xref: /qemu/hw/arm/stellaris.c (revision 73b49878)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/core/split-irq.h"
13 #include "hw/sysbus.h"
14 #include "hw/sd/sd.h"
15 #include "hw/ssi/ssi.h"
16 #include "hw/arm/boot.h"
17 #include "qemu/timer.h"
18 #include "hw/i2c/i2c.h"
19 #include "net/net.h"
20 #include "hw/boards.h"
21 #include "qemu/log.h"
22 #include "exec/address-spaces.h"
23 #include "sysemu/sysemu.h"
24 #include "hw/arm/armv7m.h"
25 #include "hw/char/pl011.h"
26 #include "hw/input/stellaris_gamepad.h"
27 #include "hw/irq.h"
28 #include "hw/watchdog/cmsdk-apb-watchdog.h"
29 #include "migration/vmstate.h"
30 #include "hw/misc/unimp.h"
31 #include "hw/timer/stellaris-gptm.h"
32 #include "hw/qdev-clock.h"
33 #include "qom/object.h"
34 #include "qapi/qmp/qlist.h"
35 #include "ui/input.h"
36 
37 #define GPIO_A 0
38 #define GPIO_B 1
39 #define GPIO_C 2
40 #define GPIO_D 3
41 #define GPIO_E 4
42 #define GPIO_F 5
43 #define GPIO_G 6
44 
45 #define BP_OLED_I2C  0x01
46 #define BP_OLED_SSI  0x02
47 #define BP_GAMEPAD   0x04
48 
49 #define NUM_IRQ_LINES 64
50 #define NUM_PRIO_BITS 3
51 
52 typedef const struct {
53     const char *name;
54     uint32_t did0;
55     uint32_t did1;
56     uint32_t dc0;
57     uint32_t dc1;
58     uint32_t dc2;
59     uint32_t dc3;
60     uint32_t dc4;
61     uint32_t peripherals;
62 } stellaris_board_info;
63 
64 /* System controller.  */
65 
66 #define TYPE_STELLARIS_SYS "stellaris-sys"
67 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
68 
69 struct ssys_state {
70     SysBusDevice parent_obj;
71 
72     MemoryRegion iomem;
73     uint32_t pborctl;
74     uint32_t ldopctl;
75     uint32_t int_status;
76     uint32_t int_mask;
77     uint32_t resc;
78     uint32_t rcc;
79     uint32_t rcc2;
80     uint32_t rcgc[3];
81     uint32_t scgc[3];
82     uint32_t dcgc[3];
83     uint32_t clkvclr;
84     uint32_t ldoarst;
85     qemu_irq irq;
86     Clock *sysclk;
87     /* Properties (all read-only registers) */
88     uint32_t user0;
89     uint32_t user1;
90     uint32_t did0;
91     uint32_t did1;
92     uint32_t dc0;
93     uint32_t dc1;
94     uint32_t dc2;
95     uint32_t dc3;
96     uint32_t dc4;
97 };
98 
99 static void ssys_update(ssys_state *s)
100 {
101   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
102 }
103 
104 static uint32_t pllcfg_sandstorm[16] = {
105     0x31c0, /* 1 Mhz */
106     0x1ae0, /* 1.8432 Mhz */
107     0x18c0, /* 2 Mhz */
108     0xd573, /* 2.4576 Mhz */
109     0x37a6, /* 3.57954 Mhz */
110     0x1ae2, /* 3.6864 Mhz */
111     0x0c40, /* 4 Mhz */
112     0x98bc, /* 4.906 Mhz */
113     0x935b, /* 4.9152 Mhz */
114     0x09c0, /* 5 Mhz */
115     0x4dee, /* 5.12 Mhz */
116     0x0c41, /* 6 Mhz */
117     0x75db, /* 6.144 Mhz */
118     0x1ae6, /* 7.3728 Mhz */
119     0x0600, /* 8 Mhz */
120     0x585b /* 8.192 Mhz */
121 };
122 
123 static uint32_t pllcfg_fury[16] = {
124     0x3200, /* 1 Mhz */
125     0x1b20, /* 1.8432 Mhz */
126     0x1900, /* 2 Mhz */
127     0xf42b, /* 2.4576 Mhz */
128     0x37e3, /* 3.57954 Mhz */
129     0x1b21, /* 3.6864 Mhz */
130     0x0c80, /* 4 Mhz */
131     0x98ee, /* 4.906 Mhz */
132     0xd5b4, /* 4.9152 Mhz */
133     0x0a00, /* 5 Mhz */
134     0x4e27, /* 5.12 Mhz */
135     0x1902, /* 6 Mhz */
136     0xec1c, /* 6.144 Mhz */
137     0x1b23, /* 7.3728 Mhz */
138     0x0640, /* 8 Mhz */
139     0xb11c /* 8.192 Mhz */
140 };
141 
142 #define DID0_VER_MASK        0x70000000
143 #define DID0_VER_0           0x00000000
144 #define DID0_VER_1           0x10000000
145 
146 #define DID0_CLASS_MASK      0x00FF0000
147 #define DID0_CLASS_SANDSTORM 0x00000000
148 #define DID0_CLASS_FURY      0x00010000
149 
150 static int ssys_board_class(const ssys_state *s)
151 {
152     uint32_t did0 = s->did0;
153     switch (did0 & DID0_VER_MASK) {
154     case DID0_VER_0:
155         return DID0_CLASS_SANDSTORM;
156     case DID0_VER_1:
157         switch (did0 & DID0_CLASS_MASK) {
158         case DID0_CLASS_SANDSTORM:
159         case DID0_CLASS_FURY:
160             return did0 & DID0_CLASS_MASK;
161         }
162         /* for unknown classes, fall through */
163     default:
164         /* This can only happen if the hardwired constant did0 value
165          * in this board's stellaris_board_info struct is wrong.
