xref: /qemu/hw/arm/virt-acpi-build.c (revision 785ea711)
1 /* Support for generating ACPI tables and passing them to Guests
2  *
3  * ARM virt ACPI generation
4  *
5  * Copyright (C) 2008-2010  Kevin O'Connor <kevin@koconnor.net>
6  * Copyright (C) 2006 Fabrice Bellard
7  * Copyright (C) 2013 Red Hat Inc
8  *
9  * Author: Michael S. Tsirkin <mst@redhat.com>
10  *
11  * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
12  *
13  * Author: Shannon Zhao <zhaoshenglong@huawei.com>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19 
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24 
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, see <http://www.gnu.org/licenses/>.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qapi/error.h"
31 #include "qemu/bitmap.h"
32 #include "trace.h"
33 #include "hw/core/cpu.h"
34 #include "target/arm/cpu.h"
35 #include "hw/acpi/acpi-defs.h"
36 #include "hw/acpi/acpi.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/acpi/bios-linker-loader.h"
39 #include "hw/acpi/aml-build.h"
40 #include "hw/acpi/utils.h"
41 #include "hw/acpi/pci.h"
42 #include "hw/acpi/memory_hotplug.h"
43 #include "hw/acpi/generic_event_device.h"
44 #include "hw/acpi/tpm.h"
45 #include "hw/pci/pcie_host.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci/pci_bus.h"
48 #include "hw/pci-host/gpex.h"
49 #include "hw/arm/virt.h"
50 #include "hw/mem/nvdimm.h"
51 #include "hw/platform-bus.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/reset.h"
54 #include "sysemu/tpm.h"
55 #include "kvm_arm.h"
56 #include "migration/vmstate.h"
57 #include "hw/acpi/ghes.h"
58 
59 #define ARM_SPI_BASE 32
60 
61 #define ACPI_BUILD_TABLE_SIZE             0x20000
62 
63 static void acpi_dsdt_add_cpus(Aml *scope, VirtMachineState *vms)
64 {
65     MachineState *ms = MACHINE(vms);
66     uint16_t i;
67 
68     for (i = 0; i < ms->smp.cpus; i++) {
69         Aml *dev = aml_device("C%.03X", i);
70         aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
71         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
72         aml_append(scope, dev);
73     }
74 }
75 
76 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
77                                            uint32_t uart_irq)
78 {
79     Aml *dev = aml_device("COM0");
80     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
81     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
82 
83     Aml *crs = aml_resource_template();
84     aml_append(crs, aml_memory32_fixed(uart_memmap->base,
85                                        uart_memmap->size, AML_READ_WRITE));
86     aml_append(crs,
87                aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
88                              AML_EXCLUSIVE, &uart_irq, 1));
89     aml_append(dev, aml_name_decl("_CRS", crs));
90 
91     aml_append(scope, dev);
92 }
93 
94 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
95 {
96     Aml *dev = aml_device("FWCF");
97     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
98     /* device present, functioning, decoding, not shown in UI */
99     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
100     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
101 
102     Aml *crs = aml_resource_template();
103     aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
104                                        fw_cfg_memmap->size, AML_READ_WRITE));
105     aml_append(dev, aml_name_decl("_CRS", crs));
106     aml_append(scope, dev);
107 }
108 
109 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
110 {
111     Aml *dev, *crs;
112     hwaddr base = flash_memmap->base;
113     hwaddr size = flash_memmap->size / 2;
114 
115     dev = aml_device("FLS0");
116     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
117     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
118 
119     crs = aml_resource_template();
120     aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
121     aml_append(dev, aml_name_decl("_CRS", crs));
122     aml_append(scope, dev);
123 
124     dev = aml_device("FLS1");
125     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
126     aml_append(dev, aml_name_decl("_UID", aml_int(1)));
127     crs = aml_resource_template();
128     aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
129     aml_append(dev, aml_name_decl("_CRS", crs));
130     aml_append(scope, dev);
131 }
132 
133 static void acpi_dsdt_add_virtio(Aml *scope,
134                                  const MemMapEntry *virtio_mmio_memmap,
135                                  uint32_t mmio_irq, int num)
136 {
137     hwaddr base = virtio_mmio_memmap->base;
138     hwaddr size = virtio_mmio_memmap->size;
139     int i;
140 
141     for (i = 0; i < num; i++) {
142         uint32_t irq = mmio_irq + i;
143         Aml *dev = aml_device("VR%02u", i);
144         aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
145         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
146         aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
147 
148         Aml *crs = aml_resource_template();
149         aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
150         aml_append(crs,
151                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
152                                  AML_EXCLUSIVE, &irq, 1));
153         aml_append(dev, aml_name_decl("_CRS", crs));
