xref: /qemu/hw/arm/virt-acpi-build.c (revision fd813c72)
1 /* Support for generating ACPI tables and passing them to Guests
2  *
3  * ARM virt ACPI generation
4  *
5  * Copyright (C) 2008-2010  Kevin O'Connor <kevin@koconnor.net>
6  * Copyright (C) 2006 Fabrice Bellard
7  * Copyright (C) 2013 Red Hat Inc
8  *
9  * Author: Michael S. Tsirkin <mst@redhat.com>
10  *
11  * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
12  *
13  * Author: Shannon Zhao <zhaoshenglong@huawei.com>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19 
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24 
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, see <http://www.gnu.org/licenses/>.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qapi/error.h"
31 #include "qemu-common.h"
32 #include "qemu/bitmap.h"
33 #include "trace.h"
34 #include "qom/cpu.h"
35 #include "target/arm/cpu.h"
36 #include "hw/acpi/acpi-defs.h"
37 #include "hw/acpi/acpi.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/acpi/bios-linker-loader.h"
40 #include "hw/loader.h"
41 #include "hw/hw.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pcie_host.h"
44 #include "hw/pci/pci.h"
45 #include "hw/arm/virt.h"
46 #include "sysemu/numa.h"
47 #include "kvm_arm.h"
48 
49 #define ARM_SPI_BASE 32
50 #define ACPI_POWER_BUTTON_DEVICE "PWRB"
51 
52 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
53 {
54     uint16_t i;
55 
56     for (i = 0; i < smp_cpus; i++) {
57         Aml *dev = aml_device("C%.03X", i);
58         aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
59         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
60         aml_append(scope, dev);
61     }
62 }
63 
64 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
65                                            uint32_t uart_irq)
66 {
67     Aml *dev = aml_device("COM0");
68     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
69     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
70 
71     Aml *crs = aml_resource_template();
72     aml_append(crs, aml_memory32_fixed(uart_memmap->base,
73                                        uart_memmap->size, AML_READ_WRITE));
74     aml_append(crs,
75                aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
76                              AML_EXCLUSIVE, &uart_irq, 1));
77     aml_append(dev, aml_name_decl("_CRS", crs));
78 
79     /* The _ADR entry is used to link this device to the UART described
80      * in the SPCR table, i.e. SPCR.base_address.address == _ADR.
81      */
82     aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base)));
83 
84     aml_append(scope, dev);
85 }
86 
87 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
88 {
89     Aml *dev = aml_device("FWCF");
90     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
91     /* device present, functioning, decoding, not shown in UI */
92     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
93     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
94 
95     Aml *crs = aml_resource_template();
96     aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
97                                        fw_cfg_memmap->size, AML_READ_WRITE));
98     aml_append(dev, aml_name_decl("_CRS", crs));
99     aml_append(scope, dev);
100 }
101 
102 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
103 {
104     Aml *dev, *crs;
105     hwaddr base = flash_memmap->base;
106     hwaddr size = flash_memmap->size / 2;
107 
108     dev = aml_device("FLS0");
109     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
110     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
111 
112     crs = aml_resource_template();
113     aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
114     aml_append(dev, aml_name_decl("_CRS", crs));
115     aml_append(scope, dev);
116 
117     dev = aml_device("FLS1");
118     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
119     aml_append(dev, aml_name_decl("_UID", aml_int(1)));
120     crs = aml_resource_template();
121     aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
122     aml_append(dev, aml_name_decl("_CRS", crs));
123     aml_append(scope, dev);
124 }
125 
126 static void acpi_dsdt_add_virtio(Aml *scope,
127                                  const MemMapEntry *virtio_mmio_memmap,
128                                  uint32_t mmio_irq, int num)
129 {
130     hwaddr base = virtio_mmio_memmap->base;
131     hwaddr size = virtio_mmio_memmap->size;
132     int i;
133 
134     for (i = 0; i < num; i++) {
135         uint32_t irq = mmio_irq + i;
136         Aml *dev = aml_device("VR%02u", i);
137         aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
138         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
139         aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
140 
141         Aml *crs = aml_resource_template();
142         aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
143         aml_append(crs,
144                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
145                                  AML_EXCLUSIVE, &irq, 1));
146         aml_append(dev, aml_name_decl("_CRS", crs));
147         aml_append(scope, dev);
148         base += size;
149     }
150 }
151 
152 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
153                               uint32_t irq, bool use_highmem, bool highmem_ecam)
