xref: /qemu/hw/arm/stellaris.c (revision 64552b6b)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "hw/misc/unimp.h"
28 #include "cpu.h"
29 
30 #define GPIO_A 0
31 #define GPIO_B 1
32 #define GPIO_C 2
33 #define GPIO_D 3
34 #define GPIO_E 4
35 #define GPIO_F 5
36 #define GPIO_G 6
37 
38 #define BP_OLED_I2C  0x01
39 #define BP_OLED_SSI  0x02
40 #define BP_GAMEPAD   0x04
41 
42 #define NUM_IRQ_LINES 64
43 
44 typedef const struct {
45     const char *name;
46     uint32_t did0;
47     uint32_t did1;
48     uint32_t dc0;
49     uint32_t dc1;
50     uint32_t dc2;
51     uint32_t dc3;
52     uint32_t dc4;
53     uint32_t peripherals;
54 } stellaris_board_info;
55 
56 /* General purpose timer module.  */
57 
58 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
59 #define STELLARIS_GPTM(obj) \
60     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
61 
62 typedef struct gptm_state {
63     SysBusDevice parent_obj;
64 
65     MemoryRegion iomem;
66     uint32_t config;
67     uint32_t mode[2];
68     uint32_t control;
69     uint32_t state;
70     uint32_t mask;
71     uint32_t load[2];
72     uint32_t match[2];
73     uint32_t prescale[2];
74     uint32_t match_prescale[2];
75     uint32_t rtc;
76     int64_t tick[2];
77     struct gptm_state *opaque[2];
78     QEMUTimer *timer[2];
79     /* The timers have an alternate output used to trigger the ADC.  */
80     qemu_irq trigger;
81     qemu_irq irq;
82 } gptm_state;
83 
84 static void gptm_update_irq(gptm_state *s)
85 {
86     int level;
87     level = (s->state & s->mask) != 0;
88     qemu_set_irq(s->irq, level);
89 }
90 
91 static void gptm_stop(gptm_state *s, int n)
92 {
93     timer_del(s->timer[n]);
94 }
95 
96 static void gptm_reload(gptm_state *s, int n, int reset)
97 {
98     int64_t tick;
99     if (reset)
100         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
101     else
102         tick = s->tick[n];
103 
104     if (s->config == 0) {
105         /* 32-bit CountDown.  */
106         uint32_t count;
107         count = s->load[0] | (s->load[1] << 16);
108         tick += (int64_t)count * system_clock_scale;
109     } else if (s->config == 1) {
110         /* 32-bit RTC.  1Hz tick.  */
111         tick += NANOSECONDS_PER_SECOND;
112     } else if (s->mode[n] == 0xa) {
113         /* PWM mode.  Not implemented.  */
114     } else {
115         qemu_log_mask(LOG_UNIMP,
116                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
117                       s->mode[n]);
118         return;
119     }
120     s->tick[n] = tick;
121     timer_mod(s->timer[n], tick);
122 }
123 
124 static void gptm_tick(void *opaque)
125 {
126     gptm_state **p = (gptm_state **)opaque;
127     gptm_state *s;
128     int n;
129 
130     s = *p;
131     n = p - s->opaque;
132     if (s->config == 0) {
133         s->state |= 1;
134         if ((s->control & 0x20)) {
135             /* Output trigger.  */
136             qemu_irq_pulse(s->trigger);
137         }
138         if (s->mode[0] & 1) {
139             /* One-shot.  */
140             s->control &= ~1;
141         } else {
142             /* Periodic.  */
143             gptm_reload(s, 0, 0);
144         }
145     } else if (s->config == 1) {
146         /* RTC.  */
147         uint32_t match;
148         s->rtc++;
149         match = s->match[0] | (s->match[1] << 16);
150         if (s->rtc > match)
151             s->rtc = 0;
152         if (s->rtc == 0) {
153             s->state |= 8;
154         }
155         gptm_reload(s, 0, 0);
156     } else if (s->mode[n] == 0xa) {
157         /* PWM mode.  Not implemented.  */
158     } else {
159         qemu_log_mask(LOG_UNIMP,
160                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
161                       s->mode[n]);
162     }
163     gptm_update_irq(s);
164 }
165 
166 static uint64_t gptm_read(void *opaque, hwaddr offset,
167                           unsigned size)
168 {
169     gptm_state *s = (gptm_state *)opaque;
170 
171     switch (offset) {
172     case 0x00: /* CFG */
173         return s->config;
174     case 0x04: /* TAMR */
175         return s->mode[0];
176     case 0x08: /* TBMR */
177         return s->mode[1];
178     case 0x0c: /* CTL */
179         return s->control;
180     case 0x18: /* IMR */
181         return s->mask;
182     case 0x1c: /* RIS */
183         return s->state;
184     case 0x20: /* MIS */
185         return s->state & s->mask;
186     case 0x24: /* CR */
187         return 0;
188     case 0x28: /* TAILR */
189         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
190     case 0x2c: /* TBILR */
191         return s->load[1];
192     case 0x30: /* TAMARCHR */
193         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
194     case 0x34: /* TBMATCHR */
195         return s->match[1];
196     case 0x38: /* TAPR */
197         return s->prescale[0];
198     case 0x3c: /* TBPR */
199         return s->prescale[1];
200     case 0x40: /* TAPMR */
201         return s->match_prescale[0];
202     case 0x44: /* TBPMR */
203         return s->match_prescale[1];
204     case 0x48: /* TAR */
205         if (s->config == 1) {
206             return s->rtc;
207         }
208         qemu_log_mask(LOG_UNIMP,
209                       "GPTM: read of TAR but timer read not supported\n");
210         return 0;
211     case 0x4c: /* TBR */
212         qemu_log_mask(LOG_UNIMP,
213                       "GPTM: read of TBR but timer read not supported\n");
214         return 0;
215     default:
216         qemu_log_mask(LOG_GUEST_ERROR,
217                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
218                       offset);
219         return 0;
220     }
221 }
222 
223 static void gptm_write(void *opaque, hwaddr offset,
224                        uint64_t value, unsigned size)
225 {
226     gptm_state *s = (gptm_state *)opaque;
227     uint32_t oldval;
228 
229     /* The timers should be disabled before changing the configuration.