154         aml_append(scope, dev);
155         base += size;
156     }
157 }
158 
159 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
160                               uint32_t irq, bool use_highmem, bool highmem_ecam,
161                               VirtMachineState *vms)
162 {
163     int ecam_id = VIRT_ECAM_ID(highmem_ecam);
164     struct GPEXConfig cfg = {
165         .mmio32 = memmap[VIRT_PCIE_MMIO],
166         .pio    = memmap[VIRT_PCIE_PIO],
167         .ecam   = memmap[ecam_id],
168         .irq    = irq,
169         .bus    = vms->bus,
170     };
171 
172     if (use_highmem) {
173         cfg.mmio64 = memmap[VIRT_HIGH_PCIE_MMIO];
174     }
175 
176     acpi_dsdt_add_gpex(scope, &cfg);
177 }
178 
179 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
180                                            uint32_t gpio_irq)
181 {
182     Aml *dev = aml_device("GPO0");
183     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
184     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
185 
186     Aml *crs = aml_resource_template();
187     aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
188                                        AML_READ_WRITE));
189     aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
190                                   AML_EXCLUSIVE, &gpio_irq, 1));
191     aml_append(dev, aml_name_decl("_CRS", crs));
192 
193     Aml *aei = aml_resource_template();
194     /* Pin 3 for power button */
195     const uint32_t pin_list[1] = {3};
196     aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
197                                  AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
198                                  "GPO0", NULL, 0));
199     aml_append(dev, aml_name_decl("_AEI", aei));
200 
201     /* _E03 is handle for power button */
202     Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
203     aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
204                                   aml_int(0x80)));
205     aml_append(dev, method);
206     aml_append(scope, dev);
207 }
208 
209 #ifdef CONFIG_TPM
210 static void acpi_dsdt_add_tpm(Aml *scope, VirtMachineState *vms)
211 {
212     PlatformBusDevice *pbus = PLATFORM_BUS_DEVICE(vms->platform_bus_dev);
213     hwaddr pbus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
214     SysBusDevice *sbdev = SYS_BUS_DEVICE(tpm_find());
215     MemoryRegion *sbdev_mr;
216     hwaddr tpm_base;
217 
218     if (!sbdev) {
219         return;
220     }
221 
222     tpm_base = platform_bus_get_mmio_addr(pbus, sbdev, 0);
223     assert(tpm_base != -1);
224 
225     tpm_base += pbus_base;
226 
227     sbdev_mr = sysbus_mmio_get_region(sbdev, 0);
228 
229     Aml *dev = aml_device("TPM0");
230     aml_append(dev, aml_name_decl("_HID", aml_string("MSFT0101")));
231     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
232 
233     Aml *crs = aml_resource_template();
234     aml_append(crs,
235                aml_memory32_fixed(tpm_base,
236                                   (uint32_t)memory_region_size(sbdev_mr),
237                                   AML_READ_WRITE));
238     aml_append(dev, aml_name_decl("_CRS", crs));
239     aml_append(scope, dev);
240 }
241 #endif
242 
243 /* Build the iort ID mapping to SMMUv3 for a given PCI host bridge */
244 static int
245 iort_host_bridges(Object *obj, void *opaque)
246 {
247     GArray *idmap_blob = opaque;
248 
249     if (object_dynamic_cast(obj, TYPE_PCI_HOST_BRIDGE)) {
250         PCIBus *bus = PCI_HOST_BRIDGE(obj)->bus;
251 
252         if (bus && !pci_bus_bypass_iommu(bus)) {
253             int min_bus, max_bus;
254 
255             pci_bus_range(bus, &min_bus, &max_bus);
256 
257             AcpiIortIdMapping idmap = {
258                 .input_base = min_bus << 8,
259                 .id_count = (max_bus - min_bus + 1) << 8,
260             };
261             g_array_append_val(idmap_blob, idmap);
262         }
263     }
264 
265     return 0;
266 }
267 
268 static int iort_idmap_compare(gconstpointer a, gconstpointer b)
269 {
270     AcpiIortIdMapping *idmap_a = (AcpiIortIdMapping *)a;
271     AcpiIortIdMapping *idmap_b = (AcpiIortIdMapping *)b;
272 
273     return idmap_a->input_base - idmap_b->input_base;
274 }
275 
276 static void
277 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
278 {
279     int i, nb_nodes, rc_mapping_count, iort_start = table_data->len;
280     AcpiIortIdMapping *idmap;
281     AcpiIortItsGroup *its;
282     AcpiIortTable *iort;
283     AcpiIortSmmu3 *smmu;
284     size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
285     AcpiIortRC *rc;
286     GArray *smmu_idmaps = g_array_new(false, true, sizeof(AcpiIortIdMapping));
287     GArray *its_idmaps = g_array_new(false, true, sizeof(AcpiIortIdMapping));
288 
289     iort = acpi_data_push(table_data, sizeof(*iort));
290 
291     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
292         AcpiIortIdMapping next_range = {0};
293 
294         object_child_foreach_recursive(object_get_root(),
295                                        iort_host_bridges, smmu_idmaps);
296 
297         /* Sort the smmu idmap by input_base */
298         g_array_sort(smmu_idmaps, iort_idmap_compare);
299 
300         /*
301          * Split the whole RIDs by mapping from RC to SMMU,
302          * build the ID mapping from RC to ITS directly.
