xref: /qemu/hw/arm/stellaris.c (revision ab9056ff)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/runstate.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/armv7m.h"
24 #include "hw/char/pl011.h"
25 #include "hw/input/gamepad.h"
26 #include "hw/irq.h"
27 #include "hw/watchdog/cmsdk-apb-watchdog.h"
28 #include "migration/vmstate.h"
29 #include "hw/misc/unimp.h"
30 #include "cpu.h"
31 
32 #define GPIO_A 0
33 #define GPIO_B 1
34 #define GPIO_C 2
35 #define GPIO_D 3
36 #define GPIO_E 4
37 #define GPIO_F 5
38 #define GPIO_G 6
39 
40 #define BP_OLED_I2C  0x01
41 #define BP_OLED_SSI  0x02
42 #define BP_GAMEPAD   0x04
43 
44 #define NUM_IRQ_LINES 64
45 
46 typedef const struct {
47     const char *name;
48     uint32_t did0;
49     uint32_t did1;
50     uint32_t dc0;
51     uint32_t dc1;
52     uint32_t dc2;
53     uint32_t dc3;
54     uint32_t dc4;
55     uint32_t peripherals;
56 } stellaris_board_info;
57 
58 /* General purpose timer module.  */
59 
60 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
61 #define STELLARIS_GPTM(obj) \
62     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
63 
64 typedef struct gptm_state {
65     SysBusDevice parent_obj;
66 
67     MemoryRegion iomem;
68     uint32_t config;
69     uint32_t mode[2];
70     uint32_t control;
71     uint32_t state;
72     uint32_t mask;
73     uint32_t load[2];
74     uint32_t match[2];
75     uint32_t prescale[2];
76     uint32_t match_prescale[2];
77     uint32_t rtc;
78     int64_t tick[2];
79     struct gptm_state *opaque[2];
80     QEMUTimer *timer[2];
81     /* The timers have an alternate output used to trigger the ADC.  */
82     qemu_irq trigger;
83     qemu_irq irq;
84 } gptm_state;
85 
86 static void gptm_update_irq(gptm_state *s)
87 {
88     int level;
89     level = (s->state & s->mask) != 0;
90     qemu_set_irq(s->irq, level);
91 }
92 
93 static void gptm_stop(gptm_state *s, int n)
94 {
95     timer_del(s->timer[n]);
96 }
97 
98 static void gptm_reload(gptm_state *s, int n, int reset)
99 {
100     int64_t tick;
101     if (reset)
102         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
103     else
104         tick = s->tick[n];
105 
106     if (s->config == 0) {
107         /* 32-bit CountDown.  */
108         uint32_t count;
109         count = s->load[0] | (s->load[1] << 16);
110         tick += (int64_t)count * system_clock_scale;
111     } else if (s->config == 1) {
112         /* 32-bit RTC.  1Hz tick.  */
113         tick += NANOSECONDS_PER_SECOND;
114     } else if (s->mode[n] == 0xa) {
115         /* PWM mode.  Not implemented.  */
116     } else {
117         qemu_log_mask(LOG_UNIMP,
118                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
119                       s->mode[n]);
120         return;
121     }
122     s->tick[n] = tick;
123     timer_mod(s->timer[n], tick);
124 }
125 
126 static void gptm_tick(void *opaque)
127 {
128     gptm_state **p = (gptm_state **)opaque;
129     gptm_state *s;
130     int n;
131 
132     s = *p;
133     n = p - s->opaque;
134     if (s->config == 0) {
135         s->state |= 1;
136         if ((s->control & 0x20)) {
137             /* Output trigger.  */
138             qemu_irq_pulse(s->trigger);
139         }
140         if (s->mode[0] & 1) {
141             /* One-shot.  */
142             s->control &= ~1;
143         } else {
144             /* Periodic.  */
145             gptm_reload(s, 0, 0);
146         }
147     } else if (s->config == 1) {
148         /* RTC.  */
149         uint32_t match;
150         s->rtc++;
151         match = s->match[0] | (s->match[1] << 16);
152         if (s->rtc > match)
153             s->rtc = 0;
154         if (s->rtc == 0) {
155             s->state |= 8;
156         }
157         gptm_reload(s, 0, 0);
158     } else if (s->mode[n] == 0xa) {
159         /* PWM mode.  Not implemented.  */
160     } else {
161         qemu_log_mask(LOG_UNIMP,
162                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
163                       s->mode[n]);
164     }
165     gptm_update_irq(s);
166 }
167 
168 static uint64_t gptm_read(void *opaque, hwaddr offset,
169                           unsigned size)
170 {
171     gptm_state *s = (gptm_state *)opaque;
172 
173     switch (offset) {
174     case 0x00: /* CFG */
175         return s->config;
176     case 0x04: /* TAMR */
177         return s->mode[0];
178     case 0x08: /* TBMR */
179         return s->mode[1];
180     case 0x0c: /* CTL */
181         return s->control;
182     case 0x18: /* IMR */
183         return s->mask;
184     case 0x1c: /* RIS */
185         return s->state;
186     case 0x20: /* MIS */
187         return s->state & s->mask;
188     case 0x24: /* CR */
189         return 0;
190     case 0x28: /* TAILR */
191         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
192     case 0x2c: /* TBILR */
193         return s->load[1];
194     case 0x30: /* TAMARCHR */
195         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
196     case 0x34: /* TBMATCHR */
197         return s->match[1];
198     case 0x38: /* TAPR */
199         return s->prescale[0];
200     case 0x3c: /* TBPR */
201         return s->prescale[1];
202     case 0x40: /* TAPMR */
203         return s->match_prescale[0];
204     case 0x44: /* TBPMR */
205         return s->match_prescale[1];
206     case 0x48: /* TAR */
207         if (s->config == 1) {
208             return s->rtc;
209         }
210         qemu_log_mask(LOG_UNIMP,
211                       "GPTM: read of TAR but timer read not supported\n");
212         return 0;
213     case 0x4c: /* TBR */
214         qemu_log_mask(LOG_UNIMP,
215                       "GPTM: read of TBR but timer read not supported\n");
216         return 0;
217     default:
218         qemu_log_mask(LOG_GUEST_ERROR,
219                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
220                       offset);
221         return 0;
222     }
223 }
224 
225 static void gptm_write(void *opaque, hwaddr offset,
226                        uint64_t value, unsigned size)
227 {
228     gptm_state *s = (gptm_state *)opaque;
229     uint32_t oldval;
230 
231     /* The timers should be disabled before changing the configuration.