230        We take advantage of this and defer everything until the timer
231        is enabled.  */
232     switch (offset) {
233     case 0x00: /* CFG */
234         s->config = value;
235         break;
236     case 0x04: /* TAMR */
237         s->mode[0] = value;
238         break;
239     case 0x08: /* TBMR */
240         s->mode[1] = value;
241         break;
242     case 0x0c: /* CTL */
243         oldval = s->control;
244         s->control = value;
245         /* TODO: Implement pause.  */
246         if ((oldval ^ value) & 1) {
247             if (value & 1) {
248                 gptm_reload(s, 0, 1);
249             } else {
250                 gptm_stop(s, 0);
251             }
252         }
253         if (((oldval ^ value) & 0x100) && s->config >= 4) {
254             if (value & 0x100) {
255                 gptm_reload(s, 1, 1);
256             } else {
257                 gptm_stop(s, 1);
258             }
259         }
260         break;
261     case 0x18: /* IMR */
262         s->mask = value & 0x77;
263         gptm_update_irq(s);
264         break;
265     case 0x24: /* CR */
266         s->state &= ~value;
267         break;
268     case 0x28: /* TAILR */
269         s->load[0] = value & 0xffff;
270         if (s->config < 4) {
271             s->load[1] = value >> 16;
272         }
273         break;
274     case 0x2c: /* TBILR */
275         s->load[1] = value & 0xffff;
276         break;
277     case 0x30: /* TAMARCHR */
278         s->match[0] = value & 0xffff;
279         if (s->config < 4) {
280             s->match[1] = value >> 16;
281         }
282         break;
283     case 0x34: /* TBMATCHR */
284         s->match[1] = value >> 16;
285         break;
286     case 0x38: /* TAPR */
287         s->prescale[0] = value;
288         break;
289     case 0x3c: /* TBPR */
290         s->prescale[1] = value;
291         break;
292     case 0x40: /* TAPMR */
293         s->match_prescale[0] = value;
294         break;
295     case 0x44: /* TBPMR */
296         s->match_prescale[0] = value;
297         break;
298     default:
299         qemu_log_mask(LOG_GUEST_ERROR,
300                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
301                       offset);
302     }
303     gptm_update_irq(s);
304 }
305 
306 static const MemoryRegionOps gptm_ops = {
307     .read = gptm_read,
308     .write = gptm_write,
309     .endianness = DEVICE_NATIVE_ENDIAN,
310 };
311 
312 static const VMStateDescription vmstate_stellaris_gptm = {
313     .name = "stellaris_gptm",
314     .version_id = 1,
315     .minimum_version_id = 1,
316     .fields = (VMStateField[]) {
317         VMSTATE_UINT32(config, gptm_state),
318         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
319         VMSTATE_UINT32(control, gptm_state),
320         VMSTATE_UINT32(state, gptm_state),
321         VMSTATE_UINT32(mask, gptm_state),
322         VMSTATE_UNUSED(8),
323         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
324         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
325         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
326         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
327         VMSTATE_UINT32(rtc, gptm_state),
328         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
329         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
330         VMSTATE_END_OF_LIST()
331     }
332 };
333 
334 static void stellaris_gptm_init(Object *obj)
335 {
336     DeviceState *dev = DEVICE(obj);
337     gptm_state *s = STELLARIS_GPTM(obj);
338     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
339 
340     sysbus_init_irq(sbd, &s->irq);
341     qdev_init_gpio_out(dev, &s->trigger, 1);
342 
343     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
344                           "gptm", 0x1000);
345     sysbus_init_mmio(sbd, &s->iomem);
346 
347     s->opaque[0] = s->opaque[1] = s;
348     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
349     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
350 }
351 
352 
353 /* System controller.  */
354 
355 typedef struct {
356     MemoryRegion iomem;
357     uint32_t pborctl;
358     uint32_t ldopctl;
359     uint32_t int_status;
360     uint32_t int_mask;
361     uint32_t resc;
362     uint32_t rcc;
363     uint32_t rcc2;
364     uint32_t rcgc[3];
365     uint32_t scgc[3];
366     uint32_t dcgc[3];
367     uint32_t clkvclr;
368     uint32_t ldoarst;
369     uint32_t user0;
370     uint32_t user1;
371     qemu_irq irq;
372     stellaris_board_info *board;
373 } ssys_state;
374 
375 static void ssys_update(ssys_state *s)
376 {
377   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
378 }
379 
380 static uint32_t pllcfg_sandstorm[16] = {
381     0x31c0, /* 1 Mhz */
382     0x1ae0, /* 1.8432 Mhz */
383     0x18c0, /* 2 Mhz */
384     0xd573, /* 2.4576 Mhz */
385     0x37a6, /* 3.57954 Mhz */
386     0x1ae2, /* 3.6864 Mhz */
387     0x0c40, /* 4 Mhz */
388     0x98bc, /* 4.906 Mhz */
389     0x935b, /* 4.9152 Mhz */
390     0x09c0, /* 5 Mhz */
391     0x4dee, /* 5.12 Mhz */
392     0x0c41, /* 6 Mhz */
393     0x75db, /* 6.144 Mhz */
394     0x1ae6, /* 7.3728 Mhz */
395     0x0600, /* 8 Mhz */
396     0x585b /* 8.192 Mhz */
397 };
398 
399 static uint32_t pllcfg_fury[16] = {
400     0x3200, /* 1 Mhz */
401     0x1b20, /* 1.8432 Mhz */
402     0x1900, /* 2 Mhz */
403     0xf42b, /* 2.4576 Mhz */
404     0x37e3, /* 3.57954 Mhz */
405     0x1b21, /* 3.6864 Mhz */
406     0x0c80, /* 4 Mhz */
407     0x98ee, /* 4.906 Mhz */
408     0xd5b4, /* 4.9152 Mhz */
409     0x0a00, /* 5 Mhz */
410     0x4e27, /* 5.12 Mhz */
411     0x1902, /* 6 Mhz */
412     0xec1c, /* 6.144 Mhz */
413     0x1b23, /* 7.3728 Mhz */
414     0x0640, /* 8 Mhz */
415     0xb11c /* 8.192 Mhz */
416 };
417 
418 #define DID0_VER_MASK        0x70000000
419 #define DID0_VER_0           0x00000000
420 #define DID0_VER_1           0x10000000
421 
422 #define DID0_CLASS_MASK      0x00FF0000
423 #define DID0_CLASS_SANDSTORM 0x00000000
424 #define DID0_CLASS_FURY      0x00010000
425 
426 static int ssys_board_class(const ssys_state *s)
427 {
428     uint32_t did0 = s->board->did0;
429     switch (did0 & DID0_VER_MASK) {
430     case DID0_VER_0:
431         return DID0_CLASS_SANDSTORM;
432     case DID0_VER_1:
433         switch (did0 & DID0_CLASS_MASK) {
434         case DID0_CLASS_SANDSTORM:
435         case DID0_CLASS_FURY:
436             return did0 & DID0_CLASS_MASK;
437         }
438         /* for unknown classes, fall through */
439     default:
440         /* This can only happen if the hardwired constant did0 value
441          * in this board's stellaris_board_info struct is wrong.
