xref: /qemu/hw/arm/virt-acpi-build.c (revision dc03272d)
1 /* Support for generating ACPI tables and passing them to Guests
2  *
3  * ARM virt ACPI generation
4  *
5  * Copyright (C) 2008-2010  Kevin O'Connor <kevin@koconnor.net>
6  * Copyright (C) 2006 Fabrice Bellard
7  * Copyright (C) 2013 Red Hat Inc
8  *
9  * Author: Michael S. Tsirkin <mst@redhat.com>
10  *
11  * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
12  *
13  * Author: Shannon Zhao <zhaoshenglong@huawei.com>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19 
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24 
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, see <http://www.gnu.org/licenses/>.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qapi/error.h"
31 #include "qemu-common.h"
32 #include "qemu/bitmap.h"
33 #include "trace.h"
34 #include "qom/cpu.h"
35 #include "target/arm/cpu.h"
36 #include "hw/acpi/acpi-defs.h"
37 #include "hw/acpi/acpi.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/acpi/bios-linker-loader.h"
40 #include "hw/loader.h"
41 #include "hw/hw.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pcie_host.h"
44 #include "hw/pci/pci.h"
45 #include "hw/arm/virt.h"
46 #include "sysemu/numa.h"
47 #include "kvm_arm.h"
48 
49 #define ARM_SPI_BASE 32
50 #define ACPI_POWER_BUTTON_DEVICE "PWRB"
51 
52 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
53 {
54     uint16_t i;
55 
56     for (i = 0; i < smp_cpus; i++) {
57         Aml *dev = aml_device("C%.03X", i);
58         aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
59         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
60         aml_append(scope, dev);
61     }
62 }
63 
64 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
65                                            uint32_t uart_irq)
66 {
67     Aml *dev = aml_device("COM0");
68     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
69     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
70 
71     Aml *crs = aml_resource_template();
72     aml_append(crs, aml_memory32_fixed(uart_memmap->base,
73                                        uart_memmap->size, AML_READ_WRITE));
74     aml_append(crs,
75                aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
76                              AML_EXCLUSIVE, &uart_irq, 1));
77     aml_append(dev, aml_name_decl("_CRS", crs));
78 
79     /* The _ADR entry is used to link this device to the UART described
80      * in the SPCR table, i.e. SPCR.base_address.address == _ADR.
81      */
82     aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base)));
83 
84     aml_append(scope, dev);
85 }
86 
87 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
88 {
89     Aml *dev = aml_device("FWCF");
90     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
91     /* device present, functioning, decoding, not shown in UI */
92     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
93     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
94 
95     Aml *crs = aml_resource_template();
96     aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
97                                        fw_cfg_memmap->size, AML_READ_WRITE));
98     aml_append(dev, aml_name_decl("_CRS", crs));
99     aml_append(scope, dev);
100 }
101 
102 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
103 {
104     Aml *dev, *crs;
105     hwaddr base = flash_memmap->base;
106     hwaddr size = flash_memmap->size / 2;
107 
108     dev = aml_device("FLS0");
109     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
110     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
111 
112     crs = aml_resource_template();
113     aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
114     aml_append(dev, aml_name_decl("_CRS", crs));
115     aml_append(scope, dev);
116 
117     dev = aml_device("FLS1");
118     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
119     aml_append(dev, aml_name_decl("_UID", aml_int(1)));
120     crs = aml_resource_template();
121     aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
122     aml_append(dev, aml_name_decl("_CRS", crs));
123     aml_append(scope, dev);
124 }
125 
126 static void acpi_dsdt_add_virtio(Aml *scope,
127                                  const MemMapEntry *virtio_mmio_memmap,
128                                  uint32_t mmio_irq, int num)
129 {
130     hwaddr base = virtio_mmio_memmap->base;
131     hwaddr size = virtio_mmio_memmap->size;
132     int i;
133 
134     for (i = 0; i < num; i++) {
135         uint32_t irq = mmio_irq + i;
136         Aml *dev = aml_device("VR%02u", i);
137         aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
