xref: /qemu/hw/arm/raspi.c (revision e3a6e0da)
1 /*
2  * Raspberry Pi emulation (c) 2012 Gregory Estrade
3  * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
4  *
5  * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
6  * Written by Andrew Baumann
7  *
8  * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
9  * Upstream code cleanup (c) 2018 Pekka Enberg
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/units.h"
17 #include "qemu/cutils.h"
18 #include "qapi/error.h"
19 #include "cpu.h"
20 #include "hw/arm/bcm2836.h"
21 #include "hw/registerfields.h"
22 #include "qemu/error-report.h"
23 #include "hw/boards.h"
24 #include "hw/loader.h"
25 #include "hw/arm/boot.h"
26 #include "sysemu/sysemu.h"
27 #include "qom/object.h"
28 
29 #define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
30 #define MVBAR_ADDR      0x400 /* secure vectors */
31 #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
32 #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
33 #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
34 #define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */
35 
36 /* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
37 #define MACH_TYPE_BCM2708   3138
38 
39 struct RaspiMachineState {
40     /*< private >*/
41     MachineState parent_obj;
42     /*< public >*/
43     BCM283XState soc;
44 };
45 typedef struct RaspiMachineState RaspiMachineState;
46 
47 struct RaspiMachineClass {
48     /*< private >*/
49     MachineClass parent_obj;
50     /*< public >*/
51     uint32_t board_rev;
52 };
53 typedef struct RaspiMachineClass RaspiMachineClass;
54 
55 #define TYPE_RASPI_MACHINE       MACHINE_TYPE_NAME("raspi-common")
56 DECLARE_OBJ_CHECKERS(RaspiMachineState, RaspiMachineClass,
57                      RASPI_MACHINE, TYPE_RASPI_MACHINE)
58 
59 
60 /*
61  * Board revision codes:
62  * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
63  */
64 FIELD(REV_CODE, REVISION,           0, 4);
65 FIELD(REV_CODE, TYPE,               4, 8);
66 FIELD(REV_CODE, PROCESSOR,         12, 4);
67 FIELD(REV_CODE, MANUFACTURER,      16, 4);
68 FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
69 FIELD(REV_CODE, STYLE,             23, 1);
70 
71 static uint64_t board_ram_size(uint32_t board_rev)
72 {
73     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
74     return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
75 }
76 
77 static int board_processor_id(uint32_t board_rev)
78 {
79     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
80     return FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
81 }
82 
83 static int board_version(uint32_t board_rev)
84 {
85     return board_processor_id(board_rev) + 1;
86 }
87 
88 static const char *board_soc_type(uint32_t board_rev)
89 {
90     static const char *soc_types[] = {
91         NULL, TYPE_BCM2836, TYPE_BCM2837,
92     };
93     int proc_id = board_processor_id(board_rev);
94 
95     if (proc_id >= ARRAY_SIZE(soc_types) || !soc_types[proc_id]) {
96         error_report("Unsupported processor id '%d' (board revision: 0x%x)",
97                      proc_id, board_rev);
98         exit(1);
99     }
100     return soc_types[proc_id];
101 }
102 
103 static int cores_count(uint32_t board_rev)
104 {
105     static const int soc_cores_count[] = {
106         0, BCM283X_NCPUS, BCM283X_NCPUS,
107     };
108     int proc_id = board_processor_id(board_rev);
109 
110     if (proc_id >= ARRAY_SIZE(soc_cores_count) || !soc_cores_count[proc_id]) {
111         error_report("Unsupported processor id '%d' (board revision: 0x%x)",
112                      proc_id, board_rev);
113         exit(1);
114     }
115     return soc_cores_count[proc_id];
116 }
117 
118 static const char *board_type(uint32_t board_rev)
119 {
120     static const char *types[] = {
121         "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
122         "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
123     };
124     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
125     int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
126     if (bt >= ARRAY_SIZE(types) || !types[bt]) {
127         return "Unknown";
128     }
129     return types[bt];
130 }
131 
132 static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
133 {
134     static const uint32_t smpboot[] = {
135         0xe1a0e00f, /*    mov     lr, pc */
136         0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
137         0xee100fb0, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
138         0xe7e10050, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
139         0xe59f5014, /*    ldr     r5, =0x400000CC      ;load mbox base */
140         0xe320f001, /* 1: yield */
141         0xe7953200, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core*/
142         0xe3530000, /*    cmp     r3, #0               ;spin while zero */
143         0x0afffffb, /*    beq     1b */
144         0xe7853200, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
145         0xe12fff13, /*    bx      r3                   ;jump to target */
146         0x400000cc, /* (constant: mailbox 3 read/clear base) */
147     };
148 
149     /* check that we don't overrun board setup vectors */
150     QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
151     /* check that board setup address is correctly relocated */
152     QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
153                       || (BOARDSETUP_ADDR >> 4) >= 0x100);
154 
155     rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
156                           info->smp_loader_start,
157                           arm_boot_address_space(cpu, info));
158 }
159 
160 static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
161 {
162     AddressSpace *as = arm_boot_address_space(cpu, info);
163     /* Unlike the AArch32 version we don't need to call the board setup hook.