442          */
443         g_assert_not_reached();
444     }
445 }
446 
447 static uint64_t ssys_read(void *opaque, hwaddr offset,
448                           unsigned size)
449 {
450     ssys_state *s = (ssys_state *)opaque;
451 
452     switch (offset) {
453     case 0x000: /* DID0 */
454         return s->board->did0;
455     case 0x004: /* DID1 */
456         return s->board->did1;
457     case 0x008: /* DC0 */
458         return s->board->dc0;
459     case 0x010: /* DC1 */
460         return s->board->dc1;
461     case 0x014: /* DC2 */
462         return s->board->dc2;
463     case 0x018: /* DC3 */
464         return s->board->dc3;
465     case 0x01c: /* DC4 */
466         return s->board->dc4;
467     case 0x030: /* PBORCTL */
468         return s->pborctl;
469     case 0x034: /* LDOPCTL */
470         return s->ldopctl;
471     case 0x040: /* SRCR0 */
472         return 0;
473     case 0x044: /* SRCR1 */
474         return 0;
475     case 0x048: /* SRCR2 */
476         return 0;
477     case 0x050: /* RIS */
478         return s->int_status;
479     case 0x054: /* IMC */
480         return s->int_mask;
481     case 0x058: /* MISC */
482         return s->int_status & s->int_mask;
483     case 0x05c: /* RESC */
484         return s->resc;
485     case 0x060: /* RCC */
486         return s->rcc;
487     case 0x064: /* PLLCFG */
488         {
489             int xtal;
490             xtal = (s->rcc >> 6) & 0xf;
491             switch (ssys_board_class(s)) {
492             case DID0_CLASS_FURY:
493                 return pllcfg_fury[xtal];
494             case DID0_CLASS_SANDSTORM:
495                 return pllcfg_sandstorm[xtal];
496             default:
497                 g_assert_not_reached();
498             }
499         }
500     case 0x070: /* RCC2 */
501         return s->rcc2;
502     case 0x100: /* RCGC0 */
503         return s->rcgc[0];
504     case 0x104: /* RCGC1 */
505         return s->rcgc[1];
506     case 0x108: /* RCGC2 */
507         return s->rcgc[2];
508     case 0x110: /* SCGC0 */
509         return s->scgc[0];
510     case 0x114: /* SCGC1 */
511         return s->scgc[1];
512     case 0x118: /* SCGC2 */
513         return s->scgc[2];
514     case 0x120: /* DCGC0 */
515         return s->dcgc[0];
516     case 0x124: /* DCGC1 */
517         return s->dcgc[1];
518     case 0x128: /* DCGC2 */
519         return s->dcgc[2];
520     case 0x150: /* CLKVCLR */
521         return s->clkvclr;
522     case 0x160: /* LDOARST */
523         return s->ldoarst;
524     case 0x1e0: /* USER0 */
525         return s->user0;
526     case 0x1e4: /* USER1 */
527         return s->user1;
528     default:
529         qemu_log_mask(LOG_GUEST_ERROR,
530                       "SSYS: read at bad offset 0x%x\n", (int)offset);
531         return 0;
532     }
533 }
534 
535 static bool ssys_use_rcc2(ssys_state *s)
536 {
537     return (s->rcc2 >> 31) & 0x1;
538 }
539 
540 /*
541  * Caculate the sys. clock period in ms.