232        We take advantage of this and defer everything until the timer
233        is enabled.  */
234     switch (offset) {
235     case 0x00: /* CFG */
236         s->config = value;
237         break;
238     case 0x04: /* TAMR */
239         s->mode[0] = value;
240         break;
241     case 0x08: /* TBMR */
242         s->mode[1] = value;
243         break;
244     case 0x0c: /* CTL */
245         oldval = s->control;
246         s->control = value;
247         /* TODO: Implement pause.  */
248         if ((oldval ^ value) & 1) {
249             if (value & 1) {
250                 gptm_reload(s, 0, 1);
251             } else {
252                 gptm_stop(s, 0);
253             }
254         }
255         if (((oldval ^ value) & 0x100) && s->config >= 4) {
256             if (value & 0x100) {
257                 gptm_reload(s, 1, 1);
258             } else {
259                 gptm_stop(s, 1);
260             }
261         }
262         break;
263     case 0x18: /* IMR */
264         s->mask = value & 0x77;
265         gptm_update_irq(s);
266         break;
267     case 0x24: /* CR */
268         s->state &= ~value;
269         break;
270     case 0x28: /* TAILR */
271         s->load[0] = value & 0xffff;
272         if (s->config < 4) {
273             s->load[1] = value >> 16;
274         }
275         break;
276     case 0x2c: /* TBILR */
277         s->load[1] = value & 0xffff;
278         break;
279     case 0x30: /* TAMARCHR */
280         s->match[0] = value & 0xffff;
281         if (s->config < 4) {
282             s->match[1] = value >> 16;
283         }
284         break;
285     case 0x34: /* TBMATCHR */
286         s->match[1] = value >> 16;
287         break;
288     case 0x38: /* TAPR */
289         s->prescale[0] = value;
290         break;
291     case 0x3c: /* TBPR */
292         s->prescale[1] = value;
293         break;
294     case 0x40: /* TAPMR */
295         s->match_prescale[0] = value;
296         break;
297     case 0x44: /* TBPMR */
298         s->match_prescale[0] = value;
299         break;
300     default:
301         qemu_log_mask(LOG_GUEST_ERROR,
302                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
303                       offset);
304     }
305     gptm_update_irq(s);
306 }
307 
308 static const MemoryRegionOps gptm_ops = {
309     .read = gptm_read,
310     .write = gptm_write,
311     .endianness = DEVICE_NATIVE_ENDIAN,
312 };
313 
314 static const VMStateDescription vmstate_stellaris_gptm = {
315     .name = "stellaris_gptm",
316     .version_id = 1,
317     .minimum_version_id = 1,
318     .fields = (VMStateField[]) {
319         VMSTATE_UINT32(config, gptm_state),
320         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
321         VMSTATE_UINT32(control, gptm_state),
322         VMSTATE_UINT32(state, gptm_state),
323         VMSTATE_UINT32(mask, gptm_state),
324         VMSTATE_UNUSED(8),
325         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
326         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
327         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
328         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
329         VMSTATE_UINT32(rtc, gptm_state),
330         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
331         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
332         VMSTATE_END_OF_LIST()
333     }
334 };
335 
336 static void stellaris_gptm_init(Object *obj)
337 {
338     DeviceState *dev = DEVICE(obj);
339     gptm_state *s = STELLARIS_GPTM(obj);
340     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
341 
342     sysbus_init_irq(sbd, &s->irq);
343     qdev_init_gpio_out(dev, &s->trigger, 1);
344 
345     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
346                           "gptm", 0x1000);
347     sysbus_init_mmio(sbd, &s->iomem);
348 
349     s->opaque[0] = s->opaque[1] = s;
350     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
351     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
352 }
353 
354 
355 /* System controller.  */
356 
357 typedef struct {
358     MemoryRegion iomem;
359     uint32_t pborctl;
360     uint32_t ldopctl;
361     uint32_t int_status;
362     uint32_t int_mask;
363     uint32_t resc;
364     uint32_t rcc;
365     uint32_t rcc2;
366     uint32_t rcgc[3];
367     uint32_t scgc[3];
368     uint32_t dcgc[3];
369     uint32_t clkvclr;
370     uint32_t ldoarst;
371     uint32_t user0;
372     uint32_t user1;
373     qemu_irq irq;
374     stellaris_board_info *board;
375 } ssys_state;
376 
377 static void ssys_update(ssys_state *s)
378 {
379   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
380 }
381 
382 static uint32_t pllcfg_sandstorm[16] = {
383     0x31c0, /* 1 Mhz */
384     0x1ae0, /* 1.8432 Mhz */
385     0x18c0, /* 2 Mhz */
386     0xd573, /* 2.4576 Mhz */
387     0x37a6, /* 3.57954 Mhz */
388     0x1ae2, /* 3.6864 Mhz */
389     0x0c40, /* 4 Mhz */
390     0x98bc, /* 4.906 Mhz */
391     0x935b, /* 4.9152 Mhz */
392     0x09c0, /* 5 Mhz */
393     0x4dee, /* 5.12 Mhz */
394     0x0c41, /* 6 Mhz */
395     0x75db, /* 6.144 Mhz */
396     0x1ae6, /* 7.3728 Mhz */
397     0x0600, /* 8 Mhz */
398     0x585b /* 8.192 Mhz */
399 };
400 
401 static uint32_t pllcfg_fury[16] = {
402     0x3200, /* 1 Mhz */
403     0x1b20, /* 1.8432 Mhz */
404     0x1900, /* 2 Mhz */
405     0xf42b, /* 2.4576 Mhz */
406     0x37e3, /* 3.57954 Mhz */
407     0x1b21, /* 3.6864 Mhz */
408     0x0c80, /* 4 Mhz */
409     0x98ee, /* 4.906 Mhz */
410     0xd5b4, /* 4.9152 Mhz */
411     0x0a00, /* 5 Mhz */
412     0x4e27, /* 5.12 Mhz */
413     0x1902, /* 6 Mhz */
414     0xec1c, /* 6.144 Mhz */
415     0x1b23, /* 7.3728 Mhz */
416     0x0640, /* 8 Mhz */
417     0xb11c /* 8.192 Mhz */
418 };
419 
420 #define DID0_VER_MASK        0x70000000
421 #define DID0_VER_0           0x00000000
422 #define DID0_VER_1           0x10000000
423 
424 #define DID0_CLASS_MASK      0x00FF0000
425 #define DID0_CLASS_SANDSTORM 0x00000000
426 #define DID0_CLASS_FURY      0x00010000
427 
428 static int ssys_board_class(const ssys_state *s)
429 {
430     uint32_t did0 = s->board->did0;
431     switch (did0 & DID0_VER_MASK) {
432     case DID0_VER_0:
433         return DID0_CLASS_SANDSTORM;
434     case DID0_VER_1:
435         switch (did0 & DID0_CLASS_MASK) {
436         case DID0_CLASS_SANDSTORM:
437         case DID0_CLASS_FURY:
438             return did0 & DID0_CLASS_MASK;
439         }
440         /* for unknown classes, fall through */
441     default:
442         /* This can only happen if the hardwired constant did0 value
443          * in this board's stellaris_board_info struct is wrong.
