xref: /qemu/hw/arm/strongarm.c (revision 7a4e543d)
1 /*
2  * StrongARM SA-1100/SA-1110 emulation
3  *
4  * Copyright (C) 2011 Dmitry Eremin-Solenikov
5  *
6  * Largely based on StrongARM emulation:
7  * Copyright (c) 2006 Openedhand Ltd.
8  * Written by Andrzej Zaborowski <balrog@zabor.org>
9  *
10  * UART code based on QEMU 16550A UART emulation
11  * Copyright (c) 2003-2004 Fabrice Bellard
12  * Copyright (c) 2008 Citrix Systems, Inc.
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License version 2 as
16  *  published by the Free Software Foundation.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License along
24  *  with this program; if not, see <http://www.gnu.org/licenses/>.
25  *
26  *  Contributions after 2012-01-13 are licensed under the terms of the
27  *  GNU GPL, version 2 or (at your option) any later version.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/boards.h"
32 #include "hw/sysbus.h"
33 #include "strongarm.h"
34 #include "qemu/error-report.h"
35 #include "hw/arm/arm.h"
36 #include "sysemu/char.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/ssi/ssi.h"
39 
40 //#define DEBUG
41 
42 /*
43  TODO
44  - Implement cp15, c14 ?
45  - Implement cp15, c15 !!! (idle used in L)
46  - Implement idle mode handling/DIM
47  - Implement sleep mode/Wake sources
48  - Implement reset control
49  - Implement memory control regs
50  - PCMCIA handling
51  - Maybe support MBGNT/MBREQ
52  - DMA channels
53  - GPCLK
54  - IrDA
55  - MCP
56  - Enhance UART with modem signals
57  */
58 
59 #ifdef DEBUG
60 # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
61 #else
62 # define DPRINTF(format, ...) do { } while (0)
63 #endif
64 
65 static struct {
66     hwaddr io_base;
67     int irq;
68 } sa_serial[] = {
69     { 0x80010000, SA_PIC_UART1 },
70     { 0x80030000, SA_PIC_UART2 },
71     { 0x80050000, SA_PIC_UART3 },
72     { 0, 0 }
73 };
74 
75 /* Interrupt Controller */
76 
77 #define TYPE_STRONGARM_PIC "strongarm_pic"
78 #define STRONGARM_PIC(obj) \
79     OBJECT_CHECK(StrongARMPICState, (obj), TYPE_STRONGARM_PIC)
80 
81 typedef struct StrongARMPICState {
82     SysBusDevice parent_obj;
83 
84     MemoryRegion iomem;
85     qemu_irq    irq;
86     qemu_irq    fiq;
87 
88     uint32_t pending;
89     uint32_t enabled;
90     uint32_t is_fiq;
91     uint32_t int_idle;
92 } StrongARMPICState;
93 
94 #define ICIP    0x00
95 #define ICMR    0x04
96 #define ICLR    0x08
97 #define ICFP    0x10
98 #define ICPR    0x20
99 #define ICCR    0x0c
100 
101 #define SA_PIC_SRCS     32
102 
103 
104 static void strongarm_pic_update(void *opaque)
105 {
106     StrongARMPICState *s = opaque;
107 
108     /* FIXME: reflect DIM */
109     qemu_set_irq(s->fiq, s->pending & s->enabled &  s->is_fiq);
110     qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
111 }
112 
113 static void strongarm_pic_set_irq(void *opaque, int irq, int level)
114 {
115     StrongARMPICState *s = opaque;
116 
117     if (level) {
118         s->pending |= 1 << irq;
119     } else {
120         s->pending &= ~(1 << irq);
121     }
122 
123     strongarm_pic_update(s);
124 }
125 
126 static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
127                                        unsigned size)
128 {
129     StrongARMPICState *s = opaque;
130 
131     switch (offset) {
132     case ICIP:
133         return s->pending & ~s->is_fiq & s->enabled;
134     case ICMR:
135         return s->enabled;
136     case ICLR:
137         return s->is_fiq;
138     case ICCR:
139         return s->int_idle == 0;
140     case ICFP:
141         return s->pending & s->is_fiq & s->enabled;
142     case ICPR:
143         return s->pending;
144     default:
145         printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
146                         __func__, offset);
147         return 0;
148     }
149 }
150 
151 static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
152                                     uint64_t value, unsigned size)
153 {
154     StrongARMPICState *s = opaque;
155 
156     switch (offset) {
157     case ICMR:
158         s->enabled = value;
159         break;
160     case ICLR:
161         s->is_fiq = value;
162         break;
163     case ICCR:
164         s->int_idle = (value & 1) ? 0 : ~0;
165         break;
166     default:
167         printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
168                         __func__, offset);
169         break;
170     }
171     strongarm_pic_update(s);
172 }
173 
174 static const MemoryRegionOps strongarm_pic_ops = {
175     .read = strongarm_pic_mem_read,
176     .write = strongarm_pic_mem_write,
177     .endianness = DEVICE_NATIVE_ENDIAN,
178 };
179 
180 static int strongarm_pic_initfn(SysBusDevice *sbd)
181 {
182     DeviceState *dev = DEVICE(sbd);
183     StrongARMPICState *s = STRONGARM_PIC(dev);
184 
185     qdev_init_gpio_in(dev, strongarm_pic_set_irq, SA_PIC_SRCS);
186     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_pic_ops, s,
187                           "pic", 0x1000);
188     sysbus_init_mmio(sbd, &s->iomem);
189     sysbus_init_irq(sbd, &s->irq);
190     sysbus_init_irq(sbd, &s->fiq);
191 
192     return 0;
193 }
194 
195 static int strongarm_pic_post_load(void *opaque, int version_id)
196 {
197     strongarm_pic_update(opaque);
198     return 0;
199 }
200 
201 static VMStateDescription vmstate_strongarm_pic_regs = {
202     .name = "strongarm_pic",
203     .version_id = 0,
204     .minimum_version_id = 0,
205     .post_load = strongarm_pic_post_load,
206     .fields = (VMStateField[]) {
207         VMSTATE_UINT32(pending, StrongARMPICState),
208         VMSTATE_UINT32(enabled, StrongARMPICState),
209         VMSTATE_UINT32(is_fiq, StrongARMPICState),
210         VMSTATE_UINT32(int_idle, StrongARMPICState),
211         VMSTATE_END_OF_LIST(),
212     },
213 };
214 
215 static void strongarm_pic_class_init(ObjectClass *klass, void *data)
216 {
217     DeviceClass *dc = DEVICE_CLASS(klass);
218     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
219 
220     k->init = strongarm_pic_initfn;
221     dc->desc = "StrongARM PIC";
222     dc->vmsd = &vmstate_strongarm_pic_regs;
223 }
224 
225 static const TypeInfo strongarm_pic_info = {
226     .name          = TYPE_STRONGARM_PIC,
227     .parent        = TYPE_SYS_BUS_DEVICE,
228     .instance_size = sizeof(StrongARMPICState),
229     .class_init    = strongarm_pic_class_init,
230 };
231 