154 {
155     int ecam_id = VIRT_ECAM_ID(highmem_ecam);
156     Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf;
157     int i, bus_no;
158     hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base;
159     hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size;
160     hwaddr base_pio = memmap[VIRT_PCIE_PIO].base;
161     hwaddr size_pio = memmap[VIRT_PCIE_PIO].size;
162     hwaddr base_ecam = memmap[ecam_id].base;
163     hwaddr size_ecam = memmap[ecam_id].size;
164     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
165 
166     Aml *dev = aml_device("%s", "PCI0");
167     aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08")));
168     aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03")));
169     aml_append(dev, aml_name_decl("_SEG", aml_int(0)));
170     aml_append(dev, aml_name_decl("_BBN", aml_int(0)));
171     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
172     aml_append(dev, aml_name_decl("_UID", aml_string("PCI0")));
173     aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
174     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
175 
176     /* Declare the PCI Routing Table. */
177     Aml *rt_pkg = aml_varpackage(nr_pcie_buses * PCI_NUM_PINS);
178     for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) {
179         for (i = 0; i < PCI_NUM_PINS; i++) {
180             int gsi = (i + bus_no) % PCI_NUM_PINS;
181             Aml *pkg = aml_package(4);
182             aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF));
183             aml_append(pkg, aml_int(i));
184             aml_append(pkg, aml_name("GSI%d", gsi));
185             aml_append(pkg, aml_int(0));
186             aml_append(rt_pkg, pkg);
187         }
188     }
189     aml_append(dev, aml_name_decl("_PRT", rt_pkg));
190 
191     /* Create GSI link device */
192     for (i = 0; i < PCI_NUM_PINS; i++) {
193         uint32_t irqs =  irq + i;
194         Aml *dev_gsi = aml_device("GSI%d", i);
195         aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F")));
196         aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0)));
197         crs = aml_resource_template();
198         aml_append(crs,
199                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
200                                  AML_EXCLUSIVE, &irqs, 1));
201         aml_append(dev_gsi, aml_name_decl("_PRS", crs));
202         crs = aml_resource_template();
203         aml_append(crs,
204                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
205                                  AML_EXCLUSIVE, &irqs, 1));
206         aml_append(dev_gsi, aml_name_decl("_CRS", crs));
207         method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
208         aml_append(dev_gsi, method);
209         aml_append(dev, dev_gsi);
210     }
211 
212     method = aml_method("_CBA", 0, AML_NOTSERIALIZED);
213     aml_append(method, aml_return(aml_int(base_ecam)));
214     aml_append(dev, method);
215 
216     method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
217     Aml *rbuf = aml_resource_template();
218     aml_append(rbuf,
219         aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
220                             0x0000, 0x0000, nr_pcie_buses - 1, 0x0000,
221                             nr_pcie_buses));
222     aml_append(rbuf,
223         aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
224                          AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio,
225                          base_mmio + size_mmio - 1, 0x0000, size_mmio));
226     aml_append(rbuf,
227         aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
228                      AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio,
229                      size_pio));
230 
231     if (use_highmem) {
232         hwaddr base_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].base;
233         hwaddr size_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].size;
234 
235         aml_append(rbuf,
236             aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
237                              AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000,
238                              base_mmio_high,
239                              base_mmio_high + size_mmio_high - 1, 0x0000,
240                              size_mmio_high));
241     }
242 
243     aml_append(method, aml_name_decl("RBUF", rbuf));
244     aml_append(method, aml_return(rbuf));
245     aml_append(dev, method);
246 
247     /* Declare an _OSC (OS Control Handoff) method */
248     aml_append(dev, aml_name_decl("SUPP", aml_int(0)));
249     aml_append(dev, aml_name_decl("CTRL", aml_int(0)));
250     method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
251     aml_append(method,
252         aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
253 
254     /* PCI Firmware Specification 3.0
255      * 4.5.1. _OSC Interface for PCI Host Bridge Devices
256      * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
257      * identified by the Universal Unique IDentifier (UUID)
258      * 33DB4D5B-1FF7-401C-9657-7441C03DD766
259      */
260     UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
261     ifctx = aml_if(aml_equal(aml_arg(0), UUID));
262     aml_append(ifctx,
263         aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
