xref: /qemu/hw/arm/virt.c (revision 226419d6)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "hw/sysbus.h"
33 #include "hw/arm/arm.h"
34 #include "hw/arm/primecell.h"
35 #include "hw/arm/virt.h"
36 #include "hw/devices.h"
37 #include "net/net.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/kvm.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/bitops.h"
46 #include "qemu/error-report.h"
47 #include "hw/pci-host/gpex.h"
48 #include "hw/arm/virt-acpi-build.h"
49 #include "hw/arm/sysbus-fdt.h"
50 #include "hw/platform-bus.h"
51 #include "hw/arm/fdt.h"
52 #include "hw/intc/arm_gic_common.h"
53 #include "kvm_arm.h"
54 #include "hw/smbios/smbios.h"
55 #include "qapi/visitor.h"
56 #include "standard-headers/linux/input.h"
57 
58 /* Number of external interrupt lines to configure the GIC with */
59 #define NUM_IRQS 256
60 
61 #define PLATFORM_BUS_NUM_IRQS 64
62 
63 static ARMPlatformBusSystemParams platform_bus_params;
64 
65 typedef struct VirtBoardInfo {
66     struct arm_boot_info bootinfo;
67     const char *cpu_model;
68     const MemMapEntry *memmap;
69     const int *irqmap;
70     int smp_cpus;
71     void *fdt;
72     int fdt_size;
73     uint32_t clock_phandle;
74     uint32_t gic_phandle;
75     uint32_t v2m_phandle;
76     bool using_psci;
77 } VirtBoardInfo;
78 
79 typedef struct {
80     MachineClass parent;
81     VirtBoardInfo *daughterboard;
82 } VirtMachineClass;
83 
84 typedef struct {
85     MachineState parent;
86     bool secure;
87     bool highmem;
88     int32_t gic_version;
89 } VirtMachineState;
90 
91 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
92 #define VIRT_MACHINE(obj) \
93     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
94 #define VIRT_MACHINE_GET_CLASS(obj) \
95     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
96 #define VIRT_MACHINE_CLASS(klass) \
97     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
98 
99 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
100  * RAM can go up to the 256GB mark, leaving 256GB of the physical
101  * address space unallocated and free for future use between 256G and 512G.
102  * If we need to provide more RAM to VMs in the future then we need to:
103  *  * allocate a second bank of RAM starting at 2TB and working up
104  *  * fix the DT and ACPI table generation code in QEMU to correctly
105  *    report two split lumps of RAM to the guest
106  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
107  * (We don't want to fill all the way up to 512GB with RAM because
108  * we might want it for non-RAM purposes later. Conversely it seems
109  * reasonable to assume that anybody configuring a VM with a quarter
110  * of a terabyte of RAM will be doing it on a host with more than a
111  * terabyte of physical address space.)
112  */
113 #define RAMLIMIT_GB 255
114 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
115 
116 /* Addresses and sizes of our components.
117  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
118  * 128MB..256MB is used for miscellaneous device I/O.
119  * 256MB..1GB is reserved for possible future PCI support (ie where the
120  * PCI memory window will go if we add a PCI host controller).
121  * 1GB and up is RAM (which may happily spill over into the
122  * high memory region beyond 4GB).
123  * This represents a compromise between how much RAM can be given to
124  * a 32 bit VM and leaving space for expansion and in particular for PCI.
125  * Note that devices should generally be placed at multiples of 0x10000,
126  * to accommodate guests using 64K pages.