166          */
167         g_assert_not_reached();
168     }
169 }
170 
171 static uint64_t ssys_read(void *opaque, hwaddr offset,
172                           unsigned size)
173 {
174     ssys_state *s = (ssys_state *)opaque;
175 
176     switch (offset) {
177     case 0x000: /* DID0 */
178         return s->did0;
179     case 0x004: /* DID1 */
180         return s->did1;
181     case 0x008: /* DC0 */
182         return s->dc0;
183     case 0x010: /* DC1 */
184         return s->dc1;
185     case 0x014: /* DC2 */
186         return s->dc2;
187     case 0x018: /* DC3 */
188         return s->dc3;
189     case 0x01c: /* DC4 */
190         return s->dc4;
191     case 0x030: /* PBORCTL */
192         return s->pborctl;
193     case 0x034: /* LDOPCTL */
194         return s->ldopctl;
195     case 0x040: /* SRCR0 */
196         return 0;
197     case 0x044: /* SRCR1 */
198         return 0;
199     case 0x048: /* SRCR2 */
200         return 0;
201     case 0x050: /* RIS */
202         return s->int_status;
203     case 0x054: /* IMC */
204         return s->int_mask;
205     case 0x058: /* MISC */
206         return s->int_status & s->int_mask;
207     case 0x05c: /* RESC */
208         return s->resc;
209     case 0x060: /* RCC */
210         return s->rcc;
211     case 0x064: /* PLLCFG */
212         {
213             int xtal;
214             xtal = (s->rcc >> 6) & 0xf;
215             switch (ssys_board_class(s)) {
216             case DID0_CLASS_FURY:
217                 return pllcfg_fury[xtal];
218             case DID0_CLASS_SANDSTORM:
219                 return pllcfg_sandstorm[xtal];
220             default:
221                 g_assert_not_reached();
222             }
223         }
224     case 0x070: /* RCC2 */
225         return s->rcc2;
226     case 0x100: /* RCGC0 */
227         return s->rcgc[0];
228     case 0x104: /* RCGC1 */
229         return s->rcgc[1];
230     case 0x108: /* RCGC2 */
231         return s->rcgc[2];
232     case 0x110: /* SCGC0 */
233         return s->scgc[0];
234     case 0x114: /* SCGC1 */
235         return s->scgc[1];
236     case 0x118: /* SCGC2 */
237         return s->scgc[2];
238     case 0x120: /* DCGC0 */
239         return s->dcgc[0];
240     case 0x124: /* DCGC1 */
241         return s->dcgc[1];
242     case 0x128: /* DCGC2 */
243         return s->dcgc[2];
244     case 0x150: /* CLKVCLR */
245         return s->clkvclr;
246     case 0x160: /* LDOARST */
247         return s->ldoarst;
248     case 0x1e0: /* USER0 */
249         return s->user0;
250     case 0x1e4: /* USER1 */
251         return s->user1;
252     default:
253         qemu_log_mask(LOG_GUEST_ERROR,
254                       "SSYS: read at bad offset 0x%x\n", (int)offset);
255         return 0;
256     }
257 }
258 
259 static bool ssys_use_rcc2(ssys_state *s)
260 {
261     return (s->rcc2 >> 31) & 0x1;
262 }
263 
264 /*
265  * Calculate the system clock period. We only want to propagate
266  * this change to the rest of the system if we're not being called
267  * from migration post-load.
268  */
269 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
270 {
271     int period_ns;
272     /*
273      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
274      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
275      * frequency by X is the same as multiplying the period by X.
276      */
277     if (ssys_use_rcc2(s)) {
278         period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
279     } else {
280         period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
281     }
282     clock_set_ns(s->sysclk, period_ns);
283     if (propagate_clock) {
284         clock_propagate(s->sysclk);
285     }
286 }
287 
288 static void ssys_write(void *opaque, hwaddr offset,
289                        uint64_t value, unsigned size)
290 {
291     ssys_state *s = (ssys_state *)opaque;
292 
293     switch (offset) {
294     case 0x030: /* PBORCTL */
295         s->pborctl = value & 0xffff;
296         break;
297     case 0x034: /* LDOPCTL */
298         s->ldopctl = value & 0x1f;
299         break;
300     case 0x040: /* SRCR0 */
301     case 0x044: /* SRCR1 */
302     case 0x048: /* SRCR2 */
303         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
304         break;
305     case 0x054: /* IMC */
306         s->int_mask = value & 0x7f;
307         break;
308     case 0x058: /* MISC */
309         s->int_status &= ~value;
310         break;
311     case 0x05c: /* RESC */
312         s->resc = value & 0x3f;
313         break;
314     case 0x060: /* RCC */
315         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
316             /* PLL enable.  */
317             s->int_status |= (1 << 6);
318         }
319         s->rcc = value;
320         ssys_calculate_system_clock(s, true);
321         break;
322     case 0x070: /* RCC2 */
323         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
324             break;
325         }
326 
327         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
328             /* PLL enable.  */
329             s->int_status |= (1 << 6);
330         }
331         s->rcc2 = value;
332         ssys_calculate_system_clock(s, true);
333         break;
334     case 0x100: /* RCGC0 */
335         s->rcgc[0] = value;
336         break;
337     case 0x104: /* RCGC1 */
338         s->rcgc[1] = value;
339         break;
340     case 0x108: /* RCGC2 */
341         s->rcgc[2] = value;
342         break;
343     case 0x110: /* SCGC0 */
344         s->scgc[0] = value;
345         break;
346     case 0x114: /* SCGC1 */
347         s->scgc[1] = value;
348         break;
349     case 0x118: /* SCGC2 */
350         s->scgc[2] = value;
351         break;
352     case 0x120: /* DCGC0 */
353         s->dcgc[0] = value;
354         break;
355     case 0x124: /* DCGC1 */
356         s->dcgc[1] = value;
357         break;
358     case 0x128: /* DCGC2 */
359         s->dcgc[2] = value;
360         break;
361     case 0x150: /* CLKVCLR */
362         s->clkvclr = value;
363         break;
364     case 0x160: /* LDOARST */
365         s->ldoarst = value;
366         break;
367     default:
368         qemu_log_mask(LOG_GUEST_ERROR,
369                       "SSYS: write at bad offset 0x%x\n", (int)offset);
370     }
371     ssys_update(s);
372 }
373 
374 static const MemoryRegionOps ssys_ops = {
375     .read = ssys_read,
376     .write = ssys_write,
377     .endianness = DEVICE_NATIVE_ENDIAN,
378 };
379 
380 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
381 {
382     ssys_state *s = STELLARIS_SYS(obj);
383 
384     s->pborctl = 0x7ffd;
385     s->rcc = 0x078e3ac0;
386 
387     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