264     aml_append(ifctx,
265         aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
266     aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP")));
267     aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL")));
268     aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL),
269                                 aml_name("CTRL")));
270 
271     ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
272     aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL),
273                                  aml_name("CDW1")));
274     aml_append(ifctx, ifctx1);
275 
276     ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
277     aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL),
278                                  aml_name("CDW1")));
279     aml_append(ifctx, ifctx1);
280 
281     aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3")));
282     aml_append(ifctx, aml_return(aml_arg(3)));
283     aml_append(method, ifctx);
284 
285     elsectx = aml_else();
286     aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL),
287                                   aml_name("CDW1")));
288     aml_append(elsectx, aml_return(aml_arg(3)));
289     aml_append(method, elsectx);
290     aml_append(dev, method);
291 
292     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
293 
294     /* PCI Firmware Specification 3.0
295      * 4.6.1. _DSM for PCI Express Slot Information
296      * The UUID in _DSM in this context is
297      * {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
298      */
299     UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
300     ifctx = aml_if(aml_equal(aml_arg(0), UUID));
301     ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0)));
302     uint8_t byte_list[1] = {1};
303     buf = aml_buffer(1, byte_list);
304     aml_append(ifctx1, aml_return(buf));
305     aml_append(ifctx, ifctx1);
306     aml_append(method, ifctx);
307 
308     byte_list[0] = 0;
309     buf = aml_buffer(1, byte_list);
310     aml_append(method, aml_return(buf));
311     aml_append(dev, method);
312 
313     Aml *dev_rp0 = aml_device("%s", "RP0");
314     aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0)));
315     aml_append(dev, dev_rp0);
316 
317     Aml *dev_res0 = aml_device("%s", "RES0");
318     aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02")));
319     crs = aml_resource_template();
320     aml_append(crs,
321         aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
322                          AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam,
323                          base_ecam + size_ecam - 1, 0x0000, size_ecam));
324     aml_append(dev_res0, aml_name_decl("_CRS", crs));
325     aml_append(dev, dev_res0);
326     aml_append(scope, dev);
327 }
328 
329 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
330                                            uint32_t gpio_irq)
331 {
332     Aml *dev = aml_device("GPO0");
333     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
334     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
335     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
336 
337     Aml *crs = aml_resource_template();
338     aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
339                                        AML_READ_WRITE));
340     aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
341                                   AML_EXCLUSIVE, &gpio_irq, 1));
342     aml_append(dev, aml_name_decl("_CRS", crs));
343 
344     Aml *aei = aml_resource_template();
345     /* Pin 3 for power button */
346     const uint32_t pin_list[1] = {3};
347     aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
348                                  AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
349                                  "GPO0", NULL, 0));
350     aml_append(dev, aml_name_decl("_AEI", aei));
351 
352     /* _E03 is handle for power button */
353     Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
354     aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
355                                   aml_int(0x80)));
356     aml_append(dev, method);
357     aml_append(scope, dev);
358 }
359 
360 static void acpi_dsdt_add_power_button(Aml *scope)
361 {
362     Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE);
363     aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C")));
364     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
365     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
366     aml_append(scope, dev);
367 }
368 
369 static void
370 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
371 {
372     int nb_nodes, iort_start = table_data->len;
373     AcpiIortIdMapping *idmap;
374     AcpiIortItsGroup *its;
375     AcpiIortTable *iort;
376     AcpiIortSmmu3 *smmu;
377     size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
378     AcpiIortRC *rc;
379 
380     iort = acpi_data_push(table_data, sizeof(*iort));
381 
382     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
383         nb_nodes = 3; /* RC, ITS, SMMUv3 */
384     } else {
385         nb_nodes = 2; /* RC, ITS */
386     }
387 
388     iort_length = sizeof(*iort);
389     iort->node_count = cpu_to_le32(nb_nodes);
390     /*
391      * Use a copy in case table_data->data moves during acpi_data_push
392      * operations.
