xref: /qemu/hw/arm/stellaris.c (revision 5726d872)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "hw/sysbus.h"
11 #include "hw/ssi.h"
12 #include "hw/arm/arm.h"
13 #include "hw/devices.h"
14 #include "qemu/timer.h"
15 #include "hw/i2c/i2c.h"
16 #include "net/net.h"
17 #include "hw/boards.h"
18 #include "exec/address-spaces.h"
19 
20 #define GPIO_A 0
21 #define GPIO_B 1
22 #define GPIO_C 2
23 #define GPIO_D 3
24 #define GPIO_E 4
25 #define GPIO_F 5
26 #define GPIO_G 6
27 
28 #define BP_OLED_I2C  0x01
29 #define BP_OLED_SSI  0x02
30 #define BP_GAMEPAD   0x04
31 
32 typedef const struct {
33     const char *name;
34     uint32_t did0;
35     uint32_t did1;
36     uint32_t dc0;
37     uint32_t dc1;
38     uint32_t dc2;
39     uint32_t dc3;
40     uint32_t dc4;
41     uint32_t peripherals;
42 } stellaris_board_info;
43 
44 /* General purpose timer module.  */
45 
46 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
47 #define STELLARIS_GPTM(obj) \
48     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
49 
50 typedef struct gptm_state {
51     SysBusDevice parent_obj;
52 
53     MemoryRegion iomem;
54     uint32_t config;
55     uint32_t mode[2];
56     uint32_t control;
57     uint32_t state;
58     uint32_t mask;
59     uint32_t load[2];
60     uint32_t match[2];
61     uint32_t prescale[2];
62     uint32_t match_prescale[2];
63     uint32_t rtc;
64     int64_t tick[2];
65     struct gptm_state *opaque[2];
66     QEMUTimer *timer[2];
67     /* The timers have an alternate output used to trigger the ADC.  */
68     qemu_irq trigger;
69     qemu_irq irq;
70 } gptm_state;
71 
72 static void gptm_update_irq(gptm_state *s)
73 {
74     int level;
75     level = (s->state & s->mask) != 0;
76     qemu_set_irq(s->irq, level);
77 }
78 
79 static void gptm_stop(gptm_state *s, int n)
80 {
81     timer_del(s->timer[n]);
82 }
83 
84 static void gptm_reload(gptm_state *s, int n, int reset)
85 {
86     int64_t tick;
87     if (reset)
88         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
89     else
90         tick = s->tick[n];
91 
92     if (s->config == 0) {
93         /* 32-bit CountDown.  */
94         uint32_t count;
95         count = s->load[0] | (s->load[1] << 16);
96         tick += (int64_t)count * system_clock_scale;
97     } else if (s->config == 1) {
98         /* 32-bit RTC.  1Hz tick.  */
99         tick += get_ticks_per_sec();
100     } else if (s->mode[n] == 0xa) {
101         /* PWM mode.  Not implemented.  */
102     } else {
103         hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
104     }
105     s->tick[n] = tick;
106     timer_mod(s->timer[n], tick);
107 }
108 
109 static void gptm_tick(void *opaque)
110 {
111     gptm_state **p = (gptm_state **)opaque;
112     gptm_state *s;
113     int n;
114 
115     s = *p;
116     n = p - s->opaque;
117     if (s->config == 0) {
118         s->state |= 1;
119         if ((s->control & 0x20)) {
120             /* Output trigger.  */
121 	    qemu_irq_pulse(s->trigger);
122         }
123         if (s->mode[0] & 1) {
124             /* One-shot.  */
125             s->control &= ~1;
126         } else {
127             /* Periodic.  */
128             gptm_reload(s, 0, 0);
129         }
130     } else if (s->config == 1) {
131         /* RTC.  */
132         uint32_t match;
133         s->rtc++;
134         match = s->match[0] | (s->match[1] << 16);
135         if (s->rtc > match)
136             s->rtc = 0;
137         if (s->rtc == 0) {
138             s->state |= 8;
139         }
140         gptm_reload(s, 0, 0);
141     } else if (s->mode[n] == 0xa) {
142         /* PWM mode.  Not implemented.  */
143     } else {
144         hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
145     }
146     gptm_update_irq(s);
147 }
148 
149 static uint64_t gptm_read(void *opaque, hwaddr offset,
150                           unsigned size)
151 {
152     gptm_state *s = (gptm_state *)opaque;
153 
154     switch (offset) {
155     case 0x00: /* CFG */
156         return s->config;
157     case 0x04: /* TAMR */
158         return s->mode[0];
159     case 0x08: /* TBMR */
160         return s->mode[1];
161     case 0x0c: /* CTL */
162         return s->control;
163     case 0x18: /* IMR */
164         return s->mask;
165     case 0x1c: /* RIS */
166         return s->state;
167     case 0x20: /* MIS */
168         return s->state & s->mask;
169     case 0x24: /* CR */
170         return 0;
171     case 0x28: /* TAILR */
172         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
173     case 0x2c: /* TBILR */
174         return s->load[1];
175     case 0x30: /* TAMARCHR */
176         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
177     case 0x34: /* TBMATCHR */
178         return s->match[1];
179     case 0x38: /* TAPR */
180         return s->prescale[0];
181     case 0x3c: /* TBPR */
182         return s->prescale[1];
183     case 0x40: /* TAPMR */
184         return s->match_prescale[0];
185     case 0x44: /* TBPMR */
186         return s->match_prescale[1];
187     case 0x48: /* TAR */
188         if (s->control == 1)
189             return s->rtc;
190     case 0x4c: /* TBR */
191         hw_error("TODO: Timer value read\n");
192     default:
193         hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
194         return 0;
195     }
196 }
197 
198 static void gptm_write(void *opaque, hwaddr offset,
199                        uint64_t value, unsigned size)
200 {
201     gptm_state *s = (gptm_state *)opaque;
202     uint32_t oldval;
203 
204     /* The timers should be disabled before changing the configuration.