444          */
445         g_assert_not_reached();
446     }
447 }
448 
449 static uint64_t ssys_read(void *opaque, hwaddr offset,
450                           unsigned size)
451 {
452     ssys_state *s = (ssys_state *)opaque;
453 
454     switch (offset) {
455     case 0x000: /* DID0 */
456         return s->board->did0;
457     case 0x004: /* DID1 */
458         return s->board->did1;
459     case 0x008: /* DC0 */
460         return s->board->dc0;
461     case 0x010: /* DC1 */
462         return s->board->dc1;
463     case 0x014: /* DC2 */
464         return s->board->dc2;
465     case 0x018: /* DC3 */
466         return s->board->dc3;
467     case 0x01c: /* DC4 */
468         return s->board->dc4;
469     case 0x030: /* PBORCTL */
470         return s->pborctl;
471     case 0x034: /* LDOPCTL */
472         return s->ldopctl;
473     case 0x040: /* SRCR0 */
474         return 0;
475     case 0x044: /* SRCR1 */
476         return 0;
477     case 0x048: /* SRCR2 */
478         return 0;
479     case 0x050: /* RIS */
480         return s->int_status;
481     case 0x054: /* IMC */
482         return s->int_mask;
483     case 0x058: /* MISC */
484         return s->int_status & s->int_mask;
485     case 0x05c: /* RESC */
486         return s->resc;
487     case 0x060: /* RCC */
488         return s->rcc;
489     case 0x064: /* PLLCFG */
490         {
491             int xtal;
492             xtal = (s->rcc >> 6) & 0xf;
493             switch (ssys_board_class(s)) {
494             case DID0_CLASS_FURY:
495                 return pllcfg_fury[xtal];
496             case DID0_CLASS_SANDSTORM:
497                 return pllcfg_sandstorm[xtal];
498             default:
499                 g_assert_not_reached();
500             }
501         }
502     case 0x070: /* RCC2 */
503         return s->rcc2;
504     case 0x100: /* RCGC0 */
505         return s->rcgc[0];
506     case 0x104: /* RCGC1 */
507         return s->rcgc[1];
508     case 0x108: /* RCGC2 */
509         return s->rcgc[2];
510     case 0x110: /* SCGC0 */
511         return s->scgc[0];
512     case 0x114: /* SCGC1 */
513         return s->scgc[1];
514     case 0x118: /* SCGC2 */
515         return s->scgc[2];
516     case 0x120: /* DCGC0 */
517         return s->dcgc[0];
518     case 0x124: /* DCGC1 */
519         return s->dcgc[1];
520     case 0x128: /* DCGC2 */
521         return s->dcgc[2];
522     case 0x150: /* CLKVCLR */
523         return s->clkvclr;
524     case 0x160: /* LDOARST */
525         return s->ldoarst;
526     case 0x1e0: /* USER0 */
527         return s->user0;
528     case 0x1e4: /* USER1 */
529         return s->user1;
530     default:
531         qemu_log_mask(LOG_GUEST_ERROR,
532                       "SSYS: read at bad offset 0x%x\n", (int)offset);
533         return 0;
534     }
535 }
536 
537 static bool ssys_use_rcc2(ssys_state *s)
538 {
539     return (s->rcc2 >> 31) & 0x1;
540 }
541 
542 /*
543  * Caculate the sys. clock period in ms.