393      */
394     iort_node_offset = sizeof(*iort);
395     iort->node_offset = cpu_to_le32(iort_node_offset);
396 
397     /* ITS group node */
398     node_size =  sizeof(*its) + sizeof(uint32_t);
399     iort_length += node_size;
400     its = acpi_data_push(table_data, node_size);
401 
402     its->type = ACPI_IORT_NODE_ITS_GROUP;
403     its->length = cpu_to_le16(node_size);
404     its->its_count = cpu_to_le32(1);
405     its->identifiers[0] = 0; /* MADT translation_id */
406 
407     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
408         int irq =  vms->irqmap[VIRT_SMMU];
409 
410         /* SMMUv3 node */
411         smmu_offset = iort_node_offset + node_size;
412         node_size = sizeof(*smmu) + sizeof(*idmap);
413         iort_length += node_size;
414         smmu = acpi_data_push(table_data, node_size);
415 
416         smmu->type = ACPI_IORT_NODE_SMMU_V3;
417         smmu->length = cpu_to_le16(node_size);
418         smmu->mapping_count = cpu_to_le32(1);
419         smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
420         smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
421         smmu->event_gsiv = cpu_to_le32(irq);
422         smmu->pri_gsiv = cpu_to_le32(irq + 1);
423         smmu->gerr_gsiv = cpu_to_le32(irq + 2);
424         smmu->sync_gsiv = cpu_to_le32(irq + 3);
425 
426         /* Identity RID mapping covering the whole input RID range */
427         idmap = &smmu->id_mapping_array[0];
428         idmap->input_base = 0;
429         idmap->id_count = cpu_to_le32(0xFFFF);
430         idmap->output_base = 0;
431         /* output IORT node is the ITS group node (the first node) */
432         idmap->output_reference = cpu_to_le32(iort_node_offset);
433     }
434 
435     /* Root Complex Node */
436     node_size = sizeof(*rc) + sizeof(*idmap);
437     iort_length += node_size;
438     rc = acpi_data_push(table_data, node_size);
439 
440     rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
441     rc->length = cpu_to_le16(node_size);
442     rc->mapping_count = cpu_to_le32(1);
443     rc->mapping_offset = cpu_to_le32(sizeof(*rc));
444 
445     /* fully coherent device */
446     rc->memory_properties.cache_coherency = cpu_to_le32(1);
447     rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
448     rc->pci_segment_number = 0; /* MCFG pci_segment */
449 
450     /* Identity RID mapping covering the whole input RID range */
451     idmap = &rc->id_mapping_array[0];
452     idmap->input_base = 0;
453     idmap->id_count = cpu_to_le32(0xFFFF);
454     idmap->output_base = 0;
455 
456     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
457         /* output IORT node is the smmuv3 node */
458         idmap->output_reference = cpu_to_le32(smmu_offset);
459     } else {
460         /* output IORT node is the ITS group node (the first node) */
461         idmap->output_reference = cpu_to_le32(iort_node_offset);
462     }
463 
464     /*
465      * Update the pointer address in case table_data->data moves during above
466      * acpi_data_push operations.
