xref: /qemu/hw/arm/sbsa-ref.c (revision 73b49878)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/arm/bsa.h"
35 #include "hw/arm/fdt.h"
36 #include "hw/arm/smmuv3.h"
37 #include "hw/block/flash.h"
38 #include "hw/boards.h"
39 #include "hw/ide/internal.h"
40 #include "hw/ide/ahci_internal.h"
41 #include "hw/intc/arm_gicv3_common.h"
42 #include "hw/intc/arm_gicv3_its_common.h"
43 #include "hw/loader.h"
44 #include "hw/pci-host/gpex.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/usb.h"
47 #include "hw/usb/xhci.h"
48 #include "hw/char/pl011.h"
49 #include "hw/watchdog/sbsa_gwdt.h"
50 #include "net/net.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qom/object.h"
53 #include "target/arm/cpu-qom.h"
54 #include "target/arm/gtimer.h"
55 
56 #define RAMLIMIT_GB 8192
57 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
58 
59 #define NUM_IRQS        256
60 #define NUM_SMMU_IRQS   4
61 #define NUM_SATA_PORTS  6
62 
63 enum {
64     SBSA_FLASH,
65     SBSA_MEM,
66     SBSA_CPUPERIPHS,
67     SBSA_GIC_DIST,
68     SBSA_GIC_REDIST,
69     SBSA_GIC_ITS,
70     SBSA_SECURE_EC,
71     SBSA_GWDT_WS0,
72     SBSA_GWDT_REFRESH,
73     SBSA_GWDT_CONTROL,
74     SBSA_SMMU,
75     SBSA_UART,
76     SBSA_RTC,
77     SBSA_PCIE,
78     SBSA_PCIE_MMIO,
79     SBSA_PCIE_MMIO_HIGH,
80     SBSA_PCIE_PIO,
81     SBSA_PCIE_ECAM,
82     SBSA_GPIO,
83     SBSA_SECURE_UART,
84     SBSA_SECURE_UART_MM,
85     SBSA_SECURE_MEM,
86     SBSA_AHCI,
87     SBSA_XHCI,
88 };
89 
90 struct SBSAMachineState {
91     MachineState parent;
92     struct arm_boot_info bootinfo;
93     int smp_cpus;
94     void *fdt;
95     int fdt_size;
96     int psci_conduit;
97     DeviceState *gic;
98     PFlashCFI01 *flash[2];
99 };
100 
101 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
102 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
103 
104 static const MemMapEntry sbsa_ref_memmap[] = {
105     /* 512M boot ROM */
106     [SBSA_FLASH] =              {          0, 0x20000000 },
107     /* 512M secure memory */
108     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
109     /* Space reserved for CPU peripheral devices */
110     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
111     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
112     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
113     [SBSA_GIC_ITS] =            { 0x44081000, 0x00020000 },
114     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
115     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
116     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
117     [SBSA_UART] =               { 0x60000000, 0x00001000 },
118     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
119     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
120     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
121     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
122     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
123     /* Space here reserved for more SMMUs */
124     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
125     [SBSA_XHCI] =               { 0x60110000, 0x00010000 },
126     /* Space here reserved for other devices */
127     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
128     /* 32-bit address PCIE MMIO space */
129     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
130     /* 256M PCIE ECAM space */
131     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
132     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
133     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
134     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
135 };
136 
137 static const int sbsa_ref_irqmap[] = {
138     [SBSA_UART] = 1,
139     [SBSA_RTC] = 2,
140     [SBSA_PCIE] = 3, /* ... to 6 */
141     [SBSA_GPIO] = 7,
142     [SBSA_SECURE_UART] = 8,
143     [SBSA_SECURE_UART_MM] = 9,
144     [SBSA_AHCI] = 10,
145     [SBSA_XHCI] = 11,
146     [SBSA_SMMU] = 12, /* ... to 15 */
147     [SBSA_GWDT_WS0] = 16,
148 };
149 
150 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
151 {
152     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
153     return arm_build_mp_affinity(idx, clustersz);
154 }
155 
156 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
157 {
158     char *nodename;
159 
160     nodename = g_strdup_printf("/intc");
161     qemu_fdt_add_subnode(sms->fdt, nodename);
162     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
163                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
164                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
165                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
166                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
167 
168     nodename = g_strdup_printf("/intc/its");
169     qemu_fdt_add_subnode(sms->fdt, nodename);
170     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
171                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
172                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
173 
174     g_free(nodename);
175 }
176 
177 /*
178  * Firmware on this machine only uses ACPI table to load OS, these limited
179  * device tree nodes are just to let firmware know the info which varies from
180  * command line parameters, so it is not necessary to be fully compatible
181  * with the kernel CPU and NUMA binding rules.