232 /* Real-Time Clock */
233 #define RTAR 0x00 /* RTC Alarm register */
234 #define RCNR 0x04 /* RTC Counter register */
235 #define RTTR 0x08 /* RTC Timer Trim register */
236 #define RTSR 0x10 /* RTC Status register */
237 
238 #define RTSR_AL (1 << 0) /* RTC Alarm detected */
239 #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
240 #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
241 #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
242 
243 /* 16 LSB of RTTR are clockdiv for internal trim logic,
244  * trim delete isn't emulated, so
245  * f = 32 768 / (RTTR_trim + 1) */
246 
247 #define TYPE_STRONGARM_RTC "strongarm-rtc"
248 #define STRONGARM_RTC(obj) \
249     OBJECT_CHECK(StrongARMRTCState, (obj), TYPE_STRONGARM_RTC)
250 
251 typedef struct StrongARMRTCState {
252     SysBusDevice parent_obj;
253 
254     MemoryRegion iomem;
255     uint32_t rttr;
256     uint32_t rtsr;
257     uint32_t rtar;
258     uint32_t last_rcnr;
259     int64_t last_hz;
260     QEMUTimer *rtc_alarm;
261     QEMUTimer *rtc_hz;
262     qemu_irq rtc_irq;
263     qemu_irq rtc_hz_irq;
264 } StrongARMRTCState;
265 
266 static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
267 {
268     qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
269     qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
270 }
271 
272 static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
273 {
274     int64_t rt = qemu_clock_get_ms(rtc_clock);
275     s->last_rcnr += ((rt - s->last_hz) << 15) /
276             (1000 * ((s->rttr & 0xffff) + 1));
277     s->last_hz = rt;
278 }
279 
280 static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
281 {
282     if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
283         timer_mod(s->rtc_hz, s->last_hz + 1000);
284     } else {
285         timer_del(s->rtc_hz);
286     }
287 
288     if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
289         timer_mod(s->rtc_alarm, s->last_hz +
290                 (((s->rtar - s->last_rcnr) * 1000 *
291                   ((s->rttr & 0xffff) + 1)) >> 15));
292     } else {
293         timer_del(s->rtc_alarm);
294     }
295 }
296 
297 static inline void strongarm_rtc_alarm_tick(void *opaque)
298 {
299     StrongARMRTCState *s = opaque;
300     s->rtsr |= RTSR_AL;
301     strongarm_rtc_timer_update(s);
302     strongarm_rtc_int_update(s);
303 }
304 
305 static inline void strongarm_rtc_hz_tick(void *opaque)
306 {
307     StrongARMRTCState *s = opaque;
308     s->rtsr |= RTSR_HZ;
309     strongarm_rtc_timer_update(s);
310     strongarm_rtc_int_update(s);
311 }
312 
313 static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
314                                    unsigned size)
315 {
316     StrongARMRTCState *s = opaque;
317 
318     switch (addr) {
319     case RTTR:
320         return s->rttr;
321     case RTSR:
322         return s->rtsr;
323     case RTAR:
324         return s->rtar;
325     case RCNR:
326         return s->last_rcnr +
327                 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
328                 (1000 * ((s->rttr & 0xffff) + 1));
329     default:
330         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
331         return 0;
332     }
333 }
334 
335 static void strongarm_rtc_write(void *opaque, hwaddr addr,
336                                 uint64_t value, unsigned size)
337 {
338     StrongARMRTCState *s = opaque;
339     uint32_t old_rtsr;
340 
341     switch (addr) {
342     case RTTR:
343         strongarm_rtc_hzupdate(s);
344         s->rttr = value;
345         strongarm_rtc_timer_update(s);
346         break;
347 
348     case RTSR:
349         old_rtsr = s->rtsr;
350         s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
351                   (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
352 
353         if (s->rtsr != old_rtsr) {
354             strongarm_rtc_timer_update(s);
355         }
356 
357         strongarm_rtc_int_update(s);
358         break;
359 
360     case RTAR:
361         s->rtar = value;
362         strongarm_rtc_timer_update(s);
363         break;
364 
365     case RCNR:
366         strongarm_rtc_hzupdate(s);
367         s->last_rcnr = value;
368         strongarm_rtc_timer_update(s);
369         break;
370 
371     default:
372         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
373     }
374 }
375 
376 static const MemoryRegionOps strongarm_rtc_ops = {
377     .read = strongarm_rtc_read,
378     .write = strongarm_rtc_write,
379     .endianness = DEVICE_NATIVE_ENDIAN,
380 };
381 
382 static int strongarm_rtc_init(SysBusDevice *dev)
383 {
384     StrongARMRTCState *s = STRONGARM_RTC(dev);
385     struct tm tm;
386 
387     s->rttr = 0x0;
388     s->rtsr = 0;
389 
390     qemu_get_timedate(&tm, 0);
391 
392     s->last_rcnr = (uint32_t) mktimegm(&tm);
393     s->last_hz = qemu_clock_get_ms(rtc_clock);
394 
395     s->rtc_alarm = timer_new_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
396     s->rtc_hz = timer_new_ms(rtc_clock, strongarm_rtc_hz_tick, s);
397 
398     sysbus_init_irq(dev, &s->rtc_irq);
399     sysbus_init_irq(dev, &s->rtc_hz_irq);
400 
401     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_rtc_ops, s,
402                           "rtc", 0x10000);
403     sysbus_init_mmio(dev, &s->iomem);
404 
405     return 0;
406 }
407 
408 static void strongarm_rtc_pre_save(void *opaque)
409 {
410     StrongARMRTCState *s = opaque;
411 
412     strongarm_rtc_hzupdate(s);
413 }
414 
415 static int strongarm_rtc_post_load(void *opaque, int version_id)
416 {
417     StrongARMRTCState *s = opaque;
418 
419     strongarm_rtc_timer_update(s);
420     strongarm_rtc_int_update(s);
421 
422     return 0;
423 }
424 
425 static const VMStateDescription vmstate_strongarm_rtc_regs = {
426     .name = "strongarm-rtc",
427     .version_id = 0,
428     .minimum_version_id = 0,
429     .pre_save = strongarm_rtc_pre_save,
430     .post_load = strongarm_rtc_post_load,
431     .fields = (VMStateField[]) {
432         VMSTATE_UINT32(rttr, StrongARMRTCState),
433         VMSTATE_UINT32(rtsr, StrongARMRTCState),
434         VMSTATE_UINT32(rtar, StrongARMRTCState),
435         VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
436         VMSTATE_INT64(last_hz, StrongARMRTCState),
437         VMSTATE_END_OF_LIST(),
438     },
439 };
440 
441 static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
442 {
443     DeviceClass *dc = DEVICE_CLASS(klass);