467      */
468     iort = (AcpiIortTable *)(table_data->data + iort_start);
469     iort->length = cpu_to_le32(iort_length);
470 
471     build_header(linker, table_data, (void *)(table_data->data + iort_start),
472                  "IORT", table_data->len - iort_start, 0, NULL, NULL);
473 }
474 
475 static void
476 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
477 {
478     AcpiSerialPortConsoleRedirection *spcr;
479     const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
480     int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
481     int spcr_start = table_data->len;
482 
483     spcr = acpi_data_push(table_data, sizeof(*spcr));
484 
485     spcr->interface_type = 0x3;    /* ARM PL011 UART */
486 
487     spcr->base_address.space_id = AML_SYSTEM_MEMORY;
488     spcr->base_address.bit_width = 8;
489     spcr->base_address.bit_offset = 0;
490     spcr->base_address.access_width = 1;
491     spcr->base_address.address = cpu_to_le64(uart_memmap->base);
492 
493     spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
494     spcr->gsi = cpu_to_le32(irq);  /* Global System Interrupt */
495 
496     spcr->baud = 3;                /* Baud Rate: 3 = 9600 */
497     spcr->parity = 0;              /* No Parity */
498     spcr->stopbits = 1;            /* 1 Stop bit */
499     spcr->flowctrl = (1 << 1);     /* Bit[1] = RTS/CTS hardware flow control */
500     spcr->term_type = 0;           /* Terminal Type: 0 = VT100 */
501 
502     spcr->pci_device_id = 0xffff;  /* PCI Device ID: not a PCI device */
503     spcr->pci_vendor_id = 0xffff;  /* PCI Vendor ID: not a PCI device */
504 
505     build_header(linker, table_data, (void *)(table_data->data + spcr_start),
506                  "SPCR", table_data->len - spcr_start, 2, NULL, NULL);
507 }
508 
509 static void
510 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
511 {
512     AcpiSystemResourceAffinityTable *srat;
513     AcpiSratProcessorGiccAffinity *core;
514     AcpiSratMemoryAffinity *numamem;
515     int i, srat_start;
516     uint64_t mem_base;
517     MachineClass *mc = MACHINE_GET_CLASS(vms);
518     const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(MACHINE(vms));
519 
520     srat_start = table_data->len;
521     srat = acpi_data_push(table_data, sizeof(*srat));
522     srat->reserved1 = cpu_to_le32(1);
523 
524     for (i = 0; i < cpu_list->len; ++i) {
525         core = acpi_data_push(table_data, sizeof(*core));
526         core->type = ACPI_SRAT_PROCESSOR_GICC;
527         core->length = sizeof(*core);
528         core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
529         core->acpi_processor_uid = cpu_to_le32(i);
530         core->flags = cpu_to_le32(1);
531     }
532 
533     mem_base = vms->memmap[VIRT_MEM].base;
534     for (i = 0; i < nb_numa_nodes; ++i) {
535         if (numa_info[i].node_mem > 0) {
536             numamem = acpi_data_push(table_data, sizeof(*numamem));
537             build_srat_memory(numamem, mem_base, numa_info[i].node_mem, i,
538                               MEM_AFFINITY_ENABLED);
539             mem_base += numa_info[i].node_mem;
540         }
541     }
542 
543     build_header(linker, table_data, (void *)(table_data->data + srat_start),
544                  "SRAT", table_data->len - srat_start, 3, NULL, NULL);
545 }
546 
547 static void
548 build_mcfg(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
549 {
550     AcpiTableMcfg *mcfg;
551     const MemMapEntry *memmap = vms->memmap;
552     int ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
553     int len = sizeof(*mcfg) + sizeof(mcfg->allocation[0]);
554     int mcfg_start = table_data->len;
555 
556     mcfg = acpi_data_push(table_data, len);
557     mcfg->allocation[0].address = cpu_to_le64(memmap[ecam_id].base);
558 
559     /* Only a single allocation so no need to play with segments */
560     mcfg->allocation[0].pci_segment = cpu_to_le16(0);
561     mcfg->allocation[0].start_bus_number = 0;
562     mcfg->allocation[0].end_bus_number = (memmap[ecam_id].size
563                                           / PCIE_MMCFG_SIZE_MIN) - 1;
564 
565     build_header(linker, table_data, (void *)(table_data->data + mcfg_start),
566                  "MCFG", table_data->len - mcfg_start, 1, NULL, NULL);
567 }
568 
569 /* GTDT */
570 static void
571 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
572 {
573     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
574     int gtdt_start = table_data->len;
575     AcpiGenericTimerTable *gtdt;
576     uint32_t irqflags;
577 
578     if (vmc->claim_edge_triggered_timers) {
579         irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
580     } else {
581         irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
582     }
583 
584     gtdt = acpi_data_push(table_data, sizeof *gtdt);
585     /* The interrupt values are the same with the device tree when adding 16 */
586     gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
587     gtdt->secure_el1_flags = cpu_to_le32(irqflags);
588 
589     gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
590     gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
591                                              ACPI_GTDT_CAP_ALWAYS_ON);
592 
593     gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
594     gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
595 
596     gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
597     gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
598 
599     build_header(linker, table_data,
600                  (void *)(table_data->data + gtdt_start), "GTDT",