138         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
139         aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
140 
141         Aml *crs = aml_resource_template();
142         aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
143         aml_append(crs,
144                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
145                                  AML_EXCLUSIVE, &irq, 1));
146         aml_append(dev, aml_name_decl("_CRS", crs));
147         aml_append(scope, dev);
148         base += size;
149     }
150 }
151 
152 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
153                               uint32_t irq, bool use_highmem)
154 {
155     Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf;
156     int i, bus_no;
157     hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base;
158     hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size;
159     hwaddr base_pio = memmap[VIRT_PCIE_PIO].base;
160     hwaddr size_pio = memmap[VIRT_PCIE_PIO].size;
161     hwaddr base_ecam = memmap[VIRT_PCIE_ECAM].base;
162     hwaddr size_ecam = memmap[VIRT_PCIE_ECAM].size;
163     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
164 
165     Aml *dev = aml_device("%s", "PCI0");
166     aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08")));
167     aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03")));
168     aml_append(dev, aml_name_decl("_SEG", aml_int(0)));
169     aml_append(dev, aml_name_decl("_BBN", aml_int(0)));
170     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
171     aml_append(dev, aml_name_decl("_UID", aml_string("PCI0")));
172     aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
173     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
174 
175     /* Declare the PCI Routing Table. */
176     Aml *rt_pkg = aml_package(nr_pcie_buses * PCI_NUM_PINS);
177     for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) {
178         for (i = 0; i < PCI_NUM_PINS; i++) {
179             int gsi = (i + bus_no) % PCI_NUM_PINS;
180             Aml *pkg = aml_package(4);
181             aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF));
182             aml_append(pkg, aml_int(i));
183             aml_append(pkg, aml_name("GSI%d", gsi));
184             aml_append(pkg, aml_int(0));
185             aml_append(rt_pkg, pkg);
186         }
187     }
188     aml_append(dev, aml_name_decl("_PRT", rt_pkg));
189 
190     /* Create GSI link device */
191     for (i = 0; i < PCI_NUM_PINS; i++) {
192         uint32_t irqs =  irq + i;
193         Aml *dev_gsi = aml_device("GSI%d", i);
194         aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F")));
195         aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0)));
196         crs = aml_resource_template();
197         aml_append(crs,
198                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
199                                  AML_EXCLUSIVE, &irqs, 1));
200         aml_append(dev_gsi, aml_name_decl("_PRS", crs));
201         crs = aml_resource_template();
202         aml_append(crs,
203                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
204                                  AML_EXCLUSIVE, &irqs, 1));
205         aml_append(dev_gsi, aml_name_decl("_CRS", crs));
206         method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
207         aml_append(dev_gsi, method);
208         aml_append(dev, dev_gsi);
209     }
210 
211     method = aml_method("_CBA", 0, AML_NOTSERIALIZED);
212     aml_append(method, aml_return(aml_int(base_ecam)));
213     aml_append(dev, method);
214 
215     method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
216     Aml *rbuf = aml_resource_template();
217     aml_append(rbuf,
218         aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
219                             0x0000, 0x0000, nr_pcie_buses - 1, 0x0000,
220                             nr_pcie_buses));
221     aml_append(rbuf,
222         aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
223                          AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio,
224                          base_mmio + size_mmio - 1, 0x0000, size_mmio));
225     aml_append(rbuf,
226         aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
227                      AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio,
228                      size_pio));
229 
230     if (use_highmem) {
231         hwaddr base_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].base;
232         hwaddr size_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].size;
233 
234         aml_append(rbuf,
235             aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