388         s->rcc2 = 0;
389     } else {
390         s->rcc2 = 0x07802810;
391     }
392     s->rcgc[0] = 1;
393     s->scgc[0] = 1;
394     s->dcgc[0] = 1;
395 }
396 
397 static void stellaris_sys_reset_hold(Object *obj)
398 {
399     ssys_state *s = STELLARIS_SYS(obj);
400 
401     /* OK to propagate clocks from the hold phase */
402     ssys_calculate_system_clock(s, true);
403 }
404 
405 static void stellaris_sys_reset_exit(Object *obj)
406 {
407 }
408 
409 static int stellaris_sys_post_load(void *opaque, int version_id)
410 {
411     ssys_state *s = opaque;
412 
413     ssys_calculate_system_clock(s, false);
414 
415     return 0;
416 }
417 
418 static const VMStateDescription vmstate_stellaris_sys = {
419     .name = "stellaris_sys",
420     .version_id = 2,
421     .minimum_version_id = 1,
422     .post_load = stellaris_sys_post_load,
423     .fields = (const VMStateField[]) {
424         VMSTATE_UINT32(pborctl, ssys_state),
425         VMSTATE_UINT32(ldopctl, ssys_state),
426         VMSTATE_UINT32(int_mask, ssys_state),
427         VMSTATE_UINT32(int_status, ssys_state),
428         VMSTATE_UINT32(resc, ssys_state),
429         VMSTATE_UINT32(rcc, ssys_state),
430         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
431         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
432         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
433         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
434         VMSTATE_UINT32(clkvclr, ssys_state),
435         VMSTATE_UINT32(ldoarst, ssys_state),
436         /* No field for sysclk -- handled in post-load instead */
437         VMSTATE_END_OF_LIST()
438     }
439 };
440 
441 static Property stellaris_sys_properties[] = {
442     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
443     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
444     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
445     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
446     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
447     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
448     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
449     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
450     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
451     DEFINE_PROP_END_OF_LIST()
452 };
453 
454 static void stellaris_sys_instance_init(Object *obj)
455 {
456     ssys_state *s = STELLARIS_SYS(obj);
457     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
458 
459     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
460     sysbus_init_mmio(sbd, &s->iomem);
461     sysbus_init_irq(sbd, &s->irq);
462     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
463 }
464 
465 /* I2C controller.  */
466 
467 #define TYPE_STELLARIS_I2C "stellaris-i2c"
468 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
469 
470 struct stellaris_i2c_state {
471     SysBusDevice parent_obj;
472 
473     I2CBus *bus;
474     qemu_irq irq;
475     MemoryRegion iomem;
476     uint32_t msa;
477     uint32_t mcs;
478     uint32_t mdr;
479     uint32_t mtpr;
480     uint32_t mimr;
481     uint32_t mris;
482     uint32_t mcr;
483 };
484 
485 #define STELLARIS_I2C_MCS_BUSY    0x01
486 #define STELLARIS_I2C_MCS_ERROR   0x02
487 #define STELLARIS_I2C_MCS_ADRACK  0x04
488 #define STELLARIS_I2C_MCS_DATACK  0x08
489 #define STELLARIS_I2C_MCS_ARBLST  0x10
490 #define STELLARIS_I2C_MCS_IDLE    0x20
491 #define STELLARIS_I2C_MCS_BUSBSY  0x40
492 
493 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
494                                    unsigned size)
495 {
496     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
497 
498     switch (offset) {
499     case 0x00: /* MSA */
500         return s->msa;
501     case 0x04: /* MCS */
502         /* We don't emulate timing, so the controller is never busy.  */
503         return s->mcs | STELLARIS_I2C_MCS_IDLE;
504     case 0x08: /* MDR */
505         return s->mdr;
506     case 0x0c: /* MTPR */
507         return s->mtpr;
508     case 0x10: /* MIMR */
509         return s->mimr;
510     case 0x14: /* MRIS */
511         return s->mris;
512     case 0x18: /* MMIS */
513         return s->mris & s->mimr;
514     case 0x20: /* MCR */
515         return s->mcr;
516     default:
517         qemu_log_mask(LOG_GUEST_ERROR,
518                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
519         return 0;
520     }
521 }
522 
523 static void stellaris_i2c_update(stellaris_i2c_state *s)
524 {
525     int level;
526 
527     level = (s->mris & s->mimr) != 0;
528     qemu_set_irq(s->irq, level);
529 }
530 
531 static void stellaris_i2c_write(void *opaque, hwaddr offset,
532                                 uint64_t value, unsigned size)
533 {
534     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
535 
536     switch (offset) {
537     case 0x00: /* MSA */
538         s->msa = value & 0xff;
539         break;
540     case 0x04: /* MCS */
541         if ((s->mcr & 0x10) == 0) {
542             /* Disabled.  Do nothing.  */
543             break;
544         }
545         /* Grab the bus if this is starting a transfer.  */
546         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
547             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
548                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
549             } else {
550                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
551                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
552             }
553         }
554         /* If we don't have the bus then indicate an error.  */
555         if (!i2c_bus_busy(s->bus)
556                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
557             s->mcs |= STELLARIS_I2C_MCS_ERROR;
558             break;
559         }
560         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
561         if (value & 1) {
562             /* Transfer a byte.  */
563             /* TODO: Handle errors.  */
564             if (s->msa & 1) {
565                 /* Recv */
566                 s->mdr = i2c_recv(s->bus);
567             } else {
568                 /* Send */
569                 i2c_send(s->bus, s->mdr);
570             }
571             /* Raise an interrupt.  */
572             s->mris |= 1;
573         }
574         if (value & 4) {
575             /* Finish transfer.  */
576             i2c_end_transfer(s->bus);
577             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
578         }
579         break;
580     case 0x08: /* MDR */
581         s->mdr = value & 0xff;
582         break;
583     case 0x0c: /* MTPR */