601                  table_data->len - gtdt_start, 2, NULL, NULL);
602 }
603 
604 /* MADT */
605 static void
606 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
607 {
608     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
609     int madt_start = table_data->len;
610     const MemMapEntry *memmap = vms->memmap;
611     const int *irqmap = vms->irqmap;
612     AcpiMultipleApicTable *madt;
613     AcpiMadtGenericDistributor *gicd;
614     AcpiMadtGenericMsiFrame *gic_msi;
615     int i;
616 
617     madt = acpi_data_push(table_data, sizeof *madt);
618 
619     gicd = acpi_data_push(table_data, sizeof *gicd);
620     gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
621     gicd->length = sizeof(*gicd);
622     gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
623     gicd->version = vms->gic_version;
624 
625     for (i = 0; i < vms->smp_cpus; i++) {
626         AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
627                                                            sizeof(*gicc));
628         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
629 
630         gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
631         gicc->length = sizeof(*gicc);
632         if (vms->gic_version == 2) {
633             gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
634             gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
635             gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
636         }
637         gicc->cpu_interface_number = cpu_to_le32(i);
638         gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
639         gicc->uid = cpu_to_le32(i);
640         gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
641 
642         if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
643             gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
644         }
645         if (vms->virt) {
646             gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
647         }
648     }
649 
650     if (vms->gic_version == 3) {
651         AcpiMadtGenericTranslator *gic_its;
652         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
653         AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
654                                                          sizeof *gicr);
655 
656         gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
657         gicr->length = sizeof(*gicr);
658         gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
659         gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
660 
661         if (nb_redist_regions == 2) {
662             gicr = acpi_data_push(table_data, sizeof(*gicr));
663             gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
664             gicr->length = sizeof(*gicr);
665             gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST2].base);
666             gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST2].size);
667         }
668 
669         if (its_class_name() && !vmc->no_its) {
670             gic_its = acpi_data_push(table_data, sizeof *gic_its);
671             gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
672             gic_its->length = sizeof(*gic_its);
673             gic_its->translation_id = 0;
674             gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
675         }
676     } else {
677         gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
678         gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
679         gic_msi->length = sizeof(*gic_msi);
680         gic_msi->gic_msi_frame_id = 0;
681         gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
682         gic_msi->flags = cpu_to_le32(1);
683         gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
684         gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
685     }
686 
687     build_header(linker, table_data,
688                  (void *)(table_data->data + madt_start), "APIC",
689                  table_data->len - madt_start, 3, NULL, NULL);
690 }
691 
692 /* FADT */
693 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
694                             VirtMachineState *vms, unsigned dsdt_tbl_offset)
695 {
696     /* ACPI v5.1 */
697     AcpiFadtData fadt = {
698         .rev = 5,
699         .minor_ver = 1,
700         .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
701         .xdsdt_tbl_offset = &dsdt_tbl_offset,
702     };
703 
704     switch (vms->psci_conduit) {
705     case QEMU_PSCI_CONDUIT_DISABLED:
706         fadt.arm_boot_arch = 0;
707         break;
708     case QEMU_PSCI_CONDUIT_HVC:
709         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
710                              ACPI_FADT_ARM_PSCI_USE_HVC;
711         break;
712     case QEMU_PSCI_CONDUIT_SMC:
713         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
714         break;
715     default:
716         g_assert_not_reached();
717     }
718 
719     build_fadt(table_data, linker, &fadt, NULL, NULL);
720 }
721 
722 /* DSDT */
723 static void
724 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
725 {
726     Aml *scope, *dsdt;
727     const MemMapEntry *memmap = vms->memmap;
728     const int *irqmap = vms->irqmap;
729 
730     dsdt = init_aml_allocator();
731     /* Reserve space for header */
732     acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
733 
734     /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
735      * While UEFI can use libfdt to disable the RTC device node in the DTB that
736      * it passes to the OS, it cannot modify AML. Therefore, we won't generate
737      * the RTC ACPI device at all when using UEFI.
