	/* RCERA */
3222         return s->rcer[0];
3223     case 0x1e:	/* RCERB */
3224         return s->rcer[1];
3225     case 0x20:	/* XCERA */
3226         return s->xcer[0];
3227     case 0x22:	/* XCERB */
3228         return s->xcer[1];
3229     case 0x24:	/* PCR0 */
3230         return s->pcr;
3231     case 0x26:	/* RCERC */
3232         return s->rcer[2];
3233     case 0x28:	/* RCERD */
3234         return s->rcer[3];
3235     case 0x2a:	/* XCERC */
3236         return s->xcer[2];
3237     case 0x2c:	/* XCERD */
3238         return s->xcer[3];
3239     case 0x2e:	/* RCERE */
3240         return s->rcer[4];
3241     case 0x30:	/* RCERF */
3242         return s->rcer[5];
3243     case 0x32:	/* XCERE */
3244         return s->xcer[4];
3245     case 0x34:	/* XCERF */
3246         return s->xcer[5];
3247     case 0x36:	/* RCERG */
3248         return s->rcer[6];
3249     case 0x38:	/* RCERH */
3250         return s->rcer[7];
3251     case 0x3a:	/* XCERG */
3252         return s->xcer[6];
3253     case 0x3c:	/* XCERH */
3254         return s->xcer[7];
3255     }
3256 
3257     OMAP_BAD_REG(addr);
3258     return 0;
3259 }
3260 
3261 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3262                 uint32_t value)
3263 {
3264     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3265     int offset = addr & OMAP_MPUI_REG_MASK;
3266 
3267     switch (offset) {
3268     case 0x00:	/* DRR2 */
3269     case 0x02:	/* DRR1 */
3270         OMAP_RO_REG(addr);
3271         return;
3272 
3273     case 0x04:	/* DXR2 */
3274         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3275             return;
3276         /* Fall through.  */
3277     case 0x06:	/* DXR1 */
3278         if (s->tx_req > 1) {
3279             s->tx_req -= 2;
3280             if (s->codec && s->codec->cts) {
3281                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3282                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3283             }
3284             if (s->tx_req < 2)
3285                 omap_mcbsp_tx_done(s);
3286         } else
3287             printf("%s: Tx FIFO overrun\n", __func__);
3288         return;
3289 
3290     case 0x08:	/* SPCR2 */
3291         s->spcr[1] &= 0x0002;
3292         s->spcr[1] |= 0x03f9 & value;
3293         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3294         if (~value & 1)					/* XRST */
3295             s->spcr[1] &= ~6;
3296         omap_mcbsp_req_update(s);
3297         return;
3298     case 0x0a:	/* SPCR1 */
3299         s->spcr[0] &= 0x0006;
3300         s->spcr[0] |= 0xf8f9 & value;
3301         if (value & (1 << 15))				/* DLB */
3302             printf("%s: Digital Loopback mode enable attempt\n", __func__);
3303         if (~value & 1) {				/* RRST */
3304             s->spcr[0] &= ~6;
3305             s->rx_req = 0;
3306             omap_mcbsp_rx_done(s);
3307         }
3308         omap_mcbsp_req_update(s);
3309         return;
3310 
3311     case 0x0c:	/* RCR2 */
3312         s->rcr[1] = value & 0xffff;
3313         return;
3314     case 0x0e:	/* RCR1 */
3315         s->rcr[0] = value & 0x7fe0;
3316         return;
3317     case 0x10:	/* XCR2 */
3318         s->xcr[1] = value & 0xffff;
3319         return;
3320     case 0x12:	/* XCR1 */
3321         s->xcr[0] = value & 0x7fe0;
3322         return;
3323     case 0x14:	/* SRGR2 */
3324         s->srgr[1] = value & 0xffff;
3325         omap_mcbsp_req_update(s);
3326         return;
3327     case 0x16:	/* SRGR1 */
3328         s->srgr[0] = value & 0xffff;
3329         omap_mcbsp_req_update(s);
3330         return;
3331     case 0x18:	/* MCR2 */
3332         s->mcr[1] = value & 0x03e3;
3333         if (value & 3)					/* XMCM */
3334             printf("%s: Tx channel selection mode enable attempt\n", __func__);
3335         return;
3336     case 0x1a:	/* MCR1 */
3337         s->mcr[0] = value & 0x03e1;
3338         if (value & 1)					/* RMCM */
3339             printf("%s: Rx channel selection mode enable attempt\n", __func__);
3340         return;
3341     case 0x1c:	/* RCERA */
3342         s->rcer[0] = value & 0xffff;
3343         return;
3344     case 0x1e:	/* RCERB */
3345         s->rcer[1] = value & 0xffff;
3346         return;
3347     case 0x20:	/* XCERA */
3348         s->xcer[0] = value & 0xffff;
3349         return;
3350     case 0x22:	/* XCERB */
3351         s->xcer[1] = value & 0xffff;
3352         return;
3353     case 0x24:	/* PCR0 */
3354         s->pcr = value & 0x7faf;
3355         return;
3356     case 0x26:	/* RCERC */
3357         s->rcer[2] = value & 0xffff;
3358         return;
3359     case 0x28:	/* RCERD */
3360         s->rcer[3] = value & 0xffff;
3361         return;
3362     case 0x2a:	/* XCERC */
3363         s->xcer[2] = value & 0xffff;
3364         return;
3365     case 0x2c:	/* XCERD */
3366         s->xcer[3] = value & 0xffff;
3367         return;
3368     case 0x2e:	/* RCERE */
3369         s->rcer[4] = value & 0xffff;
3370         return;
3371     case 0x30:	/* RCERF */
3372         s->rcer[5] = value & 0xffff;
3373         return;
3374     case 0x32:	/* XCERE */
3375         s->xcer[4] = value & 0xffff;
3376         return;
3377     case 0x34:	/* XCERF */
3378         s->xcer[5] = value & 0xffff;
3379         return;
3380     case 0x36:	/* RCERG */