236                              AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000,
237                              base_mmio_high,
238                              base_mmio_high + size_mmio_high - 1, 0x0000,
239                              size_mmio_high));
240     }
241 
242     aml_append(method, aml_name_decl("RBUF", rbuf));
243     aml_append(method, aml_return(rbuf));
244     aml_append(dev, method);
245 
246     /* Declare an _OSC (OS Control Handoff) method */
247     aml_append(dev, aml_name_decl("SUPP", aml_int(0)));
248     aml_append(dev, aml_name_decl("CTRL", aml_int(0)));
249     method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
250     aml_append(method,
251         aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
252 
253     /* PCI Firmware Specification 3.0
254      * 4.5.1. _OSC Interface for PCI Host Bridge Devices
255      * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
256      * identified by the Universal Unique IDentifier (UUID)
257      * 33DB4D5B-1FF7-401C-9657-7441C03DD766
258      */
259     UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
260     ifctx = aml_if(aml_equal(aml_arg(0), UUID));
261     aml_append(ifctx,
262         aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
263     aml_append(ifctx,
264         aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
265     aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP")));
266     aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL")));
267     aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL),
268                                 aml_name("CTRL")));
269 
270     ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
271     aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL),
272                                  aml_name("CDW1")));
273     aml_append(ifctx, ifctx1);
274 
275     ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
276     aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL),
277                                  aml_name("CDW1")));
278     aml_append(ifctx, ifctx1);
279 
280     aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3")));
281     aml_append(ifctx, aml_return(aml_arg(3)));
282     aml_append(method, ifctx);
283 
284     elsectx = aml_else();
285     aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL),
286                                   aml_name("CDW1")));
287     aml_append(elsectx, aml_return(aml_arg(3)));
288     aml_append(method, elsectx);
289     aml_append(dev, method);
290 
291     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
292 
293     /* PCI Firmware Specification 3.0
294      * 4.6.1. _DSM for PCI Express Slot Information
295      * The UUID in _DSM in this context is
296      * {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
297      */
298     UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
299     ifctx = aml_if(aml_equal(aml_arg(0), UUID));
300     ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0)));
301     uint8_t byte_list[1] = {1};
302     buf = aml_buffer(1, byte_list);
303     aml_append(ifctx1, aml_return(buf));
304     aml_append(ifctx, ifctx1);
305     aml_append(method, ifctx);
306 
307     byte_list[0] = 0;
308     buf = aml_buffer(1, byte_list);
309     aml_append(method, aml_return(buf));
310     aml_append(dev, method);
311 
312     Aml *dev_rp0 = aml_device("%s", "RP0");
313     aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0)));
314     aml_append(dev, dev_rp0);
315 
316     Aml *dev_res0 = aml_device("%s", "RES0");
317     aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02")));
318     crs = aml_resource_template();
319     aml_append(crs, aml_memory32_fixed(base_ecam, size_ecam, AML_READ_WRITE));
320     aml_append(dev_res0, aml_name_decl("_CRS", crs));
321     aml_append(dev, dev_res0);
322     aml_append(scope, dev);
323 }
324 
325 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
326                                            uint32_t gpio_irq)
327 {
328     Aml *dev = aml_device("GPO0");
329     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
330     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
331     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
332 
333     Aml *crs = aml_resource_template();
334     aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
335                                        AML_READ_WRITE));
336     aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
337                                   AML_EXCLUSIVE, &gpio_irq, 1));
338     aml_append(dev, aml_name_decl("_CRS", crs));
339 
340     Aml *aei = aml_resource_template();
341     /* Pin 3 for power button */
342     const uint32_t pin_list[1] = {3};