544  */
545 static void ssys_calculate_system_clock(ssys_state *s)
546 {
547     if (ssys_use_rcc2(s)) {
548         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
549     } else {
550         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
551     }
552 }
553 
554 static void ssys_write(void *opaque, hwaddr offset,
555                        uint64_t value, unsigned size)
556 {
557     ssys_state *s = (ssys_state *)opaque;
558 
559     switch (offset) {
560     case 0x030: /* PBORCTL */
561         s->pborctl = value & 0xffff;
562         break;
563     case 0x034: /* LDOPCTL */
564         s->ldopctl = value & 0x1f;
565         break;
566     case 0x040: /* SRCR0 */
567     case 0x044: /* SRCR1 */
568     case 0x048: /* SRCR2 */
569         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
570         break;
571     case 0x054: /* IMC */
572         s->int_mask = value & 0x7f;
573         break;
574     case 0x058: /* MISC */
575         s->int_status &= ~value;
576         break;
577     case 0x05c: /* RESC */
578         s->resc = value & 0x3f;
579         break;
580     case 0x060: /* RCC */
581         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
582             /* PLL enable.  */
583             s->int_status |= (1 << 6);
584         }
585         s->rcc = value;
586         ssys_calculate_system_clock(s);
587         break;
588     case 0x070: /* RCC2 */
589         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
590             break;
591         }
592 
593         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
594             /* PLL enable.  */
595             s->int_status |= (1 << 6);
596         }
597         s->rcc2 = value;
598         ssys_calculate_system_clock(s);
599         break;
600     case 0x100: /* RCGC0 */
601         s->rcgc[0] = value;
602         break;
603     case 0x104: /* RCGC1 */
604         s->rcgc[1] = value;
605         break;
606     case 0x108: /* RCGC2 */
607         s->rcgc[2] = value;
608         break;
609     case 0x110: /* SCGC0 */
610         s->scgc[0] = value;
611         break;
612     case 0x114: /* SCGC1 */
613         s->scgc[1] = value;
614         break;
615     case 0x118: /* SCGC2 */
616         s->scgc[2] = value;
617         break;
618     case 0x120: /* DCGC0 */
619         s->dcgc[0] = value;
620         break;
621     case 0x124: /* DCGC1 */
622         s->dcgc[1] = value;
623         break;
624     case 0x128: /* DCGC2 */
625         s->dcgc[2] = value;
626         break;
627     case 0x150: /* CLKVCLR */
628         s->clkvclr = value;
629         break;
630     case 0x160: /* LDOARST */
631         s->ldoarst = value;
632         break;
633     default:
634         qemu_log_mask(LOG_GUEST_ERROR,
635                       "SSYS: write at bad offset 0x%x\n", (int)offset);
636     }
637     ssys_update(s);
638 }
639 
640 static const MemoryRegionOps ssys_ops = {
641     .read = ssys_read,
642     .write = ssys_write,
643     .endianness = DEVICE_NATIVE_ENDIAN,
644 };
645 
646 static void ssys_reset(void *opaque)
647 {
648     ssys_state *s = (ssys_state *)opaque;
649 
650     s->pborctl = 0x7ffd;
651     s->rcc = 0x078e3ac0;
652 
653     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
654         s->rcc2 = 0;
655     } else {
656         s->rcc2 = 0x07802810;
657     }
658     s->rcgc[0] = 1;
659     s->scgc[0] = 1;
660     s->dcgc[0] = 1;
661     ssys_calculate_system_clock(s);
662 }
663 
664 static int stellaris_sys_post_load(void *opaque, int version_id)
665 {
666     ssys_state *s = opaque;
667 
668     ssys_calculate_system_clock(s);
669 
670     return 0;
671 }
672 
673 static const VMStateDescription vmstate_stellaris_sys = {
674     .name = "stellaris_sys",
675     .version_id = 2,
676     .minimum_version_id = 1,
677     .post_load = stellaris_sys_post_load,
678     .fields = (VMStateField[]) {
679         VMSTATE_UINT32(pborctl, ssys_state),
680         VMSTATE_UINT32(ldopctl, ssys_state),
681         VMSTATE_UINT32(int_mask, ssys_state),
682         VMSTATE_UINT32(int_status, ssys_state),
683         VMSTATE_UINT32(resc, ssys_state),
684         VMSTATE_UINT32(rcc, ssys_state),
685         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
686         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
687         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
688         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
689         VMSTATE_UINT32(clkvclr, ssys_state),
690         VMSTATE_UINT32(ldoarst, ssys_state),
691         VMSTATE_END_OF_LIST()
692     }
693 };
694 
695 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
696                               stellaris_board_info * board,
697                               uint8_t *macaddr)
698 {
699     ssys_state *s;
700 
701     s = g_new0(ssys_state, 1);
702     s->irq = irq;
703     s->board = board;
704     /* Most devices come preprogrammed with a MAC address in the user data. */
705     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
706     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
707 
708     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
709     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
710     ssys_reset(s);
711     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
712     return 0;
713 }
714 
715 
716 /* I2C controller.  */
717 
718 #define TYPE_STELLARIS_I2C "stellaris-i2c"
719 #define STELLARIS_I2C(obj) \
720     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
721 
722 typedef struct {
723     SysBusDevice parent_obj;
724 
725     I2CBus *bus;
726     qemu_irq irq;
727     MemoryRegion iomem;
728     uint32_t msa;
729     uint32_t mcs;
730     uint32_t mdr;
731     uint32_t mtpr;
732     uint32_t mimr;
733     uint32_t mris;
734     uint32_t mcr;
735 } stellaris_i2c_state;
736 
737 #define STELLARIS_I2C_MCS_BUSY    0x01
738 #define STELLARIS_I2C_MCS_ERROR   0x02
739 #define STELLARIS_I2C_MCS_ADRACK  0x04
740 #define STELLARIS_I2C_MCS_DATACK  0x08
741 #define STELLARIS_I2C_MCS_ARBLST  0x10
742 #define STELLARIS_I2C_MCS_IDLE    0x20
743 #define STELLARIS_I2C_MCS_BUSBSY  0x40
744 
745 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
746                                    unsigned size)
747 {
748     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
749 
750     switch (offset) {
751     case 0x00: /* MSA */
752         return s->msa;
753     case 0x04: /* MCS */
754         /* We don't emulate timing, so the controller is never busy.  */
755         return s->mcs | STELLARIS_I2C_MCS_IDLE;
756     case 0x08: /* MDR */
757         return s->mdr;
758     case 0x0c: /* MTPR */
759         return s->mtpr;
760     case 0x10: /* MIMR */
761         return s->mimr;
762     case 0x14: /* MRIS */
763         return s->mris;
764     case 0x18: /* MMIS */
765         return s->mris & s->mimr;
766     case 0x20: /* MCR */
767         return s->mcr;
768     default:
769         qemu_log_mask(LOG_GUEST_ERROR,
770                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
771         return 0;
772     }
773 }
774 
775 static void stellaris_i2c_update(stellaris_i2c_state *s)
776 {
777     int level;
778 
779     level = (s->mris & s->mimr) != 0;
780     qemu_set_irq(s->irq, level);
781 }
782 
783 static void stellaris_i2c_write(void *opaque, hwaddr offset,
784                                 uint64_t value, unsigned size)