182  */
183 static void create_fdt(SBSAMachineState *sms)
184 {
185     void *fdt = create_device_tree(&sms->fdt_size);
186     const MachineState *ms = MACHINE(sms);
187     int nb_numa_nodes = ms->numa_state->num_nodes;
188     int cpu;
189 
190     if (!fdt) {
191         error_report("create_device_tree() failed");
192         exit(1);
193     }
194 
195     sms->fdt = fdt;
196 
197     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
198     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
199     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
200 
201     /*
202      * This versioning scheme is for informing platform fw only. It is neither:
203      * - A QEMU versioned machine type; a given version of QEMU will emulate
204      *   a given version of the platform.
205      * - A reflection of level of SBSA (now SystemReady SR) support provided.
206      *
207      * machine-version-major: updated when changes breaking fw compatibility
208      *                        are introduced.
209      * machine-version-minor: updated when features are added that don't break
210      *                        fw compatibility.
211      */
212     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
213     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3);
214 
215     if (ms->numa_state->have_numa_distance) {
216         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
217         uint32_t *matrix = g_malloc0(size);
218         int idx, i, j;
219 
220         for (i = 0; i < nb_numa_nodes; i++) {
221             for (j = 0; j < nb_numa_nodes; j++) {
222                 idx = (i * nb_numa_nodes + j) * 3;
223                 matrix[idx + 0] = cpu_to_be32(i);
224                 matrix[idx + 1] = cpu_to_be32(j);
225                 matrix[idx + 2] =
226                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
227             }
228         }
229 
230         qemu_fdt_add_subnode(fdt, "/distance-map");
231         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
232                          matrix, size);
233         g_free(matrix);
234     }
235 
236     /*
237      * From Documentation/devicetree/bindings/arm/cpus.yaml
238      *  On ARM v8 64-bit systems this property is required
239      *    and matches the MPIDR_EL1 register affinity bits.
240      *
241      *    * If cpus node's #address-cells property is set to 2
242      *
243      *      The first reg cell bits [7:0] must be set to
244      *      bits [39:32] of MPIDR_EL1.
245      *
246      *      The second reg cell bits [23:0] must be set to
247      *      bits [23:0] of MPIDR_EL1.
248      */
249     qemu_fdt_add_subnode(sms->fdt, "/cpus");
250     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
251     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
252 
253     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
254         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
255         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
256         CPUState *cs = CPU(armcpu);
257         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
258 
259         qemu_fdt_add_subnode(sms->fdt, nodename);
260         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
261 
262         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
263             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
264                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
265         }
266 
267         g_free(nodename);
268     }
269 
270     sbsa_fdt_add_gic_node(sms);
271 }
272 
273 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
274 
275 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
276                                         const char *name,
277                                         const char *alias_prop_name)
278 {
279     /*
280      * Create a single flash device.  We use the same parameters as
281      * the flash devices on the Versatile Express board.
282      */
283     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
284 
285     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
286     qdev_prop_set_uint8(dev, "width", 4);
287     qdev_prop_set_uint8(dev, "device-width", 2);
288     qdev_prop_set_bit(dev, "big-endian", false);
289     qdev_prop_set_uint16(dev, "id0", 0x89);
290     qdev_prop_set_uint16(dev, "id1", 0x18);
291     qdev_prop_set_uint16(dev, "id2", 0x00);
292     qdev_prop_set_uint16(dev, "id3", 0x00);
293     qdev_prop_set_string(dev, "name", name);
294     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
295     object_property_add_alias(OBJECT(sms), alias_prop_name,
296                               OBJECT(dev), "drive");
297     return PFLASH_CFI01(dev);
298 }
299 
300 static void sbsa_flash_create(SBSAMachineState *sms)
301 {
302     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
303     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
304 }
305 
306 static void sbsa_flash_map1(PFlashCFI01 *flash,
307                             hwaddr base, hwaddr size,
308                             MemoryRegion *sysmem)
309 {
310     DeviceState *dev = DEVICE(flash);
311 
312     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
313     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
314     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
315     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
316 
317     memory_region_add_subregion(sysmem, base,
318                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
319                                                        0));
320 }
321 
322 static void sbsa_flash_map(SBSAMachineState *sms,
323                            MemoryRegion *sysmem,
324                            MemoryRegion *secure_sysmem)
325 {
326     /*
327      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
328      * sysmem is the system memory space. secure_sysmem is the secure view
329      * of the system, and the first flash device should be made visible only
330      * there. The second flash device is visible to both secure and nonsecure.