343     aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
344                                  AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
345                                  "GPO0", NULL, 0));
346     aml_append(dev, aml_name_decl("_AEI", aei));
347 
348     /* _E03 is handle for power button */
349     Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
350     aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
351                                   aml_int(0x80)));
352     aml_append(dev, method);
353     aml_append(scope, dev);
354 }
355 
356 static void acpi_dsdt_add_power_button(Aml *scope)
357 {
358     Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE);
359     aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C")));
360     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
361     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
362     aml_append(scope, dev);
363 }
364 
365 /* RSDP */
366 static GArray *
367 build_rsdp(GArray *rsdp_table, BIOSLinker *linker, unsigned xsdt_tbl_offset)
368 {
369     AcpiRsdpDescriptor *rsdp = acpi_data_push(rsdp_table, sizeof *rsdp);
370     unsigned xsdt_pa_size = sizeof(rsdp->xsdt_physical_address);
371     unsigned xsdt_pa_offset =
372         (char *)&rsdp->xsdt_physical_address - rsdp_table->data;
373 
374     bios_linker_loader_alloc(linker, ACPI_BUILD_RSDP_FILE, rsdp_table, 16,
375                              true /* fseg memory */);
376 
377     memcpy(&rsdp->signature, "RSD PTR ", sizeof(rsdp->signature));
378     memcpy(rsdp->oem_id, ACPI_BUILD_APPNAME6, sizeof(rsdp->oem_id));
379     rsdp->length = cpu_to_le32(sizeof(*rsdp));
380     rsdp->revision = 0x02;
381 
382     /* Address to be filled by Guest linker */
383     bios_linker_loader_add_pointer(linker,
384         ACPI_BUILD_RSDP_FILE, xsdt_pa_offset, xsdt_pa_size,
385         ACPI_BUILD_TABLE_FILE, xsdt_tbl_offset);
386 
387     /* Checksum to be filled by Guest linker */
388     bios_linker_loader_add_checksum(linker, ACPI_BUILD_RSDP_FILE,
389         (char *)rsdp - rsdp_table->data, sizeof *rsdp,
390         (char *)&rsdp->checksum - rsdp_table->data);
391 
392     return rsdp_table;
393 }
394 
395 static void
396 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
397 {
398     int nb_nodes, iort_start = table_data->len;
399     AcpiIortIdMapping *idmap;
400     AcpiIortItsGroup *its;
401     AcpiIortTable *iort;
402     AcpiIortSmmu3 *smmu;
403     size_t node_size, iort_length, smmu_offset = 0;
404     AcpiIortRC *rc;
405 
406     iort = acpi_data_push(table_data, sizeof(*iort));
407 
408     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
409         nb_nodes = 3; /* RC, ITS, SMMUv3 */
410     } else {
411         nb_nodes = 2; /* RC, ITS */
412     }
413 
414     iort_length = sizeof(*iort);
415     iort->node_count = cpu_to_le32(nb_nodes);
416     iort->node_offset = cpu_to_le32(sizeof(*iort));
417 
418     /* ITS group node */
419     node_size =  sizeof(*its) + sizeof(uint32_t);
420     iort_length += node_size;
421     its = acpi_data_push(table_data, node_size);
422 
423     its->type = ACPI_IORT_NODE_ITS_GROUP;
424     its->length = cpu_to_le16(node_size);
425     its->its_count = cpu_to_le32(1);
426     its->identifiers[0] = 0; /* MADT translation_id */
427 
428     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
429         int irq =  vms->irqmap[VIRT_SMMU];
430 
431         /* SMMUv3 node */
432         smmu_offset = iort->node_offset + node_size;
433         node_size = sizeof(*smmu) + sizeof(*idmap);
434         iort_length += node_size;
435         smmu = acpi_data_push(table_data, node_size);
436 
437         smmu->type = ACPI_IORT_NODE_SMMU_V3;
438         smmu->length = cpu_to_le16(node_size);
439         smmu->mapping_count = cpu_to_le32(1);
440         smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
441         smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
442         smmu->event_gsiv = cpu_to_le32(irq);
443         smmu->pri_gsiv = cpu_to_le32(irq + 1);
444         smmu->gerr_gsiv = cpu_to_le32(irq + 2);
445         smmu->sync_gsiv = cpu_to_le32(irq + 3);
446 
447         /* Identity RID mapping covering the whole input RID range */
448         idmap = &smmu->id_mapping_array[0];
449         idmap->input_base = 0;
450         idmap->id_count = cpu_to_le32(0xFFFF);
451         idmap->output_base = 0;
452         /* output IORT node is the ITS group node (the first node) */
453         idmap->output_reference = cpu_to_le32(iort->node_offset);
454     }
455 
456     /* Root Complex Node */
457     node_size = sizeof(*rc) + sizeof(*idmap);
458     iort_length += node_size;