444     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
445 
446     k->init = strongarm_rtc_init;
447     dc->desc = "StrongARM RTC Controller";
448     dc->vmsd = &vmstate_strongarm_rtc_regs;
449 }
450 
451 static const TypeInfo strongarm_rtc_sysbus_info = {
452     .name          = TYPE_STRONGARM_RTC,
453     .parent        = TYPE_SYS_BUS_DEVICE,
454     .instance_size = sizeof(StrongARMRTCState),
455     .class_init    = strongarm_rtc_sysbus_class_init,
456 };
457 
458 /* GPIO */
459 #define GPLR 0x00
460 #define GPDR 0x04
461 #define GPSR 0x08
462 #define GPCR 0x0c
463 #define GRER 0x10
464 #define GFER 0x14
465 #define GEDR 0x18
466 #define GAFR 0x1c
467 
468 #define TYPE_STRONGARM_GPIO "strongarm-gpio"
469 #define STRONGARM_GPIO(obj) \
470     OBJECT_CHECK(StrongARMGPIOInfo, (obj), TYPE_STRONGARM_GPIO)
471 
472 typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
473 struct StrongARMGPIOInfo {
474     SysBusDevice busdev;
475     MemoryRegion iomem;
476     qemu_irq handler[28];
477     qemu_irq irqs[11];
478     qemu_irq irqX;
479 
480     uint32_t ilevel;
481     uint32_t olevel;
482     uint32_t dir;
483     uint32_t rising;
484     uint32_t falling;
485     uint32_t status;
486     uint32_t gafr;
487 
488     uint32_t prev_level;
489 };
490 
491 
492 static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
493 {
494     int i;
495     for (i = 0; i < 11; i++) {
496         qemu_set_irq(s->irqs[i], s->status & (1 << i));
497     }
498 
499     qemu_set_irq(s->irqX, (s->status & ~0x7ff));
500 }
501 
502 static void strongarm_gpio_set(void *opaque, int line, int level)
503 {
504     StrongARMGPIOInfo *s = opaque;
505     uint32_t mask;
506 
507     mask = 1 << line;
508 
509     if (level) {
510         s->status |= s->rising & mask &
511                 ~s->ilevel & ~s->dir;
512         s->ilevel |= mask;
513     } else {
514         s->status |= s->falling & mask &
515                 s->ilevel & ~s->dir;
516         s->ilevel &= ~mask;
517     }
518 
519     if (s->status & mask) {
520         strongarm_gpio_irq_update(s);
521     }
522 }
523 
524 static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
525 {
526     uint32_t level, diff;
527     int bit;
528 
529     level = s->olevel & s->dir;
530 
531     for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
532         bit = ctz32(diff);
533         qemu_set_irq(s->handler[bit], (level >> bit) & 1);
534     }
535 
536     s->prev_level = level;
537 }
538 
539 static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
540                                     unsigned size)
541 {
542     StrongARMGPIOInfo *s = opaque;
543 
544     switch (offset) {
545     case GPDR:        /* GPIO Pin-Direction registers */
546         return s->dir;
547 
548     case GPSR:        /* GPIO Pin-Output Set registers */
549         qemu_log_mask(LOG_GUEST_ERROR,
550                       "strongarm GPIO: read from write only register GPSR\n");
551         return 0;
552 
553     case GPCR:        /* GPIO Pin-Output Clear registers */
554         qemu_log_mask(LOG_GUEST_ERROR,
555                       "strongarm GPIO: read from write only register GPCR\n");
556         return 0;
557 
558     case GRER:        /* GPIO Rising-Edge Detect Enable registers */
559         return s->rising;
560 
561     case GFER:        /* GPIO Falling-Edge Detect Enable registers */
562         return s->falling;
563 
564     case GAFR:        /* GPIO Alternate Function registers */
565         return s->gafr;
566 
567     case GPLR:        /* GPIO Pin-Level registers */
568         return (s->olevel & s->dir) |
569                (s->ilevel & ~s->dir);
570 
571     case GEDR:        /* GPIO Edge Detect Status registers */
572         return s->status;
573 
574     default:
575         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
576     }
577 
578     return 0;
579 }
580 
581 static void strongarm_gpio_write(void *opaque, hwaddr offset,
582                                  uint64_t value, unsigned size)
583 {
584     StrongARMGPIOInfo *s = opaque;
585 
586     switch (offset) {
587     case GPDR:        /* GPIO Pin-Direction registers */
588         s->dir = value;
589         strongarm_gpio_handler_update(s);
590         break;
591 
592     case GPSR:        /* GPIO Pin-Output Set registers */
593         s->olevel |= value;
594         strongarm_gpio_handler_update(s);
595         break;
596 
597     case GPCR:        /* GPIO Pin-Output Clear registers */
598         s->olevel &= ~value;
599         strongarm_gpio_handler_update(s);
600         break;
601 
602     case GRER:        /* GPIO Rising-Edge Detect Enable registers */
603         s->rising = value;
604         break;
605 
606     case GFER:        /* GPIO Falling-Edge Detect Enable registers */
607         s->falling = value;
608         break;
609 
610     case GAFR:        /* GPIO Alternate Function registers */
611         s->gafr = value;
612         break;
613 
614     case GEDR:        /* GPIO Edge Detect Status registers */
615         s->status &= ~value;
616         strongarm_gpio_irq_update(s);
617         break;
618 
619     default:
620         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
621     }
622 }
623 
624 static const MemoryRegionOps strongarm_gpio_ops = {
625     .read = strongarm_gpio_read,
626     .write = strongarm_gpio_write,
627     .endianness = DEVICE_NATIVE_ENDIAN,
628 };
629 
630 static DeviceState *strongarm_gpio_init(hwaddr base,
631                 DeviceState *pic)
632 {
633     DeviceState *dev;
634     int i;
635 
636     dev = qdev_create(NULL, TYPE_STRONGARM_GPIO);
637     qdev_init_nofail(dev);
638 
639     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
640     for (i = 0; i < 12; i++)
641         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
642                     qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
643 
644     return dev;
645 }
646 
647 static int strongarm_gpio_initfn(SysBusDevice *sbd)
648 {
649     DeviceState *dev = DEVICE(sbd);
650     StrongARMGPIOInfo *s = STRONGARM_GPIO(dev);
651     int i;
652 
653     qdev_init_gpio_in(dev, strongarm_gpio_set, 28);
654     qdev_init_gpio_out(dev, s->handler, 28);
655 
656     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_gpio_ops, s,
657                           "gpio", 0x1000);
658 
659     sysbus_init_mmio(sbd, &s->iomem);
660     for (i = 0; i < 11; i++) {