205        We take advantage of this and defer everything until the timer
206        is enabled.  */
207     switch (offset) {
208     case 0x00: /* CFG */
209         s->config = value;
210         break;
211     case 0x04: /* TAMR */
212         s->mode[0] = value;
213         break;
214     case 0x08: /* TBMR */
215         s->mode[1] = value;
216         break;
217     case 0x0c: /* CTL */
218         oldval = s->control;
219         s->control = value;
220         /* TODO: Implement pause.  */
221         if ((oldval ^ value) & 1) {
222             if (value & 1) {
223                 gptm_reload(s, 0, 1);
224             } else {
225                 gptm_stop(s, 0);
226             }
227         }
228         if (((oldval ^ value) & 0x100) && s->config >= 4) {
229             if (value & 0x100) {
230                 gptm_reload(s, 1, 1);
231             } else {
232                 gptm_stop(s, 1);
233             }
234         }
235         break;
236     case 0x18: /* IMR */
237         s->mask = value & 0x77;
238         gptm_update_irq(s);
239         break;
240     case 0x24: /* CR */
241         s->state &= ~value;
242         break;
243     case 0x28: /* TAILR */
244         s->load[0] = value & 0xffff;
245         if (s->config < 4) {
246             s->load[1] = value >> 16;
247         }
248         break;
249     case 0x2c: /* TBILR */
250         s->load[1] = value & 0xffff;
251         break;
252     case 0x30: /* TAMARCHR */
253         s->match[0] = value & 0xffff;
254         if (s->config < 4) {
255             s->match[1] = value >> 16;
256         }
257         break;
258     case 0x34: /* TBMATCHR */
259         s->match[1] = value >> 16;
260         break;
261     case 0x38: /* TAPR */
262         s->prescale[0] = value;
263         break;
264     case 0x3c: /* TBPR */
265         s->prescale[1] = value;
266         break;
267     case 0x40: /* TAPMR */
268         s->match_prescale[0] = value;
269         break;
270     case 0x44: /* TBPMR */
271         s->match_prescale[0] = value;
272         break;
273     default:
274         hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
275     }
276     gptm_update_irq(s);
277 }
278 
279 static const MemoryRegionOps gptm_ops = {
280     .read = gptm_read,
281     .write = gptm_write,
282     .endianness = DEVICE_NATIVE_ENDIAN,
283 };
284 
285 static const VMStateDescription vmstate_stellaris_gptm = {
286     .name = "stellaris_gptm",
287     .version_id = 1,
288     .minimum_version_id = 1,
289     .minimum_version_id_old = 1,
290     .fields      = (VMStateField[]) {
291         VMSTATE_UINT32(config, gptm_state),
292         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
293         VMSTATE_UINT32(control, gptm_state),
294         VMSTATE_UINT32(state, gptm_state),
295         VMSTATE_UINT32(mask, gptm_state),
296         VMSTATE_UNUSED(8),
297         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
298         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
299         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
300         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
301         VMSTATE_UINT32(rtc, gptm_state),
302         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
303         VMSTATE_TIMER_ARRAY(timer, gptm_state, 2),
304         VMSTATE_END_OF_LIST()
305     }
306 };
307 
308 static int stellaris_gptm_init(SysBusDevice *sbd)
309 {
310     DeviceState *dev = DEVICE(sbd);
311     gptm_state *s = STELLARIS_GPTM(dev);
312 
313     sysbus_init_irq(sbd, &s->irq);
314     qdev_init_gpio_out(dev, &s->trigger, 1);
315 
316     memory_region_init_io(&s->iomem, OBJECT(s), &gptm_ops, s,
317                           "gptm", 0x1000);
318     sysbus_init_mmio(sbd, &s->iomem);
319 
320     s->opaque[0] = s->opaque[1] = s;
321     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
322     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
323     vmstate_register(dev, -1, &vmstate_stellaris_gptm, s);
324     return 0;
325 }
326 
327 
328 /* System controller.  */
329 
330 typedef struct {
331     MemoryRegion iomem;
332     uint32_t pborctl;
333     uint32_t ldopctl;
334     uint32_t int_status;
335     uint32_t int_mask;
336     uint32_t resc;
337     uint32_t rcc;
338     uint32_t rcc2;
339     uint32_t rcgc[3];
340     uint32_t scgc[3];
341     uint32_t dcgc[3];
342     uint32_t clkvclr;
343     uint32_t ldoarst;
344     uint32_t user0;
345     uint32_t user1;
346     qemu_irq irq;
347     stellaris_board_info *board;
348 } ssys_state;
349 
350 static void ssys_update(ssys_state *s)
351 {
352   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
353 }
354 
355 static uint32_t pllcfg_sandstorm[16] = {
356     0x31c0, /* 1 Mhz */
357     0x1ae0, /* 1.8432 Mhz */