738      */
739     scope = aml_scope("\\_SB");
740     acpi_dsdt_add_cpus(scope, vms->smp_cpus);
741     acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
742                        (irqmap[VIRT_UART] + ARM_SPI_BASE));
743     acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
744     acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
745     acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
746                     (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
747     acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
748                       vms->highmem, vms->highmem_ecam);
749     acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
750                        (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
751     acpi_dsdt_add_power_button(scope);
752 
753     aml_append(dsdt, scope);
754 
755     /* copy AML table into ACPI tables blob and patch header there */
756     g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
757     build_header(linker, table_data,
758         (void *)(table_data->data + table_data->len - dsdt->buf->len),
759         "DSDT", dsdt->buf->len, 2, NULL, NULL);
760     free_aml_allocator();
761 }
762 
763 typedef
764 struct AcpiBuildState {
765     /* Copy of table in RAM (for patching). */
766     MemoryRegion *table_mr;
767     MemoryRegion *rsdp_mr;
768     MemoryRegion *linker_mr;
769     /* Is table patched? */
770     bool patched;
771 } AcpiBuildState;
772 
773 static
774 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
775 {
776     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
777     GArray *table_offsets;
778     unsigned dsdt, xsdt;
779     GArray *tables_blob = tables->table_data;
780 
781     table_offsets = g_array_new(false, true /* clear */,
782                                         sizeof(uint32_t));
783 
784     bios_linker_loader_alloc(tables->linker,
785                              ACPI_BUILD_TABLE_FILE, tables_blob,
786                              64, false /* high memory */);
787 
788     /* DSDT is pointed to by FADT */
789     dsdt = tables_blob->len;
790     build_dsdt(tables_blob, tables->linker, vms);
791 
792     /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
793     acpi_add_table(table_offsets, tables_blob);
794     build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
795 
796     acpi_add_table(table_offsets, tables_blob);
797     build_madt(tables_blob, tables->linker, vms);
798 
799     acpi_add_table(table_offsets, tables_blob);
800     build_gtdt(tables_blob, tables->linker, vms);
801 
802     acpi_add_table(table_offsets, tables_blob);
803     build_mcfg(tables_blob, tables->linker, vms);
804 
805     acpi_add_table(table_offsets, tables_blob);
806     build_spcr(tables_blob, tables->linker, vms);
807 
808     if (nb_numa_nodes > 0) {
809         acpi_add_table(table_offsets, tables_blob);
810         build_srat(tables_blob, tables->linker, vms);
811         if (have_numa_distance) {
812             acpi_add_table(table_offsets, tables_blob);
813             build_slit(tables_blob, tables->linker);
814         }
815     }
816 
817     if (its_class_name() && !vmc->no_its) {
818         acpi_add_table(table_offsets, tables_blob);
819         build_iort(tables_blob, tables->linker, vms);
820     }
821 
822     /* XSDT is pointed to by RSDP */
823     xsdt = tables_blob->len;
824     build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
825 
826     /* RSDP is in FSEG memory, so allocate it separately */
827     {
828         AcpiRsdpData rsdp_data = {
829             .revision = 2,
830             .oem_id = ACPI_BUILD_APPNAME6,
831             .xsdt_tbl_offset = &xsdt,
832             .rsdt_tbl_offset = NULL,
833         };