661         sysbus_init_irq(sbd, &s->irqs[i]);
662     }
663     sysbus_init_irq(sbd, &s->irqX);
664 
665     return 0;
666 }
667 
668 static const VMStateDescription vmstate_strongarm_gpio_regs = {
669     .name = "strongarm-gpio",
670     .version_id = 0,
671     .minimum_version_id = 0,
672     .fields = (VMStateField[]) {
673         VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
674         VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
675         VMSTATE_UINT32(dir, StrongARMGPIOInfo),
676         VMSTATE_UINT32(rising, StrongARMGPIOInfo),
677         VMSTATE_UINT32(falling, StrongARMGPIOInfo),
678         VMSTATE_UINT32(status, StrongARMGPIOInfo),
679         VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
680         VMSTATE_UINT32(prev_level, StrongARMGPIOInfo),
681         VMSTATE_END_OF_LIST(),
682     },
683 };
684 
685 static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
686 {
687     DeviceClass *dc = DEVICE_CLASS(klass);
688     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
689 
690     k->init = strongarm_gpio_initfn;
691     dc->desc = "StrongARM GPIO controller";
692     dc->vmsd = &vmstate_strongarm_gpio_regs;
693 }
694 
695 static const TypeInfo strongarm_gpio_info = {
696     .name          = TYPE_STRONGARM_GPIO,
697     .parent        = TYPE_SYS_BUS_DEVICE,
698     .instance_size = sizeof(StrongARMGPIOInfo),
699     .class_init    = strongarm_gpio_class_init,
700 };
701 
702 /* Peripheral Pin Controller */
703 #define PPDR 0x00
704 #define PPSR 0x04
705 #define PPAR 0x08
706 #define PSDR 0x0c
707 #define PPFR 0x10
708 
709 #define TYPE_STRONGARM_PPC "strongarm-ppc"
710 #define STRONGARM_PPC(obj) \
711     OBJECT_CHECK(StrongARMPPCInfo, (obj), TYPE_STRONGARM_PPC)
712 
713 typedef struct StrongARMPPCInfo StrongARMPPCInfo;
714 struct StrongARMPPCInfo {
715     SysBusDevice parent_obj;
716 
717     MemoryRegion iomem;
718     qemu_irq handler[28];
719 
720     uint32_t ilevel;
721     uint32_t olevel;
722     uint32_t dir;
723     uint32_t ppar;
724     uint32_t psdr;
725     uint32_t ppfr;
726 
727     uint32_t prev_level;
728 };
729 
730 static void strongarm_ppc_set(void *opaque, int line, int level)
731 {
732     StrongARMPPCInfo *s = opaque;
733 
734     if (level) {
735         s->ilevel |= 1 << line;
736     } else {
737         s->ilevel &= ~(1 << line);
738     }
739 }
740 
741 static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
742 {
743     uint32_t level, diff;
744     int bit;
745 
746     level = s->olevel & s->dir;
747 
748     for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
749         bit = ctz32(diff);
750         qemu_set_irq(s->handler[bit], (level >> bit) & 1);
751     }
752 
753     s->prev_level = level;
754 }
755 
756 static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
757                                    unsigned size)
758 {
759     StrongARMPPCInfo *s = opaque;
760 
761     switch (offset) {
762     case PPDR:        /* PPC Pin Direction registers */
763         return s->dir | ~0x3fffff;
764 
765     case PPSR:        /* PPC Pin State registers */
766         return (s->olevel & s->dir) |
767                (s->ilevel & ~s->dir) |
768                ~0x3fffff;
769 
770     case PPAR:
771         return s->ppar | ~0x41000;
772 
773     case PSDR:
774         return s->psdr;
775 
776     case PPFR:
777         return s->ppfr | ~0x7f001;
778 
779     default:
780         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
781     }
782 
783     return 0;
784 }
785 
786 static void strongarm_ppc_write(void *opaque, hwaddr offset,
787                                 uint64_t value, unsigned size)
788 {
789     StrongARMPPCInfo *s = opaque;
790 
791     switch (offset) {
792     case PPDR:        /* PPC Pin Direction registers */
793         s->dir = value & 0x3fffff;
794         strongarm_ppc_handler_update(s);
795         break;
796 
797     case PPSR:        /* PPC Pin State registers */
798         s->olevel = value & s->dir & 0x3fffff;
799         strongarm_ppc_handler_update(s);
800         break;
801 
802     case PPAR:
803         s->ppar = value & 0x41000;
804         break;
805 
806     case PSDR:
807         s->psdr = value & 0x3fffff;
808         break;
809 
810     case PPFR:
811         s->ppfr = value & 0x7f001;
812         break;
813 
814     default:
815         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
816     }
817 }
818 
819 static const MemoryRegionOps strongarm_ppc_ops = {
820     .read = strongarm_ppc_read,
821     .write = strongarm_ppc_write,
822     .endianness = DEVICE_NATIVE_ENDIAN,
823 };
824 
825 static int strongarm_ppc_init(SysBusDevice *sbd)
826 {
827     DeviceState *dev = DEVICE(sbd);
828     StrongARMPPCInfo *s = STRONGARM_PPC(dev);
829 
830     qdev_init_gpio_in(dev, strongarm_ppc_set, 22);
831     qdev_init_gpio_out(dev, s->handler, 22);
832 
833     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ppc_ops, s,
834                           "ppc", 0x1000);
835 
836     sysbus_init_mmio(sbd, &s->iomem);
837 
838     return 0;
839 }
840 
841 static const VMStateDescription vmstate_strongarm_ppc_regs = {
842     .name = "strongarm-ppc",
843     .version_id = 0,
844     .minimum_version_id = 0,
845     .fields = (VMStateField[]) {
846         VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
847         VMSTATE_UINT32(olevel, StrongARMPPCInfo),
848         VMSTATE_UINT32(dir, StrongARMPPCInfo),
849         VMSTATE_UINT32(ppar, StrongARMPPCInfo),
850         VMSTATE_UINT32(psdr, StrongARMPPCInfo),
851         VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
852         VMSTATE_UINT32(prev_level, StrongARMPPCInfo),
853         VMSTATE_END_OF_LIST(),
854     },
855 };
856 
857 static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
858 {
859     DeviceClass *dc = DEVICE_CLASS(klass);
860     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
861 
862     k->init = strongarm_ppc_init;
863     dc->desc = "StrongARM PPC controller";
864     dc->vmsd = &vmstate_strongarm_ppc_regs;
865 }
866 
867 static const TypeInfo strongarm_ppc_info = {
868     .name          = TYPE_STRONGARM_PPC,
869     .parent        = TYPE_SYS_BUS_DEVICE,
870     .instance_size = sizeof(StrongARMPPCInfo),
871     .class_init    = strongarm_ppc_class_init,
872 };
873 
874 /* UART Ports */
875 #define UTCR0 0x00
876 #define UTCR1 0x04
877 #define UTCR2 0x08
878 #define UTCR3 0x0c