584         s->mtpr = value & 0xff;
585         break;
586     case 0x10: /* MIMR */
587         s->mimr = 1;
588         break;
589     case 0x1c: /* MICR */
590         s->mris &= ~value;
591         break;
592     case 0x20: /* MCR */
593         if (value & 1) {
594             qemu_log_mask(LOG_UNIMP,
595                           "stellaris_i2c: Loopback not implemented\n");
596         }
597         if (value & 0x20) {
598             qemu_log_mask(LOG_UNIMP,
599                           "stellaris_i2c: Slave mode not implemented\n");
600         }
601         s->mcr = value & 0x31;
602         break;
603     default:
604         qemu_log_mask(LOG_GUEST_ERROR,
605                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
606     }
607     stellaris_i2c_update(s);
608 }
609 
610 static void stellaris_i2c_reset(stellaris_i2c_state *s)
611 {
612     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
613         i2c_end_transfer(s->bus);
614 
615     s->msa = 0;
616     s->mcs = 0;
617     s->mdr = 0;
618     s->mtpr = 1;
619     s->mimr = 0;
620     s->mris = 0;
621     s->mcr = 0;
622     stellaris_i2c_update(s);
623 }
624 
625 static const MemoryRegionOps stellaris_i2c_ops = {
626     .read = stellaris_i2c_read,
627     .write = stellaris_i2c_write,
628     .endianness = DEVICE_NATIVE_ENDIAN,
629 };
630 
631 static const VMStateDescription vmstate_stellaris_i2c = {
632     .name = "stellaris_i2c",
633     .version_id = 1,
634     .minimum_version_id = 1,
635     .fields = (const VMStateField[]) {
636         VMSTATE_UINT32(msa, stellaris_i2c_state),
637         VMSTATE_UINT32(mcs, stellaris_i2c_state),
638         VMSTATE_UINT32(mdr, stellaris_i2c_state),
639         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
640         VMSTATE_UINT32(mimr, stellaris_i2c_state),
641         VMSTATE_UINT32(mris, stellaris_i2c_state),
642         VMSTATE_UINT32(mcr, stellaris_i2c_state),
643         VMSTATE_END_OF_LIST()
644     }
645 };
646 
647 static void stellaris_i2c_init(Object *obj)
648 {
649     DeviceState *dev = DEVICE(obj);
650     stellaris_i2c_state *s = STELLARIS_I2C(obj);
651     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
652     I2CBus *bus;
653 
654     sysbus_init_irq(sbd, &s->irq);
655     bus = i2c_init_bus(dev, "i2c");
656     s->bus = bus;
657 
658     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
659                           "i2c", 0x1000);
660     sysbus_init_mmio(sbd, &s->iomem);
661     /* ??? For now we only implement the master interface.  */
662     stellaris_i2c_reset(s);
663 }
664 
665 /* Analogue to Digital Converter.  This is only partially implemented,
666    enough for applications that use a combined ADC and timer tick.  */
667 
668 #define STELLARIS_ADC_EM_CONTROLLER 0
669 #define STELLARIS_ADC_EM_COMP       1
670 #define STELLARIS_ADC_EM_EXTERNAL   4
671 #define STELLARIS_ADC_EM_TIMER      5
672 #define STELLARIS_ADC_EM_PWM0       6
673 #define STELLARIS_ADC_EM_PWM1       7
674 #define STELLARIS_ADC_EM_PWM2       8
675 
676 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
677 #define STELLARIS_ADC_FIFO_FULL     0x1000
678 
679 #define TYPE_STELLARIS_ADC "stellaris-adc"
680 typedef struct StellarisADCState StellarisADCState;
681 DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC)
682 
683 struct StellarisADCState {
684     SysBusDevice parent_obj;
685 
686     MemoryRegion iomem;
687     uint32_t actss;
688     uint32_t ris;
689     uint32_t im;
690     uint32_t emux;
691     uint32_t ostat;
692     uint32_t ustat;
693     uint32_t sspri;
694     uint32_t sac;
695     struct {
696         uint32_t state;
697         uint32_t data[16];
698     } fifo[4];
699     uint32_t ssmux[4];
700     uint32_t ssctl[4];
701     uint32_t noise;
702     qemu_irq irq[4];
703 };
704 
705 static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n)
706 {
707     int tail;
708 
709     tail = s->fifo[n].state & 0xf;
710     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
711         s->ustat |= 1 << n;
712     } else {
713         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
714         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
715         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
716             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
717     }
718     return s->fifo[n].data[tail];
719 }
720 
721 static void stellaris_adc_fifo_write(StellarisADCState *s, int n,
722                                      uint32_t value)
723 {
724     int head;
725 
726     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
727        FIFO fir each sequencer.  */
728     head = (s->fifo[n].state >> 4) & 0xf;
729     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
730         s->ostat |= 1 << n;
731         return;
732     }
733     s->fifo[n].data[head] = value;
734     head = (head + 1) & 0xf;
735     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
736     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
737     if ((s->fifo[n].state & 0xf) == head)
738         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
739 }
740 
741 static void stellaris_adc_update(StellarisADCState *s)
742 {
743     int level;
744     int n;
745 
746     for (n = 0; n < 4; n++) {
747         level = (s->ris & s->im & (1 << n)) != 0;
748         qemu_set_irq(s->irq[n], level);
749     }
750 }
751 
752 static void stellaris_adc_trigger(void *opaque, int irq, int level)
753 {
754     StellarisADCState *s = opaque;
755     int n;
756 
757     for (n = 0; n < 4; n++) {
758         if ((s->actss & (1 << n)) == 0) {
759             continue;
760         }
761 
762         if (((s->emux >> (n * 4)) & 0xff) != 5) {
763             continue;
764         }
765 
766         /* Some applications use the ADC as a random number source, so introduce
767            some variation into the signal.  */
768         s->noise = s->noise * 314159 + 1;
769         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
770         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
771         s->ris |= (1 << n);
772         stellaris_adc_update(s);
773     }
774 }
775 
776 static void stellaris_adc_reset(StellarisADCState *s)
777 {
778     int n;
779 
780     for (n = 0; n < 4; n++) {
781         s->ssmux[n] = 0;
782         s->ssctl[n] = 0;
783         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
784     }
785 }
786 
787 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
788                                    unsigned size)
789 {
790     StellarisADCState *s = opaque;
791 
792     /* TODO: Implement this.  */
793     if (offset >= 0x40 && offset < 0xc0) {
794         int n;