358     0x18c0, /* 2 Mhz */
359     0xd573, /* 2.4576 Mhz */
360     0x37a6, /* 3.57954 Mhz */
361     0x1ae2, /* 3.6864 Mhz */
362     0x0c40, /* 4 Mhz */
363     0x98bc, /* 4.906 Mhz */
364     0x935b, /* 4.9152 Mhz */
365     0x09c0, /* 5 Mhz */
366     0x4dee, /* 5.12 Mhz */
367     0x0c41, /* 6 Mhz */
368     0x75db, /* 6.144 Mhz */
369     0x1ae6, /* 7.3728 Mhz */
370     0x0600, /* 8 Mhz */
371     0x585b /* 8.192 Mhz */
372 };
373 
374 static uint32_t pllcfg_fury[16] = {
375     0x3200, /* 1 Mhz */
376     0x1b20, /* 1.8432 Mhz */
377     0x1900, /* 2 Mhz */
378     0xf42b, /* 2.4576 Mhz */
379     0x37e3, /* 3.57954 Mhz */
380     0x1b21, /* 3.6864 Mhz */
381     0x0c80, /* 4 Mhz */
382     0x98ee, /* 4.906 Mhz */
383     0xd5b4, /* 4.9152 Mhz */
384     0x0a00, /* 5 Mhz */
385     0x4e27, /* 5.12 Mhz */
386     0x1902, /* 6 Mhz */
387     0xec1c, /* 6.144 Mhz */
388     0x1b23, /* 7.3728 Mhz */
389     0x0640, /* 8 Mhz */
390     0xb11c /* 8.192 Mhz */
391 };
392 
393 #define DID0_VER_MASK        0x70000000
394 #define DID0_VER_0           0x00000000
395 #define DID0_VER_1           0x10000000
396 
397 #define DID0_CLASS_MASK      0x00FF0000
398 #define DID0_CLASS_SANDSTORM 0x00000000
399 #define DID0_CLASS_FURY      0x00010000
400 
401 static int ssys_board_class(const ssys_state *s)
402 {
403     uint32_t did0 = s->board->did0;
404     switch (did0 & DID0_VER_MASK) {
405     case DID0_VER_0:
406         return DID0_CLASS_SANDSTORM;
407     case DID0_VER_1:
408         switch (did0 & DID0_CLASS_MASK) {
409         case DID0_CLASS_SANDSTORM:
410         case DID0_CLASS_FURY:
411             return did0 & DID0_CLASS_MASK;
412         }
413         /* for unknown classes, fall through */
414     default:
415         hw_error("ssys_board_class: Unknown class 0x%08x\n", did0);
416     }
417 }
418 
419 static uint64_t ssys_read(void *opaque, hwaddr offset,
420                           unsigned size)
421 {
422     ssys_state *s = (ssys_state *)opaque;
423 
424     switch (offset) {
425     case 0x000: /* DID0 */
426         return s->board->did0;
427     case 0x004: /* DID1 */
428         return s->board->did1;
429     case 0x008: /* DC0 */
430         return s->board->dc0;
431     case 0x010: /* DC1 */
432         return s->board->dc1;
433     case 0x014: /* DC2 */
434         return s->board->dc2;
435     case 0x018: /* DC3 */
436         return s->board->dc3;
437     case 0x01c: /* DC4 */
438         return s->board->dc4;
439     case 0x030: /* PBORCTL */
440         return s->pborctl;
441     case 0x034: /* LDOPCTL */
442         return s->ldopctl;
443     case 0x040: /* SRCR0 */
444         return 0;
445     case 0x044: /* SRCR1 */
446         return 0;
447     case 0x048: /* SRCR2 */
448         return 0;
449     case 0x050: /* RIS */
450         return s->int_status;
451     case 0x054: /* IMC */
452         return s->int_mask;
453     case 0x058: /* MISC */
454         return s->int_status & s->int_mask;
455     case 0x05c: /* RESC */
456         return s->resc;
457     case 0x060: /* RCC */
458         return s->rcc;
459     case 0x064: /* PLLCFG */
460         {
461             int xtal;
462             xtal = (s->rcc >> 6) & 0xf;
463             switch (ssys_board_class(s)) {
464             case DID0_CLASS_FURY:
465                 return pllcfg_fury[xtal];
466             case DID0_CLASS_SANDSTORM:
467                 return pllcfg_sandstorm[xtal];
468             default:
469                 hw_error("ssys_read: Unhandled class for PLLCFG read.\n");
470                 return 0;
471             }
472         }
473     case 0x070: /* RCC2 */
474         return s->rcc2;
475     case 0x100: /* RCGC0 */
476         return s->rcgc[0];
477     case 0x104: /* RCGC1 */
478         return s->rcgc[1];
479     case 0x108: /* RCGC2 */
480         return s->rcgc[2];
481     case 0x110: /* SCGC0 */
482         return s->scgc[0];
483     case 0x114: /* SCGC1 */
484         return s->scgc[1];
485     case 0x118: /* SCGC2 */
486         return s->scgc[2];
487     case 0x120: /* DCGC0 */
488         return s->dcgc[0];
489     case 0x124: /* DCGC1 */
490         return s->dcgc[1];
491     case 0x128: /* DCGC2 */
492         return s->dcgc[2];
493     case 0x150: /* CLKVCLR */
494         return s->clkvclr;
495     case 0x160: /* LDOARST */
496         return s->ldoarst;
497     case 0x1e0: /* USER0 */
498         return s->user0;
499     case 0x1e4: /* USER1 */
500         return s->user1;
501     default:
502         hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
503         return 0;
504     }
505 }
506 
507 static bool ssys_use_rcc2(ssys_state *s)
508 {
509     return (s->rcc2 >> 31) & 0x1;
510 }
511 
512 /*
513  * Caculate the sys. clock period in ms.