879 #define UTDR  0x14
880 #define UTSR0 0x1c
881 #define UTSR1 0x20
882 
883 #define UTCR0_PE  (1 << 0) /* Parity enable */
884 #define UTCR0_OES (1 << 1) /* Even parity */
885 #define UTCR0_SBS (1 << 2) /* 2 stop bits */
886 #define UTCR0_DSS (1 << 3) /* 8-bit data */
887 
888 #define UTCR3_RXE (1 << 0) /* Rx enable */
889 #define UTCR3_TXE (1 << 1) /* Tx enable */
890 #define UTCR3_BRK (1 << 2) /* Force Break */
891 #define UTCR3_RIE (1 << 3) /* Rx int enable */
892 #define UTCR3_TIE (1 << 4) /* Tx int enable */
893 #define UTCR3_LBM (1 << 5) /* Loopback */
894 
895 #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
896 #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
897 #define UTSR0_RID (1 << 2) /* Receiver Idle */
898 #define UTSR0_RBB (1 << 3) /* Receiver begin break */
899 #define UTSR0_REB (1 << 4) /* Receiver end break */
900 #define UTSR0_EIF (1 << 5) /* Error in FIFO */
901 
902 #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
903 #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
904 #define UTSR1_PRE (1 << 3) /* Parity error */
905 #define UTSR1_FRE (1 << 4) /* Frame error */
906 #define UTSR1_ROR (1 << 5) /* Receive Over Run */
907 
908 #define RX_FIFO_PRE (1 << 8)
909 #define RX_FIFO_FRE (1 << 9)
910 #define RX_FIFO_ROR (1 << 10)
911 
912 #define TYPE_STRONGARM_UART "strongarm-uart"
913 #define STRONGARM_UART(obj) \
914     OBJECT_CHECK(StrongARMUARTState, (obj), TYPE_STRONGARM_UART)
915 
916 typedef struct StrongARMUARTState {
917     SysBusDevice parent_obj;
918 
919     MemoryRegion iomem;
920     CharDriverState *chr;
921     qemu_irq irq;
922 
923     uint8_t utcr0;
924     uint16_t brd;
925     uint8_t utcr3;
926     uint8_t utsr0;
927     uint8_t utsr1;
928 
929     uint8_t tx_fifo[8];
930     uint8_t tx_start;
931     uint8_t tx_len;
932     uint16_t rx_fifo[12]; /* value + error flags in high bits */
933     uint8_t rx_start;
934     uint8_t rx_len;
935 
936     uint64_t char_transmit_time; /* time to transmit a char in ticks*/
937     bool wait_break_end;
938     QEMUTimer *rx_timeout_timer;
939     QEMUTimer *tx_timer;
940 } StrongARMUARTState;
941 
942 static void strongarm_uart_update_status(StrongARMUARTState *s)
943 {
944     uint16_t utsr1 = 0;
945 
946     if (s->tx_len != 8) {
947         utsr1 |= UTSR1_TNF;
948     }
949 
950     if (s->rx_len != 0) {
951         uint16_t ent = s->rx_fifo[s->rx_start];
952 
953         utsr1 |= UTSR1_RNE;
954         if (ent & RX_FIFO_PRE) {
955             s->utsr1 |= UTSR1_PRE;
956         }
957         if (ent & RX_FIFO_FRE) {
958             s->utsr1 |= UTSR1_FRE;
959         }
960         if (ent & RX_FIFO_ROR) {
961             s->utsr1 |= UTSR1_ROR;
962         }
963     }
964 
965     s->utsr1 = utsr1;
966 }
967 
968 static void strongarm_uart_update_int_status(StrongARMUARTState *s)
969 {
970     uint16_t utsr0 = s->utsr0 &
971             (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
972     int i;
973 
974     if ((s->utcr3 & UTCR3_TXE) &&
975                 (s->utcr3 & UTCR3_TIE) &&
976                 s->tx_len <= 4) {
977         utsr0 |= UTSR0_TFS;
978     }
979 
980     if ((s->utcr3 & UTCR3_RXE) &&
981                 (s->utcr3 & UTCR3_RIE) &&
982                 s->rx_len > 4) {
983         utsr0 |= UTSR0_RFS;
984     }
985 
986     for (i = 0; i < s->rx_len && i < 4; i++)
987         if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
988             utsr0 |= UTSR0_EIF;
989             break;
990         }
991 
992     s->utsr0 = utsr0;
993     qemu_set_irq(s->irq, utsr0);
994 }
995 
996 static void strongarm_uart_update_parameters(StrongARMUARTState *s)
997 {
998     int speed, parity, data_bits, stop_bits, frame_size;
999     QEMUSerialSetParams ssp;
1000 
1001     /* Start bit. */
1002     frame_size = 1;
1003     if (s->utcr0 & UTCR0_PE) {
1004         /* Parity bit. */
1005         frame_size++;
1006         if (s->utcr0 & UTCR0_OES) {
1007             parity = 'E';
1008         } else {
1009             parity = 'O';
1010         }
1011     } else {
1012             parity = 'N';
1013     }
1014     if (s->utcr0 & UTCR0_SBS) {
1015         stop_bits = 2;
1016     } else {
1017         stop_bits = 1;
1018     }
1019 
1020     data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
1021     frame_size += data_bits + stop_bits;
1022     speed = 3686400 / 16 / (s->brd + 1);
1023     ssp.speed = speed;
1024     ssp.parity = parity;
1025     ssp.data_bits = data_bits;
1026     ssp.stop_bits = stop_bits;
1027     s->char_transmit_time =  (get_ticks_per_sec() / speed) * frame_size;
1028     if (s->chr) {
1029         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
1030     }
1031 
1032     DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
1033             speed, parity, data_bits, stop_bits);
1034 }
1035 
1036 static void strongarm_uart_rx_to(void *opaque)
1037 {
1038     StrongARMUARTState *s = opaque;
1039 
1040     if (s->rx_len) {
1041         s->utsr0 |= UTSR0_RID;
1042         strongarm_uart_update_int_status(s);
1043     }
1044 }
1045 
1046 static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
1047 {
1048     if ((s->utcr3 & UTCR3_RXE) == 0) {
1049         /* rx disabled */
1050         return;
1051     }
1052 
1053     if (s->wait_break_end) {
1054         s->utsr0 |= UTSR0_REB;
1055         s->wait_break_end = false;
1056     }
1057 
1058     if (s->rx_len < 12) {
1059         s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
1060         s->rx_len++;
1061     } else
1062         s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
1063 }
1064 
1065 static int strongarm_uart_can_receive(void *opaque)
1066 {
1067     StrongARMUARTState *s = opaque;
1068 
1069     if (s->rx_len == 12) {
1070         return 0;
1071     }
1072     /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
1073     if (s->rx_len < 8) {
1074         return 8 - s->rx_len;
1075     }
1076     return 1;
1077 }
1078 
1079 static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
1080 {
1081     StrongARMUARTState *s = opaque;
1082     int i;
1083 
1084     for (i = 0; i < size; i++) {
1085         strongarm_uart_rx_push(s, buf[i]);
1086     }
1087 
1088     /* call the timeout receive callback in 3 char transmit time */
1089     timer_mod(s->rx_timeout_timer,
1090                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
1091 
1092     strongarm_uart_update_status(s);