3381         s->rcer[6] = value & 0xffff;
3382         return;
3383     case 0x38:	/* RCERH */
3384         s->rcer[7] = value & 0xffff;
3385         return;
3386     case 0x3a:	/* XCERG */
3387         s->xcer[6] = value & 0xffff;
3388         return;
3389     case 0x3c:	/* XCERH */
3390         s->xcer[7] = value & 0xffff;
3391         return;
3392     }
3393 
3394     OMAP_BAD_REG(addr);
3395 }
3396 
3397 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3398                 uint32_t value)
3399 {
3400     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3401     int offset = addr & OMAP_MPUI_REG_MASK;
3402 
3403     if (offset == 0x04) {				/* DXR */
3404         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3405             return;
3406         if (s->tx_req > 3) {
3407             s->tx_req -= 4;
3408             if (s->codec && s->codec->cts) {
3409                 s->codec->out.fifo[s->codec->out.len ++] =
3410                         (value >> 24) & 0xff;
3411                 s->codec->out.fifo[s->codec->out.len ++] =
3412                         (value >> 16) & 0xff;
3413                 s->codec->out.fifo[s->codec->out.len ++] =
3414                         (value >> 8) & 0xff;
3415                 s->codec->out.fifo[s->codec->out.len ++] =
3416                         (value >> 0) & 0xff;
3417             }
3418             if (s->tx_req < 4)
3419                 omap_mcbsp_tx_done(s);
3420         } else
3421             printf("%s: Tx FIFO overrun\n", __func__);
3422         return;
3423     }
3424 
3425     omap_badwidth_write16(opaque, addr, value);
3426 }
3427 
3428 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3429                              uint64_t value, unsigned size)
3430 {
3431     switch (size) {
3432     case 2:
3433         omap_mcbsp_writeh(opaque, addr, value);
3434         break;
3435     case 4:
3436         omap_mcbsp_writew(opaque, addr, value);
3437         break;
3438     default:
3439         omap_badwidth_write16(opaque, addr, value);
3440     }
3441 }
3442 
3443 static const MemoryRegionOps omap_mcbsp_ops = {
3444     .read = omap_mcbsp_read,
3445     .write = omap_mcbsp_write,
3446     .endianness = DEVICE_NATIVE_ENDIAN,
3447 };
3448 
3449 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3450 {
3451     memset(&s->spcr, 0, sizeof(s->spcr));
3452     memset(&s->rcr, 0, sizeof(s->rcr));
3453     memset(&s->xcr, 0, sizeof(s->xcr));
3454     s->srgr[0] = 0x0001;
3455     s->srgr[1] = 0x2000;
3456     memset(&s->mcr, 0, sizeof(s->mcr));
3457     memset(&s->pcr, 0, sizeof(s->pcr));
3458     memset(&s->rcer, 0, sizeof(s->rcer));
3459     memset(&s->xcer, 0, sizeof(s->xcer));
3460     s->tx_req = 0;
3461     s->rx_req = 0;
3462     s->tx_rate = 0;
3463     s->rx_rate = 0;
3464     timer_del(s->source_timer);
3465     timer_del(s->sink_timer);
3466 }
3467 
3468 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3469                                             hwaddr base,
3470                                             qemu_irq txirq, qemu_irq rxirq,
3471                                             qemu_irq *dma, omap_clk clk)
3472 {
3473     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3474 
3475     s->txirq = txirq;
3476     s->rxirq = rxirq;
3477     s->txdrq = dma[0];
3478     s->rxdrq = dma[1];
3479     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3480     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3481     omap_mcbsp_reset(s);
3482 
3483     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3484     memory_region_add_subregion(system_memory, base, &s->iomem);
3485 
3486     return s;
3487 }
3488 
3489 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3490 {
3491     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3492 
3493     if (s->rx_rate) {
3494         s->rx_req = s->codec->in.len;
3495         omap_mcbsp_rx_newdata(s);
3496     }
3497 }
3498 
3499 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3500 {
3501     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3502 
3503     if (s->tx_rate) {
3504         s->tx_req = s->codec->out.size;
3505         omap_mcbsp_tx_newdata(s);
3506     }
3507 }
3508 
3509 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3510 {
3511     s->codec = slave;
3512     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3513     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3514 }
3515 
3516 /* LED Pulse Generators */
3517 struct omap_lpg_s {
3518     MemoryRegion iomem;
3519     QEMUTimer *tm;
3520 
3521     uint8_t control;
3522     uint8_t power;
3523     int64_t on;
3524     int64_t period;
3525     int clk;
3526     int cycle;
3527 };
3528 
3529 static void omap_lpg_tick(void *opaque)
3530 {
3531     struct omap_lpg_s *s = opaque;
3532 
3533     if (s->cycle)
3534         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3535     else
3536         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3537 
3538     s->cycle = !s->cycle;
3539     printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3540 }
3541 
3542 static void omap_lpg_update(struct omap_lpg_s *s)
3543 {
3544     int64_t on, period = 1, ticks = 1000;
3545     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3546 
3547     if (~s->control & (1 << 6))					/* LPGRES */
3548         on = 0;