303          */
304         for (i = 0; i < smmu_idmaps->len; i++) {
305             idmap = &g_array_index(smmu_idmaps, AcpiIortIdMapping, i);
306 
307             if (next_range.input_base < idmap->input_base) {
308                 next_range.id_count = idmap->input_base - next_range.input_base;
309                 g_array_append_val(its_idmaps, next_range);
310             }
311 
312             next_range.input_base = idmap->input_base + idmap->id_count;
313         }
314 
315         /* Append the last RC -> ITS ID mapping */
316         if (next_range.input_base < 0xFFFF) {
317             next_range.id_count = 0xFFFF - next_range.input_base;
318             g_array_append_val(its_idmaps, next_range);
319         }
320 
321         nb_nodes = 3; /* RC, ITS, SMMUv3 */
322         rc_mapping_count = smmu_idmaps->len + its_idmaps->len;
323     } else {
324         nb_nodes = 2; /* RC, ITS */
325         rc_mapping_count = 1;
326     }
327 
328     iort_length = sizeof(*iort);
329     iort->node_count = cpu_to_le32(nb_nodes);
330     /*
331      * Use a copy in case table_data->data moves during acpi_data_push
332      * operations.
333      */
334     iort_node_offset = sizeof(*iort);
335     iort->node_offset = cpu_to_le32(iort_node_offset);
336 
337     /* ITS group node */
338     node_size =  sizeof(*its) + sizeof(uint32_t);
339     iort_length += node_size;
340     its = acpi_data_push(table_data, node_size);
341 
342     its->type = ACPI_IORT_NODE_ITS_GROUP;
343     its->length = cpu_to_le16(node_size);
344     its->its_count = cpu_to_le32(1);
345     its->identifiers[0] = 0; /* MADT translation_id */
346 
347     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
348         int irq =  vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE;
349 
350         /* SMMUv3 node */
351         smmu_offset = iort_node_offset + node_size;
352         node_size = sizeof(*smmu) + sizeof(*idmap);
353         iort_length += node_size;
354         smmu = acpi_data_push(table_data, node_size);
355 
356         smmu->type = ACPI_IORT_NODE_SMMU_V3;
357         smmu->length = cpu_to_le16(node_size);
358         smmu->mapping_count = cpu_to_le32(1);
359         smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
360         smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
361         smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
362         smmu->event_gsiv = cpu_to_le32(irq);
363         smmu->pri_gsiv = cpu_to_le32(irq + 1);
364         smmu->sync_gsiv = cpu_to_le32(irq + 2);
365         smmu->gerr_gsiv = cpu_to_le32(irq + 3);
366 
367         /* Identity RID mapping covering the whole input RID range */
368         idmap = &smmu->id_mapping_array[0];
369         idmap->input_base = 0;
370         idmap->id_count = cpu_to_le32(0xFFFF);
371         idmap->output_base = 0;
372         /* output IORT node is the ITS group node (the first node) */
373         idmap->output_reference = cpu_to_le32(iort_node_offset);
374     }
375 
376     /* Root Complex Node */
377     node_size = sizeof(*rc) + sizeof(*idmap) * rc_mapping_count;
378     iort_length += node_size;
379     rc = acpi_data_push(table_data, node_size);
380 
381     rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
382     rc->length = cpu_to_le16(node_size);
383     rc->mapping_count = cpu_to_le32(rc_mapping_count);
384     rc->mapping_offset = cpu_to_le32(sizeof(*rc));
385 
386     /* fully coherent device */
387     rc->memory_properties.cache_coherency = cpu_to_le32(1);
388     rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
389     rc->pci_segment_number = 0; /* MCFG pci_segment */
390 
391     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
392         AcpiIortIdMapping *range;
393 
394         /* translated RIDs connect to SMMUv3 node: RC -> SMMUv3 -> ITS */
395         for (i = 0; i < smmu_idmaps->len; i++) {
396             idmap = &rc->id_mapping_array[i];
397             range = &g_array_index(smmu_idmaps, AcpiIortIdMapping, i);
398 
399             idmap->input_base = cpu_to_le32(range->input_base);
400             idmap->id_count = cpu_to_le32(range->id_count);
401             idmap->output_base = cpu_to_le32(range->input_base);
402             /* output IORT node is the smmuv3 node */
403             idmap->output_reference = cpu_to_le32(smmu_offset);
404         }
405 
406         /* bypassed RIDs connect to ITS group node directly: RC -> ITS */
407         for (i = 0; i < its_idmaps->len; i++) {
408             idmap = &rc->id_mapping_array[smmu_idmaps->len + i];
409             range = &g_array_index(its_idmaps, AcpiIortIdMapping, i);
410 
411             idmap->input_base = cpu_to_le32(range->input_base);
412             idmap->id_count = cpu_to_le32(range->id_count);
413             idmap->output_base = cpu_to_le32(range->input_base);
414             /* output IORT node is the ITS group node (the first node) */