795         n = (offset - 0x40) >> 5;
796         switch (offset & 0x1f) {
797         case 0x00: /* SSMUX */
798             return s->ssmux[n];
799         case 0x04: /* SSCTL */
800             return s->ssctl[n];
801         case 0x08: /* SSFIFO */
802             return stellaris_adc_fifo_read(s, n);
803         case 0x0c: /* SSFSTAT */
804             return s->fifo[n].state;
805         default:
806             break;
807         }
808     }
809     switch (offset) {
810     case 0x00: /* ACTSS */
811         return s->actss;
812     case 0x04: /* RIS */
813         return s->ris;
814     case 0x08: /* IM */
815         return s->im;
816     case 0x0c: /* ISC */
817         return s->ris & s->im;
818     case 0x10: /* OSTAT */
819         return s->ostat;
820     case 0x14: /* EMUX */
821         return s->emux;
822     case 0x18: /* USTAT */
823         return s->ustat;
824     case 0x20: /* SSPRI */
825         return s->sspri;
826     case 0x30: /* SAC */
827         return s->sac;
828     default:
829         qemu_log_mask(LOG_GUEST_ERROR,
830                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
831         return 0;
832     }
833 }
834 
835 static void stellaris_adc_write(void *opaque, hwaddr offset,
836                                 uint64_t value, unsigned size)
837 {
838     StellarisADCState *s = opaque;
839 
840     /* TODO: Implement this.  */
841     if (offset >= 0x40 && offset < 0xc0) {
842         int n;
843         n = (offset - 0x40) >> 5;
844         switch (offset & 0x1f) {
845         case 0x00: /* SSMUX */
846             s->ssmux[n] = value & 0x33333333;
847             return;
848         case 0x04: /* SSCTL */
849             if (value != 6) {
850                 qemu_log_mask(LOG_UNIMP,
851                               "ADC: Unimplemented sequence %" PRIx64 "\n",
852                               value);
853             }
854             s->ssctl[n] = value;
855             return;
856         default:
857             break;
858         }
859     }
860     switch (offset) {
861     case 0x00: /* ACTSS */
862         s->actss = value & 0xf;
863         break;
864     case 0x08: /* IM */
865         s->im = value;
866         break;
867     case 0x0c: /* ISC */
868         s->ris &= ~value;
869         break;
870     case 0x10: /* OSTAT */
871         s->ostat &= ~value;
872         break;
873     case 0x14: /* EMUX */
874         s->emux = value;
875         break;
876     case 0x18: /* USTAT */
877         s->ustat &= ~value;
878         break;
879     case 0x20: /* SSPRI */
880         s->sspri = value;
881         break;
882     case 0x28: /* PSSI */
883         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
884         break;
885     case 0x30: /* SAC */
886         s->sac = value;
887         break;
888     default:
889         qemu_log_mask(LOG_GUEST_ERROR,
890                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
891     }
892     stellaris_adc_update(s);
893 }
894 
895 static const MemoryRegionOps stellaris_adc_ops = {
896     .read = stellaris_adc_read,
897     .write = stellaris_adc_write,
898     .endianness = DEVICE_NATIVE_ENDIAN,
899 };
900 
901 static const VMStateDescription vmstate_stellaris_adc = {
902     .name = "stellaris_adc",
903     .version_id = 1,
904     .minimum_version_id = 1,
905     .fields = (const VMStateField[]) {
906         VMSTATE_UINT32(actss, StellarisADCState),
907         VMSTATE_UINT32(ris, StellarisADCState),
908         VMSTATE_UINT32(im, StellarisADCState),
909         VMSTATE_UINT32(emux, StellarisADCState),
910         VMSTATE_UINT32(ostat, StellarisADCState),
911         VMSTATE_UINT32(ustat, StellarisADCState),
912         VMSTATE_UINT32(sspri, StellarisADCState),
913         VMSTATE_UINT32(sac, StellarisADCState),
914         VMSTATE_UINT32(fifo[0].state, StellarisADCState),
915         VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16),
916         VMSTATE_UINT32(ssmux[0], StellarisADCState),
917         VMSTATE_UINT32(ssctl[0], StellarisADCState),
918         VMSTATE_UINT32(fifo[1].state, StellarisADCState),
919         VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16),
920         VMSTATE_UINT32(ssmux[1], StellarisADCState),
921         VMSTATE_UINT32(ssctl[1], StellarisADCState),
922         VMSTATE_UINT32(fifo[2].state, StellarisADCState),
923         VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16),
924         VMSTATE_UINT32(ssmux[2], StellarisADCState),
925         VMSTATE_UINT32(ssctl[2], StellarisADCState),
926         VMSTATE_UINT32(fifo[3].state, StellarisADCState),
927         VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16),
928         VMSTATE_UINT32(ssmux[3], StellarisADCState),
929         VMSTATE_UINT32(ssctl[3], StellarisADCState),
930         VMSTATE_UINT32(noise, StellarisADCState),
931         VMSTATE_END_OF_LIST()
932     }
933 };
934 
935 static void stellaris_adc_init(Object *obj)
936 {
937     DeviceState *dev = DEVICE(obj);
938     StellarisADCState *s = STELLARIS_ADC(obj);
939     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
940     int n;
941 
942     for (n = 0; n < 4; n++) {
943         sysbus_init_irq(sbd, &s->irq[n]);
944     }
945 
946     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
947                           "adc", 0x1000);
948     sysbus_init_mmio(sbd, &s->iomem);
949     stellaris_adc_reset(s);
950     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
951 }
952 
953 /* Board init.  */
954 static stellaris_board_info stellaris_boards[] = {
955   { "LM3S811EVB",
956     0,
957     0x0032000e,
958     0x001f001f, /* dc0 */
959     0x001132bf,
960     0x01071013,
961     0x3f0f01ff,
962     0x0000001f,
963     BP_OLED_I2C
964   },
965   { "LM3S6965EVB",
966     0x10010002,
967     0x1073402e,
968     0x00ff007f, /* dc0 */
969     0x001133ff,
970     0x030f5317,
971     0x0f0f87ff,
972     0x5000007f,
973     BP_OLED_SSI | BP_GAMEPAD
974   }
975 };
976 
977 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
978 {
979     static const int uart_irq[] = {5, 6, 33, 34};
980     static const int timer_irq[] = {19, 21, 23, 35};
981     static const uint32_t gpio_addr[7] =
982       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
983         0x40024000, 0x40025000, 0x40026000};
984     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
985 
986     /* Memory map of SoC devices, from
987      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
988      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
989      *
990      * 40000000 wdtimer
991      * 40002000 i2c (unimplemented)
992      * 40004000 GPIO
993      * 40005000 GPIO
994      * 40006000 GPIO