127  */
128 static const MemMapEntry a15memmap[] = {
129     /* Space up to 0x8000000 is reserved for a boot ROM */
130     [VIRT_FLASH] =              {          0, 0x08000000 },
131     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
132     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
133     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
134     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
135     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
136     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
137     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
138     /* This redistributor space allows up to 2*64kB*123 CPUs */
139     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
140     [VIRT_UART] =               { 0x09000000, 0x00001000 },
141     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
142     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
143     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
144     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
145     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
146     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
147     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
148     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
149     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
150     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
151     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
152     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
153     /* Second PCIe window, 512GB wide at the 512GB boundary */
154     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
155 };
156 
157 static const int a15irqmap[] = {
158     [VIRT_UART] = 1,
159     [VIRT_RTC] = 2,
160     [VIRT_PCIE] = 3, /* ... to 6 */
161     [VIRT_GPIO] = 7,
162     [VIRT_SECURE_UART] = 8,
163     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
164     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
165     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
166 };
167 
168 static VirtBoardInfo machines[] = {
169     {
170         .cpu_model = "cortex-a15",
171         .memmap = a15memmap,
172         .irqmap = a15irqmap,
173     },
174     {
175         .cpu_model = "cortex-a53",
176         .memmap = a15memmap,
177         .irqmap = a15irqmap,
178     },
179     {
180         .cpu_model = "cortex-a57",
181         .memmap = a15memmap,
182         .irqmap = a15irqmap,
183     },
184     {
185         .cpu_model = "host",
186         .memmap = a15memmap,
187         .irqmap = a15irqmap,
188     },
189 };
190 
191 static VirtBoardInfo *find_machine_info(const char *cpu)
192 {
193     int i;
194 
195     for (i = 0; i < ARRAY_SIZE(machines); i++) {
196         if (strcmp(cpu, machines[i].cpu_model) == 0) {
197             return &machines[i];
198         }
199     }
200     return NULL;
201 }
202 
203 static void create_fdt(VirtBoardInfo *vbi)
204 {
205     void *fdt = create_device_tree(&vbi->fdt_size);
206 
207     if (!fdt) {
208         error_report("create_device_tree() failed");
209         exit(1);
210     }
211 
212     vbi->fdt = fdt;
213 
214     /* Header */
215     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
216     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
217     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
218 
219     /*
220      * /chosen and /memory nodes must exist for load_dtb
221      * to fill in necessary properties later
222      */
223     qemu_fdt_add_subnode(fdt, "/chosen");
224     qemu_fdt_add_subnode(fdt, "/memory");
225     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
226 
227     /* Clock node, for the benefit of the UART. The kernel device tree
228      * binding documentation claims the PL011 node clock properties are
229      * optional but in practice if you omit them the kernel refuses to
230      * probe for the device.
231      */
232     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
233     qemu_fdt_add_subnode(fdt, "/apb-pclk");
234     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
235     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
236     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
237     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
238                                 "clk24mhz");
239     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
240 
241 }
242 
243 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
244 {
245     uint32_t cpu_suspend_fn;
246     uint32_t cpu_off_fn;
247     uint32_t cpu_on_fn;
248     uint32_t migrate_fn;
249     void *fdt = vbi->fdt;
250     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
251 
252     if (!vbi->using_psci) {
253         return;
254     }
255 
256     qemu_fdt_add_subnode(fdt, "/psci");
257     if (armcpu->psci_version == 2) {
258         const char comp[] = "arm,psci-0.2\0arm,psci";
259         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
260 
261         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
262         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
263             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
264             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
265             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
266         } else {
267             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
268             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
269             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
270         }
271     } else {
272         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
273 
274         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
275         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
276         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
277         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
278     }
279 
280     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
281      * to the instruction that should be used to invoke PSCI functions.
282      * However, the device tree binding uses 'method' instead, so that is
283      * what we should use here.
284      */
285     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
286 
287     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
288     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
289     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
290     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
291 }
292 
293 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
294 {
295     /* Note that on A15 h/w these interrupts are level-triggered,
296      * but for the GIC implementation provided by both QEMU and KVM
297      * they are edge-triggered.