542  */
543 static void ssys_calculate_system_clock(ssys_state *s)
544 {
545     if (ssys_use_rcc2(s)) {
546         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
547     } else {
548         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
549     }
550 }
551 
552 static void ssys_write(void *opaque, hwaddr offset,
553                        uint64_t value, unsigned size)
554 {
555     ssys_state *s = (ssys_state *)opaque;
556 
557     switch (offset) {
558     case 0x030: /* PBORCTL */
559         s->pborctl = value & 0xffff;
560         break;
561     case 0x034: /* LDOPCTL */
562         s->ldopctl = value & 0x1f;
563         break;
564     case 0x040: /* SRCR0 */
565     case 0x044: /* SRCR1 */
566     case 0x048: /* SRCR2 */
567         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
568         break;
569     case 0x054: /* IMC */
570         s->int_mask = value & 0x7f;
571         break;
572     case 0x058: /* MISC */
573         s->int_status &= ~value;
574         break;
575     case 0x05c: /* RESC */
576         s->resc = value & 0x3f;
577         break;
578     case 0x060: /* RCC */
579         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
580             /* PLL enable.  */
581             s->int_status |= (1 << 6);
582         }
583         s->rcc = value;
584         ssys_calculate_system_clock(s);
585         break;
586     case 0x070: /* RCC2 */
587         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
588             break;
589         }
590 
591         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
592             /* PLL enable.  */
593             s->int_status |= (1 << 6);
594         }
595         s->rcc2 = value;
596         ssys_calculate_system_clock(s);
597         break;
598     case 0x100: /* RCGC0 */
599         s->rcgc[0] = value;
600         break;
601     case 0x104: /* RCGC1 */
602         s->rcgc[1] = value;
603         break;
604     case 0x108: /* RCGC2 */
605         s->rcgc[2] = value;
606         break;
607     case 0x110: /* SCGC0 */
608         s->scgc[0] = value;
609         break;
610     case 0x114: /* SCGC1 */
611         s->scgc[1] = value;
612         break;
613     case 0x118: /* SCGC2 */
614         s->scgc[2] = value;
615         break;
616     case 0x120: /* DCGC0 */
617         s->dcgc[0] = value;
618         break;
619     case 0x124: /* DCGC1 */
620         s->dcgc[1] = value;
621         break;
622     case 0x128: /* DCGC2 */
623         s->dcgc[2] = value;
624         break;
625     case 0x150: /* CLKVCLR */
626         s->clkvclr = value;
627         break;
628     case 0x160: /* LDOARST */
629         s->ldoarst = value;
630         break;
631     default:
632         qemu_log_mask(LOG_GUEST_ERROR,
633                       "SSYS: write at bad offset 0x%x\n", (int)offset);
634     }
635     ssys_update(s);
636 }
637 
638 static const MemoryRegionOps ssys_ops = {
639     .read = ssys_read,
640     .write = ssys_write,
641     .endianness = DEVICE_NATIVE_ENDIAN,
642 };
643 
644 static void ssys_reset(void *opaque)
645 {
646     ssys_state *s = (ssys_state *)opaque;
647 
648     s->pborctl = 0x7ffd;
649     s->rcc = 0x078e3ac0;
650 
651     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
652         s->rcc2 = 0;
653     } else {
654         s->rcc2 = 0x07802810;
655     }
656     s->rcgc[0] = 1;
657     s->scgc[0] = 1;
658     s->dcgc[0] = 1;
659     ssys_calculate_system_clock(s);
660 }
661 
662 static int stellaris_sys_post_load(void *opaque, int version_id)
663 {
664     ssys_state *s = opaque;
665 
666     ssys_calculate_system_clock(s);
667 
668     return 0;
669 }
670 
671 static const VMStateDescription vmstate_stellaris_sys = {
672     .name = "stellaris_sys",
673     .version_id = 2,
674     .minimum_version_id = 1,
675     .post_load = stellaris_sys_post_load,
676     .fields = (VMStateField[]) {
677         VMSTATE_UINT32(pborctl, ssys_state),
678         VMSTATE_UINT32(ldopctl, ssys_state),
679         VMSTATE_UINT32(int_mask, ssys_state),
680         VMSTATE_UINT32(int_status, ssys_state),
681         VMSTATE_UINT32(resc, ssys_state),
682         VMSTATE_UINT32(rcc, ssys_state),
683         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
684         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
685         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
686         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
687         VMSTATE_UINT32(clkvclr, ssys_state),
688         VMSTATE_UINT32(ldoarst, ssys_state),
689         VMSTATE_END_OF_LIST()
690     }
691 };
692 
693 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
694                               stellaris_board_info * board,
695                               uint8_t *macaddr)
696 {
697     ssys_state *s;
698 
699     s = g_new0(ssys_state, 1);
700     s->irq = irq;
701     s->board = board;
702     /* Most devices come preprogrammed with a MAC address in the user data. */
703     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
704     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
705 
706     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
707     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
708     ssys_reset(s);
709     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
710     return 0;
711 }
712 
713 
714 /* I2C controller.  */
715 
716 #define TYPE_STELLARIS_I2C "stellaris-i2c"
717 #define STELLARIS_I2C(obj) \
718     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
719 
720 typedef struct {
721     SysBusDevice parent_obj;
722 
723     I2CBus *bus;
724     qemu_irq irq;
725     MemoryRegion iomem;
726     uint32_t msa;
727     uint32_t mcs;
728     uint32_t mdr;
729     uint32_t mtpr;
730     uint32_t mimr;
731     uint32_t mris;
732     uint32_t mcr;
733 } stellaris_i2c_state;
734 
735 #define STELLARIS_I2C_MCS_BUSY    0x01
736 #define STELLARIS_I2C_MCS_ERROR   0x02
737 #define STELLARIS_I2C_MCS_ADRACK  0x04
738 #define STELLARIS_I2C_MCS_DATACK  0x08
739 #define STELLARIS_I2C_MCS_ARBLST  0x10
740 #define STELLARIS_I2C_MCS_IDLE    0x20
741 #define STELLARIS_I2C_MCS_BUSBSY  0x40
742 
743 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
744                                    unsigned size)
745 {
746     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
747 
748     switch (offset) {
749     case 0x00: /* MSA */
750         return s->msa;
751     case 0x04: /* MCS */
752         /* We don't emulate timing, so the controller is never busy.  */
753         return s->mcs | STELLARIS_I2C_MCS_IDLE;
754     case 0x08: /* MDR */
755         return s->mdr;
756     case 0x0c: /* MTPR */
757         return s->mtpr;
758     case 0x10: /* MIMR */
759         return s->mimr;
760     case 0x14: /* MRIS */
761         return s->mris;
762     case 0x18: /* MMIS */
763         return s->mris & s->mimr;
764     case 0x20: /* MCR */
765         return s->mcr;
766     default:
767         qemu_log_mask(LOG_GUEST_ERROR,
768                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
769         return 0;
770     }
771 }
772 
773 static void stellaris_i2c_update(stellaris_i2c_state *s)
774 {
775     int level;
776 
777     level = (s->mris & s->mimr) != 0;
778     qemu_set_irq(s->irq, level);
779 }
780 
781 static void stellaris_i2c_write(void *opaque, hwaddr offset,
782                                 uint64_t value, unsigned size)