514  */
515 static void ssys_calculate_system_clock(ssys_state *s)
516 {
517     if (ssys_use_rcc2(s)) {
518         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
519     } else {
520         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
521     }
522 }
523 
524 static void ssys_write(void *opaque, hwaddr offset,
525                        uint64_t value, unsigned size)
526 {
527     ssys_state *s = (ssys_state *)opaque;
528 
529     switch (offset) {
530     case 0x030: /* PBORCTL */
531         s->pborctl = value & 0xffff;
532         break;
533     case 0x034: /* LDOPCTL */
534         s->ldopctl = value & 0x1f;
535         break;
536     case 0x040: /* SRCR0 */
537     case 0x044: /* SRCR1 */
538     case 0x048: /* SRCR2 */
539         fprintf(stderr, "Peripheral reset not implemented\n");
540         break;
541     case 0x054: /* IMC */
542         s->int_mask = value & 0x7f;
543         break;
544     case 0x058: /* MISC */
545         s->int_status &= ~value;
546         break;
547     case 0x05c: /* RESC */
548         s->resc = value & 0x3f;
549         break;
550     case 0x060: /* RCC */
551         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
552             /* PLL enable.  */
553             s->int_status |= (1 << 6);
554         }
555         s->rcc = value;
556         ssys_calculate_system_clock(s);
557         break;
558     case 0x070: /* RCC2 */
559         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
560             break;
561         }
562 
563         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
564             /* PLL enable.  */
565             s->int_status |= (1 << 6);
566         }
567         s->rcc2 = value;
568         ssys_calculate_system_clock(s);
569         break;
570     case 0x100: /* RCGC0 */
571         s->rcgc[0] = value;
572         break;
573     case 0x104: /* RCGC1 */
574         s->rcgc[1] = value;
575         break;
576     case 0x108: /* RCGC2 */
577         s->rcgc[2] = value;
578         break;
579     case 0x110: /* SCGC0 */
580         s->scgc[0] = value;
581         break;
582     case 0x114: /* SCGC1 */
583         s->scgc[1] = value;
584         break;
585     case 0x118: /* SCGC2 */
586         s->scgc[2] = value;
587         break;
588     case 0x120: /* DCGC0 */
589         s->dcgc[0] = value;
590         break;
591     case 0x124: /* DCGC1 */
592         s->dcgc[1] = value;
593         break;
594     case 0x128: /* DCGC2 */
595         s->dcgc[2] = value;
596         break;
597     case 0x150: /* CLKVCLR */
598         s->clkvclr = value;
599         break;
600     case 0x160: /* LDOARST */
601         s->ldoarst = value;
602         break;
603     default:
604         hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
605     }
606     ssys_update(s);
607 }
608 
609 static const MemoryRegionOps ssys_ops = {
610     .read = ssys_read,
611     .write = ssys_write,
612     .endianness = DEVICE_NATIVE_ENDIAN,
613 };
614 
615 static void ssys_reset(void *opaque)
616 {
617     ssys_state *s = (ssys_state *)opaque;
618 
619     s->pborctl = 0x7ffd;
620     s->rcc = 0x078e3ac0;
621 
622     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
623         s->rcc2 = 0;
624     } else {
625         s->rcc2 = 0x07802810;
626     }
627     s->rcgc[0] = 1;
628     s->scgc[0] = 1;
629     s->dcgc[0] = 1;
630     ssys_calculate_system_clock(s);
631 }
632 
633 static int stellaris_sys_post_load(void *opaque, int version_id)
634 {
635     ssys_state *s = opaque;
636 
637     ssys_calculate_system_clock(s);
638 
639     return 0;
640 }
641 
642 static const VMStateDescription vmstate_stellaris_sys = {
643     .name = "stellaris_sys",
644     .version_id = 2,
645     .minimum_version_id = 1,
646     .minimum_version_id_old = 1,
647     .post_load = stellaris_sys_post_load,
648     .fields      = (VMStateField[]) {
649         VMSTATE_UINT32(pborctl, ssys_state),
650         VMSTATE_UINT32(ldopctl, ssys_state),
651         VMSTATE_UINT32(int_mask, ssys_state),
652         VMSTATE_UINT32(int_status, ssys_state),
653         VMSTATE_UINT32(resc, ssys_state),
654         VMSTATE_UINT32(rcc, ssys_state),
655         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
656         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
657         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
658         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
659         VMSTATE_UINT32(clkvclr, ssys_state),
660         VMSTATE_UINT32(ldoarst, ssys_state),
661         VMSTATE_END_OF_LIST()
662     }
663 };
664 
665 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
666                               stellaris_board_info * board,
667                               uint8_t *macaddr)
668 {
669     ssys_state *s;
670 
671     s = (ssys_state *)g_malloc0(sizeof(ssys_state));
672     s->irq = irq;
673     s->board = board;
674     /* Most devices come preprogrammed with a MAC address in the user data. */
675     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
676     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
677 
678     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
679     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
680     ssys_reset(s);
681     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
682     return 0;
683 }
684 
685 
686 /* I2C controller.  */
687 
688 #define TYPE_STELLARIS_I2C "stellaris-i2c"
689 #define STELLARIS_I2C(obj) \
690     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
691 
692 typedef struct {
693     SysBusDevice parent_obj;
694 
695     i2c_bus *bus;
696     qemu_irq irq;
697     MemoryRegion iomem;
698     uint32_t msa;
699     uint32_t mcs;
700     uint32_t mdr;
701     uint32_t mtpr;
702     uint32_t mimr;
703     uint32_t mris;
704     uint32_t mcr;
705 } stellaris_i2c_state;
706 
707 #define STELLARIS_I2C_MCS_BUSY    0x01
708 #define STELLARIS_I2C_MCS_ERROR   0x02
709 #define STELLARIS_I2C_MCS_ADRACK  0x04
710 #define STELLARIS_I2C_MCS_DATACK  0x08
711 #define STELLARIS_I2C_MCS_ARBLST  0x10
712 #define STELLARIS_I2C_MCS_IDLE    0x20
713 #define STELLARIS_I2C_MCS_BUSBSY  0x40
714 
715 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
716                                    unsigned size)
717 {
718     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
719 
720     switch (offset) {
721     case 0x00: /* MSA */
722         return s->msa;
723     case 0x04: /* MCS */