298      */
299     ARMCPU *armcpu;
300     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
301 
302     if (gictype == 2) {
303         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
304                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
305                              (1 << vbi->smp_cpus) - 1);
306     }
307 
308     qemu_fdt_add_subnode(vbi->fdt, "/timer");
309 
310     armcpu = ARM_CPU(qemu_get_cpu(0));
311     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
312         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
313         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
314                          compat, sizeof(compat));
315     } else {
316         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
317                                 "arm,armv7-timer");
318     }
319     qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
320     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
321                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
322                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
323                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
324                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
325 }
326 
327 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
328 {
329     int cpu;
330     int addr_cells = 1;
331 
332     /*
333      * From Documentation/devicetree/bindings/arm/cpus.txt
334      *  On ARM v8 64-bit systems value should be set to 2,
335      *  that corresponds to the MPIDR_EL1 register size.
336      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
337      *  in the system, #address-cells can be set to 1, since
338      *  MPIDR_EL1[63:32] bits are not used for CPUs
339      *  identification.
340      *
341      *  Here we actually don't know whether our system is 32- or 64-bit one.
342      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
343      *  at least one of them has Aff3 populated, we set #address-cells to 2.
344      */
345     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
346         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
347 
348         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
349             addr_cells = 2;
350             break;
351         }
352     }
353 
354     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
355     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
356     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
357 
358     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
359         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
360         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
361 
362         qemu_fdt_add_subnode(vbi->fdt, nodename);
363         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
364         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
365                                     armcpu->dtb_compatible);
366 
367         if (vbi->using_psci && vbi->smp_cpus > 1) {
368             qemu_fdt_setprop_string(vbi->fdt, nodename,
369                                         "enable-method", "psci");
370         }
371 
372         if (addr_cells == 2) {
373             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
374                                  armcpu->mp_affinity);
375         } else {
376             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
377                                   armcpu->mp_affinity);
378         }
379 
380         g_free(nodename);
381     }
382 }
383 
384 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
385 {
386     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
387     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
388     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
389                             "arm,gic-v2m-frame");
390     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
391     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
392                                  2, vbi->memmap[VIRT_GIC_V2M].base,
393                                  2, vbi->memmap[VIRT_GIC_V2M].size);
394     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
395 }
396 
397 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
398 {
399     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
400     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
401 
402     qemu_fdt_add_subnode(vbi->fdt, "/intc");
403     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
404     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
405     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
406     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
407     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
408     if (type == 3) {
409         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
410                                 "arm,gic-v3");
411         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
412                                      2, vbi->memmap[VIRT_GIC_DIST].base,
413                                      2, vbi->memmap[VIRT_GIC_DIST].size,
414                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
415                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
416     } else {
417         /* 'cortex-a15-gic' means 'GIC v2' */
418         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
419                                 "arm,cortex-a15-gic");
420         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
421                                       2, vbi->memmap[VIRT_GIC_DIST].base,
422                                       2, vbi->memmap[VIRT_GIC_DIST].size,
423                                       2, vbi->memmap[VIRT_GIC_CPU].base,
424                                       2, vbi->memmap[VIRT_GIC_CPU].size);
425     }
426 
427     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
428 }
429 
430 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
431 {
432     int i;
433     int irq = vbi->irqmap[VIRT_GIC_V2M];
434     DeviceState *dev;
435 
436     dev = qdev_create(NULL, "arm-gicv2m");
437     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
438     qdev_prop_set_uint32(dev, "base-spi", irq);
439     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
440     qdev_init_nofail(dev);
441 
442     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
443         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
444     }
445 
446     fdt_add_v2m_gic_node(vbi);
447 }
448 
449 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
450 {
451     /* We create a standalone GIC */
452     DeviceState *gicdev;
453     SysBusDevice *gicbusdev;
454     const char *gictype;
455     int i;
456 
457     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
458 
459     gicdev = qdev_create(NULL, gictype);
460     qdev_prop_set_uint32(gicdev, "revision", type);
461     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
462     /* Note that the num-irq property counts both internal and external
463      * interrupts; there are always 32 of the former (mandated by GIC spec).