783 {
784     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
785 
786     switch (offset) {
787     case 0x00: /* MSA */
788         s->msa = value & 0xff;
789         break;
790     case 0x04: /* MCS */
791         if ((s->mcr & 0x10) == 0) {
792             /* Disabled.  Do nothing.  */
793             break;
794         }
795         /* Grab the bus if this is starting a transfer.  */
796         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
797             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
798                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
799             } else {
800                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
801                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
802             }
803         }
804         /* If we don't have the bus then indicate an error.  */
805         if (!i2c_bus_busy(s->bus)
806                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
807             s->mcs |= STELLARIS_I2C_MCS_ERROR;
808             break;
809         }
810         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
811         if (value & 1) {
812             /* Transfer a byte.  */
813             /* TODO: Handle errors.  */
814             if (s->msa & 1) {
815                 /* Recv */
816                 s->mdr = i2c_recv(s->bus);
817             } else {
818                 /* Send */
819                 i2c_send(s->bus, s->mdr);
820             }
821             /* Raise an interrupt.  */
822             s->mris |= 1;
823         }
824         if (value & 4) {
825             /* Finish transfer.  */
826             i2c_end_transfer(s->bus);
827             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
828         }
829         break;
830     case 0x08: /* MDR */
831         s->mdr = value & 0xff;
832         break;
833     case 0x0c: /* MTPR */
834         s->mtpr = value & 0xff;
835         break;
836     case 0x10: /* MIMR */
837         s->mimr = 1;
838         break;
839     case 0x1c: /* MICR */
840         s->mris &= ~value;
841         break;
842     case 0x20: /* MCR */
843         if (value & 1) {
844             qemu_log_mask(LOG_UNIMP,
845                           "stellaris_i2c: Loopback not implemented\n");
846         }
847         if (value & 0x20) {
848             qemu_log_mask(LOG_UNIMP,
849                           "stellaris_i2c: Slave mode not implemented\n");
850         }
851         s->mcr = value & 0x31;
852         break;
853     default:
854         qemu_log_mask(LOG_GUEST_ERROR,
855                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
856     }
857     stellaris_i2c_update(s);
858 }
859 
860 static void stellaris_i2c_reset(stellaris_i2c_state *s)
861 {
862     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
863         i2c_end_transfer(s->bus);
864 
865     s->msa = 0;
866     s->mcs = 0;
867     s->mdr = 0;
868     s->mtpr = 1;
869     s->mimr = 0;
870     s->mris = 0;
871     s->mcr = 0;
872     stellaris_i2c_update(s);
873 }
874 
875 static const MemoryRegionOps stellaris_i2c_ops = {
876     .read = stellaris_i2c_read,
877     .write = stellaris_i2c_write,
878     .endianness = DEVICE_NATIVE_ENDIAN,
879 };
880 
881 static const VMStateDescription vmstate_stellaris_i2c = {
882     .name = "stellaris_i2c",
883     .version_id = 1,
884     .minimum_version_id = 1,
885     .fields = (VMStateField[]) {
886         VMSTATE_UINT32(msa, stellaris_i2c_state),
887         VMSTATE_UINT32(mcs, stellaris_i2c_state),
888         VMSTATE_UINT32(mdr, stellaris_i2c_state),
889         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
890         VMSTATE_UINT32(mimr, stellaris_i2c_state),
891         VMSTATE_UINT32(mris, stellaris_i2c_state),
892         VMSTATE_UINT32(mcr, stellaris_i2c_state),
893         VMSTATE_END_OF_LIST()
894     }
895 };
896 
897 static void stellaris_i2c_init(Object *obj)
898 {
899     DeviceState *dev = DEVICE(obj);
900     stellaris_i2c_state *s = STELLARIS_I2C(obj);
901     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
902     I2CBus *bus;
903 
904     sysbus_init_irq(sbd, &s->irq);
905     bus = i2c_init_bus(dev, "i2c");
906     s->bus = bus;
907 
908     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
909                           "i2c", 0x1000);
910     sysbus_init_mmio(sbd, &s->iomem);
911     /* ??? For now we only implement the master interface.  */
912     stellaris_i2c_reset(s);
913 }
914 
915 /* Analogue to Digital Converter.  This is only partially implemented,
916    enough for applications that use a combined ADC and timer tick.  */
917 
918 #define STELLARIS_ADC_EM_CONTROLLER 0
919 #define STELLARIS_ADC_EM_COMP       1
920 #define STELLARIS_ADC_EM_EXTERNAL   4
921 #define STELLARIS_ADC_EM_TIMER      5
922 #define STELLARIS_ADC_EM_PWM0       6
923 #define STELLARIS_ADC_EM_PWM1       7
924 #define STELLARIS_ADC_EM_PWM2       8
925 
926 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
927 #define STELLARIS_ADC_FIFO_FULL     0x1000
928 
929 #define TYPE_STELLARIS_ADC "stellaris-adc"
930 #define STELLARIS_ADC(obj) \
931     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
932 
933 typedef struct StellarisADCState {
934     SysBusDevice parent_obj;
935 
936     MemoryRegion iomem;
937     uint32_t actss;
938     uint32_t ris;
939     uint32_t im;
940     uint32_t emux;
941     uint32_t ostat;
942     uint32_t ustat;
943     uint32_t sspri;
944     uint32_t sac;
945     struct {
946         uint32_t state;
947         uint32_t data[16];
948     } fifo[4];
949     uint32_t ssmux[4];
950     uint32_t ssctl[4];
951     uint32_t noise;
952     qemu_irq irq[4];
953 } stellaris_adc_state;
954 
955 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
956 {
957     int tail;
958 
959     tail = s->fifo[n].state & 0xf;
960     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
961         s->ustat |= 1 << n;
962     } else {
963         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
964         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
965         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
966             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
967     }
968     return s->fifo[n].data[tail];
969 }
970 
971 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
972                                      uint32_t value)
973 {
974     int head;
975 
976     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
977        FIFO fir each sequencer.  */
978     head = (s->fifo[n].state >> 4) & 0xf;
979     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
980         s->ostat |= 1 << n;
981         return;
982     }
983     s->fifo[n].data[head] = value;
984     head = (head + 1) & 0xf;
985     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
986     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
987     if ((s->fifo[n].state & 0xf) == head)
988         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
989 }
990 
991 static void stellaris_adc_update(stellaris_adc_state *s)
992 {
993     int level;
994     int n;
995 
996     for (n = 0; n < 4; n++) {
997         level = (s->ris & s->im & (1 << n)) != 0;
998         qemu_set_irq(s->irq[n], level);
999     }
1000 }
1001 
1002 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1003 {
1004     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1005     int n;