331      */
332     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
333     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
334 
335     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
336                     secure_sysmem);
337     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
338                     sysmem);
339 }
340 
341 static bool sbsa_firmware_init(SBSAMachineState *sms,
342                                MemoryRegion *sysmem,
343                                MemoryRegion *secure_sysmem)
344 {
345     const char *bios_name;
346     int i;
347     BlockBackend *pflash_blk0;
348 
349     /* Map legacy -drive if=pflash to machine properties */
350     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
351         pflash_cfi01_legacy_drive(sms->flash[i],
352                                   drive_get(IF_PFLASH, 0, i));
353     }
354 
355     sbsa_flash_map(sms, sysmem, secure_sysmem);
356 
357     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
358 
359     bios_name = MACHINE(sms)->firmware;
360     if (bios_name) {
361         char *fname;
362         MemoryRegion *mr;
363         int image_size;
364 
365         if (pflash_blk0) {
366             error_report("The contents of the first flash device may be "
367                          "specified with -bios or with -drive if=pflash... "
368                          "but you cannot use both options at once");
369             exit(1);
370         }
371 
372         /* Fall back to -bios */
373 
374         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
375         if (!fname) {
376             error_report("Could not find ROM image '%s'", bios_name);
377             exit(1);
378         }
379         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
380         image_size = load_image_mr(fname, mr);
381         g_free(fname);
382         if (image_size < 0) {
383             error_report("Could not load ROM image '%s'", bios_name);
384             exit(1);
385         }
386     }
387 
388     return pflash_blk0 || bios_name;
389 }
390 
391 static void create_secure_ram(SBSAMachineState *sms,
392                               MemoryRegion *secure_sysmem)
393 {
394     MemoryRegion *secram = g_new(MemoryRegion, 1);
395     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
396     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
397 
398     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
399                            &error_fatal);
400     memory_region_add_subregion(secure_sysmem, base, secram);
401 }
402 
403 static void create_its(SBSAMachineState *sms)
404 {
405     const char *itsclass = its_class_name();
406     DeviceState *dev;
407 
408     dev = qdev_new(itsclass);
409 
410     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
411                              &error_abort);
412     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
413     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
414 }
415 
416 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
417 {
418     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
419     SysBusDevice *gicbusdev;
420     const char *gictype;
421     uint32_t redist0_capacity, redist0_count;
422     QList *redist_region_count;
423     int i;
424 
425     gictype = gicv3_class_name();
426 
427     sms->gic = qdev_new(gictype);
428     qdev_prop_set_uint32(sms->gic, "revision", 3);
429     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
430     /*
431      * Note that the num-irq property counts both internal and external
432      * interrupts; there are always 32 of the former (mandated by GIC spec).
433      */
434     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
435     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
436 
437     redist0_capacity =
438                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
439     redist0_count = MIN(smp_cpus, redist0_capacity);
440 
441     redist_region_count = qlist_new();
442     qlist_append_int(redist_region_count, redist0_count);
443     qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
444 
445     object_property_set_link(OBJECT(sms->gic), "sysmem",
446                              OBJECT(mem), &error_fatal);
447     qdev_prop_set_bit(sms->gic, "has-lpi", true);
448 
449     gicbusdev = SYS_BUS_DEVICE(sms->gic);
450     sysbus_realize_and_unref(gicbusdev, &error_fatal);
451     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
452     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
453 
454     /*
455      * Wire the outputs from each CPU's generic timer and the GICv3
456      * maintenance interrupt signal to the appropriate GIC PPI inputs,
457      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
458      */
459     for (i = 0; i < smp_cpus; i++) {
460         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
461         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
462         int irq;
463         /*
464          * Mapping from the output timer irq lines from the CPU to the
465          * GIC PPI inputs used for this board.