464      */
465     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
466     if (!kvm_irqchip_in_kernel()) {
467         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
468     }
469     qdev_init_nofail(gicdev);
470     gicbusdev = SYS_BUS_DEVICE(gicdev);
471     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
472     if (type == 3) {
473         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
474     } else {
475         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
476     }
477 
478     /* Wire the outputs from each CPU's generic timer to the
479      * appropriate GIC PPI inputs, and the GIC's IRQ output to
480      * the CPU's IRQ input.
481      */
482     for (i = 0; i < smp_cpus; i++) {
483         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
484         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
485         int irq;
486         /* Mapping from the output timer irq lines from the CPU to the
487          * GIC PPI inputs we use for the virt board.
488          */
489         const int timer_irq[] = {
490             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
491             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
492             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
493             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
494         };
495 
496         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
497             qdev_connect_gpio_out(cpudev, irq,
498                                   qdev_get_gpio_in(gicdev,
499                                                    ppibase + timer_irq[irq]));
500         }
501 
502         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
503         sysbus_connect_irq(gicbusdev, i + smp_cpus,
504                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
505     }
506 
507     for (i = 0; i < NUM_IRQS; i++) {
508         pic[i] = qdev_get_gpio_in(gicdev, i);
509     }
510 
511     fdt_add_gic_node(vbi, type);
512 
513     if (type == 2) {
514         create_v2m(vbi, pic);
515     }
516 }
517 
518 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
519                         MemoryRegion *mem)
520 {
521     char *nodename;
522     hwaddr base = vbi->memmap[uart].base;
523     hwaddr size = vbi->memmap[uart].size;
524     int irq = vbi->irqmap[uart];
525     const char compat[] = "arm,pl011\0arm,primecell";
526     const char clocknames[] = "uartclk\0apb_pclk";
527     DeviceState *dev = qdev_create(NULL, "pl011");
528     SysBusDevice *s = SYS_BUS_DEVICE(dev);
529 
530     qdev_init_nofail(dev);
531     memory_region_add_subregion(mem, base,
532                                 sysbus_mmio_get_region(s, 0));
533     sysbus_connect_irq(s, 0, pic[irq]);
534 
535     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
536     qemu_fdt_add_subnode(vbi->fdt, nodename);
537     /* Note that we can't use setprop_string because of the embedded NUL */
538     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
539                          compat, sizeof(compat));
540     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
541                                      2, base, 2, size);
542     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
543                                GIC_FDT_IRQ_TYPE_SPI, irq,
544                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
545     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
546                                vbi->clock_phandle, vbi->clock_phandle);
547     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
548                          clocknames, sizeof(clocknames));
549 
550     if (uart == VIRT_UART) {
551         qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
552     } else {
553         /* Mark as not usable by the normal world */
554         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
555         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
556     }
557 
558     g_free(nodename);
559 }
560 
561 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
562 {
563     char *nodename;
564     hwaddr base = vbi->memmap[VIRT_RTC].base;
565     hwaddr size = vbi->memmap[VIRT_RTC].size;
566     int irq = vbi->irqmap[VIRT_RTC];
567     const char compat[] = "arm,pl031\0arm,primecell";
568 
569     sysbus_create_simple("pl031", base, pic[irq]);
570 
571     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
572     qemu_fdt_add_subnode(vbi->fdt, nodename);
573     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
574     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
575                                  2, base, 2, size);
576     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
577                            GIC_FDT_IRQ_TYPE_SPI, irq,
578                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
579     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
580     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
581     g_free(nodename);
582 }
583 
584 static DeviceState *pl061_dev;
585 static void virt_powerdown_req(Notifier *n, void *opaque)
586 {
587     /* use gpio Pin 3 for power button event */
588     qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1);
589 }
590 
591 static Notifier virt_system_powerdown_notifier = {
592     .notify = virt_powerdown_req
593 };
594 
595 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
596 {
597     char *nodename;
598     hwaddr base = vbi->memmap[VIRT_GPIO].base;