995      * 40007000 GPIO
996      * 40008000 SSI
997      * 4000c000 UART
998      * 4000d000 UART
999      * 4000e000 UART
1000      * 40020000 i2c
1001      * 40021000 i2c (unimplemented)
1002      * 40024000 GPIO
1003      * 40025000 GPIO
1004      * 40026000 GPIO
1005      * 40028000 PWM (unimplemented)
1006      * 4002c000 QEI (unimplemented)
1007      * 4002d000 QEI (unimplemented)
1008      * 40030000 gptimer
1009      * 40031000 gptimer
1010      * 40032000 gptimer
1011      * 40033000 gptimer
1012      * 40038000 ADC
1013      * 4003c000 analogue comparator (unimplemented)
1014      * 40048000 ethernet
1015      * 400fc000 hibernation module (unimplemented)
1016      * 400fd000 flash memory control (unimplemented)
1017      * 400fe000 system control
1018      */
1019 
1020     DeviceState *gpio_dev[7], *nvic;
1021     qemu_irq gpio_in[7][8];
1022     qemu_irq gpio_out[7][8];
1023     qemu_irq adc;
1024     int sram_size;
1025     int flash_size;
1026     I2CBus *i2c;
1027     DeviceState *dev;
1028     DeviceState *ssys_dev;
1029     int i;
1030     int j;
1031     const uint8_t *macaddr;
1032 
1033     MemoryRegion *sram = g_new(MemoryRegion, 1);
1034     MemoryRegion *flash = g_new(MemoryRegion, 1);
1035     MemoryRegion *system_memory = get_system_memory();
1036 
1037     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1038     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1039 
1040     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1041     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1042                            &error_fatal);
1043     memory_region_add_subregion(system_memory, 0, flash);
1044 
1045     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1046                            &error_fatal);
1047     memory_region_add_subregion(system_memory, 0x20000000, sram);
1048 
1049     /*
1050      * Create the system-registers object early, because we will
1051      * need its sysclk output.
1052      */
1053     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1054     /* Most devices come preprogrammed with a MAC address in the user data. */
1055     macaddr = nd_table[0].macaddr.a;
1056     qdev_prop_set_uint32(ssys_dev, "user0",
1057                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1058     qdev_prop_set_uint32(ssys_dev, "user1",
1059                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1060     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1061     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1062     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1063     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1064     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1065     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1066     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1067     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1068 
1069     nvic = qdev_new(TYPE_ARMV7M);
1070     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1071     qdev_prop_set_uint8(nvic, "num-prio-bits", NUM_PRIO_BITS);
1072     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1073     qdev_prop_set_bit(nvic, "enable-bitband", true);
1074     qdev_connect_clock_in(nvic, "cpuclk",
1075                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
1076     /* This SoC does not connect the systick reference clock */
1077     object_property_set_link(OBJECT(nvic), "memory",
1078                              OBJECT(get_system_memory()), &error_abort);
1079     /* This will exit with an error if the user passed us a bad cpu_type */
1080     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1081 
1082     /* Now we can wire up the IRQ and MMIO of the system registers */
1083     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1084     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1085 
1086     if (board->dc1 & (1 << 16)) {
1087         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1088                                     qdev_get_gpio_in(nvic, 14),
1089                                     qdev_get_gpio_in(nvic, 15),
1090                                     qdev_get_gpio_in(nvic, 16),
1091                                     qdev_get_gpio_in(nvic, 17),
1092                                     NULL);
1093         adc = qdev_get_gpio_in(dev, 0);
1094     } else {
1095         adc = NULL;
1096     }
1097     for (i = 0; i < 4; i++) {
1098         if (board->dc2 & (0x10000 << i)) {
1099             SysBusDevice *sbd;
1100 
1101             dev = qdev_new(TYPE_STELLARIS_GPTM);
1102             sbd = SYS_BUS_DEVICE(dev);
1103             qdev_connect_clock_in(dev, "clk",
1104                                   qdev_get_clock_out(ssys_dev, "SYSCLK"));
1105             sysbus_realize_and_unref(sbd, &error_fatal);
1106             sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1107             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1108             /* TODO: This is incorrect, but we get away with it because
1109                the ADC output is only ever pulsed.  */
1110             qdev_connect_gpio_out(dev, 0, adc);
1111         }
1112     }
1113 
1114     if (board->dc1 & (1 << 3)) { /* watchdog present */
1115         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1116 
1117         qdev_connect_clock_in(dev, "WDOGCLK",
1118                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1119 
1120         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1121         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1122                         0,
1123                         0x40000000u);
1124         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1125                            0,
1126                            qdev_get_gpio_in(nvic, 18));
1127     }
1128 
1129 
1130     for (i = 0; i < 7; i++) {
1131         if (board->dc4 & (1 << i)) {
1132             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1133                                                qdev_get_gpio_in(nvic,
1134                                                                 gpio_irq[i]));
1135             for (j = 0; j < 8; j++) {
1136                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1137                 gpio_out[i][j] = NULL;
1138             }
1139         }
1140     }
1141 
1142     if (board->dc2 & (1 << 12)) {
1143         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1144                                    qdev_get_gpio_in(nvic, 8));
1145         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1146         if (board->peripherals & BP_OLED_I2C) {