724         /* We don't emulate timing, so the controller is never busy.  */
725         return s->mcs | STELLARIS_I2C_MCS_IDLE;
726     case 0x08: /* MDR */
727         return s->mdr;
728     case 0x0c: /* MTPR */
729         return s->mtpr;
730     case 0x10: /* MIMR */
731         return s->mimr;
732     case 0x14: /* MRIS */
733         return s->mris;
734     case 0x18: /* MMIS */
735         return s->mris & s->mimr;
736     case 0x20: /* MCR */
737         return s->mcr;
738     default:
739         hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
740         return 0;
741     }
742 }
743 
744 static void stellaris_i2c_update(stellaris_i2c_state *s)
745 {
746     int level;
747 
748     level = (s->mris & s->mimr) != 0;
749     qemu_set_irq(s->irq, level);
750 }
751 
752 static void stellaris_i2c_write(void *opaque, hwaddr offset,
753                                 uint64_t value, unsigned size)
754 {
755     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
756 
757     switch (offset) {
758     case 0x00: /* MSA */
759         s->msa = value & 0xff;
760         break;
761     case 0x04: /* MCS */
762         if ((s->mcr & 0x10) == 0) {
763             /* Disabled.  Do nothing.  */
764             break;
765         }
766         /* Grab the bus if this is starting a transfer.  */
767         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
768             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
769                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
770             } else {
771                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
772                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
773             }
774         }
775         /* If we don't have the bus then indicate an error.  */
776         if (!i2c_bus_busy(s->bus)
777                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
778             s->mcs |= STELLARIS_I2C_MCS_ERROR;
779             break;
780         }
781         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
782         if (value & 1) {
783             /* Transfer a byte.  */
784             /* TODO: Handle errors.  */
785             if (s->msa & 1) {
786                 /* Recv */
787                 s->mdr = i2c_recv(s->bus) & 0xff;
788             } else {
789                 /* Send */
790                 i2c_send(s->bus, s->mdr);
791             }
792             /* Raise an interrupt.  */
793             s->mris |= 1;
794         }
795         if (value & 4) {
796             /* Finish transfer.  */
797             i2c_end_transfer(s->bus);
798             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
799         }
800         break;
801     case 0x08: /* MDR */
802         s->mdr = value & 0xff;
803         break;
804     case 0x0c: /* MTPR */
805         s->mtpr = value & 0xff;
806         break;
807     case 0x10: /* MIMR */
808         s->mimr = 1;
809         break;
810     case 0x1c: /* MICR */
811         s->mris &= ~value;
812         break;
813     case 0x20: /* MCR */
814         if (value & 1)
815             hw_error(
816                       "stellaris_i2c_write: Loopback not implemented\n");
817         if (value & 0x20)
818             hw_error(
819                       "stellaris_i2c_write: Slave mode not implemented\n");
820         s->mcr = value & 0x31;
821         break;
822     default:
823         hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
824                   (int)offset);
825     }
826     stellaris_i2c_update(s);
827 }
828 
829 static void stellaris_i2c_reset(stellaris_i2c_state *s)
830 {
831     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
832         i2c_end_transfer(s->bus);
833 
834     s->msa = 0;
835     s->mcs = 0;
836     s->mdr = 0;
837     s->mtpr = 1;
838     s->mimr = 0;
839     s->mris = 0;
840     s->mcr = 0;
841     stellaris_i2c_update(s);
842 }
843 
844 static const MemoryRegionOps stellaris_i2c_ops = {
845     .read = stellaris_i2c_read,
846     .write = stellaris_i2c_write,
847     .endianness = DEVICE_NATIVE_ENDIAN,
848 };
849 
850 static const VMStateDescription vmstate_stellaris_i2c = {
851     .name = "stellaris_i2c",
852     .version_id = 1,
853     .minimum_version_id = 1,
854     .minimum_version_id_old = 1,
855     .fields      = (VMStateField[]) {
856         VMSTATE_UINT32(msa, stellaris_i2c_state),
857         VMSTATE_UINT32(mcs, stellaris_i2c_state),
858         VMSTATE_UINT32(mdr, stellaris_i2c_state),
859         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
860         VMSTATE_UINT32(mimr, stellaris_i2c_state),
861         VMSTATE_UINT32(mris, stellaris_i2c_state),
862         VMSTATE_UINT32(mcr, stellaris_i2c_state),
863         VMSTATE_END_OF_LIST()
864     }
865 };
866 
867 static int stellaris_i2c_init(SysBusDevice *sbd)
868 {
869     DeviceState *dev = DEVICE(sbd);
870     stellaris_i2c_state *s = STELLARIS_I2C(dev);
871     i2c_bus *bus;
872 
873     sysbus_init_irq(sbd, &s->irq);
874     bus = i2c_init_bus(dev, "i2c");
875     s->bus = bus;
876 
877     memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_i2c_ops, s,
878                           "i2c", 0x1000);
879     sysbus_init_mmio(sbd, &s->iomem);
880     /* ??? For now we only implement the master interface.  */
881     stellaris_i2c_reset(s);
882     vmstate_register(dev, -1, &vmstate_stellaris_i2c, s);
883     return 0;
884 }
885 
886 /* Analogue to Digital Converter.  This is only partially implemented,
887    enough for applications that use a combined ADC and timer tick.  */
888 
889 #define STELLARIS_ADC_EM_CONTROLLER 0
890 #define STELLARIS_ADC_EM_COMP       1
891 #define STELLARIS_ADC_EM_EXTERNAL   4
892 #define STELLARIS_ADC_EM_TIMER      5
893 #define STELLARIS_ADC_EM_PWM0       6
894 #define STELLARIS_ADC_EM_PWM1       7
895 #define STELLARIS_ADC_EM_PWM2       8
896 
897 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
898 #define STELLARIS_ADC_FIFO_FULL     0x1000
899 
900 #define TYPE_STELLARIS_ADC "stellaris-adc"
901 #define STELLARIS_ADC(obj) \
902     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
903 
904 typedef struct StellarisADCState {
905     SysBusDevice parent_obj;
906 
907     MemoryRegion iomem;
908     uint32_t actss;
909     uint32_t ris;
910     uint32_t im;
911     uint32_t emux;
912     uint32_t ostat;
913     uint32_t ustat;
914     uint32_t sspri;
915     uint32_t sac;
916     struct {
917         uint32_t state;
918         uint32_t data[16];
919     } fifo[4];