599     hwaddr size = vbi->memmap[VIRT_GPIO].size;
600     int irq = vbi->irqmap[VIRT_GPIO];
601     const char compat[] = "arm,pl061\0arm,primecell";
602 
603     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
604 
605     uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
606     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
607     qemu_fdt_add_subnode(vbi->fdt, nodename);
608     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
609                                  2, base, 2, size);
610     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
611     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
612     qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
613     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
614                            GIC_FDT_IRQ_TYPE_SPI, irq,
615                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
616     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
617     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
618     qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
619 
620     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
621     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
622     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
623     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
624 
625     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
626     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
627                             "label", "GPIO Key Poweroff");
628     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
629                           KEY_POWER);
630     qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
631                            "gpios", phandle, 3, 0);
632 
633     /* connect powerdown request */
634     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
635 
636     g_free(nodename);
637 }
638 
639 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
640 {
641     int i;
642     hwaddr size = vbi->memmap[VIRT_MMIO].size;
643 
644     /* We create the transports in forwards order. Since qbus_realize()
645      * prepends (not appends) new child buses, the incrementing loop below will
646      * create a list of virtio-mmio buses with decreasing base addresses.
647      *
648      * When a -device option is processed from the command line,
649      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
650      * order. The upshot is that -device options in increasing command line
651      * order are mapped to virtio-mmio buses with decreasing base addresses.
652      *
653      * When this code was originally written, that arrangement ensured that the
654      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
655      * the first -device on the command line. (The end-to-end order is a
656      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
657      * guest kernel's name-to-address assignment strategy.)
658      *
659      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
660      * the message, if not necessarily the code, of commit 70161ff336.
661      * Therefore the loop now establishes the inverse of the original intent.
662      *
663      * Unfortunately, we can't counteract the kernel change by reversing the
664      * loop; it would break existing command lines.
665      *
666      * In any case, the kernel makes no guarantee about the stability of
667      * enumeration order of virtio devices (as demonstrated by it changing
668      * between kernel versions). For reliable and stable identification
669      * of disks users must use UUIDs or similar mechanisms.
670      */
671     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
672         int irq = vbi->irqmap[VIRT_MMIO] + i;
673         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
674 
675         sysbus_create_simple("virtio-mmio", base, pic[irq]);
676     }
677 
678     /* We add dtb nodes in reverse order so that they appear in the finished
679      * device tree lowest address first.
680      *
681      * Note that this mapping is independent of the loop above. The previous
682      * loop influences virtio device to virtio transport assignment, whereas
683      * this loop controls how virtio transports are laid out in the dtb.
684      */
685     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
686         char *nodename;
687         int irq = vbi->irqmap[VIRT_MMIO] + i;
688         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
689 
690         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
691         qemu_fdt_add_subnode(vbi->fdt, nodename);
692         qemu_fdt_setprop_string(vbi->fdt, nodename,
693                                 "compatible", "virtio,mmio");
694         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
695                                      2, base, 2, size);
696         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
697                                GIC_FDT_IRQ_TYPE_SPI, irq,
698                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
699         g_free(nodename);
700     }
701 }
702 
703 static void create_one_flash(const char *name, hwaddr flashbase,
704                              hwaddr flashsize, const char *file,
705                              MemoryRegion *sysmem)
706 {
707     /* Create and map a single flash device. We use the same
708      * parameters as the flash devices on the Versatile Express board.