1093     strongarm_uart_update_int_status(s);
1094 }
1095 
1096 static void strongarm_uart_event(void *opaque, int event)
1097 {
1098     StrongARMUARTState *s = opaque;
1099     if (event == CHR_EVENT_BREAK) {
1100         s->utsr0 |= UTSR0_RBB;
1101         strongarm_uart_rx_push(s, RX_FIFO_FRE);
1102         s->wait_break_end = true;
1103         strongarm_uart_update_status(s);
1104         strongarm_uart_update_int_status(s);
1105     }
1106 }
1107 
1108 static void strongarm_uart_tx(void *opaque)
1109 {
1110     StrongARMUARTState *s = opaque;
1111     uint64_t new_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1112 
1113     if (s->utcr3 & UTCR3_LBM) /* loopback */ {
1114         strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
1115     } else if (s->chr) {
1116         qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1);
1117     }
1118 
1119     s->tx_start = (s->tx_start + 1) % 8;
1120     s->tx_len--;
1121     if (s->tx_len) {
1122         timer_mod(s->tx_timer, new_xmit_ts + s->char_transmit_time);
1123     }
1124     strongarm_uart_update_status(s);
1125     strongarm_uart_update_int_status(s);
1126 }
1127 
1128 static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
1129                                     unsigned size)
1130 {
1131     StrongARMUARTState *s = opaque;
1132     uint16_t ret;
1133 
1134     switch (addr) {
1135     case UTCR0:
1136         return s->utcr0;
1137 
1138     case UTCR1:
1139         return s->brd >> 8;
1140 
1141     case UTCR2:
1142         return s->brd & 0xff;
1143 
1144     case UTCR3:
1145         return s->utcr3;
1146 
1147     case UTDR:
1148         if (s->rx_len != 0) {
1149             ret = s->rx_fifo[s->rx_start];
1150             s->rx_start = (s->rx_start + 1) % 12;
1151             s->rx_len--;
1152             strongarm_uart_update_status(s);
1153             strongarm_uart_update_int_status(s);
1154             return ret;
1155         }
1156         return 0;
1157 
1158     case UTSR0:
1159         return s->utsr0;
1160 
1161     case UTSR1:
1162         return s->utsr1;
1163 
1164     default:
1165         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1166         return 0;
1167     }
1168 }
1169 
1170 static void strongarm_uart_write(void *opaque, hwaddr addr,
1171                                  uint64_t value, unsigned size)
1172 {
1173     StrongARMUARTState *s = opaque;
1174 
1175     switch (addr) {
1176     case UTCR0:
1177         s->utcr0 = value & 0x7f;
1178         strongarm_uart_update_parameters(s);
1179         break;
1180 
1181     case UTCR1:
1182         s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
1183         strongarm_uart_update_parameters(s);
1184         break;
1185 
1186     case UTCR2:
1187         s->brd = (s->brd & 0xf00) | (value & 0xff);
1188         strongarm_uart_update_parameters(s);
1189         break;
1190 
1191     case UTCR3:
1192         s->utcr3 = value & 0x3f;
1193         if ((s->utcr3 & UTCR3_RXE) == 0) {
1194             s->rx_len = 0;
1195         }
1196         if ((s->utcr3 & UTCR3_TXE) == 0) {
1197             s->tx_len = 0;
1198         }
1199         strongarm_uart_update_status(s);
1200         strongarm_uart_update_int_status(s);
1201         break;
1202 
1203     case UTDR:
1204         if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
1205             s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
1206             s->tx_len++;
1207             strongarm_uart_update_status(s);
1208             strongarm_uart_update_int_status(s);
1209             if (s->tx_len == 1) {
1210                 strongarm_uart_tx(s);
1211             }
1212         }
1213         break;
1214 
1215     case UTSR0:
1216         s->utsr0 = s->utsr0 & ~(value &
1217                 (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
1218         strongarm_uart_update_int_status(s);
1219         break;
1220 
1221     default:
1222         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1223     }
1224 }
1225 
1226 static const MemoryRegionOps strongarm_uart_ops = {
1227     .read = strongarm_uart_read,
1228     .write = strongarm_uart_write,
1229     .endianness = DEVICE_NATIVE_ENDIAN,
1230 };
1231 
1232 static int strongarm_uart_init(SysBusDevice *dev)
1233 {
1234     StrongARMUARTState *s = STRONGARM_UART(dev);
1235 
1236     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_uart_ops, s,
1237                           "uart", 0x10000);
1238     sysbus_init_mmio(dev, &s->iomem);
1239     sysbus_init_irq(dev, &s->irq);
1240 
1241     s->rx_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_rx_to, s);
1242     s->tx_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_tx, s);
1243 
1244     if (s->chr) {
1245         qemu_chr_add_handlers(s->chr,
1246                         strongarm_uart_can_receive,
1247                         strongarm_uart_receive,
1248                         strongarm_uart_event,
1249                         s);
1250     }
1251 
1252     return 0;
1253 }
1254 
1255 static void strongarm_uart_reset(DeviceState *dev)
1256 {
1257     StrongARMUARTState *s = STRONGARM_UART(dev);
1258 
1259     s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
1260     s->brd = 23;    /* 9600 */
1261     /* enable send & recv - this actually violates spec */
1262     s->utcr3 = UTCR3_TXE | UTCR3_RXE;
1263 
1264     s->rx_len = s->tx_len = 0;
1265 
1266     strongarm_uart_update_parameters(s);
1267     strongarm_uart_update_status(s);
1268     strongarm_uart_update_int_status(s);
1269 }
1270 
1271 static int strongarm_uart_post_load(void *opaque, int version_id)
1272 {
1273     StrongARMUARTState *s = opaque;
1274 
1275     strongarm_uart_update_parameters(s);
1276     strongarm_uart_update_status(s);
1277     strongarm_uart_update_int_status(s);
1278 
1279     /* tx and restart timer */
1280     if (s->tx_len) {
1281         strongarm_uart_tx(s);
1282     }
1283 
1284     /* restart rx timeout timer */
1285     if (s->rx_len) {
1286         timer_mod(s->rx_timeout_timer,
1287                 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
1288     }
1289 
1290     return 0;
1291 }
1292 
1293 static const VMStateDescription vmstate_strongarm_uart_regs = {
1294     .name = "strongarm-uart",
1295     .version_id = 0,
1296     .minimum_version_id = 0,
1297     .post_load = strongarm_uart_post_load,
1298     .fields = (VMStateField[]) {
1299         VMSTATE_UINT8(utcr0, StrongARMUARTState),