920     uint32_t ssmux[4];
921     uint32_t ssctl[4];
922     uint32_t noise;
923     qemu_irq irq[4];
924 } stellaris_adc_state;
925 
926 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
927 {
928     int tail;
929 
930     tail = s->fifo[n].state & 0xf;
931     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
932         s->ustat |= 1 << n;
933     } else {
934         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
935         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
936         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
937             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
938     }
939     return s->fifo[n].data[tail];
940 }
941 
942 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
943                                      uint32_t value)
944 {
945     int head;
946 
947     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
948        FIFO fir each sequencer.  */
949     head = (s->fifo[n].state >> 4) & 0xf;
950     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
951         s->ostat |= 1 << n;
952         return;
953     }
954     s->fifo[n].data[head] = value;
955     head = (head + 1) & 0xf;
956     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
957     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
958     if ((s->fifo[n].state & 0xf) == head)
959         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
960 }
961 
962 static void stellaris_adc_update(stellaris_adc_state *s)
963 {
964     int level;
965     int n;
966 
967     for (n = 0; n < 4; n++) {
968         level = (s->ris & s->im & (1 << n)) != 0;
969         qemu_set_irq(s->irq[n], level);
970     }
971 }
972 
973 static void stellaris_adc_trigger(void *opaque, int irq, int level)
974 {
975     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
976     int n;
977 
978     for (n = 0; n < 4; n++) {
979         if ((s->actss & (1 << n)) == 0) {
980             continue;
981         }
982 
983         if (((s->emux >> (n * 4)) & 0xff) != 5) {
984             continue;
985         }
986 
987         /* Some applications use the ADC as a random number source, so introduce
988            some variation into the signal.  */
989         s->noise = s->noise * 314159 + 1;
990         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
991         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
992         s->ris |= (1 << n);
993         stellaris_adc_update(s);
994     }
995 }
996 
997 static void stellaris_adc_reset(stellaris_adc_state *s)
998 {
999     int n;
1000 
1001     for (n = 0; n < 4; n++) {
1002         s->ssmux[n] = 0;
1003         s->ssctl[n] = 0;
1004         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1005     }
1006 }
1007 
1008 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1009                                    unsigned size)
1010 {
1011     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1012 
1013     /* TODO: Implement this.  */
1014     if (offset >= 0x40 && offset < 0xc0) {
1015         int n;
1016         n = (offset - 0x40) >> 5;
1017         switch (offset & 0x1f) {
1018         case 0x00: /* SSMUX */
1019             return s->ssmux[n];
1020         case 0x04: /* SSCTL */
1021             return s->ssctl[n];
1022         case 0x08: /* SSFIFO */
1023             return stellaris_adc_fifo_read(s, n);
1024         case 0x0c: /* SSFSTAT */
1025             return s->fifo[n].state;
1026         default:
1027             break;
1028         }
1029     }
1030     switch (offset) {
1031     case 0x00: /* ACTSS */
1032         return s->actss;
1033     case 0x04: /* RIS */
1034         return s->ris;
1035     case 0x08: /* IM */
1036         return s->im;
1037     case 0x0c: /* ISC */
1038         return s->ris & s->im;
1039     case 0x10: /* OSTAT */
1040         return s->ostat;
1041     case 0x14: /* EMUX */
1042         return s->emux;
1043     case 0x18: /* USTAT */
1044         return s->ustat;
1045     case 0x20: /* SSPRI */
1046         return s->sspri;
1047     case 0x30: /* SAC */
1048         return s->sac;
1049     default:
1050         hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1051                   (int)offset);
1052         return 0;
1053     }
1054 }
1055 
1056 static void stellaris_adc_write(void *opaque, hwaddr offset,
1057                                 uint64_t value, unsigned size)
1058 {
1059     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1060 
1061     /* TODO: Implement this.  */
1062     if (offset >= 0x40 && offset < 0xc0) {
1063         int n;
1064         n = (offset - 0x40) >> 5;
1065         switch (offset & 0x1f) {
1066         case 0x00: /* SSMUX */
1067             s->ssmux[n] = value & 0x33333333;
1068             return;
1069         case 0x04: /* SSCTL */
1070             if (value != 6) {
1071                 hw_error("ADC: Unimplemented sequence %" PRIx64 "\n",
1072                           value);
1073             }
1074             s->ssctl[n] = value;
1075             return;
1076         default:
1077             break;
1078         }
1079     }
1080     switch (offset) {
1081     case 0x00: /* ACTSS */
1082         s->actss = value & 0xf;
1083         break;
1084     case 0x08: /* IM */
1085         s->im = value;
1086         break;
1087     case 0x0c: /* ISC */
1088         s->ris &= ~value;
1089         break;
1090     case 0x10: /* OSTAT */
1091         s->ostat &= ~value;
1092         break;
1093     case 0x14: /* EMUX */
1094         s->emux = value;
1095         break;
1096     case 0x18: /* USTAT */
1097         s->ustat &= ~value;
1098         break;
1099     case 0x20: /* SSPRI */
1100         s->sspri = value;
1101         break;
1102     case 0x28: /* PSSI */
1103         hw_error("Not implemented:  ADC sample initiate\n");
1104         break;
1105     case 0x30: /* SAC */
1106         s->sac = value;
1107         break;
1108     default:
1109         hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1110     }
1111     stellaris_adc_update(s);
1112 }
1113 
1114 static const MemoryRegionOps stellaris_adc_ops = {
1115     .read = stellaris_adc_read,
1116     .write = stellaris_adc_write,
1117     .endianness = DEVICE_NATIVE_ENDIAN,
1118 };
1119 
1120 static const VMStateDescription vmstate_stellaris_adc = {
1121     .name = "stellaris_adc",
1122     .version_id = 1,
1123     .minimum_version_id = 1,
1124     .minimum_version_id_old = 1,
1125     .fields      = (VMStateField[]) {