415             idmap->output_reference = cpu_to_le32(iort_node_offset);
416         }
417     } else {
418         /* Identity RID mapping covering the whole input RID range */
419         idmap = &rc->id_mapping_array[0];
420         idmap->input_base = cpu_to_le32(0);
421         idmap->id_count = cpu_to_le32(0xFFFF);
422         idmap->output_base = cpu_to_le32(0);
423         /* output IORT node is the ITS group node (the first node) */
424         idmap->output_reference = cpu_to_le32(iort_node_offset);
425     }
426 
427     g_array_free(smmu_idmaps, true);
428     g_array_free(its_idmaps, true);
429 
430     /*
431      * Update the pointer address in case table_data->data moves during above
432      * acpi_data_push operations.
433      */
434     iort = (AcpiIortTable *)(table_data->data + iort_start);
435     iort->length = cpu_to_le32(iort_length);
436 
437     build_header(linker, table_data, (void *)(table_data->data + iort_start),
438                  "IORT", table_data->len - iort_start, 0, vms->oem_id,
439                  vms->oem_table_id);
440 }
441 
442 static void
443 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
444 {
445     AcpiSerialPortConsoleRedirection *spcr;
446     const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
447     int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
448     int spcr_start = table_data->len;
449 
450     spcr = acpi_data_push(table_data, sizeof(*spcr));
451 
452     spcr->interface_type = 0x3;    /* ARM PL011 UART */
453 
454     spcr->base_address.space_id = AML_SYSTEM_MEMORY;
455     spcr->base_address.bit_width = 8;
456     spcr->base_address.bit_offset = 0;
457     spcr->base_address.access_width = 1;
458     spcr->base_address.address = cpu_to_le64(uart_memmap->base);
459 
460     spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
461     spcr->gsi = cpu_to_le32(irq);  /* Global System Interrupt */
462 
463     spcr->baud = 3;                /* Baud Rate: 3 = 9600 */
464     spcr->parity = 0;              /* No Parity */
465     spcr->stopbits = 1;            /* 1 Stop bit */
466     spcr->flowctrl = (1 << 1);     /* Bit[1] = RTS/CTS hardware flow control */
467     spcr->term_type = 0;           /* Terminal Type: 0 = VT100 */
468 
469     spcr->pci_device_id = 0xffff;  /* PCI Device ID: not a PCI device */
470     spcr->pci_vendor_id = 0xffff;  /* PCI Vendor ID: not a PCI device */
471 
472     build_header(linker, table_data, (void *)(table_data->data + spcr_start),
473                  "SPCR", table_data->len - spcr_start, 2, vms->oem_id,
474                  vms->oem_table_id);
475 }
476 
477 static void
478 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
479 {
480     AcpiSystemResourceAffinityTable *srat;
481     AcpiSratProcessorGiccAffinity *core;
482     AcpiSratMemoryAffinity *numamem;
483     int i, srat_start;
484     uint64_t mem_base;
485     MachineClass *mc = MACHINE_GET_CLASS(vms);
486     MachineState *ms = MACHINE(vms);
487     const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(ms);
488 
489     srat_start = table_data->len;
490     srat = acpi_data_push(table_data, sizeof(*srat));
491     srat->reserved1 = cpu_to_le32(1);
492 
493     for (i = 0; i < cpu_list->len; ++i) {
494         core = acpi_data_push(table_data, sizeof(*core));
495         core->type = ACPI_SRAT_PROCESSOR_GICC;
496         core->length = sizeof(*core);
497         core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
498         core->acpi_processor_uid = cpu_to_le32(i);
499         core->flags = cpu_to_le32(1);
500     }
501 
502     mem_base = vms->memmap[VIRT_MEM].base;
503     for (i = 0; i < ms->numa_state->num_nodes; ++i) {
504         if (ms->numa_state->nodes[i].node_mem > 0) {
505             numamem = acpi_data_push(table_data, sizeof(*numamem));
506             build_srat_memory(numamem, mem_base,
507                               ms->numa_state->nodes[i].node_mem, i,
508                               MEM_AFFINITY_ENABLED);
509             mem_base += ms->numa_state->nodes[i].node_mem;
510         }
511     }
512 
513     if (ms->nvdimms_state->is_enabled) {
514         nvdimm_build_srat(table_data);
515     }
516 
517     if (ms->device_memory) {
518         numamem = acpi_data_push(table_data, sizeof *numamem);
519         build_srat_memory(numamem, ms->device_memory->base,
520                           memory_region_size(&ms->device_memory->mr),
521                           ms->numa_state->num_nodes - 1,
522                           MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED);
523     }
524 
525     build_header(linker, table_data, (void *)(table_data->data + srat_start),
526                  "SRAT", table_data->len - srat_start, 3, vms->oem_id,
527                  vms->oem_table_id);
528 }
529 
530 /* GTDT */
531 static void
532 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