459     rc = acpi_data_push(table_data, node_size);
460 
461     rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
462     rc->length = cpu_to_le16(node_size);
463     rc->mapping_count = cpu_to_le32(1);
464     rc->mapping_offset = cpu_to_le32(sizeof(*rc));
465 
466     /* fully coherent device */
467     rc->memory_properties.cache_coherency = cpu_to_le32(1);
468     rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
469     rc->pci_segment_number = 0; /* MCFG pci_segment */
470 
471     /* Identity RID mapping covering the whole input RID range */
472     idmap = &rc->id_mapping_array[0];
473     idmap->input_base = 0;
474     idmap->id_count = cpu_to_le32(0xFFFF);
475     idmap->output_base = 0;
476 
477     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
478         /* output IORT node is the smmuv3 node */
479         idmap->output_reference = cpu_to_le32(smmu_offset);
480     } else {
481         /* output IORT node is the ITS group node (the first node) */
482         idmap->output_reference = cpu_to_le32(iort->node_offset);
483     }
484 
485     iort->length = cpu_to_le32(iort_length);
486 
487     build_header(linker, table_data, (void *)(table_data->data + iort_start),
488                  "IORT", table_data->len - iort_start, 0, NULL, NULL);
489 }
490 
491 static void
492 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
493 {
494     AcpiSerialPortConsoleRedirection *spcr;
495     const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
496     int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
497     int spcr_start = table_data->len;
498 
499     spcr = acpi_data_push(table_data, sizeof(*spcr));
500 
501     spcr->interface_type = 0x3;    /* ARM PL011 UART */
502 
503     spcr->base_address.space_id = AML_SYSTEM_MEMORY;
504     spcr->base_address.bit_width = 8;
505     spcr->base_address.bit_offset = 0;
506     spcr->base_address.access_width = 1;
507     spcr->base_address.address = cpu_to_le64(uart_memmap->base);
508 
509     spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
510     spcr->gsi = cpu_to_le32(irq);  /* Global System Interrupt */
511 
512     spcr->baud = 3;                /* Baud Rate: 3 = 9600 */
513     spcr->parity = 0;              /* No Parity */
514     spcr->stopbits = 1;            /* 1 Stop bit */
515     spcr->flowctrl = (1 << 1);     /* Bit[1] = RTS/CTS hardware flow control */
516     spcr->term_type = 0;           /* Terminal Type: 0 = VT100 */
517 
518     spcr->pci_device_id = 0xffff;  /* PCI Device ID: not a PCI device */
519     spcr->pci_vendor_id = 0xffff;  /* PCI Vendor ID: not a PCI device */
520 
521     build_header(linker, table_data, (void *)(table_data->data + spcr_start),
522                  "SPCR", table_data->len - spcr_start, 2, NULL, NULL);
523 }
524 
525 static void
526 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
527 {
528     AcpiSystemResourceAffinityTable *srat;
529     AcpiSratProcessorGiccAffinity *core;
530     AcpiSratMemoryAffinity *numamem;
531     int i, srat_start;
532     uint64_t mem_base;
533     MachineClass *mc = MACHINE_GET_CLASS(vms);
534     const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(MACHINE(vms));
535 
536     srat_start = table_data->len;
537     srat = acpi_data_push(table_data, sizeof(*srat));
538     srat->reserved1 = cpu_to_le32(1);
539 
540     for (i = 0; i < cpu_list->len; ++i) {
541         core = acpi_data_push(table_data, sizeof(*core));
542         core->type = ACPI_SRAT_PROCESSOR_GICC;
543         core->length = sizeof(*core);
544         core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
545         core->acpi_processor_uid = cpu_to_le32(i);
546         core->flags = cpu_to_le32(1);
547     }
548 
549     mem_base = vms->memmap[VIRT_MEM].base;
550     for (i = 0; i < nb_numa_nodes; ++i) {
551         numamem = acpi_data_push(table_data, sizeof(*numamem));
552         build_srat_memory(numamem, mem_base, numa_info[i].node_mem, i,
553                           MEM_AFFINITY_ENABLED);
554         mem_base += numa_info[i].node_mem;
555     }
556 
557     build_header(linker, table_data, (void *)(table_data->data + srat_start),
558                  "SRAT", table_data->len - srat_start, 3, NULL, NULL);
559 }
560 
561 static void
562 build_mcfg(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
563 {
564     AcpiTableMcfg *mcfg;
565     const MemMapEntry *memmap = vms->memmap;
566     int len = sizeof(*mcfg) + sizeof(mcfg->allocation[0]);
567     int mcfg_start = table_data->len;
568 
569     mcfg = acpi_data_push(table_data, len);
570     mcfg->allocation[0].address = cpu_to_le64(memmap[VIRT_PCIE_ECAM].base);
571 
572     /* Only a single allocation so no need to play with segments */