1126         VMSTATE_UINT32(actss, stellaris_adc_state),
1127         VMSTATE_UINT32(ris, stellaris_adc_state),
1128         VMSTATE_UINT32(im, stellaris_adc_state),
1129         VMSTATE_UINT32(emux, stellaris_adc_state),
1130         VMSTATE_UINT32(ostat, stellaris_adc_state),
1131         VMSTATE_UINT32(ustat, stellaris_adc_state),
1132         VMSTATE_UINT32(sspri, stellaris_adc_state),
1133         VMSTATE_UINT32(sac, stellaris_adc_state),
1134         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1135         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1136         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1137         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1138         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1139         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1140         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1141         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1142         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1143         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1144         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1145         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1146         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1147         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1148         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1149         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1150         VMSTATE_UINT32(noise, stellaris_adc_state),
1151         VMSTATE_END_OF_LIST()
1152     }
1153 };
1154 
1155 static int stellaris_adc_init(SysBusDevice *sbd)
1156 {
1157     DeviceState *dev = DEVICE(sbd);
1158     stellaris_adc_state *s = STELLARIS_ADC(dev);
1159     int n;
1160 
1161     for (n = 0; n < 4; n++) {
1162         sysbus_init_irq(sbd, &s->irq[n]);
1163     }
1164 
1165     memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_adc_ops, s,
1166                           "adc", 0x1000);
1167     sysbus_init_mmio(sbd, &s->iomem);
1168     stellaris_adc_reset(s);
1169     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1170     vmstate_register(dev, -1, &vmstate_stellaris_adc, s);
1171     return 0;
1172 }
1173 
1174 /* Board init.  */
1175 static stellaris_board_info stellaris_boards[] = {
1176   { "LM3S811EVB",
1177     0,
1178     0x0032000e,
1179     0x001f001f, /* dc0 */
1180     0x001132bf,
1181     0x01071013,
1182     0x3f0f01ff,
1183     0x0000001f,
1184     BP_OLED_I2C
1185   },
1186   { "LM3S6965EVB",
1187     0x10010002,
1188     0x1073402e,
1189     0x00ff007f, /* dc0 */
1190     0x001133ff,
1191     0x030f5317,
1192     0x0f0f87ff,
1193     0x5000007f,
1194     BP_OLED_SSI | BP_GAMEPAD
1195   }
1196 };
1197 
1198 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1199                            stellaris_board_info *board)
1200 {
1201     static const int uart_irq[] = {5, 6, 33, 34};
1202     static const int timer_irq[] = {19, 21, 23, 35};
1203     static const uint32_t gpio_addr[7] =
1204       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1205         0x40024000, 0x40025000, 0x40026000};
1206     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1207 
1208     MemoryRegion *address_space_mem = get_system_memory();
1209     qemu_irq *pic;
1210     DeviceState *gpio_dev[7];
1211     qemu_irq gpio_in[7][8];
1212     qemu_irq gpio_out[7][8];
1213     qemu_irq adc;
1214     int sram_size;
1215     int flash_size;
1216     i2c_bus *i2c;
1217     DeviceState *dev;
1218     int i;
1219     int j;
1220 
1221     flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1222     sram_size = (board->dc0 >> 18) + 1;
1223     pic = armv7m_init(address_space_mem,
1224                       flash_size, sram_size, kernel_filename, cpu_model);
1225 
1226     if (board->dc1 & (1 << 16)) {
1227         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1228                                     pic[14], pic[15], pic[16], pic[17], NULL);
1229         adc = qdev_get_gpio_in(dev, 0);
1230     } else {
1231         adc = NULL;
1232     }
1233     for (i = 0; i < 4; i++) {
1234         if (board->dc2 & (0x10000 << i)) {
1235             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1236                                        0x40030000 + i * 0x1000,
1237                                        pic[timer_irq[i]]);
1238             /* TODO: This is incorrect, but we get away with it because
1239                the ADC output is only ever pulsed.  */
1240             qdev_connect_gpio_out(dev, 0, adc);
1241         }
1242     }
1243 
1244     stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr.a);
1245 
1246     for (i = 0; i < 7; i++) {
1247         if (board->dc4 & (1 << i)) {
1248             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1249                                                pic[gpio_irq[i]]);
1250             for (j = 0; j < 8; j++) {
1251                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1252                 gpio_out[i][j] = NULL;
1253             }
1254         }
1255     }
1256 
1257     if (board->dc2 & (1 << 12)) {
1258         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, pic[8]);
1259         i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1260         if (board->peripherals & BP_OLED_I2C) {
1261             i2c_create_slave(i2c, "ssd0303", 0x3d);
1262         }
1263     }
1264 
1265     for (i = 0; i < 4; i++) {
1266         if (board->dc2 & (1 << i)) {
1267             sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1268                                  pic[uart_irq[i]]);
1269         }
1270     }
1271     if (board->dc2 & (1 << 4)) {
1272         dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1273         if (board->peripherals & BP_OLED_SSI) {
1274             void *bus;
1275             DeviceState *sddev;
1276             DeviceState *ssddev;
1277 
1278             /* Some boards have both an OLED controller and SD card connected to
1279              * the same SSI port, with the SD card chip select connected to a
1280              * GPIO pin.  Technically the OLED chip select is connected to the
1281              * SSI Fss pin.  We do not bother emulating that as both devices
1282              * should never be selected simultaneously, and our OLED controller
1283              * ignores stray 0xff commands that occur when deselecting the SD
1284              * card.