466          */
467         const int timer_irq[] = {
468             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
469             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
470             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
471             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
472             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
473         };
474 
475         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
476             qdev_connect_gpio_out(cpudev, irq,
477                                   qdev_get_gpio_in(sms->gic,
478                                                    intidbase + timer_irq[irq]));
479         }
480 
481         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
482                                     qdev_get_gpio_in(sms->gic,
483                                                      intidbase
484                                                      + ARCH_GIC_MAINT_IRQ));
485 
486         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
487                                     qdev_get_gpio_in(sms->gic,
488                                                      intidbase
489                                                      + VIRTUAL_PMU_IRQ));
490 
491         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
492         sysbus_connect_irq(gicbusdev, i + smp_cpus,
493                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
494         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
495                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
496         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
497                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
498     }
499     create_its(sms);
500 }
501 
502 static void create_uart(const SBSAMachineState *sms, int uart,
503                         MemoryRegion *mem, Chardev *chr)
504 {
505     hwaddr base = sbsa_ref_memmap[uart].base;
506     int irq = sbsa_ref_irqmap[uart];
507     DeviceState *dev = qdev_new(TYPE_PL011);
508     SysBusDevice *s = SYS_BUS_DEVICE(dev);
509 
510     qdev_prop_set_chr(dev, "chardev", chr);
511     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
512     memory_region_add_subregion(mem, base,
513                                 sysbus_mmio_get_region(s, 0));
514     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
515 }
516 
517 static void create_rtc(const SBSAMachineState *sms)
518 {
519     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
520     int irq = sbsa_ref_irqmap[SBSA_RTC];
521 
522     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
523 }
524 
525 static void create_wdt(const SBSAMachineState *sms)
526 {
527     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
528     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
529     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
530     SysBusDevice *s = SYS_BUS_DEVICE(dev);
531     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
532 
533     sysbus_realize_and_unref(s, &error_fatal);
534     sysbus_mmio_map(s, 0, rbase);
535     sysbus_mmio_map(s, 1, cbase);
536     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
537 }
538 
539 static DeviceState *gpio_key_dev;
540 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
541 {
542     /* use gpio Pin 3 for power button event */
543     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
544 }
545 
546 static Notifier sbsa_ref_powerdown_notifier = {
547     .notify = sbsa_ref_powerdown_req
548 };
549 
550 static void create_gpio(const SBSAMachineState *sms)
551 {
552     DeviceState *pl061_dev;
553     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
554     int irq = sbsa_ref_irqmap[SBSA_GPIO];
555 
556     pl061_dev = sysbus_create_simple("pl061", base,
557                                      qdev_get_gpio_in(sms->gic, irq));
558 
559     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
560                                         qdev_get_gpio_in(pl061_dev, 3));
561 
562     /* connect powerdown request */
563     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
564 }
565 
566 static void create_ahci(const SBSAMachineState *sms)
567 {
568     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
569     int irq = sbsa_ref_irqmap[SBSA_AHCI];
570     DeviceState *dev;
571     DriveInfo *hd[NUM_SATA_PORTS];
572     SysbusAHCIState *sysahci;
573     AHCIState *ahci;
574     int i;
575 
576     dev = qdev_new("sysbus-ahci");
577     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
578     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
579     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
580     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
581 
582     sysahci = SYSBUS_AHCI(dev);
583     ahci = &sysahci->ahci;
584     ide_drive_get(hd, ARRAY_SIZE(hd));
585     for (i = 0; i < ahci->ports; i++) {
586         if (hd[i] == NULL) {
587             continue;
588         }
589         ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
590     }
591 }
592 
593 static void create_xhci(const SBSAMachineState *sms)
594 {
595     hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
596     int irq = sbsa_ref_irqmap[SBSA_XHCI];
597     DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
598     qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
599 