834         build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
835     }
836 
837     /* Cleanup memory that's no longer used. */
838     g_array_free(table_offsets, true);
839 }
840 
841 static void acpi_ram_update(MemoryRegion *mr, GArray *data)
842 {
843     uint32_t size = acpi_data_len(data);
844 
845     /* Make sure RAM size is correct - in case it got changed
846      * e.g. by migration */
847     memory_region_ram_resize(mr, size, &error_abort);
848 
849     memcpy(memory_region_get_ram_ptr(mr), data->data, size);
850     memory_region_set_dirty(mr, 0, size);
851 }
852 
853 static void virt_acpi_build_update(void *build_opaque)
854 {
855     AcpiBuildState *build_state = build_opaque;
856     AcpiBuildTables tables;
857 
858     /* No state to update or already patched? Nothing to do. */
859     if (!build_state || build_state->patched) {
860         return;
861     }
862     build_state->patched = true;
863 
864     acpi_build_tables_init(&tables);
865 
866     virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
867 
868     acpi_ram_update(build_state->table_mr, tables.table_data);
869     acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
870     acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
871 
872     acpi_build_tables_cleanup(&tables, true);
873 }
874 
875 static void virt_acpi_build_reset(void *build_opaque)
876 {
877     AcpiBuildState *build_state = build_opaque;
878     build_state->patched = false;
879 }
880 
881 static MemoryRegion *acpi_add_rom_blob(AcpiBuildState *build_state,
882                                        GArray *blob, const char *name,
883                                        uint64_t max_size)
884 {
885     return rom_add_blob(name, blob->data, acpi_data_len(blob), max_size, -1,
886                         name, virt_acpi_build_update, build_state, NULL, true);
887 }
888 
889 static const VMStateDescription vmstate_virt_acpi_build = {
890     .name = "virt_acpi_build",
891     .version_id = 1,
892     .minimum_version_id = 1,
893     .fields = (VMStateField[]) {
894         VMSTATE_BOOL(patched, AcpiBuildState),
895         VMSTATE_END_OF_LIST()
896     },
897 };
898 
899 void virt_acpi_setup(VirtMachineState *vms)
900 {
901     AcpiBuildTables tables;
902     AcpiBuildState *build_state;
903 
904     if (!vms->fw_cfg) {
905         trace_virt_acpi_setup();
906         return;
907     }
908 
909     if (!acpi_enabled) {
910         trace_virt_acpi_setup();
911         return;
912     }
913 
914     build_state = g_malloc0(sizeof *build_state);
915 
916     acpi_build_tables_init(&tables);
917     virt_acpi_build(vms, &tables);
918 
919     /* Now expose it all to Guest */
920     build_state->table_mr = acpi_add_rom_blob(build_state, tables.table_data,
921                                                ACPI_BUILD_TABLE_FILE,
922                                                ACPI_BUILD_TABLE_MAX_SIZE);
923     assert(build_state->table_mr != NULL);
924 
925     build_state->linker_mr =
926         acpi_add_rom_blob(build_state, tables.linker->cmd_blob,
927                           "etc/table-loader", 0);
928 
929     fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
930                     acpi_data_len(tables.tcpalog));
931 
932     build_state->rsdp_mr = acpi_add_rom_blob(build_state, tables.rsdp,
933                                               ACPI_BUILD_RSDP_FILE, 0);
934 
935     qemu_register_reset(virt_acpi_build_reset, build_state);
936     virt_acpi_build_reset(build_state);
937     vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
938 
939     /* Cleanup tables but don't free the memory: we track it
940      * in build_state.
941      */
942     acpi_build_tables_cleanup(&tables, false);
943 }
944