709      */
710     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
711     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
712     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
713     const uint64_t sectorlength = 256 * 1024;
714 
715     if (dinfo) {
716         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
717                             &error_abort);
718     }
719 
720     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
721     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
722     qdev_prop_set_uint8(dev, "width", 4);
723     qdev_prop_set_uint8(dev, "device-width", 2);
724     qdev_prop_set_bit(dev, "big-endian", false);
725     qdev_prop_set_uint16(dev, "id0", 0x89);
726     qdev_prop_set_uint16(dev, "id1", 0x18);
727     qdev_prop_set_uint16(dev, "id2", 0x00);
728     qdev_prop_set_uint16(dev, "id3", 0x00);
729     qdev_prop_set_string(dev, "name", name);
730     qdev_init_nofail(dev);
731 
732     memory_region_add_subregion(sysmem, flashbase,
733                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
734 
735     if (file) {
736         char *fn;
737         int image_size;
738 
739         if (drive_get(IF_PFLASH, 0, 0)) {
740             error_report("The contents of the first flash device may be "
741                          "specified with -bios or with -drive if=pflash... "
742                          "but you cannot use both options at once");
743             exit(1);
744         }
745         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
746         if (!fn) {
747             error_report("Could not find ROM image '%s'", file);
748             exit(1);
749         }
750         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
751         g_free(fn);
752         if (image_size < 0) {
753             error_report("Could not load ROM image '%s'", file);
754             exit(1);
755         }
756     }
757 }
758 
759 static void create_flash(const VirtBoardInfo *vbi,
760                          MemoryRegion *sysmem,
761                          MemoryRegion *secure_sysmem)
762 {
763     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
764      * Any file passed via -bios goes in the first of these.
765      * sysmem is the system memory space. secure_sysmem is the secure view
766      * of the system, and the first flash device should be made visible only
767      * there. The second flash device is visible to both secure and nonsecure.
768      * If sysmem == secure_sysmem this means there is no separate Secure
769      * address space and both flash devices are generally visible.
770      */
771     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
772     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
773     char *nodename;
774 
775     create_one_flash("virt.flash0", flashbase, flashsize,
776                      bios_name, secure_sysmem);
777     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
778                      NULL, sysmem);
779 
780     if (sysmem == secure_sysmem) {
781         /* Report both flash devices as a single node in the DT */
782         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
783         qemu_fdt_add_subnode(vbi->fdt, nodename);
784         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
785         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
786                                      2, flashbase, 2, flashsize,
787                                      2, flashbase + flashsize, 2, flashsize);
788         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
789         g_free(nodename);
790     } else {
791         /* Report the devices as separate nodes so we can mark one as
792          * only visible to the secure world.
793          */
794         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
795         qemu_fdt_add_subnode(vbi->fdt, nodename);
796         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
797         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
798                                      2, flashbase, 2, flashsize);
799         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
800         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
801         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
802         g_free(nodename);
803 
804         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
805         qemu_fdt_add_subnode(vbi->fdt, nodename);
806         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
807         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
808                                      2, flashbase + flashsize, 2, flashsize);
809         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
810         g_free(nodename);
811     }
812 }
813 
814 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
815 {
816     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
817     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
818     char *nodename;
819 
820     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
821 
822     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
823     qemu_fdt_add_subnode(vbi->fdt, nodename);
824     qemu_fdt_setprop_string(vbi->fdt, nodename,
825                             "compatible", "qemu,fw-cfg-mmio");
826     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
827                                  2, base, 2, size);
828     g_free(nodename);
829 }
830 
831 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
832                                 int first_irq, const char *nodename)
833 {
834     int devfn, pin;
835     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
836     uint32_t *irq_map = full_irq_map;
837 
838     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
839         for (pin = 0; pin < 4; pin++) {
840             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
841             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
842             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
843             int i;
844 
845             uint32_t map[] = {
846                 devfn << 8, 0, 0,                           /* devfn */
847                 pin + 1,                                    /* PCI pin */
848                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
849 
850             /* Convert map to big endian */
851             for (i = 0; i < 10; i++) {
852                 irq_map[i] = cpu_to_be32(map[i]);
853             }
854             irq_map += 10;
855         }
856     }
857 
858     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
859                      full_irq_map, sizeof(full_irq_map));
860 
861     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
862                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
863                            0x7           /* PCI irq */);
864 }
865 
866 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
867                         bool use_highmem)
868 {
869     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
870     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
871     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
872     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
873     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
874     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
875     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
876     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
877     hwaddr base = base_mmio;
878     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
879     int irq = vbi->irqmap[VIRT_PCIE];
880     MemoryRegion *mmio_alias;
881     MemoryRegion *mmio_reg;
882     MemoryRegion *ecam_alias;
883     MemoryRegion *ecam_reg;
884     DeviceState *dev;
885     char *nodename;
886     int i;
887     PCIHostState *pci;
888 
889     dev = qdev_create(NULL, TYPE_GPEX_HOST);
890     qdev_init_nofail(dev);
891 
892     /* Map only the first size_ecam bytes of ECAM space */
893     ecam_alias = g_new0(MemoryRegion, 1);
894     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
895     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
896                              ecam_reg, 0, size_ecam);
897     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
898 
899     /* Map the MMIO window into system address space so as to expose
900      * the section of PCI MMIO space which starts at the same base address
901      * (ie 1:1 mapping for that part of PCI MMIO space visible through
902      * the window).