785 {
786     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
787 
788     switch (offset) {
789     case 0x00: /* MSA */
790         s->msa = value & 0xff;
791         break;
792     case 0x04: /* MCS */
793         if ((s->mcr & 0x10) == 0) {
794             /* Disabled.  Do nothing.  */
795             break;
796         }
797         /* Grab the bus if this is starting a transfer.  */
798         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
799             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
800                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
801             } else {
802                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
803                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
804             }
805         }
806         /* If we don't have the bus then indicate an error.  */
807         if (!i2c_bus_busy(s->bus)
808                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
809             s->mcs |= STELLARIS_I2C_MCS_ERROR;
810             break;
811         }
812         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
813         if (value & 1) {
814             /* Transfer a byte.  */
815             /* TODO: Handle errors.  */
816             if (s->msa & 1) {
817                 /* Recv */
818                 s->mdr = i2c_recv(s->bus);
819             } else {
820                 /* Send */
821                 i2c_send(s->bus, s->mdr);
822             }
823             /* Raise an interrupt.  */
824             s->mris |= 1;
825         }
826         if (value & 4) {
827             /* Finish transfer.  */
828             i2c_end_transfer(s->bus);
829             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
830         }
831         break;
832     case 0x08: /* MDR */
833         s->mdr = value & 0xff;
834         break;
835     case 0x0c: /* MTPR */
836         s->mtpr = value & 0xff;
837         break;
838     case 0x10: /* MIMR */
839         s->mimr = 1;
840         break;
841     case 0x1c: /* MICR */
842         s->mris &= ~value;
843         break;
844     case 0x20: /* MCR */
845         if (value & 1) {
846             qemu_log_mask(LOG_UNIMP,
847                           "stellaris_i2c: Loopback not implemented\n");
848         }
849         if (value & 0x20) {
850             qemu_log_mask(LOG_UNIMP,
851                           "stellaris_i2c: Slave mode not implemented\n");
852         }
853         s->mcr = value & 0x31;
854         break;
855     default:
856         qemu_log_mask(LOG_GUEST_ERROR,
857                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
858     }
859     stellaris_i2c_update(s);
860 }
861 
862 static void stellaris_i2c_reset(stellaris_i2c_state *s)
863 {
864     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
865         i2c_end_transfer(s->bus);
866 
867     s->msa = 0;
868     s->mcs = 0;
869     s->mdr = 0;
870     s->mtpr = 1;
871     s->mimr = 0;
872     s->mris = 0;
873     s->mcr = 0;
874     stellaris_i2c_update(s);
875 }
876 
877 static const MemoryRegionOps stellaris_i2c_ops = {
878     .read = stellaris_i2c_read,
879     .write = stellaris_i2c_write,
880     .endianness = DEVICE_NATIVE_ENDIAN,
881 };
882 
883 static const VMStateDescription vmstate_stellaris_i2c = {
884     .name = "stellaris_i2c",
885     .version_id = 1,
886     .minimum_version_id = 1,
887     .fields = (VMStateField[]) {
888         VMSTATE_UINT32(msa, stellaris_i2c_state),
889         VMSTATE_UINT32(mcs, stellaris_i2c_state),
890         VMSTATE_UINT32(mdr, stellaris_i2c_state),
891         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
892         VMSTATE_UINT32(mimr, stellaris_i2c_state),
893         VMSTATE_UINT32(mris, stellaris_i2c_state),
894         VMSTATE_UINT32(mcr, stellaris_i2c_state),
895         VMSTATE_END_OF_LIST()
896     }
897 };
898 
899 static void stellaris_i2c_init(Object *obj)
900 {
901     DeviceState *dev = DEVICE(obj);
902     stellaris_i2c_state *s = STELLARIS_I2C(obj);
903     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
904     I2CBus *bus;
905 
906     sysbus_init_irq(sbd, &s->irq);
907     bus = i2c_init_bus(dev, "i2c");
908     s->bus = bus;
909 
910     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
911                           "i2c", 0x1000);
912     sysbus_init_mmio(sbd, &s->iomem);
913     /* ??? For now we only implement the master interface.  */
914     stellaris_i2c_reset(s);
915 }
916 
917 /* Analogue to Digital Converter.  This is only partially implemented,
918    enough for applications that use a combined ADC and timer tick.  */
919 
920 #define STELLARIS_ADC_EM_CONTROLLER 0
921 #define STELLARIS_ADC_EM_COMP       1
922 #define STELLARIS_ADC_EM_EXTERNAL   4
923 #define STELLARIS_ADC_EM_TIMER      5
924 #define STELLARIS_ADC_EM_PWM0       6
925 #define STELLARIS_ADC_EM_PWM1       7
926 #define STELLARIS_ADC_EM_PWM2       8
927 
928 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
929 #define STELLARIS_ADC_FIFO_FULL     0x1000
930 
931 #define TYPE_STELLARIS_ADC "stellaris-adc"
932 #define STELLARIS_ADC(obj) \
933     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
934 
935 typedef struct StellarisADCState {
936     SysBusDevice parent_obj;
937 
938     MemoryRegion iomem;
939     uint32_t actss;
940     uint32_t ris;
941     uint32_t im;
942     uint32_t emux;
943     uint32_t ostat;
944     uint32_t ustat;
945     uint32_t sspri;
946     uint32_t sac;
947     struct {
948         uint32_t state;
949         uint32_t data[16];
950     } fifo[4];
951     uint32_t ssmux[4];
952     uint32_t ssctl[4];
953     uint32_t noise;
954     qemu_irq irq[4];
955 } stellaris_adc_state;
956 
957 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
958 {
959     int tail;
960 
961     tail = s->fifo[n].state & 0xf;
962     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
963         s->ustat |= 1 << n;
964     } else {
965         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
966         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
967         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
968             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
969     }
970     return s->fifo[n].data[tail];
971 }
972 
973 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
974                                      uint32_t value)
975 {
976     int head;
977 
978     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
979        FIFO fir each sequencer.  */
980     head = (s->fifo[n].state >> 4) & 0xf;
981     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
982         s->ostat |= 1 << n;
983         return;
984     }
985     s->fifo[n].data[head] = value;
986     head = (head + 1) & 0xf;
987     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
988     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
989     if ((s->fifo[n].state & 0xf) == head)
990         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
991 }
992 
993 static void stellaris_adc_update(stellaris_adc_state *s)
994 {
995     int level;
996     int n;
997 
998     for (n = 0; n < 4; n++) {
999         level = (s->ris & s->im & (1 << n)) != 0;
1000         qemu_set_irq(s->irq[n], level);
1001     }
1002 }
1003 
1004 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1005 {
1006     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1007     int n;