533 {
534     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
535     int gtdt_start = table_data->len;
536     AcpiGenericTimerTable *gtdt;
537     uint32_t irqflags;
538 
539     if (vmc->claim_edge_triggered_timers) {
540         irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
541     } else {
542         irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
543     }
544 
545     gtdt = acpi_data_push(table_data, sizeof *gtdt);
546     /* The interrupt values are the same with the device tree when adding 16 */
547     gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
548     gtdt->secure_el1_flags = cpu_to_le32(irqflags);
549 
550     gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
551     gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
552                                              ACPI_GTDT_CAP_ALWAYS_ON);
553 
554     gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
555     gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
556 
557     gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
558     gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
559 
560     build_header(linker, table_data,
561                  (void *)(table_data->data + gtdt_start), "GTDT",
562                  table_data->len - gtdt_start, 2, vms->oem_id,
563                  vms->oem_table_id);
564 }
565 
566 /* MADT */
567 static void
568 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
569 {
570     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
571     int madt_start = table_data->len;
572     const MemMapEntry *memmap = vms->memmap;
573     const int *irqmap = vms->irqmap;
574     AcpiMadtGenericDistributor *gicd;
575     AcpiMadtGenericMsiFrame *gic_msi;
576     int i;
577 
578     acpi_data_push(table_data, sizeof(AcpiMultipleApicTable));
579 
580     gicd = acpi_data_push(table_data, sizeof *gicd);
581     gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
582     gicd->length = sizeof(*gicd);
583     gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
584     gicd->version = vms->gic_version;
585 
586     for (i = 0; i < MACHINE(vms)->smp.cpus; i++) {
587         AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
588                                                            sizeof(*gicc));
589         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
590 
591         gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
592         gicc->length = sizeof(*gicc);
593         if (vms->gic_version == 2) {
594             gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
595             gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
596             gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
597         }
598         gicc->cpu_interface_number = cpu_to_le32(i);
599         gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
600         gicc->uid = cpu_to_le32(i);
601         gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
602 
603         if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
604             gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
605         }
606         if (vms->virt) {
607             gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
608         }
609     }
610 
611     if (vms->gic_version == 3) {
612         AcpiMadtGenericTranslator *gic_its;
613         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
614         AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
615                                                          sizeof *gicr);
616 
617         gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
618         gicr->length = sizeof(*gicr);
619         gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
620         gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
621 
622         if (nb_redist_regions == 2) {
623             gicr = acpi_data_push(table_data, sizeof(*gicr));
624             gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
625             gicr->length = sizeof(*gicr);
626             gicr->base_address =
627                 cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base);
628             gicr->range_length =
629                 cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size);
630         }
631 
632         if (its_class_name() && !vmc->no_its) {
633             gic_its = acpi_data_push(table_data, sizeof *gic_its);
634             gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
635             gic_its->length = sizeof(*gic_its);
636             gic_its->translation_id = 0;
637             gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
638         }
639     } else {
640         gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
641         gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
642         gic_msi->length = sizeof(*gic_msi);
643         gic_msi->gic_msi_frame_id = 0;