903      */
904     mmio_alias = g_new0(MemoryRegion, 1);
905     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
906     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
907                              mmio_reg, base_mmio, size_mmio);
908     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
909 
910     if (use_highmem) {
911         /* Map high MMIO space */
912         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
913 
914         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
915                                  mmio_reg, base_mmio_high, size_mmio_high);
916         memory_region_add_subregion(get_system_memory(), base_mmio_high,
917                                     high_mmio_alias);
918     }
919 
920     /* Map IO port space */
921     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
922 
923     for (i = 0; i < GPEX_NUM_IRQS; i++) {
924         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
925     }
926 
927     pci = PCI_HOST_BRIDGE(dev);
928     if (pci->bus) {
929         for (i = 0; i < nb_nics; i++) {
930             NICInfo *nd = &nd_table[i];
931 
932             if (!nd->model) {
933                 nd->model = g_strdup("virtio");
934             }
935 
936             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
937         }
938     }
939 
940     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
941     qemu_fdt_add_subnode(vbi->fdt, nodename);
942     qemu_fdt_setprop_string(vbi->fdt, nodename,
943                             "compatible", "pci-host-ecam-generic");
944     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
945     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
946     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
947     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
948                            nr_pcie_buses - 1);
949 
950     if (vbi->v2m_phandle) {
951         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
952                                vbi->v2m_phandle);
953     }
954 
955     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
956                                  2, base_ecam, 2, size_ecam);
957 
958     if (use_highmem) {
959         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
960                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
961                                      2, base_pio, 2, size_pio,
962                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
963                                      2, base_mmio, 2, size_mmio,
964                                      1, FDT_PCI_RANGE_MMIO_64BIT,
965                                      2, base_mmio_high,
966                                      2, base_mmio_high, 2, size_mmio_high);
967     } else {
968         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
969                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
970                                      2, base_pio, 2, size_pio,
971                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
972                                      2, base_mmio, 2, size_mmio);
973     }
974 
975     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
976     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
977 
978     g_free(nodename);
979 }
980 
981 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
982 {
983     DeviceState *dev;
984     SysBusDevice *s;
985     int i;
986     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
987     MemoryRegion *sysmem = get_system_memory();
988 
989     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
990     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
991     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
992     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
993 
994     fdt_params->system_params = &platform_bus_params;
995     fdt_params->binfo = &vbi->bootinfo;
996     fdt_params->intc = "/intc";
997     /*
998      * register a machine init done notifier that creates the device tree
999      * nodes of the platform bus and its children dynamic sysbus devices
1000      */
1001     arm_register_platform_bus_fdt_creator(fdt_params);
1002 
1003     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1004     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1005     qdev_prop_set_uint32(dev, "num_irqs",
1006         platform_bus_params.platform_bus_num_irqs);
1007     qdev_prop_set_uint32(dev, "mmio_size",
1008         platform_bus_params.platform_bus_size);
1009     qdev_init_nofail(dev);