3549     else if (s->control & (1 << 7))				/* PERM_ON */
3550         on = period;
3551     else {
3552         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3553                         256 / 32);
3554         on = (s->clk && s->power) ? muldiv64(ticks,
3555                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3556     }
3557 
3558     timer_del(s->tm);
3559     if (on == period && s->on < s->period)
3560         printf("%s: LED is on\n", __func__);
3561     else if (on == 0 && s->on)
3562         printf("%s: LED is off\n", __func__);
3563     else if (on && (on != s->on || period != s->period)) {
3564         s->cycle = 0;
3565         s->on = on;
3566         s->period = period;
3567         omap_lpg_tick(s);
3568         return;
3569     }
3570 
3571     s->on = on;
3572     s->period = period;
3573 }
3574 
3575 static void omap_lpg_reset(struct omap_lpg_s *s)
3576 {
3577     s->control = 0x00;
3578     s->power = 0x00;
3579     s->clk = 1;
3580     omap_lpg_update(s);
3581 }
3582 
3583 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3584                               unsigned size)
3585 {
3586     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3587     int offset = addr & OMAP_MPUI_REG_MASK;
3588 
3589     if (size != 1) {
3590         return omap_badwidth_read8(opaque, addr);
3591     }
3592 
3593     switch (offset) {
3594     case 0x00:	/* LCR */
3595         return s->control;
3596 
3597     case 0x04:	/* PMR */
3598         return s->power;
3599     }
3600 
3601     OMAP_BAD_REG(addr);
3602     return 0;
3603 }
3604 
3605 static void omap_lpg_write(void *opaque, hwaddr addr,
3606                            uint64_t value, unsigned size)
3607 {
3608     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3609     int offset = addr & OMAP_MPUI_REG_MASK;
3610 
3611     if (size != 1) {
3612         omap_badwidth_write8(opaque, addr, value);
3613         return;
3614     }
3615 
3616     switch (offset) {
3617     case 0x00:	/* LCR */
3618         if (~value & (1 << 6))					/* LPGRES */
3619             omap_lpg_reset(s);
3620         s->control = value & 0xff;
3621         omap_lpg_update(s);
3622         return;
3623 
3624     case 0x04:	/* PMR */
3625         s->power = value & 0x01;
3626         omap_lpg_update(s);
3627         return;
3628 
3629     default:
3630         OMAP_BAD_REG(addr);
3631         return;
3632     }
3633 }
3634 
3635 static const MemoryRegionOps omap_lpg_ops = {
3636     .read = omap_lpg_read,
3637     .write = omap_lpg_write,
3638     .endianness = DEVICE_NATIVE_ENDIAN,
3639 };
3640 
3641 static void omap_lpg_clk_update(void *opaque, int line, int on)
3642 {
3643     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3644 
3645     s->clk = on;
3646     omap_lpg_update(s);
3647 }
3648 
3649 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3650                                         hwaddr base, omap_clk clk)
3651 {
3652     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3653 
3654     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3655 
3656     omap_lpg_reset(s);
3657 
3658     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3659     memory_region_add_subregion(system_memory, base, &s->iomem);
3660 
3661     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3662 
3663     return s;
3664 }
3665 
3666 /* MPUI Peripheral Bridge configuration */
3667 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3668                                   unsigned size)
3669 {
3670     if (size != 2) {
3671         return omap_badwidth_read16(opaque, addr);
3672     }
3673 
3674     if (addr == OMAP_MPUI_BASE)	/* CMR */
3675         return 0xfe4d;
3676 
3677     OMAP_BAD_REG(addr);
3678     return 0;
3679 }
3680 
3681 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3682                                uint64_t value, unsigned size)
3683 {
3684     /* FIXME: infinite loop */
3685     omap_badwidth_write16(opaque, addr, value);
3686 }
3687 
3688 static const MemoryRegionOps omap_mpui_io_ops = {
3689     .read = omap_mpui_io_read,
3690     .write = omap_mpui_io_write,
3691     .endianness = DEVICE_NATIVE_ENDIAN,
3692 };
3693 
3694 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3695                                struct omap_mpu_state_s *mpu)
3696 {
3697     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3698                           "omap-mpui-io", 0x7fff);
3699     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3700                                 &mpu->mpui_io_iomem);
3701 }
3702 
3703 /* General chip reset */
3704 static void omap1_mpu_reset(void *opaque)
3705 {
3706     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3707 
3708     omap_dma_reset(mpu->dma);
3709     omap_mpu_timer_reset(mpu->timer[0]);
3710     omap_mpu_timer_reset(mpu->timer[1]);
3711     omap_mpu_timer_reset(mpu->timer[2]);
3712     omap_wd_timer_reset(mpu->wdt);
3713     omap_os_timer_reset(mpu->os_timer);
3714     omap_lcdc_reset(mpu->lcd);
3715     omap_ulpd_pm_reset(mpu);
3716     omap_pin_cfg_reset(mpu);
3717     omap_mpui_reset(mpu);
3718     omap_tipb_bridge_reset(mpu->private_tipb);
3719     omap_tipb_bridge_reset(mpu->public_tipb);
3720     omap_dpll_reset(mpu->dpll[0]);
3721     omap_dpll_reset(mpu->dpll[1]);
3722     omap_dpll_reset(mpu->dpll[2]);