1147             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1148         }
1149     }
1150 
1151     for (i = 0; i < 4; i++) {
1152         if (board->dc2 & (1 << i)) {
1153             SysBusDevice *sbd;
1154 
1155             dev = qdev_new("pl011_luminary");
1156             sbd = SYS_BUS_DEVICE(dev);
1157             qdev_prop_set_chr(dev, "chardev", serial_hd(i));
1158             sysbus_realize_and_unref(sbd, &error_fatal);
1159             sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000);
1160             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i]));
1161         }
1162     }
1163     if (board->dc2 & (1 << 4)) {
1164         dev = sysbus_create_simple("pl022", 0x40008000,
1165                                    qdev_get_gpio_in(nvic, 7));
1166         if (board->peripherals & BP_OLED_SSI) {
1167             void *bus;
1168             DeviceState *sddev;
1169             DeviceState *ssddev;
1170             DriveInfo *dinfo;
1171             DeviceState *carddev;
1172             DeviceState *gpio_d_splitter;
1173             BlockBackend *blk;
1174 
1175             /*
1176              * Some boards have both an OLED controller and SD card connected to
1177              * the same SSI port, with the SD card chip select connected to a
1178              * GPIO pin.  Technically the OLED chip select is connected to the
1179              * SSI Fss pin.  We do not bother emulating that as both devices
1180              * should never be selected simultaneously, and our OLED controller
1181              * ignores stray 0xff commands that occur when deselecting the SD
1182              * card.
1183              *
1184              * The h/w wiring is:
1185              *  - GPIO pin D0 is wired to the active-low SD card chip select
1186              *  - GPIO pin A3 is wired to the active-low OLED chip select
1187              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1188              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1189              *    SSI controller. The SSI controller takes SSI0Fss low when it
1190              *    transmits a frame, so it can work as a chip-select signal.
1191              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1192              *    (the OLED never sends data to the CPU, so no wiring needed)
1193              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1194              *    and the OLED display-data-in
1195              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1196              *    serial-clock input
1197              * So a guest that wants to use the OLED can configure the PL061
1198              * to make pins A2, A3, A5 aux-function, so they are connected
1199              * directly to the SSI controller. When the SSI controller sends
1200              * data it asserts SSI0Fss which selects the OLED.
1201              * A guest that wants to use the SD card configures A2, A4 and A5
1202              * as aux-function, but leaves A3 as a software-controlled GPIO
1203              * line. It asserts the SD card chip-select by using the PL061
1204              * to control pin D0, and lets the SSI controller handle Clk, Tx
1205              * and Rx. (The SSI controller asserts Fss during tx cycles as
1206              * usual, but because A3 is not set to aux-function this is not
1207              * forwarded to the OLED, and so the OLED stays unselected.)
1208              *
1209              * The QEMU implementation instead is:
1210              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1211              *    and also to the OLED chip-select which is implemented
1212              *    as *active-high*
1213              *  - SSI controller signals go to the devices regardless of
1214              *    whether the guest programs A2, A4, A5 as aux-function or not
1215              *
1216              * The problem with this implementation is if the guest doesn't
1217              * care about the SD card and only uses the OLED. In that case it
1218              * may choose never to do anything with D0 (leaving it in its
1219              * default floating state, which reliably leaves the card disabled
1220              * because an SD card has a pullup on CS within the card itself),
1221              * and only set up A2, A3, A5. This for us would mean the OLED
1222              * never gets the chip-select assert it needs. We work around
1223              * this with a manual raise of D0 here (despite board creation
1224              * code being the wrong place to raise IRQ lines) to put the OLED
1225              * into an initially selected state.
1226              *
1227              * In theory the right way to model this would be:
1228              *  - Implement aux-function support in the PL061, with an
1229              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1230              *    if a GPIO line is in auxfn mode the main GPIO in and out
1231              *    track the AFIN and AFOUT lines)
1232              *  - Wire the AFOUT for D0 up to either a line from the
1233              *    SSI controller that's pulled low around every transmit,
1234              *    or at least to an always-0 line here on the board
1235              *  - Make the ssd0323 OLED controller chipselect active-low
1236              */
1237             bus = qdev_get_child_bus(dev, "ssi");
1238             sddev = ssi_create_peripheral(bus, "ssi-sd");
1239 
1240             dinfo = drive_get(IF_SD, 0, 0);
1241             blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
1242             carddev = qdev_new(TYPE_SD_CARD_SPI);
1243             qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
1244             qdev_realize_and_unref(carddev,
1245                                    qdev_get_child_bus(sddev, "sd-bus"),
1246                                    &error_fatal);
1247 
1248             ssddev = qdev_new("ssd0323");
1249             qdev_prop_set_uint8(ssddev, "cs", 1);
1250             qdev_realize_and_unref(ssddev, bus, &error_fatal);
1251 
1252             gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
1253             qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
1254             qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
1255             qdev_connect_gpio_out(
1256                     gpio_d_splitter, 0,
1257                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
1258             qdev_connect_gpio_out(
1259                     gpio_d_splitter, 1,
1260                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1261             gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