1008 
1009     for (n = 0; n < 4; n++) {
1010         if ((s->actss & (1 << n)) == 0) {
1011             continue;
1012         }
1013 
1014         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1015             continue;
1016         }
1017 
1018         /* Some applications use the ADC as a random number source, so introduce
1019            some variation into the signal.  */
1020         s->noise = s->noise * 314159 + 1;
1021         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1022         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1023         s->ris |= (1 << n);
1024         stellaris_adc_update(s);
1025     }
1026 }
1027 
1028 static void stellaris_adc_reset(stellaris_adc_state *s)
1029 {
1030     int n;
1031 
1032     for (n = 0; n < 4; n++) {
1033         s->ssmux[n] = 0;
1034         s->ssctl[n] = 0;
1035         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1036     }
1037 }
1038 
1039 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1040                                    unsigned size)
1041 {
1042     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1043 
1044     /* TODO: Implement this.  */
1045     if (offset >= 0x40 && offset < 0xc0) {
1046         int n;
1047         n = (offset - 0x40) >> 5;
1048         switch (offset & 0x1f) {
1049         case 0x00: /* SSMUX */
1050             return s->ssmux[n];
1051         case 0x04: /* SSCTL */
1052             return s->ssctl[n];
1053         case 0x08: /* SSFIFO */
1054             return stellaris_adc_fifo_read(s, n);
1055         case 0x0c: /* SSFSTAT */
1056             return s->fifo[n].state;
1057         default:
1058             break;
1059         }
1060     }
1061     switch (offset) {
1062     case 0x00: /* ACTSS */
1063         return s->actss;
1064     case 0x04: /* RIS */
1065         return s->ris;
1066     case 0x08: /* IM */
1067         return s->im;
1068     case 0x0c: /* ISC */
1069         return s->ris & s->im;
1070     case 0x10: /* OSTAT */
1071         return s->ostat;
1072     case 0x14: /* EMUX */
1073         return s->emux;
1074     case 0x18: /* USTAT */
1075         return s->ustat;
1076     case 0x20: /* SSPRI */
1077         return s->sspri;
1078     case 0x30: /* SAC */
1079         return s->sac;
1080     default:
1081         qemu_log_mask(LOG_GUEST_ERROR,
1082                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1083         return 0;
1084     }
1085 }
1086 
1087 static void stellaris_adc_write(void *opaque, hwaddr offset,
1088                                 uint64_t value, unsigned size)
1089 {
1090     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1091 
1092     /* TODO: Implement this.  */
1093     if (offset >= 0x40 && offset < 0xc0) {
1094         int n;
1095         n = (offset - 0x40) >> 5;
1096         switch (offset & 0x1f) {
1097         case 0x00: /* SSMUX */
1098             s->ssmux[n] = value & 0x33333333;
1099             return;
1100         case 0x04: /* SSCTL */
1101             if (value != 6) {
1102                 qemu_log_mask(LOG_UNIMP,
1103                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1104                               value);
1105             }
1106             s->ssctl[n] = value;
1107             return;
1108         default:
1109             break;
1110         }
1111     }
1112     switch (offset) {
1113     case 0x00: /* ACTSS */
1114         s->actss = value & 0xf;
1115         break;
1116     case 0x08: /* IM */
1117         s->im = value;
1118         break;
1119     case 0x0c: /* ISC */
1120         s->ris &= ~value;
1121         break;
1122     case 0x10: /* OSTAT */
1123         s->ostat &= ~value;
1124         break;
1125     case 0x14: /* EMUX */
1126         s->emux = value;
1127         break;
1128     case 0x18: /* USTAT */
1129         s->ustat &= ~value;
1130         break;
1131     case 0x20: /* SSPRI */
1132         s->sspri = value;
1133         break;
1134     case 0x28: /* PSSI */
1135         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1136         break;
1137     case 0x30: /* SAC */
1138         s->sac = value;
1139         break;
1140     default:
1141         qemu_log_mask(LOG_GUEST_ERROR,
1142                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1143     }
1144     stellaris_adc_update(s);
1145 }
1146 
1147 static const MemoryRegionOps stellaris_adc_ops = {
1148     .read = stellaris_adc_read,
1149     .write = stellaris_adc_write,
1150     .endianness = DEVICE_NATIVE_ENDIAN,
1151 };
1152 
1153 static const VMStateDescription vmstate_stellaris_adc = {
1154     .name = "stellaris_adc",
1155     .version_id = 1,
1156     .minimum_version_id = 1,
1157     .fields = (VMStateField[]) {
1158         VMSTATE_UINT32(actss, stellaris_adc_state),
1159         VMSTATE_UINT32(ris, stellaris_adc_state),
1160         VMSTATE_UINT32(im, stellaris_adc_state),
1161         VMSTATE_UINT32(emux, stellaris_adc_state),
1162         VMSTATE_UINT32(ostat, stellaris_adc_state),
1163         VMSTATE_UINT32(ustat, stellaris_adc_state),
1164         VMSTATE_UINT32(sspri, stellaris_adc_state),
1165         VMSTATE_UINT32(sac, stellaris_adc_state),
1166         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1167         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1168         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1169         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1170         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1171         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1172         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1173         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1174         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1175         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1176         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1177         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1178         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1179         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1180         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1181         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1182         VMSTATE_UINT32(noise, stellaris_adc_state),
1183         VMSTATE_END_OF_LIST()
1184     }
1185 };
1186 
1187 static void stellaris_adc_init(Object *obj)
1188 {
1189     DeviceState *dev = DEVICE(obj);
1190     stellaris_adc_state *s = STELLARIS_ADC(obj);
1191     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1192     int n;
1193 
1194     for (n = 0; n < 4; n++) {
1195         sysbus_init_irq(sbd, &s->irq[n]);
1196     }
1197 
1198     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1199                           "adc", 0x1000);
1200     sysbus_init_mmio(sbd, &s->iomem);
1201     stellaris_adc_reset(s);
1202     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1203 }
1204 
1205 static
1206 void do_sys_reset(void *opaque, int n, int level)
1207 {
1208     if (level) {
1209         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1210     }
1211 }
1212 
1213 /* Board init.  */
1214 static stellaris_board_info stellaris_boards[] = {
1215   { "LM3S811EVB",
1216     0,
1217     0x0032000e,
1218     0x001f001f, /* dc0 */
1219     0x001132bf,
1220     0x01071013,
1221     0x3f0f01ff,
1222     0x0000001f,