3723     omap_uart_reset(mpu->uart[0]);
3724     omap_uart_reset(mpu->uart[1]);
3725     omap_uart_reset(mpu->uart[2]);
3726     omap_mmc_reset(mpu->mmc);
3727     omap_mpuio_reset(mpu->mpuio);
3728     omap_uwire_reset(mpu->microwire);
3729     omap_pwl_reset(mpu->pwl);
3730     omap_pwt_reset(mpu->pwt);
3731     omap_rtc_reset(mpu->rtc);
3732     omap_mcbsp_reset(mpu->mcbsp1);
3733     omap_mcbsp_reset(mpu->mcbsp2);
3734     omap_mcbsp_reset(mpu->mcbsp3);
3735     omap_lpg_reset(mpu->led[0]);
3736     omap_lpg_reset(mpu->led[1]);
3737     omap_clkm_reset(mpu);
3738     cpu_reset(CPU(mpu->cpu));
3739 }
3740 
3741 static const struct omap_map_s {
3742     hwaddr phys_dsp;
3743     hwaddr phys_mpu;
3744     uint32_t size;
3745     const char *name;
3746 } omap15xx_dsp_mm[] = {
3747     /* Strobe 0 */
3748     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3749     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3750     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3751     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3752     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3753     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3754     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3755     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3756     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3757     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3758     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3759     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3760     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3761     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3762     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3763     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3764     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3765     /* Strobe 1 */
3766     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3767 
3768     { 0 }
3769 };
3770 
3771 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3772                                    const struct omap_map_s *map)
3773 {
3774     MemoryRegion *io;
3775 
3776     for (; map->phys_dsp; map ++) {
3777         io = g_new(MemoryRegion, 1);
3778         memory_region_init_alias(io, NULL, map->name,
3779                                  system_memory, map->phys_mpu, map->size);
3780         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3781     }
3782 }
3783 
3784 void omap_mpu_wakeup(void *opaque, int irq, int req)
3785 {
3786     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3787     CPUState *cpu = CPU(mpu->cpu);
3788 
3789     if (cpu->halted) {
3790         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3791     }
3792 }
3793 
3794 static const struct dma_irq_map omap1_dma_irq_map[] = {
3795     { 0, OMAP_INT_DMA_CH0_6 },
3796     { 0, OMAP_INT_DMA_CH1_7 },
3797     { 0, OMAP_INT_DMA_CH2_8 },
3798     { 0, OMAP_INT_DMA_CH3 },
3799     { 0, OMAP_INT_DMA_CH4 },
3800     { 0, OMAP_INT_DMA_CH5 },
3801     { 1, OMAP_INT_1610_DMA_CH6 },
3802     { 1, OMAP_INT_1610_DMA_CH7 },
3803     { 1, OMAP_INT_1610_DMA_CH8 },
3804     { 1, OMAP_INT_1610_DMA_CH9 },
3805     { 1, OMAP_INT_1610_DMA_CH10 },
3806     { 1, OMAP_INT_1610_DMA_CH11 },
3807     { 1, OMAP_INT_1610_DMA_CH12 },
3808     { 1, OMAP_INT_1610_DMA_CH13 },
3809     { 1, OMAP_INT_1610_DMA_CH14 },
3810     { 1, OMAP_INT_1610_DMA_CH15 }
3811 };
3812 
3813 /* DMA ports for OMAP1 */
3814 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3815                 hwaddr addr)
3816 {
3817     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3818 }
3819 
3820 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3821                 hwaddr addr)
3822 {
3823     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3824                              addr);
3825 }
3826 
3827 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3828                 hwaddr addr)
3829 {
3830     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3831 }
3832 
3833 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3834                 hwaddr addr)
3835 {
3836     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3837 }
3838 
3839 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3840                 hwaddr addr)
3841 {
3842     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3843 }
3844 
3845 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3846                 hwaddr addr)
3847 {
3848     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3849 }
3850 
3851 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3852                 unsigned long sdram_size,
3853                 const char *cpu_type)
3854 {
3855     int i;
3856     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3857     qemu_irq dma_irqs[6];
3858     DriveInfo *dinfo;
3859     SysBusDevice *busdev;
3860 
3861     /* Core */
3862     s->mpu_model = omap310;
3863     s->cpu = ARM_CPU(cpu_create(cpu_type));
3864     s->sdram_size = sdram_size;
3865     s->sram_size = OMAP15XX_SRAM_SIZE;
3866 
3867     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3868 
3869     /* Clocks */
3870     omap_clk_init(s);
3871 
3872     /* Memory-mapped stuff */
3873     memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3874                                          s->sdram_size);