1006 
1007     for (n = 0; n < 4; n++) {
1008         if ((s->actss & (1 << n)) == 0) {
1009             continue;
1010         }
1011 
1012         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1013             continue;
1014         }
1015 
1016         /* Some applications use the ADC as a random number source, so introduce
1017            some variation into the signal.  */
1018         s->noise = s->noise * 314159 + 1;
1019         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1020         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1021         s->ris |= (1 << n);
1022         stellaris_adc_update(s);
1023     }
1024 }
1025 
1026 static void stellaris_adc_reset(stellaris_adc_state *s)
1027 {
1028     int n;
1029 
1030     for (n = 0; n < 4; n++) {
1031         s->ssmux[n] = 0;
1032         s->ssctl[n] = 0;
1033         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1034     }
1035 }
1036 
1037 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1038                                    unsigned size)
1039 {
1040     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1041 
1042     /* TODO: Implement this.  */
1043     if (offset >= 0x40 && offset < 0xc0) {
1044         int n;
1045         n = (offset - 0x40) >> 5;
1046         switch (offset & 0x1f) {
1047         case 0x00: /* SSMUX */
1048             return s->ssmux[n];
1049         case 0x04: /* SSCTL */
1050             return s->ssctl[n];
1051         case 0x08: /* SSFIFO */
1052             return stellaris_adc_fifo_read(s, n);
1053         case 0x0c: /* SSFSTAT */
1054             return s->fifo[n].state;
1055         default:
1056             break;
1057         }
1058     }
1059     switch (offset) {
1060     case 0x00: /* ACTSS */
1061         return s->actss;
1062     case 0x04: /* RIS */
1063         return s->ris;
1064     case 0x08: /* IM */
1065         return s->im;
1066     case 0x0c: /* ISC */
1067         return s->ris & s->im;
1068     case 0x10: /* OSTAT */
1069         return s->ostat;
1070     case 0x14: /* EMUX */
1071         return s->emux;
1072     case 0x18: /* USTAT */
1073         return s->ustat;
1074     case 0x20: /* SSPRI */
1075         return s->sspri;
1076     case 0x30: /* SAC */
1077         return s->sac;
1078     default:
1079         qemu_log_mask(LOG_GUEST_ERROR,
1080                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1081         return 0;
1082     }
1083 }
1084 
1085 static void stellaris_adc_write(void *opaque, hwaddr offset,
1086                                 uint64_t value, unsigned size)
1087 {
1088     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1089 
1090     /* TODO: Implement this.  */
1091     if (offset >= 0x40 && offset < 0xc0) {
1092         int n;
1093         n = (offset - 0x40) >> 5;
1094         switch (offset & 0x1f) {
1095         case 0x00: /* SSMUX */
1096             s->ssmux[n] = value & 0x33333333;
1097             return;
1098         case 0x04: /* SSCTL */
1099             if (value != 6) {
1100                 qemu_log_mask(LOG_UNIMP,
1101                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1102                               value);
1103             }
1104             s->ssctl[n] = value;
1105             return;
1106         default:
1107             break;
1108         }
1109     }
1110     switch (offset) {
1111     case 0x00: /* ACTSS */
1112         s->actss = value & 0xf;
1113         break;
1114     case 0x08: /* IM */
1115         s->im = value;
1116         break;
1117     case 0x0c: /* ISC */
1118         s->ris &= ~value;
1119         break;
1120     case 0x10: /* OSTAT */
1121         s->ostat &= ~value;
1122         break;
1123     case 0x14: /* EMUX */
1124         s->emux = value;
1125         break;
1126     case 0x18: /* USTAT */
1127         s->ustat &= ~value;
1128         break;
1129     case 0x20: /* SSPRI */
1130         s->sspri = value;
1131         break;
1132     case 0x28: /* PSSI */
1133         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1134         break;
1135     case 0x30: /* SAC */
1136         s->sac = value;
1137         break;
1138     default:
1139         qemu_log_mask(LOG_GUEST_ERROR,
1140                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1141     }
1142     stellaris_adc_update(s);
1143 }
1144 
1145 static const MemoryRegionOps stellaris_adc_ops = {
1146     .read = stellaris_adc_read,
1147     .write = stellaris_adc_write,
1148     .endianness = DEVICE_NATIVE_ENDIAN,
1149 };
1150 
1151 static const VMStateDescription vmstate_stellaris_adc = {
1152     .name = "stellaris_adc",
1153     .version_id = 1,
1154     .minimum_version_id = 1,
1155     .fields = (VMStateField[]) {
1156         VMSTATE_UINT32(actss, stellaris_adc_state),
1157         VMSTATE_UINT32(ris, stellaris_adc_state),
1158         VMSTATE_UINT32(im, stellaris_adc_state),
1159         VMSTATE_UINT32(emux, stellaris_adc_state),
1160         VMSTATE_UINT32(ostat, stellaris_adc_state),
1161         VMSTATE_UINT32(ustat, stellaris_adc_state),
1162         VMSTATE_UINT32(sspri, stellaris_adc_state),
1163         VMSTATE_UINT32(sac, stellaris_adc_state),
1164         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1165         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1166         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1167         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1168         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1169         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1170         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1171         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1172         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1173         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1174         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1175         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1176         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1177         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1178         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1179         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1180         VMSTATE_UINT32(noise, stellaris_adc_state),
1181         VMSTATE_END_OF_LIST()
1182     }
1183 };
1184 
1185 static void stellaris_adc_init(Object *obj)
1186 {
1187     DeviceState *dev = DEVICE(obj);
1188     stellaris_adc_state *s = STELLARIS_ADC(obj);
1189     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1190     int n;
1191 
1192     for (n = 0; n < 4; n++) {
1193         sysbus_init_irq(sbd, &s->irq[n]);
1194     }
1195 
1196     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1197                           "adc", 0x1000);
1198     sysbus_init_mmio(sbd, &s->iomem);
1199     stellaris_adc_reset(s);
1200     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1201 }
1202 
1203 static
1204 void do_sys_reset(void *opaque, int n, int level)
1205 {
1206     if (level) {
1207         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1208     }
1209 }
1210 
1211 /* Board init.  */
1212 static stellaris_board_info stellaris_boards[] = {
1213   { "LM3S811EVB",
1214     0,
1215     0x0032000e,
1216     0x001f001f, /* dc0 */
1217     0x001132bf,
1218     0x01071013,
1219     0x3f0f01ff,
1220     0x0000001f,