644         gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
645         gic_msi->flags = cpu_to_le32(1);
646         gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
647         gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
648     }
649 
650     build_header(linker, table_data,
651                  (void *)(table_data->data + madt_start), "APIC",
652                  table_data->len - madt_start, 3, vms->oem_id,
653                  vms->oem_table_id);
654 }
655 
656 /* FADT */
657 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
658                             VirtMachineState *vms, unsigned dsdt_tbl_offset)
659 {
660     /* ACPI v5.1 */
661     AcpiFadtData fadt = {
662         .rev = 5,
663         .minor_ver = 1,
664         .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
665         .xdsdt_tbl_offset = &dsdt_tbl_offset,
666     };
667 
668     switch (vms->psci_conduit) {
669     case QEMU_PSCI_CONDUIT_DISABLED:
670         fadt.arm_boot_arch = 0;
671         break;
672     case QEMU_PSCI_CONDUIT_HVC:
673         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
674                              ACPI_FADT_ARM_PSCI_USE_HVC;
675         break;
676     case QEMU_PSCI_CONDUIT_SMC:
677         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
678         break;
679     default:
680         g_assert_not_reached();
681     }
682 
683     build_fadt(table_data, linker, &fadt, vms->oem_id, vms->oem_table_id);
684 }
685 
686 /* DSDT */
687 static void
688 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
689 {
690     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
691     Aml *scope, *dsdt;
692     MachineState *ms = MACHINE(vms);
693     const MemMapEntry *memmap = vms->memmap;
694     const int *irqmap = vms->irqmap;
695 
696     dsdt = init_aml_allocator();
697     /* Reserve space for header */
698     acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
699 
700     /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
701      * While UEFI can use libfdt to disable the RTC device node in the DTB that
702      * it passes to the OS, it cannot modify AML. Therefore, we won't generate
703      * the RTC ACPI device at all when using UEFI.
704      */
705     scope = aml_scope("\\_SB");
706     acpi_dsdt_add_cpus(scope, vms);
707     acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
708                        (irqmap[VIRT_UART] + ARM_SPI_BASE));
709     if (vmc->acpi_expose_flash) {
710         acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
711     }
712     acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
713     acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
714                     (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
715     acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
716                       vms->highmem, vms->highmem_ecam, vms);
717     if (vms->acpi_dev) {
718         build_ged_aml(scope, "\\_SB."GED_DEVICE,
719                       HOTPLUG_HANDLER(vms->acpi_dev),
720                       irqmap[VIRT_ACPI_GED] + ARM_SPI_BASE, AML_SYSTEM_MEMORY,
721                       memmap[VIRT_ACPI_GED].base);
722     } else {
723         acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
724                            (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
725     }
726 
727     if (vms->acpi_dev) {
728         uint32_t event = object_property_get_uint(OBJECT(vms->acpi_dev),
729                                                   "ged-event", &error_abort);
730 
731         if (event & ACPI_GED_MEM_HOTPLUG_EVT) {
732             build_memory_hotplug_aml(scope, ms->ram_slots, "\\_SB", NULL,
733                                      AML_SYSTEM_MEMORY,
734                                      memmap[VIRT_PCDIMM_ACPI].base);
735         }
736     }
737 
738     acpi_dsdt_add_power_button(scope);
739 #ifdef CONFIG_TPM
740     acpi_dsdt_add_tpm(scope, vms);
741 #endif
742 
743     aml_append(dsdt, scope);
744 
745     /* copy AML table into ACPI tables blob and patch header there */
746     g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
747     build_header(linker, table_data,
748         (void *)(table_data->data + table_data->len - dsdt->buf->len),
749                  "DSDT", dsdt->buf->len, 2, vms->oem_id,
750                  vms->oem_table_id);
751     free_aml_allocator();
752 }
753 
754 typedef
755 struct AcpiBuildState {
756     /* Copy of table in RAM (for patching). */
757     MemoryRegion *table_mr;
758     MemoryRegion *rsdp_mr;
759     MemoryRegion *linker_mr;
760     /* Is table patched? */
761     bool patched;
762 } AcpiBuildState;
763 
764 static void acpi_align_size(GArray *blob, unsigned align)
765 {
766     /*
767      * Align size to multiple of given size. This reduces the chance
768      * we need to change size in the future (breaking cross version migration).