1262 
1263             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1264 
1265             /* Make sure the select pin is high.  */
1266             qemu_irq_raise(gpio_out[GPIO_D][0]);
1267         }
1268     }
1269     if (board->dc4 & (1 << 28)) {
1270         DeviceState *enet;
1271 
1272         qemu_check_nic_model(&nd_table[0], "stellaris");
1273 
1274         enet = qdev_new("stellaris_enet");
1275         qdev_set_nic_properties(enet, &nd_table[0]);
1276         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1277         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1278         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1279     }
1280     if (board->peripherals & BP_GAMEPAD) {
1281         QList *gpad_keycode_list = qlist_new();
1282         static const int gpad_keycode[5] = {
1283             Q_KEY_CODE_UP, Q_KEY_CODE_DOWN, Q_KEY_CODE_LEFT,
1284             Q_KEY_CODE_RIGHT, Q_KEY_CODE_CTRL,
1285         };
1286         DeviceState *gpad;
1287 
1288         gpad = qdev_new(TYPE_STELLARIS_GAMEPAD);
1289         for (i = 0; i < ARRAY_SIZE(gpad_keycode); i++) {
1290             qlist_append_int(gpad_keycode_list, gpad_keycode[i]);
1291         }
1292         qdev_prop_set_array(gpad, "keycodes", gpad_keycode_list);
1293         sysbus_realize_and_unref(SYS_BUS_DEVICE(gpad), &error_fatal);
1294 
1295         qdev_connect_gpio_out(gpad, 0,
1296                               qemu_irq_invert(gpio_in[GPIO_E][0])); /* up */
1297         qdev_connect_gpio_out(gpad, 1,
1298                               qemu_irq_invert(gpio_in[GPIO_E][1])); /* down */
1299         qdev_connect_gpio_out(gpad, 2,
1300                               qemu_irq_invert(gpio_in[GPIO_E][2])); /* left */
1301         qdev_connect_gpio_out(gpad, 3,
1302                               qemu_irq_invert(gpio_in[GPIO_E][3])); /* right */
1303         qdev_connect_gpio_out(gpad, 4,
1304                               qemu_irq_invert(gpio_in[GPIO_F][1])); /* select */
1305     }
1306     for (i = 0; i < 7; i++) {
1307         if (board->dc4 & (1 << i)) {
1308             for (j = 0; j < 8; j++) {
1309                 if (gpio_out[i][j]) {
1310                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1311                 }
1312             }
1313         }
1314     }
1315 
1316     /* Add dummy regions for the devices we don't implement yet,
1317      * so guest accesses don't cause unlogged crashes.
1318      */
1319     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1320     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1321     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1322     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1323     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1324     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1325     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1326     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1327 
1328     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size);
1329 }
1330 
1331 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1332 static void lm3s811evb_init(MachineState *machine)
1333 {
1334     stellaris_init(machine, &stellaris_boards[0]);
1335 }
1336 
1337 static void lm3s6965evb_init(MachineState *machine)
1338 {
1339     stellaris_init(machine, &stellaris_boards[1]);
1340 }
1341 
1342 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1343 {
1344     MachineClass *mc = MACHINE_CLASS(oc);
1345 
1346     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1347     mc->init = lm3s811evb_init;
1348     mc->ignore_memory_transaction_failures = true;
1349     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1350 }
1351 
1352 static const TypeInfo lm3s811evb_type = {
1353     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1354     .parent = TYPE_MACHINE,
1355     .class_init = lm3s811evb_class_init,
1356 };
1357 
1358 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1359 {
1360     MachineClass *mc = MACHINE_CLASS(oc);
1361 
1362     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1363     mc->init = lm3s6965evb_init;
1364     mc->ignore_memory_transaction_failures = true;
1365     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1366 }
1367 
1368 static const TypeInfo lm3s6965evb_type = {
1369     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1370     .parent = TYPE_MACHINE,
1371     .class_init = lm3s6965evb_class_init,
1372 };
1373 
1374 static void stellaris_machine_init(void)
1375 {
1376     type_register_static(&lm3s811evb_type);
1377     type_register_static(&lm3s6965evb_type);
1378 }
1379 
1380 type_init(stellaris_machine_init)
1381 
1382 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1383 {
1384     DeviceClass *dc = DEVICE_CLASS(klass);
1385 
1386     dc->vmsd = &vmstate_stellaris_i2c;
1387 }
1388 
1389 static const TypeInfo stellaris_i2c_info = {
1390     .name          = TYPE_STELLARIS_I2C,
1391     .parent        = TYPE_SYS_BUS_DEVICE,
1392     .instance_size = sizeof(stellaris_i2c_state),
1393     .instance_init = stellaris_i2c_init,
1394     .class_init    = stellaris_i2c_class_init,
1395 };
1396 
1397 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1398 {
1399     DeviceClass *dc = DEVICE_CLASS(klass);
1400 
1401     dc->vmsd = &vmstate_stellaris_adc;
1402 }
1403 
1404 static const TypeInfo stellaris_adc_info = {
1405     .name          = TYPE_STELLARIS_ADC,
1406     .parent        = TYPE_SYS_BUS_DEVICE,
1407     .instance_size = sizeof(StellarisADCState),
1408     .instance_init = stellaris_adc_init,
1409     .class_init    = stellaris_adc_class_init,
1410 };
1411 
1412 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1413 {
1414     DeviceClass *dc = DEVICE_CLASS(klass);
1415     ResettableClass *rc = RESETTABLE_CLASS(klass);
1416 
1417     dc->vmsd = &vmstate_stellaris_sys;
1418     rc->phases.enter = stellaris_sys_reset_enter;
1419     rc->phases.hold = stellaris_sys_reset_hold;
1420     rc->phases.exit = stellaris_sys_reset_exit;
1421     device_class_set_props(dc, stellaris_sys_properties);
1422 }
1423 
1424 static const TypeInfo stellaris_sys_info = {
1425     .name = TYPE_STELLARIS_SYS,
1426     .parent = TYPE_SYS_BUS_DEVICE,
1427     .instance_size = sizeof(ssys_state),
1428     .instance_init = stellaris_sys_instance_init,
1429     .class_init = stellaris_sys_class_init,
1430 };
1431 
1432 static void stellaris_register_types(void)
1433 {
1434     type_register_static(&stellaris_i2c_info);
1435     type_register_static(&stellaris_adc_info);
1436     type_register_static(&stellaris_sys_info);
1437 }
1438 
1439 type_init(stellaris_register_types)
1440