1300         VMSTATE_UINT16(brd, StrongARMUARTState),
1301         VMSTATE_UINT8(utcr3, StrongARMUARTState),
1302         VMSTATE_UINT8(utsr0, StrongARMUARTState),
1303         VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
1304         VMSTATE_UINT8(tx_start, StrongARMUARTState),
1305         VMSTATE_UINT8(tx_len, StrongARMUARTState),
1306         VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
1307         VMSTATE_UINT8(rx_start, StrongARMUARTState),
1308         VMSTATE_UINT8(rx_len, StrongARMUARTState),
1309         VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
1310         VMSTATE_END_OF_LIST(),
1311     },
1312 };
1313 
1314 static Property strongarm_uart_properties[] = {
1315     DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
1316     DEFINE_PROP_END_OF_LIST(),
1317 };
1318 
1319 static void strongarm_uart_class_init(ObjectClass *klass, void *data)
1320 {
1321     DeviceClass *dc = DEVICE_CLASS(klass);
1322     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1323 
1324     k->init = strongarm_uart_init;
1325     dc->desc = "StrongARM UART controller";
1326     dc->reset = strongarm_uart_reset;
1327     dc->vmsd = &vmstate_strongarm_uart_regs;
1328     dc->props = strongarm_uart_properties;
1329 }
1330 
1331 static const TypeInfo strongarm_uart_info = {
1332     .name          = TYPE_STRONGARM_UART,
1333     .parent        = TYPE_SYS_BUS_DEVICE,
1334     .instance_size = sizeof(StrongARMUARTState),
1335     .class_init    = strongarm_uart_class_init,
1336 };
1337 
1338 /* Synchronous Serial Ports */
1339 
1340 #define TYPE_STRONGARM_SSP "strongarm-ssp"
1341 #define STRONGARM_SSP(obj) \
1342     OBJECT_CHECK(StrongARMSSPState, (obj), TYPE_STRONGARM_SSP)
1343 
1344 typedef struct StrongARMSSPState {
1345     SysBusDevice parent_obj;
1346 
1347     MemoryRegion iomem;
1348     qemu_irq irq;
1349     SSIBus *bus;
1350 
1351     uint16_t sscr[2];
1352     uint16_t sssr;
1353 
1354     uint16_t rx_fifo[8];
1355     uint8_t rx_level;
1356     uint8_t rx_start;
1357 } StrongARMSSPState;
1358 
1359 #define SSCR0 0x60 /* SSP Control register 0 */
1360 #define SSCR1 0x64 /* SSP Control register 1 */
1361 #define SSDR  0x6c /* SSP Data register */
1362 #define SSSR  0x74 /* SSP Status register */
1363 
1364 /* Bitfields for above registers */
1365 #define SSCR0_SPI(x)    (((x) & 0x30) == 0x00)
1366 #define SSCR0_SSP(x)    (((x) & 0x30) == 0x10)
1367 #define SSCR0_UWIRE(x)  (((x) & 0x30) == 0x20)
1368 #define SSCR0_PSP(x)    (((x) & 0x30) == 0x30)
1369 #define SSCR0_SSE       (1 << 7)
1370 #define SSCR0_DSS(x)    (((x) & 0xf) + 1)
1371 #define SSCR1_RIE       (1 << 0)
1372 #define SSCR1_TIE       (1 << 1)
1373 #define SSCR1_LBM       (1 << 2)
1374 #define SSSR_TNF        (1 << 2)
1375 #define SSSR_RNE        (1 << 3)
1376 #define SSSR_TFS        (1 << 5)
1377 #define SSSR_RFS        (1 << 6)
1378 #define SSSR_ROR        (1 << 7)
1379 #define SSSR_RW         0x0080
1380 
1381 static void strongarm_ssp_int_update(StrongARMSSPState *s)
1382 {
1383     int level = 0;
1384 
1385     level |= (s->sssr & SSSR_ROR);
1386     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
1387     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
1388     qemu_set_irq(s->irq, level);
1389 }
1390 
1391 static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
1392 {
1393     s->sssr &= ~SSSR_TFS;
1394     s->sssr &= ~SSSR_TNF;
1395     if (s->sscr[0] & SSCR0_SSE) {
1396         if (s->rx_level >= 4) {
1397             s->sssr |= SSSR_RFS;
1398         } else {
1399             s->sssr &= ~SSSR_RFS;
1400         }
1401         if (s->rx_level) {
1402             s->sssr |= SSSR_RNE;
1403         } else {
1404             s->sssr &= ~SSSR_RNE;
1405         }
1406         /* TX FIFO is never filled, so it is always in underrun
1407            condition if SSP is enabled */
1408         s->sssr |= SSSR_TFS;
1409         s->sssr |= SSSR_TNF;
1410     }
1411 
1412     strongarm_ssp_int_update(s);
1413 }
1414 
1415 static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
1416                                    unsigned size)
1417 {
1418     StrongARMSSPState *s = opaque;
1419     uint32_t retval;
1420 
1421     switch (addr) {
1422     case SSCR0:
1423         return s->sscr[0];
1424     case SSCR1:
1425         return s->sscr[1];
1426     case SSSR:
1427         return s->sssr;
1428     case SSDR:
1429         if (~s->sscr[0] & SSCR0_SSE) {
1430             return 0xffffffff;
1431         }
1432         if (s->rx_level < 1) {
1433             printf("%s: SSP Rx Underrun\n", __func__);
1434             return 0xffffffff;
1435         }
1436         s->rx_level--;
1437         retval = s->rx_fifo[s->rx_start++];
1438         s->rx_start &= 0x7;
1439         strongarm_ssp_fifo_update(s);
1440         return retval;
1441     default:
1442         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1443         break;
1444     }
1445     return 0;
1446 }
1447 
1448 static void strongarm_ssp_write(void *opaque, hwaddr addr,
1449                                 uint64_t value, unsigned size)
1450 {
1451     StrongARMSSPState *s = opaque;
1452 
1453     switch (addr) {
1454     case SSCR0:
1455         s->sscr[0] = value & 0xffbf;
1456         if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
1457             printf("%s: Wrong data size: %i bits\n", __func__,
1458                    (int)SSCR0_DSS(value));
1459         }
1460         if (!(value & SSCR0_SSE)) {
1461             s->sssr = 0;
1462             s->rx_level = 0;
1463         }
1464         strongarm_ssp_fifo_update(s);
1465         break;
1466 
1467     case SSCR1:
1468         s->sscr[1] = value & 0x2f;
1469         if (value & SSCR1_LBM) {
1470             printf("%s: Attempt to use SSP LBM mode\n", __func__);
1471         }
1472         strongarm_ssp_fifo_update(s);
1473         break;
1474 
1475     case SSSR:
1476         s->sssr &= ~(value & SSSR_RW);
1477         strongarm_ssp_int_update(s);
1478         break;
1479 
1480     case SSDR:
1481         if (SSCR0_UWIRE(s->sscr[0])) {
1482             value &= 0xff;
1483         } else
1484             /* Note how 32bits overflow does no harm here */
1485             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
1486 
1487         /* Data goes from here to the Tx FIFO and is shifted out from
1488          * there directly to the slave, no need to buffer it.