769      */
770     g_array_set_size(blob, ROUND_UP(acpi_data_len(blob), align));
771 }
772 
773 static
774 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
775 {
776     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
777     GArray *table_offsets;
778     unsigned dsdt, xsdt;
779     GArray *tables_blob = tables->table_data;
780     MachineState *ms = MACHINE(vms);
781 
782     table_offsets = g_array_new(false, true /* clear */,
783                                         sizeof(uint32_t));
784 
785     bios_linker_loader_alloc(tables->linker,
786                              ACPI_BUILD_TABLE_FILE, tables_blob,
787                              64, false /* high memory */);
788 
789     /* DSDT is pointed to by FADT */
790     dsdt = tables_blob->len;
791     build_dsdt(tables_blob, tables->linker, vms);
792 
793     /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
794     acpi_add_table(table_offsets, tables_blob);
795     build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
796 
797     acpi_add_table(table_offsets, tables_blob);
798     build_madt(tables_blob, tables->linker, vms);
799 
800     acpi_add_table(table_offsets, tables_blob);
801     build_gtdt(tables_blob, tables->linker, vms);
802 
803     acpi_add_table(table_offsets, tables_blob);
804     {
805         AcpiMcfgInfo mcfg = {
806            .base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base,
807            .size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size,
808         };
809         build_mcfg(tables_blob, tables->linker, &mcfg, vms->oem_id,
810                    vms->oem_table_id);
811     }
812 
813     acpi_add_table(table_offsets, tables_blob);
814     build_spcr(tables_blob, tables->linker, vms);
815 
816     if (vms->ras) {
817         build_ghes_error_table(tables->hardware_errors, tables->linker);
818         acpi_add_table(table_offsets, tables_blob);
819         acpi_build_hest(tables_blob, tables->linker, vms->oem_id,
820                         vms->oem_table_id);
821     }
822 
823     if (ms->numa_state->num_nodes > 0) {
824         acpi_add_table(table_offsets, tables_blob);
825         build_srat(tables_blob, tables->linker, vms);
826         if (ms->numa_state->have_numa_distance) {
827             acpi_add_table(table_offsets, tables_blob);
828             build_slit(tables_blob, tables->linker, ms, vms->oem_id,
829                        vms->oem_table_id);
830         }
831     }
832 
833     if (ms->nvdimms_state->is_enabled) {
834         nvdimm_build_acpi(table_offsets, tables_blob, tables->linker,
835                           ms->nvdimms_state, ms->ram_slots, vms->oem_id,
836                           vms->oem_table_id);
837     }
838 
839     if (its_class_name() && !vmc->no_its) {
840         acpi_add_table(table_offsets, tables_blob);
841         build_iort(tables_blob, tables->linker, vms);
842     }
843 
844 #ifdef CONFIG_TPM
845     if (tpm_get_version(tpm_find()) == TPM_VERSION_2_0) {
846         acpi_add_table(table_offsets, tables_blob);
847         build_tpm2(tables_blob, tables->linker, tables->tcpalog, vms->oem_id,
848                    vms->oem_table_id);
849     }
850 #endif
851 
852     /* XSDT is pointed to by RSDP */
853     xsdt = tables_blob->len;
854     build_xsdt(tables_blob, tables->linker, table_offsets, vms->oem_id,
855                vms->oem_table_id);
856 
857     /* RSDP is in FSEG memory, so allocate it separately */
858     {
859         AcpiRsdpData rsdp_data = {
860             .revision = 2,
861             .oem_id = vms->oem_id,
862             .xsdt_tbl_offset = &xsdt,
863             .rsdt_tbl_offset = NULL,
864         };
865         build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
866     }
867 
868     /*
869      * The align size is 128, warn if 64k is not enough therefore
870      * the align size could be resized.