573     mcfg->allocation[0].pci_segment = cpu_to_le16(0);
574     mcfg->allocation[0].start_bus_number = 0;
575     mcfg->allocation[0].end_bus_number = (memmap[VIRT_PCIE_ECAM].size
576                                           / PCIE_MMCFG_SIZE_MIN) - 1;
577 
578     build_header(linker, table_data, (void *)(table_data->data + mcfg_start),
579                  "MCFG", table_data->len - mcfg_start, 1, NULL, NULL);
580 }
581 
582 /* GTDT */
583 static void
584 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
585 {
586     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
587     int gtdt_start = table_data->len;
588     AcpiGenericTimerTable *gtdt;
589     uint32_t irqflags;
590 
591     if (vmc->claim_edge_triggered_timers) {
592         irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
593     } else {
594         irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
595     }
596 
597     gtdt = acpi_data_push(table_data, sizeof *gtdt);
598     /* The interrupt values are the same with the device tree when adding 16 */
599     gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
600     gtdt->secure_el1_flags = cpu_to_le32(irqflags);
601 
602     gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
603     gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
604                                              ACPI_GTDT_CAP_ALWAYS_ON);
605 
606     gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
607     gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
608 
609     gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
610     gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
611 
612     build_header(linker, table_data,
613                  (void *)(table_data->data + gtdt_start), "GTDT",
614                  table_data->len - gtdt_start, 2, NULL, NULL);
615 }
616 
617 /* MADT */
618 static void
619 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
620 {
621     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
622     int madt_start = table_data->len;
623     const MemMapEntry *memmap = vms->memmap;
624     const int *irqmap = vms->irqmap;
625     AcpiMultipleApicTable *madt;
626     AcpiMadtGenericDistributor *gicd;
627     AcpiMadtGenericMsiFrame *gic_msi;
628     int i;
629 
630     madt = acpi_data_push(table_data, sizeof *madt);
631 
632     gicd = acpi_data_push(table_data, sizeof *gicd);
633     gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
634     gicd->length = sizeof(*gicd);
635     gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
636     gicd->version = vms->gic_version;
637 
638     for (i = 0; i < vms->smp_cpus; i++) {
639         AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
640                                                            sizeof(*gicc));
641         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
642 
643         gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
644         gicc->length = sizeof(*gicc);
645         if (vms->gic_version == 2) {
646             gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
647         }
648         gicc->cpu_interface_number = cpu_to_le32(i);
649         gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
650         gicc->uid = cpu_to_le32(i);
651         gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
652 
653         if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
654             gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
655         }
656         if (vms->virt && vms->gic_version == 3) {
657             gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GICV3_MAINT_IRQ));
658         }
659     }
660 
661     if (vms->gic_version == 3) {
662         AcpiMadtGenericTranslator *gic_its;
663         AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
664                                                          sizeof *gicr);
665 
666         gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
667         gicr->length = sizeof(*gicr);
668         gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
669         gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
670 
671         if (its_class_name() && !vmc->no_its) {
672             gic_its = acpi_data_push(table_data, sizeof *gic_its);
673             gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
674             gic_its->length = sizeof(*gic_its);
675             gic_its->translation_id = 0;
676             gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
677         }
678     } else {
679         gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
680         gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