164      * The mechanism for doing the spin-table is also entirely different.
165      * We must have four 64-bit fields at absolute addresses
166      * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
167      * our CPUs, and which we must ensure are zero initialized before
168      * the primary CPU goes into the kernel. We put these variables inside
169      * a rom blob, so that the reset for ROM contents zeroes them for us.
170      */
171     static const uint32_t smpboot[] = {
172         0xd2801b05, /*        mov     x5, 0xd8 */
173         0xd53800a6, /*        mrs     x6, mpidr_el1 */
174         0x924004c6, /*        and     x6, x6, #0x3 */
175         0xd503205f, /* spin:  wfe */
176         0xf86678a4, /*        ldr     x4, [x5,x6,lsl #3] */
177         0xb4ffffc4, /*        cbz     x4, spin */
178         0xd2800000, /*        mov     x0, #0x0 */
179         0xd2800001, /*        mov     x1, #0x0 */
180         0xd2800002, /*        mov     x2, #0x0 */
181         0xd2800003, /*        mov     x3, #0x0 */
182         0xd61f0080, /*        br      x4 */
183     };
184 
185     static const uint64_t spintables[] = {
186         0, 0, 0, 0
187     };
188 
189     rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
190                           info->smp_loader_start, as);
191     rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
192                           SPINTABLE_ADDR, as);
193 }
194 
195 static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
196 {
197     arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
198 }
199 
200 static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
201 {
202     CPUState *cs = CPU(cpu);
203     cpu_set_pc(cs, info->smp_loader_start);
204 }
205 
206 static void setup_boot(MachineState *machine, int version, size_t ram_size)
207 {
208     static struct arm_boot_info binfo;
209     int r;
210 
211     binfo.board_id = MACH_TYPE_BCM2708;
212     binfo.ram_size = ram_size;
213     binfo.nb_cpus = machine->smp.cpus;
214 
215     if (version <= 2) {
216         /* The rpi1 and 2 require some custom setup code to run in Secure
217          * mode before booting a kernel (to set up the SMC vectors so
218          * that we get a no-op SMC; this is used by Linux to call the
219          * firmware for some cache maintenance operations.
220          * The rpi3 doesn't need this.