1285              */
1286             bus = qdev_get_child_bus(dev, "ssi");
1287 
1288             sddev = ssi_create_slave(bus, "ssi-sd");
1289             ssddev = ssi_create_slave(bus, "ssd0323");
1290             gpio_out[GPIO_D][0] = qemu_irq_split(qdev_get_gpio_in(sddev, 0),
1291                                                  qdev_get_gpio_in(ssddev, 0));
1292             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 1);
1293 
1294             /* Make sure the select pin is high.  */
1295             qemu_irq_raise(gpio_out[GPIO_D][0]);
1296         }
1297     }
1298     if (board->dc4 & (1 << 28)) {
1299         DeviceState *enet;
1300 
1301         qemu_check_nic_model(&nd_table[0], "stellaris");
1302 
1303         enet = qdev_create(NULL, "stellaris_enet");
1304         qdev_set_nic_properties(enet, &nd_table[0]);
1305         qdev_init_nofail(enet);
1306         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1307         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, pic[42]);
1308     }
1309     if (board->peripherals & BP_GAMEPAD) {
1310         qemu_irq gpad_irq[5];
1311         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1312 
1313         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1314         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1315         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1316         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1317         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1318 
1319         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1320     }
1321     for (i = 0; i < 7; i++) {
1322         if (board->dc4 & (1 << i)) {
1323             for (j = 0; j < 8; j++) {
1324                 if (gpio_out[i][j]) {
1325                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1326                 }
1327             }
1328         }
1329     }
1330 }
1331 
1332 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1333 static void lm3s811evb_init(QEMUMachineInitArgs *args)
1334 {
1335     const char *cpu_model = args->cpu_model;
1336     const char *kernel_filename = args->kernel_filename;
1337     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1338 }
1339 
1340 static void lm3s6965evb_init(QEMUMachineInitArgs *args)
1341 {
1342     const char *cpu_model = args->cpu_model;
1343     const char *kernel_filename = args->kernel_filename;
1344     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1345 }
1346 
1347 static QEMUMachine lm3s811evb_machine = {
1348     .name = "lm3s811evb",
1349     .desc = "Stellaris LM3S811EVB",
1350     .init = lm3s811evb_init,
1351 };
1352 
1353 static QEMUMachine lm3s6965evb_machine = {
1354     .name = "lm3s6965evb",
1355     .desc = "Stellaris LM3S6965EVB",
1356     .init = lm3s6965evb_init,
1357 };
1358 
1359 static void stellaris_machine_init(void)
1360 {
1361     qemu_register_machine(&lm3s811evb_machine);
1362     qemu_register_machine(&lm3s6965evb_machine);
1363 }
1364 
1365 machine_init(stellaris_machine_init);
1366 
1367 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1368 {
1369     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1370 
1371     sdc->init = stellaris_i2c_init;
1372 }
1373 
1374 static const TypeInfo stellaris_i2c_info = {
1375     .name          = TYPE_STELLARIS_I2C,
1376     .parent        = TYPE_SYS_BUS_DEVICE,
1377     .instance_size = sizeof(stellaris_i2c_state),
1378     .class_init    = stellaris_i2c_class_init,
1379 };
1380 
1381 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1382 {
1383     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1384 
1385     sdc->init = stellaris_gptm_init;
1386 }
1387 
1388 static const TypeInfo stellaris_gptm_info = {
1389     .name          = TYPE_STELLARIS_GPTM,
1390     .parent        = TYPE_SYS_BUS_DEVICE,
1391     .instance_size = sizeof(gptm_state),
1392     .class_init    = stellaris_gptm_class_init,
1393 };
1394 
1395 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1396 {
1397     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1398 
1399     sdc->init = stellaris_adc_init;
1400 }
1401 
1402 static const TypeInfo stellaris_adc_info = {
1403     .name          = TYPE_STELLARIS_ADC,
1404     .parent        = TYPE_SYS_BUS_DEVICE,
1405     .instance_size = sizeof(stellaris_adc_state),
1406     .class_init    = stellaris_adc_class_init,
1407 };
1408 
1409 static void stellaris_register_types(void)
1410 {
1411     type_register_static(&stellaris_i2c_info);
1412     type_register_static(&stellaris_gptm_info);
1413     type_register_static(&stellaris_adc_info);
1414 }
1415 
1416 type_init(stellaris_register_types)
1417