871      */
872     if (tables_blob->len > ACPI_BUILD_TABLE_SIZE / 2) {
873         warn_report("ACPI table size %u exceeds %d bytes,"
874                     " migration may not work",
875                     tables_blob->len, ACPI_BUILD_TABLE_SIZE / 2);
876         error_printf("Try removing CPUs, NUMA nodes, memory slots"
877                      " or PCI bridges.");
878     }
879     acpi_align_size(tables_blob, ACPI_BUILD_TABLE_SIZE);
880 
881 
882     /* Cleanup memory that's no longer used. */
883     g_array_free(table_offsets, true);
884 }
885 
886 static void acpi_ram_update(MemoryRegion *mr, GArray *data)
887 {
888     uint32_t size = acpi_data_len(data);
889 
890     /* Make sure RAM size is correct - in case it got changed
891      * e.g. by migration */
892     memory_region_ram_resize(mr, size, &error_abort);
893 
894     memcpy(memory_region_get_ram_ptr(mr), data->data, size);
895     memory_region_set_dirty(mr, 0, size);
896 }
897 
898 static void virt_acpi_build_update(void *build_opaque)
899 {
900     AcpiBuildState *build_state = build_opaque;
901     AcpiBuildTables tables;
902 
903     /* No state to update or already patched? Nothing to do. */
904     if (!build_state || build_state->patched) {
905         return;
906     }
907     build_state->patched = true;
908 
909     acpi_build_tables_init(&tables);
910 
911     virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
912 
913     acpi_ram_update(build_state->table_mr, tables.table_data);
914     acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
915     acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
916 
917     acpi_build_tables_cleanup(&tables, true);
918 }
919 
920 static void virt_acpi_build_reset(void *build_opaque)
921 {
922     AcpiBuildState *build_state = build_opaque;
923     build_state->patched = false;
924 }
925 
926 static const VMStateDescription vmstate_virt_acpi_build = {
927     .name = "virt_acpi_build",
928     .version_id = 1,
929     .minimum_version_id = 1,
930     .fields = (VMStateField[]) {
931         VMSTATE_BOOL(patched, AcpiBuildState),
932         VMSTATE_END_OF_LIST()
933     },
934 };
935 
936 void virt_acpi_setup(VirtMachineState *vms)
937 {
938     AcpiBuildTables tables;
939     AcpiBuildState *build_state;
940     AcpiGedState *acpi_ged_state;
941 
942     if (!vms->fw_cfg) {
943         trace_virt_acpi_setup();
944         return;
945     }
946 
947     if (!virt_is_acpi_enabled(vms)) {
948         trace_virt_acpi_setup();
949         return;
950     }
951 
952     build_state = g_malloc0(sizeof *build_state);
953 
954     acpi_build_tables_init(&tables);
955     virt_acpi_build(vms, &tables);
956 
957     /* Now expose it all to Guest */
958     build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update,
959                                               build_state, tables.table_data,
960                                               ACPI_BUILD_TABLE_FILE);
961     assert(build_state->table_mr != NULL);
962 
963     build_state->linker_mr = acpi_add_rom_blob(virt_acpi_build_update,
964                                                build_state,
965                                                tables.linker->cmd_blob,
966                                                ACPI_BUILD_LOADER_FILE);
967 
968     fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
969                     acpi_data_len(tables.tcpalog));
970 
971     if (vms->ras) {
972         assert(vms->acpi_dev);
973         acpi_ged_state = ACPI_GED(vms->acpi_dev);
974         acpi_ghes_add_fw_cfg(&acpi_ged_state->ghes_state,
975                              vms->fw_cfg, tables.hardware_errors);
976     }
977 
978     build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update,
979                                              build_state, tables.rsdp,
980                                              ACPI_BUILD_RSDP_FILE);
981 
982     qemu_register_reset(virt_acpi_build_reset, build_state);
983     virt_acpi_build_reset(build_state);
984     vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
985 
986     /* Cleanup tables but don't free the memory: we track it
987      * in build_state.
988      */
989     acpi_build_tables_cleanup(&tables, false);
990 }
991