1221     BP_OLED_I2C
1222   },
1223   { "LM3S6965EVB",
1224     0x10010002,
1225     0x1073402e,
1226     0x00ff007f, /* dc0 */
1227     0x001133ff,
1228     0x030f5317,
1229     0x0f0f87ff,
1230     0x5000007f,
1231     BP_OLED_SSI | BP_GAMEPAD
1232   }
1233 };
1234 
1235 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1236 {
1237     static const int uart_irq[] = {5, 6, 33, 34};
1238     static const int timer_irq[] = {19, 21, 23, 35};
1239     static const uint32_t gpio_addr[7] =
1240       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1241         0x40024000, 0x40025000, 0x40026000};
1242     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1243 
1244     /* Memory map of SoC devices, from
1245      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1246      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1247      *
1248      * 40000000 wdtimer
1249      * 40002000 i2c (unimplemented)
1250      * 40004000 GPIO
1251      * 40005000 GPIO
1252      * 40006000 GPIO
1253      * 40007000 GPIO
1254      * 40008000 SSI
1255      * 4000c000 UART
1256      * 4000d000 UART
1257      * 4000e000 UART
1258      * 40020000 i2c
1259      * 40021000 i2c (unimplemented)
1260      * 40024000 GPIO
1261      * 40025000 GPIO
1262      * 40026000 GPIO
1263      * 40028000 PWM (unimplemented)
1264      * 4002c000 QEI (unimplemented)
1265      * 4002d000 QEI (unimplemented)
1266      * 40030000 gptimer
1267      * 40031000 gptimer
1268      * 40032000 gptimer
1269      * 40033000 gptimer
1270      * 40038000 ADC
1271      * 4003c000 analogue comparator (unimplemented)
1272      * 40048000 ethernet
1273      * 400fc000 hibernation module (unimplemented)
1274      * 400fd000 flash memory control (unimplemented)
1275      * 400fe000 system control
1276      */
1277 
1278     DeviceState *gpio_dev[7], *nvic;
1279     qemu_irq gpio_in[7][8];
1280     qemu_irq gpio_out[7][8];
1281     qemu_irq adc;
1282     int sram_size;
1283     int flash_size;
1284     I2CBus *i2c;
1285     DeviceState *dev;
1286     int i;
1287     int j;
1288 
1289     MemoryRegion *sram = g_new(MemoryRegion, 1);
1290     MemoryRegion *flash = g_new(MemoryRegion, 1);
1291     MemoryRegion *system_memory = get_system_memory();
1292 
1293     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1294     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1295 
1296     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1297     memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1298                            &error_fatal);
1299     memory_region_set_readonly(flash, true);
1300     memory_region_add_subregion(system_memory, 0, flash);
1301 
1302     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1303                            &error_fatal);
1304     memory_region_add_subregion(system_memory, 0x20000000, sram);
1305 
1306     nvic = qdev_create(NULL, TYPE_ARMV7M);
1307     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1308     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1309     qdev_prop_set_bit(nvic, "enable-bitband", true);
1310     object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()),
1311                                      "memory", &error_abort);
1312     /* This will exit with an error if the user passed us a bad cpu_type */
1313     qdev_init_nofail(nvic);
1314 
1315     qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1316                                 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1317 
1318     if (board->dc1 & (1 << 16)) {
1319         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1320                                     qdev_get_gpio_in(nvic, 14),
1321                                     qdev_get_gpio_in(nvic, 15),
1322                                     qdev_get_gpio_in(nvic, 16),
1323                                     qdev_get_gpio_in(nvic, 17),
1324                                     NULL);
1325         adc = qdev_get_gpio_in(dev, 0);
1326     } else {
1327         adc = NULL;
1328     }
1329     for (i = 0; i < 4; i++) {
1330         if (board->dc2 & (0x10000 << i)) {
1331             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1332                                        0x40030000 + i * 0x1000,
1333                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1334             /* TODO: This is incorrect, but we get away with it because
1335                the ADC output is only ever pulsed.  */
1336             qdev_connect_gpio_out(dev, 0, adc);
1337         }
1338     }
1339 
1340     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1341                        board, nd_table[0].macaddr.a);
1342 
1343 
1344     if (board->dc1 & (1 << 3)) { /* watchdog present */
1345         dev = qdev_create(NULL, TYPE_LUMINARY_WATCHDOG);
1346 
1347         /* system_clock_scale is valid now */
1348         uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1349         qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1350 
1351         qdev_init_nofail(dev);
1352         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1353                         0,
1354                         0x40000000u);
1355         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1356                            0,
1357                            qdev_get_gpio_in(nvic, 18));
1358     }
1359 
1360 
1361     for (i = 0; i < 7; i++) {
1362         if (board->dc4 & (1 << i)) {
1363             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1364                                                qdev_get_gpio_in(nvic,
1365                                                                 gpio_irq[i]));
1366             for (j = 0; j < 8; j++) {
1367                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1368                 gpio_out[i][j] = NULL;
1369             }
1370         }
1371     }
1372 
1373     if (board->dc2 & (1 << 12)) {
1374         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1375                                    qdev_get_gpio_in(nvic, 8));
1376         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1377         if (board->peripherals & BP_OLED_I2C) {
1378             i2c_create_slave(i2c, "ssd0303", 0x3d);
1379         }
1380     }
1381 
1382     for (i = 0; i < 4; i++) {
1383         if (board->dc2 & (1 << i)) {
1384             pl011_luminary_create(0x4000c000 + i * 0x1000,
1385                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1386                                   serial_hd(i));
1387         }
1388     }
1389     if (board->dc2 & (1 << 4)) {
1390         dev = sysbus_create_simple("pl022", 0x40008000,
1391                                    qdev_get_gpio_in(nvic, 7));
1392         if (board->peripherals & BP_OLED_SSI) {
1393             void *bus;
1394             DeviceState *sddev;
1395             DeviceState *ssddev;
1396 
1397             /* Some boards have both an OLED controller and SD card connected to
1398              * the same SSI port, with the SD card chip select connected to a
1399              * GPIO pin.  Technically the OLED chip select is connected to the
1400              * SSI Fss pin.  We do not bother emulating that as both devices
1401              * should never be selected simultaneously, and our OLED controller
1402              * ignores stray 0xff commands that occur when deselecting the SD
1403              * card.