600     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
601     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
602     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
603 }
604 
605 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
606 {
607     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
608     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
609     DeviceState *dev;
610     int i;
611 
612     dev = qdev_new(TYPE_ARM_SMMUV3);
613 
614     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
615                              &error_abort);
616     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
617     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
618     for (i = 0; i < NUM_SMMU_IRQS; i++) {
619         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
620                            qdev_get_gpio_in(sms->gic, irq + i));
621     }
622 }
623 
624 static void create_pcie(SBSAMachineState *sms)
625 {
626     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
627     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
628     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
629     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
630     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
631     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
632     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
633     int irq = sbsa_ref_irqmap[SBSA_PCIE];
634     MachineClass *mc = MACHINE_GET_CLASS(sms);
635     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
636     MemoryRegion *ecam_alias, *ecam_reg;
637     DeviceState *dev;
638     PCIHostState *pci;
639     int i;
640 
641     dev = qdev_new(TYPE_GPEX_HOST);
642     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
643 
644     /* Map ECAM space */
645     ecam_alias = g_new0(MemoryRegion, 1);
646     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
647     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
648                              ecam_reg, 0, size_ecam);
649     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
650 
651     /* Map the MMIO space */
652     mmio_alias = g_new0(MemoryRegion, 1);
653     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
654     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
655                              mmio_reg, base_mmio, size_mmio);
656     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
657 
658     /* Map the MMIO_HIGH space */
659     mmio_alias_high = g_new0(MemoryRegion, 1);
660     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
661                              mmio_reg, base_mmio_high, size_mmio_high);
662     memory_region_add_subregion(get_system_memory(), base_mmio_high,
663                                 mmio_alias_high);
664 
665     /* Map IO port space */
666     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
667 
668     for (i = 0; i < GPEX_NUM_IRQS; i++) {
669         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
670                            qdev_get_gpio_in(sms->gic, irq + i));
671         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
672     }
673 
674     pci = PCI_HOST_BRIDGE(dev);
675     if (pci->bus) {
676         for (i = 0; i < nb_nics; i++) {
677             pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
678         }
679     }
680 
681     pci_create_simple(pci->bus, -1, "bochs-display");
682 
683     create_smmu(sms, pci->bus);
684 }
685 
686 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
687 {
688     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
689                                                  bootinfo);
690 
691     *fdt_size = board->fdt_size;
692     return board->fdt;
693 }
694 
695 static void create_secure_ec(MemoryRegion *mem)
696 {
697     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
698     DeviceState *dev = qdev_new("sbsa-ec");
699     SysBusDevice *s = SYS_BUS_DEVICE(dev);
700 
701     memory_region_add_subregion(mem, base,
702                                 sysbus_mmio_get_region(s, 0));
703 }
704 
705 static void sbsa_ref_init(MachineState *machine)
706 {
707     unsigned int smp_cpus = machine->smp.cpus;
708     unsigned int max_cpus = machine->smp.max_cpus;
709     SBSAMachineState *sms = SBSA_MACHINE(machine);
710     MachineClass *mc = MACHINE_GET_CLASS(machine);
711     MemoryRegion *sysmem = get_system_memory();
712     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
713     bool firmware_loaded;
714     const CPUArchIdList *possible_cpus;
715     int n, sbsa_max_cpus;
716 
717     if (kvm_enabled()) {
718         error_report("sbsa-ref: KVM is not supported for this machine");
719         exit(1);
720     }
721 
722     /*
723      * The Secure view of the world is the same as the NonSecure,
724      * but with a few extra devices. Create it as a container region
725      * containing the system memory at low priority; any secure-only
726      * devices go in at higher priority and take precedence.
727      */
728     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
729                        UINT64_MAX);
730     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
731 
732     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
733 
734     /*
735      * This machine has EL3 enabled, external firmware should supply PSCI
736      * implementation, so the QEMU's internal PSCI is disabled.