1489          */
1490         if (s->sscr[0] & SSCR0_SSE) {
1491             uint32_t readval;
1492             if (s->sscr[1] & SSCR1_LBM) {
1493                 readval = value;
1494             } else {
1495                 readval = ssi_transfer(s->bus, value);
1496             }
1497 
1498             if (s->rx_level < 0x08) {
1499                 s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
1500             } else {
1501                 s->sssr |= SSSR_ROR;
1502             }
1503         }
1504         strongarm_ssp_fifo_update(s);
1505         break;
1506 
1507     default:
1508         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1509         break;
1510     }
1511 }
1512 
1513 static const MemoryRegionOps strongarm_ssp_ops = {
1514     .read = strongarm_ssp_read,
1515     .write = strongarm_ssp_write,
1516     .endianness = DEVICE_NATIVE_ENDIAN,
1517 };
1518 
1519 static int strongarm_ssp_post_load(void *opaque, int version_id)
1520 {
1521     StrongARMSSPState *s = opaque;
1522 
1523     strongarm_ssp_fifo_update(s);
1524 
1525     return 0;
1526 }
1527 
1528 static int strongarm_ssp_init(SysBusDevice *sbd)
1529 {
1530     DeviceState *dev = DEVICE(sbd);
1531     StrongARMSSPState *s = STRONGARM_SSP(dev);
1532 
1533     sysbus_init_irq(sbd, &s->irq);
1534 
1535     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ssp_ops, s,
1536                           "ssp", 0x1000);
1537     sysbus_init_mmio(sbd, &s->iomem);
1538 
1539     s->bus = ssi_create_bus(dev, "ssi");
1540     return 0;
1541 }
1542 
1543 static void strongarm_ssp_reset(DeviceState *dev)
1544 {
1545     StrongARMSSPState *s = STRONGARM_SSP(dev);
1546 
1547     s->sssr = 0x03; /* 3 bit data, SPI, disabled */
1548     s->rx_start = 0;
1549     s->rx_level = 0;
1550 }
1551 
1552 static const VMStateDescription vmstate_strongarm_ssp_regs = {
1553     .name = "strongarm-ssp",
1554     .version_id = 0,
1555     .minimum_version_id = 0,
1556     .post_load = strongarm_ssp_post_load,
1557     .fields = (VMStateField[]) {
1558         VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
1559         VMSTATE_UINT16(sssr, StrongARMSSPState),
1560         VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
1561         VMSTATE_UINT8(rx_start, StrongARMSSPState),
1562         VMSTATE_UINT8(rx_level, StrongARMSSPState),
1563         VMSTATE_END_OF_LIST(),
1564     },
1565 };
1566 
1567 static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
1568 {
1569     DeviceClass *dc = DEVICE_CLASS(klass);
1570     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1571 
1572     k->init = strongarm_ssp_init;
1573     dc->desc = "StrongARM SSP controller";
1574     dc->reset = strongarm_ssp_reset;
1575     dc->vmsd = &vmstate_strongarm_ssp_regs;
1576 }
1577 
1578 static const TypeInfo strongarm_ssp_info = {
1579     .name          = TYPE_STRONGARM_SSP,
1580     .parent        = TYPE_SYS_BUS_DEVICE,
1581     .instance_size = sizeof(StrongARMSSPState),
1582     .class_init    = strongarm_ssp_class_init,
1583 };
1584 
1585 /* Main CPU functions */
1586 StrongARMState *sa1110_init(MemoryRegion *sysmem,
1587                             unsigned int sdram_size, const char *rev)
1588 {
1589     StrongARMState *s;
1590     int i;
1591 
1592     s = g_new0(StrongARMState, 1);
1593 
1594     if (!rev) {
1595         rev = "sa1110-b5";
1596     }
1597 
1598     if (strncmp(rev, "sa1110", 6)) {
1599         error_report("Machine requires a SA1110 processor.");
1600         exit(1);
1601     }
1602 
1603     s->cpu = cpu_arm_init(rev);
1604 
1605     if (!s->cpu) {
1606         error_report("Unable to find CPU definition");
1607         exit(1);
1608     }
1609 
1610     memory_region_allocate_system_memory(&s->sdram, NULL, "strongarm.sdram",
1611                                          sdram_size);
1612     memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
1613 
1614     s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
1615                     qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ),
1616                     qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ),
1617                     NULL);
1618 
1619     sysbus_create_varargs("pxa25x-timer", 0x90000000,
1620                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
1621                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
1622                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
1623                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
1624                     NULL);
1625 
1626     sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000,
1627                     qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
1628 
1629     s->gpio = strongarm_gpio_init(0x90040000, s->pic);
1630 
1631     s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL);
1632 
1633     for (i = 0; sa_serial[i].io_base; i++) {
1634         DeviceState *dev = qdev_create(NULL, TYPE_STRONGARM_UART);
1635         qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
1636         qdev_init_nofail(dev);
1637         sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
1638                 sa_serial[i].io_base);
1639         sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
1640                 qdev_get_gpio_in(s->pic, sa_serial[i].irq));
1641     }
1642 
1643     s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000,
1644                 qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
1645     s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
1646 
1647     return s;
1648 }
1649 
1650 static void strongarm_register_types(void)
1651 {
1652     type_register_static(&strongarm_pic_info);
1653     type_register_static(&strongarm_rtc_sysbus_info);
1654     type_register_static(&strongarm_gpio_info);
1655     type_register_static(&strongarm_ppc_info);
1656     type_register_static(&strongarm_uart_info);
1657     type_register_static(&strongarm_ssp_info);
1658 }
1659 
1660 type_init(strongarm_register_types)
1661