1223     BP_OLED_I2C
1224   },
1225   { "LM3S6965EVB",
1226     0x10010002,
1227     0x1073402e,
1228     0x00ff007f, /* dc0 */
1229     0x001133ff,
1230     0x030f5317,
1231     0x0f0f87ff,
1232     0x5000007f,
1233     BP_OLED_SSI | BP_GAMEPAD
1234   }
1235 };
1236 
1237 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1238 {
1239     static const int uart_irq[] = {5, 6, 33, 34};
1240     static const int timer_irq[] = {19, 21, 23, 35};
1241     static const uint32_t gpio_addr[7] =
1242       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1243         0x40024000, 0x40025000, 0x40026000};
1244     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1245 
1246     /* Memory map of SoC devices, from
1247      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1248      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1249      *
1250      * 40000000 wdtimer
1251      * 40002000 i2c (unimplemented)
1252      * 40004000 GPIO
1253      * 40005000 GPIO
1254      * 40006000 GPIO
1255      * 40007000 GPIO
1256      * 40008000 SSI
1257      * 4000c000 UART
1258      * 4000d000 UART
1259      * 4000e000 UART
1260      * 40020000 i2c
1261      * 40021000 i2c (unimplemented)
1262      * 40024000 GPIO
1263      * 40025000 GPIO
1264      * 40026000 GPIO
1265      * 40028000 PWM (unimplemented)
1266      * 4002c000 QEI (unimplemented)
1267      * 4002d000 QEI (unimplemented)
1268      * 40030000 gptimer
1269      * 40031000 gptimer
1270      * 40032000 gptimer
1271      * 40033000 gptimer
1272      * 40038000 ADC
1273      * 4003c000 analogue comparator (unimplemented)
1274      * 40048000 ethernet
1275      * 400fc000 hibernation module (unimplemented)
1276      * 400fd000 flash memory control (unimplemented)
1277      * 400fe000 system control
1278      */
1279 
1280     DeviceState *gpio_dev[7], *nvic;
1281     qemu_irq gpio_in[7][8];
1282     qemu_irq gpio_out[7][8];
1283     qemu_irq adc;
1284     int sram_size;
1285     int flash_size;
1286     I2CBus *i2c;
1287     DeviceState *dev;
1288     int i;
1289     int j;
1290 
1291     MemoryRegion *sram = g_new(MemoryRegion, 1);
1292     MemoryRegion *flash = g_new(MemoryRegion, 1);
1293     MemoryRegion *system_memory = get_system_memory();
1294 
1295     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1296     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1297 
1298     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1299     memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1300                            &error_fatal);
1301     memory_region_set_readonly(flash, true);
1302     memory_region_add_subregion(system_memory, 0, flash);
1303 
1304     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1305                            &error_fatal);
1306     memory_region_add_subregion(system_memory, 0x20000000, sram);
1307 
1308     nvic = qdev_create(NULL, TYPE_ARMV7M);
1309     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1310     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1311     qdev_prop_set_bit(nvic, "enable-bitband", true);
1312     object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()),
1313                                      "memory", &error_abort);
1314     /* This will exit with an error if the user passed us a bad cpu_type */
1315     qdev_init_nofail(nvic);
1316 
1317     qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1318                                 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1319 
1320     if (board->dc1 & (1 << 16)) {
1321         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1322                                     qdev_get_gpio_in(nvic, 14),
1323                                     qdev_get_gpio_in(nvic, 15),
1324                                     qdev_get_gpio_in(nvic, 16),
1325                                     qdev_get_gpio_in(nvic, 17),
1326                                     NULL);
1327         adc = qdev_get_gpio_in(dev, 0);
1328     } else {
1329         adc = NULL;
1330     }
1331     for (i = 0; i < 4; i++) {
1332         if (board->dc2 & (0x10000 << i)) {
1333             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1334                                        0x40030000 + i * 0x1000,
1335                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1336             /* TODO: This is incorrect, but we get away with it because
1337                the ADC output is only ever pulsed.  */
1338             qdev_connect_gpio_out(dev, 0, adc);
1339         }
1340     }
1341 
1342     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1343                        board, nd_table[0].macaddr.a);
1344 
1345 
1346     if (board->dc1 & (1 << 3)) { /* watchdog present */
1347         dev = qdev_create(NULL, TYPE_LUMINARY_WATCHDOG);
1348 
1349         /* system_clock_scale is valid now */
1350         uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1351         qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1352 
1353         qdev_init_nofail(dev);
1354         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1355                         0,
1356                         0x40000000u);
1357         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1358                            0,
1359                            qdev_get_gpio_in(nvic, 18));
1360     }
1361 
1362 
1363     for (i = 0; i < 7; i++) {
1364         if (board->dc4 & (1 << i)) {
1365             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1366                                                qdev_get_gpio_in(nvic,
1367                                                                 gpio_irq[i]));
1368             for (j = 0; j < 8; j++) {
1369                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1370                 gpio_out[i][j] = NULL;
1371             }
1372         }
1373     }
1374 
1375     if (board->dc2 & (1 << 12)) {
1376         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1377                                    qdev_get_gpio_in(nvic, 8));
1378         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1379         if (board->peripherals & BP_OLED_I2C) {
1380             i2c_create_slave(i2c, "ssd0303", 0x3d);
1381         }
1382     }
1383 
1384     for (i = 0; i < 4; i++) {
1385         if (board->dc2 & (1 << i)) {
1386             pl011_luminary_create(0x4000c000 + i * 0x1000,
1387                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1388                                   serial_hd(i));
1389         }
1390     }
1391     if (board->dc2 & (1 << 4)) {
1392         dev = sysbus_create_simple("pl022", 0x40008000,
1393                                    qdev_get_gpio_in(nvic, 7));
1394         if (board->peripherals & BP_OLED_SSI) {
1395             void *bus;
1396             DeviceState *sddev;
1397             DeviceState *ssddev;
1398 
1399             /* Some boards have both an OLED controller and SD card connected to
1400              * the same SSI port, with the SD card chip select connected to a
1401              * GPIO pin.  Technically the OLED chip select is connected to the
1402              * SSI Fss pin.  We do not bother emulating that as both devices
1403              * should never be selected simultaneously, and our OLED controller
1404              * ignores stray 0xff commands that occur when deselecting the SD
1405              * card.