1404              */
1405             bus = qdev_get_child_bus(dev, "ssi");
1406 
1407             sddev = ssi_create_slave(bus, "ssi-sd");
1408             ssddev = ssi_create_slave(bus, "ssd0323");
1409             gpio_out[GPIO_D][0] = qemu_irq_split(
1410                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1411                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1412             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1413 
1414             /* Make sure the select pin is high.  */
1415             qemu_irq_raise(gpio_out[GPIO_D][0]);
1416         }
1417     }
1418     if (board->dc4 & (1 << 28)) {
1419         DeviceState *enet;
1420 
1421         qemu_check_nic_model(&nd_table[0], "stellaris");
1422 
1423         enet = qdev_create(NULL, "stellaris_enet");
1424         qdev_set_nic_properties(enet, &nd_table[0]);
1425         qdev_init_nofail(enet);
1426         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1427         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1428     }
1429     if (board->peripherals & BP_GAMEPAD) {
1430         qemu_irq gpad_irq[5];
1431         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1432 
1433         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1434         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1435         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1436         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1437         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1438 
1439         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1440     }
1441     for (i = 0; i < 7; i++) {
1442         if (board->dc4 & (1 << i)) {
1443             for (j = 0; j < 8; j++) {
1444                 if (gpio_out[i][j]) {
1445                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1446                 }
1447             }
1448         }
1449     }
1450 
1451     /* Add dummy regions for the devices we don't implement yet,
1452      * so guest accesses don't cause unlogged crashes.
1453      */
1454     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1455     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1456     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1457     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1458     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1459     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1460     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1461     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1462 
1463     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1464 }
1465 
1466 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1467 static void lm3s811evb_init(MachineState *machine)
1468 {
1469     stellaris_init(machine, &stellaris_boards[0]);
1470 }
1471 
1472 static void lm3s6965evb_init(MachineState *machine)
1473 {
1474     stellaris_init(machine, &stellaris_boards[1]);
1475 }
1476 
1477 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1478 {
1479     MachineClass *mc = MACHINE_CLASS(oc);
1480 
1481     mc->desc = "Stellaris LM3S811EVB";
1482     mc->init = lm3s811evb_init;
1483     mc->ignore_memory_transaction_failures = true;
1484     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1485 }
1486 
1487 static const TypeInfo lm3s811evb_type = {
1488     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1489     .parent = TYPE_MACHINE,
1490     .class_init = lm3s811evb_class_init,
1491 };
1492 
1493 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1494 {
1495     MachineClass *mc = MACHINE_CLASS(oc);
1496 
1497     mc->desc = "Stellaris LM3S6965EVB";
1498     mc->init = lm3s6965evb_init;
1499     mc->ignore_memory_transaction_failures = true;
1500     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1501 }
1502 
1503 static const TypeInfo lm3s6965evb_type = {
1504     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1505     .parent = TYPE_MACHINE,
1506     .class_init = lm3s6965evb_class_init,
1507 };
1508 
1509 static void stellaris_machine_init(void)
1510 {
1511     type_register_static(&lm3s811evb_type);
1512     type_register_static(&lm3s6965evb_type);
1513 }
1514 
1515 type_init(stellaris_machine_init)
1516 
1517 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1518 {
1519     DeviceClass *dc = DEVICE_CLASS(klass);
1520 
1521     dc->vmsd = &vmstate_stellaris_i2c;
1522 }
1523 
1524 static const TypeInfo stellaris_i2c_info = {
1525     .name          = TYPE_STELLARIS_I2C,
1526     .parent        = TYPE_SYS_BUS_DEVICE,
1527     .instance_size = sizeof(stellaris_i2c_state),
1528     .instance_init = stellaris_i2c_init,
1529     .class_init    = stellaris_i2c_class_init,
1530 };
1531 
1532 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1533 {
1534     DeviceClass *dc = DEVICE_CLASS(klass);
1535 
1536     dc->vmsd = &vmstate_stellaris_gptm;
1537 }
1538 
1539 static const TypeInfo stellaris_gptm_info = {
1540     .name          = TYPE_STELLARIS_GPTM,
1541     .parent        = TYPE_SYS_BUS_DEVICE,
1542     .instance_size = sizeof(gptm_state),
1543     .instance_init = stellaris_gptm_init,
1544     .class_init    = stellaris_gptm_class_init,
1545 };
1546 
1547 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1548 {
1549     DeviceClass *dc = DEVICE_CLASS(klass);
1550 
1551     dc->vmsd = &vmstate_stellaris_adc;
1552 }
1553 
1554 static const TypeInfo stellaris_adc_info = {
1555     .name          = TYPE_STELLARIS_ADC,
1556     .parent        = TYPE_SYS_BUS_DEVICE,
1557     .instance_size = sizeof(stellaris_adc_state),
1558     .instance_init = stellaris_adc_init,
1559     .class_init    = stellaris_adc_class_init,
1560 };
1561 
1562 static void stellaris_register_types(void)
1563 {
1564     type_register_static(&stellaris_i2c_info);
1565     type_register_static(&stellaris_gptm_info);
1566     type_register_static(&stellaris_adc_info);
1567 }
1568 
1569 type_init(stellaris_register_types)
1570