221          */
222         binfo.board_setup_addr = BOARDSETUP_ADDR;
223         binfo.write_board_setup = write_board_setup;
224         binfo.secure_board_setup = true;
225         binfo.secure_boot = true;
226     }
227 
228     /* Pi2 and Pi3 requires SMP setup */
229     if (version >= 2) {
230         binfo.smp_loader_start = SMPBOOT_ADDR;
231         if (version == 2) {
232             binfo.write_secondary_boot = write_smpboot;
233         } else {
234             binfo.write_secondary_boot = write_smpboot64;
235         }
236         binfo.secondary_cpu_reset_hook = reset_secondary;
237     }
238 
239     /* If the user specified a "firmware" image (e.g. UEFI), we bypass
240      * the normal Linux boot process
241      */
242     if (machine->firmware) {
243         hwaddr firmware_addr = version == 3 ? FIRMWARE_ADDR_3 : FIRMWARE_ADDR_2;
244         /* load the firmware image (typically kernel.img) */
245         r = load_image_targphys(machine->firmware, firmware_addr,
246                                 ram_size - firmware_addr);
247         if (r < 0) {
248             error_report("Failed to load firmware from %s", machine->firmware);
249             exit(1);
250         }
251 
252         binfo.entry = firmware_addr;
253         binfo.firmware_loaded = true;
254     }
255 
256     arm_load_kernel(ARM_CPU(first_cpu), machine, &binfo);
257 }
258 
259 static void raspi_machine_init(MachineState *machine)
260 {
261     RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
262     RaspiMachineState *s = RASPI_MACHINE(machine);
263     uint32_t board_rev = mc->board_rev;
264     int version = board_version(board_rev);
265     uint64_t ram_size = board_ram_size(board_rev);
266     uint32_t vcram_size;
267     DriveInfo *di;
268     BlockBackend *blk;
269     BusState *bus;
270     DeviceState *carddev;
271 
272     if (machine->ram_size != ram_size) {
273         char *size_str = size_to_str(ram_size);
274         error_report("Invalid RAM size, should be %s", size_str);
275         g_free(size_str);
276         exit(1);
277     }
278 
279     /* FIXME: Remove when we have custom CPU address space support */
280     memory_region_add_subregion_overlap(get_system_memory(), 0,
281                                         machine->ram, 0);
282 
283     /* Setup the SOC */
284     object_initialize_child(OBJECT(machine), "soc", &s->soc,
285                             board_soc_type(board_rev));
286     object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
287     object_property_set_int(OBJECT(&s->soc), "board-rev", board_rev,
288                             &error_abort);
289     qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
290 
291     /* Create and plug in the SD cards */
292     di = drive_get_next(IF_SD);
293     blk = di ? blk_by_legacy_dinfo(di) : NULL;
294     bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
295     if (bus == NULL) {
296         error_report("No SD bus found in SOC object");
297         exit(1);
298     }
299     carddev = qdev_new(TYPE_SD_CARD);
300     qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
301     qdev_realize_and_unref(carddev, bus, &error_fatal);
302 
303     vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
304                                           &error_abort);
305     setup_boot(machine, version, machine->ram_size - vcram_size);
306 }
307 
308 static void raspi_machine_class_init(ObjectClass *oc, void *data)
309 {
310     MachineClass *mc = MACHINE_CLASS(oc);
311     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
312     uint32_t board_rev = (uint32_t)(uintptr_t)data;
313 
314     rmc->board_rev = board_rev;
315     mc->desc = g_strdup_printf("Raspberry Pi %s", board_type(board_rev));
316     mc->init = raspi_machine_init;
317     mc->block_default_type = IF_SD;
318     mc->no_parallel = 1;
319     mc->no_floppy = 1;
320     mc->no_cdrom = 1;
321     mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
322     mc->default_ram_size = board_ram_size(board_rev);
323     mc->default_ram_id = "ram";
324     if (board_version(board_rev) == 2) {
325         mc->ignore_memory_transaction_failures = true;
326     }
327 };
328 
329 static const TypeInfo raspi_machine_types[] = {
330     {
331         .name           = MACHINE_TYPE_NAME("raspi2"),
332         .parent         = TYPE_RASPI_MACHINE,
333         .class_init     = raspi_machine_class_init,
334         .class_data     = (void *)0xa21041,
335 #ifdef TARGET_AARCH64
336     }, {
337         .name           = MACHINE_TYPE_NAME("raspi3"),
338         .parent         = TYPE_RASPI_MACHINE,
339         .class_init     = raspi_machine_class_init,
340         .class_data     = (void *)0xa02082,
341 #endif
342     }, {
343         .name           = TYPE_RASPI_MACHINE,
344         .parent         = TYPE_MACHINE,
345         .instance_size  = sizeof(RaspiMachineState),
346         .class_size     = sizeof(RaspiMachineClass),
347         .abstract       = true,
348     }
349 };
350 
351 DEFINE_TYPES(raspi_machine_types)
352