3875     memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3876     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3877                            &error_fatal);
3878     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3879 
3880     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3881 
3882     s->ih[0] = qdev_create(NULL, "omap-intc");
3883     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3884     qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3885     qdev_init_nofail(s->ih[0]);
3886     busdev = SYS_BUS_DEVICE(s->ih[0]);
3887     sysbus_connect_irq(busdev, 0,
3888                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3889     sysbus_connect_irq(busdev, 1,
3890                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3891     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3892     s->ih[1] = qdev_create(NULL, "omap-intc");
3893     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3894     qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3895     qdev_init_nofail(s->ih[1]);
3896     busdev = SYS_BUS_DEVICE(s->ih[1]);
3897     sysbus_connect_irq(busdev, 0,
3898                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3899     /* The second interrupt controller's FIQ output is not wired up */
3900     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3901 
3902     for (i = 0; i < 6; i++) {
3903         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3904                                        omap1_dma_irq_map[i].intr);
3905     }
3906     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3907                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3908                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3909 
3910     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3911     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3912     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3913     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3914     s->port[local    ].addr_valid = omap_validate_local_addr;
3915     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3916 
3917     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3918     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3919                          OMAP_EMIFF_BASE, s->sdram_size);
3920     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3921                          OMAP_IMIF_BASE, s->sram_size);
3922 
3923     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3924                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3925                     omap_findclk(s, "mputim_ck"));
3926     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3927                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3928                     omap_findclk(s, "mputim_ck"));
3929     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3930                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3931                     omap_findclk(s, "mputim_ck"));
3932 
3933     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3934                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3935                     omap_findclk(s, "armwdt_ck"));
3936 
3937     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3938                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3939                     omap_findclk(s, "clk32-kHz"));
3940 
3941     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3942                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3943                             omap_dma_get_lcdch(s->dma),
3944                             omap_findclk(s, "lcd_ck"));
3945 
3946     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3947     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3948     omap_id_init(system_memory, s);
3949 
3950     omap_mpui_init(system_memory, 0xfffec900, s);
3951 
3952     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3953                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3954                     omap_findclk(s, "tipb_ck"));
3955     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3956                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3957                     omap_findclk(s, "tipb_ck"));
3958 
3959     omap_tcmi_init(system_memory, 0xfffecc00, s);
3960 
3961     s->uart[0] = omap_uart_init(0xfffb0000,
3962                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3963                     omap_findclk(s, "uart1_ck"),
3964                     omap_findclk(s, "uart1_ck"),
3965                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3966                     "uart1",
3967                     serial_hd(0));
3968     s->uart[1] = omap_uart_init(0xfffb0800,
3969                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3970                     omap_findclk(s, "uart2_ck"),
3971                     omap_findclk(s, "uart2_ck"),
3972                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3973                     "uart2",
3974                     serial_hd(0) ? serial_hd(1) : NULL);
3975     s->uart[2] = omap_uart_init(0xfffb9800,