681         gic_msi->length = sizeof(*gic_msi);
682         gic_msi->gic_msi_frame_id = 0;
683         gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
684         gic_msi->flags = cpu_to_le32(1);
685         gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
686         gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
687     }
688 
689     build_header(linker, table_data,
690                  (void *)(table_data->data + madt_start), "APIC",
691                  table_data->len - madt_start, 3, NULL, NULL);
692 }
693 
694 /* FADT */
695 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
696                             VirtMachineState *vms, unsigned dsdt_tbl_offset)
697 {
698     /* ACPI v5.1 */
699     AcpiFadtData fadt = {
700         .rev = 5,
701         .minor_ver = 1,
702         .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
703         .xdsdt_tbl_offset = &dsdt_tbl_offset,
704     };
705 
706     switch (vms->psci_conduit) {
707     case QEMU_PSCI_CONDUIT_DISABLED:
708         fadt.arm_boot_arch = 0;
709         break;
710     case QEMU_PSCI_CONDUIT_HVC:
711         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
712                              ACPI_FADT_ARM_PSCI_USE_HVC;
713         break;
714     case QEMU_PSCI_CONDUIT_SMC:
715         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
716         break;
717     default:
718         g_assert_not_reached();
719     }
720 
721     build_fadt(table_data, linker, &fadt, NULL, NULL);
722 }
723 
724 /* DSDT */
725 static void
726 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
727 {
728     Aml *scope, *dsdt;
729     const MemMapEntry *memmap = vms->memmap;
730     const int *irqmap = vms->irqmap;
731 
732     dsdt = init_aml_allocator();
733     /* Reserve space for header */
734     acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
735 
736     /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
737      * While UEFI can use libfdt to disable the RTC device node in the DTB that
738      * it passes to the OS, it cannot modify AML. Therefore, we won't generate
739      * the RTC ACPI device at all when using UEFI.
740      */
741     scope = aml_scope("\\_SB");
742     acpi_dsdt_add_cpus(scope, vms->smp_cpus);
743     acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
744                        (irqmap[VIRT_UART] + ARM_SPI_BASE));
745     acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
746     acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
747     acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
748                     (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
749     acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
750                       vms->highmem);
751     acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
752                        (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
753     acpi_dsdt_add_power_button(scope);
754 
755     aml_append(dsdt, scope);
756 
757     /* copy AML table into ACPI tables blob and patch header there */
758     g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
759     build_header(linker, table_data,
760         (void *)(table_data->data + table_data->len - dsdt->buf->len),
761         "DSDT", dsdt->buf->len, 2, NULL, NULL);
762     free_aml_allocator();
763 }
764 
765 typedef
766 struct AcpiBuildState {
767     /* Copy of table in RAM (for patching). */
768     MemoryRegion *table_mr;
769     MemoryRegion *rsdp_mr;
770     MemoryRegion *linker_mr;
771     /* Is table patched? */
772     bool patched;
773 } AcpiBuildState;
774 
775 static
776 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
777 {
778     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
779     GArray *table_offsets;
780     unsigned dsdt, xsdt;
781     GArray *tables_blob = tables->table_data;
782 
783     table_offsets = g_array_new(false, true /* clear */,
784                                         sizeof(uint32_t));
785 
786     bios_linker_loader_alloc(tables->linker,
787                              ACPI_BUILD_TABLE_FILE, tables_blob,
788                              64, false /* high memory */);
789 
790     /* DSDT is pointed to by FADT */
791     dsdt = tables_blob->len;
792     build_dsdt(tables_blob, tables->linker, vms);
793 
794     /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
795     acpi_add_table(table_offsets, tables_blob);
796     build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
797 
798     acpi_add_table(table_offsets, tables_blob);
799     build_madt(tables_blob, tables->linker, vms);
800 
801     acpi_add_table(table_offsets, tables_blob);
802     build_gtdt(tables_blob, tables->linker, vms);