737      */
738     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
739 
740     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
741 
742     if (max_cpus > sbsa_max_cpus) {
743         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
744                      "supported by machine 'sbsa-ref' (%d)",
745                      max_cpus, sbsa_max_cpus);
746         exit(1);
747     }
748 
749     sms->smp_cpus = smp_cpus;
750 
751     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
752         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
753         exit(1);
754     }
755 
756     possible_cpus = mc->possible_cpu_arch_ids(machine);
757     for (n = 0; n < possible_cpus->len; n++) {
758         Object *cpuobj;
759         CPUState *cs;
760 
761         if (n >= smp_cpus) {
762             break;
763         }
764 
765         cpuobj = object_new(possible_cpus->cpus[n].type);
766         object_property_set_int(cpuobj, "mp-affinity",
767                                 possible_cpus->cpus[n].arch_id, NULL);
768 
769         cs = CPU(cpuobj);
770         cs->cpu_index = n;
771 
772         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
773                           &error_fatal);
774 
775         if (object_property_find(cpuobj, "reset-cbar")) {
776             object_property_set_int(cpuobj, "reset-cbar",
777                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
778                                     &error_abort);
779         }
780 
781         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
782                                  &error_abort);
783 
784         object_property_set_link(cpuobj, "secure-memory",
785                                  OBJECT(secure_sysmem), &error_abort);
786 
787         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
788         object_unref(cpuobj);
789     }
790 
791     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
792                                 machine->ram);
793 
794     create_fdt(sms);
795 
796     create_secure_ram(sms, secure_sysmem);
797 
798     create_gic(sms, sysmem);
799 
800     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
801     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
802     /* Second secure UART for RAS and MM from EL0 */
803     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
804 
805     create_rtc(sms);
806 
807     create_wdt(sms);
808 
809     create_gpio(sms);
810 
811     create_ahci(sms);
812 
813     create_xhci(sms);
814 
815     create_pcie(sms);
816 
817     create_secure_ec(secure_sysmem);
818 
819     sms->bootinfo.ram_size = machine->ram_size;
820     sms->bootinfo.board_id = -1;
821     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
822     sms->bootinfo.get_dtb = sbsa_ref_dtb;
823     sms->bootinfo.firmware_loaded = firmware_loaded;
824     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
825 }
826 
827 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
828 {
829     unsigned int max_cpus = ms->smp.max_cpus;
830     SBSAMachineState *sms = SBSA_MACHINE(ms);
831     int n;
832 
833     if (ms->possible_cpus) {
834         assert(ms->possible_cpus->len == max_cpus);
835         return ms->possible_cpus;
836     }
837 
838     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
839                                   sizeof(CPUArchId) * max_cpus);
840     ms->possible_cpus->len = max_cpus;
841     for (n = 0; n < ms->possible_cpus->len; n++) {
842         ms->possible_cpus->cpus[n].type = ms->cpu_type;
843         ms->possible_cpus->cpus[n].arch_id =
844             sbsa_ref_cpu_mp_affinity(sms, n);
845         ms->possible_cpus->cpus[n].props.has_thread_id = true;
846         ms->possible_cpus->cpus[n].props.thread_id = n;
847     }
848     return ms->possible_cpus;
849 }
850 
851 static CpuInstanceProperties
852 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
853 {
854     MachineClass *mc = MACHINE_GET_CLASS(ms);
855     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
856 
857     assert(cpu_index < possible_cpus->len);
858     return possible_cpus->cpus[cpu_index].props;
859 }
860 
861 static int64_t
862 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
863 {
864     return idx % ms->numa_state->num_nodes;
865 }
866 
867 static void sbsa_ref_instance_init(Object *obj)
868 {
869     SBSAMachineState *sms = SBSA_MACHINE(obj);
870 
871     sbsa_flash_create(sms);
872 }
873 
874 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
875 {
876     MachineClass *mc = MACHINE_CLASS(oc);
877     static const char * const valid_cpu_types[] = {
878         ARM_CPU_TYPE_NAME("cortex-a57"),
879         ARM_CPU_TYPE_NAME("cortex-a72"),
880         ARM_CPU_TYPE_NAME("neoverse-n1"),
881         ARM_CPU_TYPE_NAME("neoverse-v1"),
882         ARM_CPU_TYPE_NAME("neoverse-n2"),
883         ARM_CPU_TYPE_NAME("max"),
884         NULL,
885     };
886 
887     mc->init = sbsa_ref_init;
888     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
889     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
890     mc->valid_cpu_types = valid_cpu_types;
891     mc->max_cpus = 512;
892     mc->pci_allow_0_address = true;
893     mc->minimum_page_bits = 12;
894     mc->block_default_type = IF_IDE;
895     mc->no_cdrom = 1;
896     mc->default_nic = "e1000e";
897     mc->default_ram_size = 1 * GiB;
898     mc->default_ram_id = "sbsa-ref.ram";
899     mc->default_cpus = 4;
900     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
901     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
902     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
903     /* platform instead of architectural choice */
904     mc->cpu_cluster_has_numa_boundary = true;
905 }
906 
907 static const TypeInfo sbsa_ref_info = {
908     .name          = TYPE_SBSA_MACHINE,
909     .parent        = TYPE_MACHINE,
910     .instance_init = sbsa_ref_instance_init,
911     .class_init    = sbsa_ref_class_init,
912     .instance_size = sizeof(SBSAMachineState),
913 };
914 
915 static void sbsa_ref_machine_init(void)
916 {
917     type_register_static(&sbsa_ref_info);
918 }
919 
920 type_init(sbsa_ref_machine_init);
921