3976                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3977                     omap_findclk(s, "uart3_ck"),
3978                     omap_findclk(s, "uart3_ck"),
3979                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3980                     "uart3",
3981                     serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3982 
3983     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3984                                 omap_findclk(s, "dpll1"));
3985     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3986                                 omap_findclk(s, "dpll2"));
3987     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3988                                 omap_findclk(s, "dpll3"));
3989 
3990     dinfo = drive_get(IF_SD, 0, 0);
3991     if (!dinfo && !qtest_enabled()) {
3992         warn_report("missing SecureDigital device");
3993     }
3994     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3995                            dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
3996                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3997                            &s->drq[OMAP_DMA_MMC_TX],
3998                     omap_findclk(s, "mmc_ck"));
3999 
4000     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4001                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4002                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4003                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4004 
4005     s->gpio = qdev_create(NULL, "omap-gpio");
4006     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4007     qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4008     qdev_init_nofail(s->gpio);
4009     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4010                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4011     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4012 
4013     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4014                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4015                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4016                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4017 
4018     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4019                            omap_findclk(s, "armxor_ck"));
4020     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4021                            omap_findclk(s, "armxor_ck"));
4022 
4023     s->i2c[0] = qdev_create(NULL, "omap_i2c");
4024     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4025     qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4026     qdev_init_nofail(s->i2c[0]);
4027     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4028     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4029     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4030     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4031     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4032 
4033     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4034                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4035                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4036                     omap_findclk(s, "clk32-kHz"));
4037 
4038     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4039                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4040                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4041                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4042     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4043                                 qdev_get_gpio_in(s->ih[0],
4044                                                  OMAP_INT_310_McBSP2_TX),
4045                                 qdev_get_gpio_in(s->ih[0],
4046                                                  OMAP_INT_310_McBSP2_RX),
4047                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4048     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4049                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4050                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4051                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4052 
4053     s->led[0] = omap_lpg_init(system_memory,
4054                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4055     s->led[1] = omap_lpg_init(system_memory,
4056                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4057 
4058     /* Register mappings not currenlty implemented:
4059      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4060      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4061      * USB W2FC		fffb4000 - fffb47ff
4062      * Camera Interface	fffb6800 - fffb6fff
4063      * USB Host		fffba000 - fffba7ff
4064      * FAC		fffba800 - fffbafff
4065      * HDQ/1-Wire	fffbc000 - fffbc7ff
4066      * TIPB switches	fffbc800 - fffbcfff
4067      * Mailbox		fffcf000 - fffcf7ff
4068      * Local bus IF	fffec100 - fffec1ff
4069      * Local bus MMU	fffec200 - fffec2ff
4070      * DSP MMU		fffed200 - fffed2ff
4071      */
4072 
4073     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4074     omap_setup_mpui_io(system_memory, s);
4075 
4076     qemu_register_reset(omap1_mpu_reset, s);
4077 
4078     return s;
4079 }
4080