1406              */
1407             bus = qdev_get_child_bus(dev, "ssi");
1408 
1409             sddev = ssi_create_slave(bus, "ssi-sd");
1410             ssddev = ssi_create_slave(bus, "ssd0323");
1411             gpio_out[GPIO_D][0] = qemu_irq_split(
1412                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1413                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1414             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1415 
1416             /* Make sure the select pin is high.  */
1417             qemu_irq_raise(gpio_out[GPIO_D][0]);
1418         }
1419     }
1420     if (board->dc4 & (1 << 28)) {
1421         DeviceState *enet;
1422 
1423         qemu_check_nic_model(&nd_table[0], "stellaris");
1424 
1425         enet = qdev_create(NULL, "stellaris_enet");
1426         qdev_set_nic_properties(enet, &nd_table[0]);
1427         qdev_init_nofail(enet);
1428         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1429         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1430     }
1431     if (board->peripherals & BP_GAMEPAD) {
1432         qemu_irq gpad_irq[5];
1433         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1434 
1435         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1436         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1437         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1438         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1439         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1440 
1441         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1442     }
1443     for (i = 0; i < 7; i++) {
1444         if (board->dc4 & (1 << i)) {
1445             for (j = 0; j < 8; j++) {
1446                 if (gpio_out[i][j]) {
1447                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1448                 }
1449             }
1450         }
1451     }
1452 
1453     /* Add dummy regions for the devices we don't implement yet,
1454      * so guest accesses don't cause unlogged crashes.
1455      */
1456     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1457     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1458     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1459     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1460     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1461     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1462     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1463     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1464 
1465     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1466 }
1467 
1468 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1469 static void lm3s811evb_init(MachineState *machine)
1470 {
1471     stellaris_init(machine, &stellaris_boards[0]);
1472 }
1473 
1474 static void lm3s6965evb_init(MachineState *machine)
1475 {
1476     stellaris_init(machine, &stellaris_boards[1]);
1477 }
1478 
1479 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1480 {
1481     MachineClass *mc = MACHINE_CLASS(oc);
1482 
1483     mc->desc = "Stellaris LM3S811EVB";
1484     mc->init = lm3s811evb_init;
1485     mc->ignore_memory_transaction_failures = true;
1486     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1487 }
1488 
1489 static const TypeInfo lm3s811evb_type = {
1490     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1491     .parent = TYPE_MACHINE,
1492     .class_init = lm3s811evb_class_init,
1493 };
1494 
1495 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1496 {
1497     MachineClass *mc = MACHINE_CLASS(oc);
1498 
1499     mc->desc = "Stellaris LM3S6965EVB";
1500     mc->init = lm3s6965evb_init;
1501     mc->ignore_memory_transaction_failures = true;
1502     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1503 }
1504 
1505 static const TypeInfo lm3s6965evb_type = {
1506     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1507     .parent = TYPE_MACHINE,
1508     .class_init = lm3s6965evb_class_init,
1509 };
1510 
1511 static void stellaris_machine_init(void)
1512 {
1513     type_register_static(&lm3s811evb_type);
1514     type_register_static(&lm3s6965evb_type);
1515 }
1516 
1517 type_init(stellaris_machine_init)
1518 
1519 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1520 {
1521     DeviceClass *dc = DEVICE_CLASS(klass);
1522 
1523     dc->vmsd = &vmstate_stellaris_i2c;
1524 }
1525 
1526 static const TypeInfo stellaris_i2c_info = {
1527     .name          = TYPE_STELLARIS_I2C,
1528     .parent        = TYPE_SYS_BUS_DEVICE,
1529     .instance_size = sizeof(stellaris_i2c_state),
1530     .instance_init = stellaris_i2c_init,
1531     .class_init    = stellaris_i2c_class_init,
1532 };
1533 
1534 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1535 {
1536     DeviceClass *dc = DEVICE_CLASS(klass);
1537 
1538     dc->vmsd = &vmstate_stellaris_gptm;
1539 }
1540 
1541 static const TypeInfo stellaris_gptm_info = {
1542     .name          = TYPE_STELLARIS_GPTM,
1543     .parent        = TYPE_SYS_BUS_DEVICE,
1544     .instance_size = sizeof(gptm_state),
1545     .instance_init = stellaris_gptm_init,
1546     .class_init    = stellaris_gptm_class_init,
1547 };
1548 
1549 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1550 {
1551     DeviceClass *dc = DEVICE_CLASS(klass);
1552 
1553     dc->vmsd = &vmstate_stellaris_adc;
1554 }
1555 
1556 static const TypeInfo stellaris_adc_info = {
1557     .name          = TYPE_STELLARIS_ADC,
1558     .parent        = TYPE_SYS_BUS_DEVICE,
1559     .instance_size = sizeof(stellaris_adc_state),
1560     .instance_init = stellaris_adc_init,
1561     .class_init    = stellaris_adc_class_init,
1562 };
1563 
1564 static void stellaris_register_types(void)
1565 {
1566     type_register_static(&stellaris_i2c_info);
1567     type_register_static(&stellaris_gptm_info);
1568     type_register_static(&stellaris_adc_info);
1569 }
1570 
1571 type_init(stellaris_register_types)
1572