803 
804     acpi_add_table(table_offsets, tables_blob);
805     build_mcfg(tables_blob, tables->linker, vms);
806 
807     acpi_add_table(table_offsets, tables_blob);
808     build_spcr(tables_blob, tables->linker, vms);
809 
810     if (nb_numa_nodes > 0) {
811         acpi_add_table(table_offsets, tables_blob);
812         build_srat(tables_blob, tables->linker, vms);
813         if (have_numa_distance) {
814             acpi_add_table(table_offsets, tables_blob);
815             build_slit(tables_blob, tables->linker);
816         }
817     }
818 
819     if (its_class_name() && !vmc->no_its) {
820         acpi_add_table(table_offsets, tables_blob);
821         build_iort(tables_blob, tables->linker, vms);
822     }
823 
824     /* XSDT is pointed to by RSDP */
825     xsdt = tables_blob->len;
826     build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
827 
828     /* RSDP is in FSEG memory, so allocate it separately */
829     build_rsdp(tables->rsdp, tables->linker, xsdt);
830 
831     /* Cleanup memory that's no longer used. */
832     g_array_free(table_offsets, true);
833 }
834 
835 static void acpi_ram_update(MemoryRegion *mr, GArray *data)
836 {
837     uint32_t size = acpi_data_len(data);
838 
839     /* Make sure RAM size is correct - in case it got changed
840      * e.g. by migration */
841     memory_region_ram_resize(mr, size, &error_abort);
842 
843     memcpy(memory_region_get_ram_ptr(mr), data->data, size);
844     memory_region_set_dirty(mr, 0, size);
845 }
846 
847 static void virt_acpi_build_update(void *build_opaque)
848 {
849     AcpiBuildState *build_state = build_opaque;
850     AcpiBuildTables tables;
851 
852     /* No state to update or already patched? Nothing to do. */
853     if (!build_state || build_state->patched) {
854         return;
855     }
856     build_state->patched = true;
857 
858     acpi_build_tables_init(&tables);
859 
860     virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
861 
862     acpi_ram_update(build_state->table_mr, tables.table_data);
863     acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
864     acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
865 
866     acpi_build_tables_cleanup(&tables, true);
867 }
868 
869 static void virt_acpi_build_reset(void *build_opaque)
870 {
871     AcpiBuildState *build_state = build_opaque;
872     build_state->patched = false;
873 }
874 
875 static MemoryRegion *acpi_add_rom_blob(AcpiBuildState *build_state,
876                                        GArray *blob, const char *name,
877                                        uint64_t max_size)
878 {
879     return rom_add_blob(name, blob->data, acpi_data_len(blob), max_size, -1,
880                         name, virt_acpi_build_update, build_state, NULL, true);
881 }
882 
883 static const VMStateDescription vmstate_virt_acpi_build = {
884     .name = "virt_acpi_build",
885     .version_id = 1,
886     .minimum_version_id = 1,
887     .fields = (VMStateField[]) {
888         VMSTATE_BOOL(patched, AcpiBuildState),
889         VMSTATE_END_OF_LIST()
890     },
891 };
892 
893 void virt_acpi_setup(VirtMachineState *vms)
894 {
895     AcpiBuildTables tables;
896     AcpiBuildState *build_state;
897 
898     if (!vms->fw_cfg) {
899         trace_virt_acpi_setup();
900         return;
901     }
902 
903     if (!acpi_enabled) {
904         trace_virt_acpi_setup();
905         return;
906     }
907 
908     build_state = g_malloc0(sizeof *build_state);
909 
910     acpi_build_tables_init(&tables);
911     virt_acpi_build(vms, &tables);
912 
913     /* Now expose it all to Guest */
914     build_state->table_mr = acpi_add_rom_blob(build_state, tables.table_data,
915                                                ACPI_BUILD_TABLE_FILE,
916                                                ACPI_BUILD_TABLE_MAX_SIZE);
917     assert(build_state->table_mr != NULL);
918 
919     build_state->linker_mr =
920         acpi_add_rom_blob(build_state, tables.linker->cmd_blob,
921                           "etc/table-loader", 0);
922 
923     fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
924                     acpi_data_len(tables.tcpalog));
925 
926     build_state->rsdp_mr = acpi_add_rom_blob(build_state, tables.rsdp,
927                                               ACPI_BUILD_RSDP_FILE, 0);
928 
929     qemu_register_reset(virt_acpi_build_reset, build_state);
930     virt_acpi_build_reset(build_state);
931     vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
932 
933     /* Cleanup tables but don't free the memory: we track it
934      * in build_state.
935      */
936     acpi_build_tables_cleanup(&tables, false);
937 }
938