1010     s = SYS_BUS_DEVICE(dev);
1011 
1012     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1013         int irqn = platform_bus_params.platform_bus_first_irq + i;
1014         sysbus_connect_irq(s, i, pic[irqn]);
1015     }
1016 
1017     memory_region_add_subregion(sysmem,
1018                                 platform_bus_params.platform_bus_base,
1019                                 sysbus_mmio_get_region(s, 0));
1020 }
1021 
1022 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1023 {
1024     MemoryRegion *secram = g_new(MemoryRegion, 1);
1025     char *nodename;
1026     hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1027     hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1028 
1029     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1030     vmstate_register_ram_global(secram);
1031     memory_region_add_subregion(secure_sysmem, base, secram);
1032 
1033     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1034     qemu_fdt_add_subnode(vbi->fdt, nodename);
1035     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1036     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1037     qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1038     qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1039 
1040     g_free(nodename);
1041 }
1042 
1043 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1044 {
1045     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1046 
1047     *fdt_size = board->fdt_size;
1048     return board->fdt;
1049 }
1050 
1051 static void virt_build_smbios(VirtGuestInfo *guest_info)
1052 {
1053     FWCfgState *fw_cfg = guest_info->fw_cfg;
1054     uint8_t *smbios_tables, *smbios_anchor;
1055     size_t smbios_tables_len, smbios_anchor_len;
1056     const char *product = "QEMU Virtual Machine";
1057 
1058     if (!fw_cfg) {
1059         return;
1060     }
1061 
1062     if (kvm_enabled()) {
1063         product = "KVM Virtual Machine";
1064     }
1065 
1066     smbios_set_defaults("QEMU", product,
1067                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1068 
1069     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1070                       &smbios_anchor, &smbios_anchor_len);
1071 
1072     if (smbios_anchor) {
1073         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1074                         smbios_tables, smbios_tables_len);
1075         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1076                         smbios_anchor, smbios_anchor_len);
1077     }
1078 }
1079 
1080 static
1081 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1082 {
1083     VirtGuestInfoState *guest_info_state = container_of(notifier,
1084                                               VirtGuestInfoState, machine_done);
1085     virt_acpi_setup(&guest_info_state->info);
1086     virt_build_smbios(&guest_info_state->info);
1087 }
1088 
1089 static void machvirt_init(MachineState *machine)
1090 {
1091     VirtMachineState *vms = VIRT_MACHINE(machine);
1092     qemu_irq pic[NUM_IRQS];
1093     MemoryRegion *sysmem = get_system_memory();
1094     MemoryRegion *secure_sysmem = NULL;
1095     int gic_version = vms->gic_version;
1096     int n, virt_max_cpus;
1097     MemoryRegion *ram = g_new(MemoryRegion, 1);
1098     const char *cpu_model = machine->cpu_model;
1099     VirtBoardInfo *vbi;
1100     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1101     VirtGuestInfo *guest_info = &guest_info_state->info;
1102     char **cpustr;
1103     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1104 
1105     if (!cpu_model) {
1106         cpu_model = "cortex-a15";
1107     }
1108 
1109     /* We can probe only here because during property set
1110      * KVM is not available yet
1111      */
1112     if (!gic_version) {
1113         gic_version = kvm_arm_vgic_probe();
1114         if (!gic_version) {
1115             error_report("Unable to determine GIC version supported by host");
1116             error_printf("KVM acceleration is probably not supported\n");
1117             exit(1);
1118         }
1119     }
1120 
1121     /* Separate the actual CPU model name from any appended features */
1122     cpustr = g_strsplit(cpu_model, ",", 2);
1123 
1124     vbi = find_machine_info(cpustr[0]);
1125 
1126     if (!vbi) {
1127         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1128         exit(1);
1129     }
1130 
1131     /* If we have an EL3 boot ROM then the assumption is that it will
1132      * implement PSCI itself, so disable QEMU's internal implementation
1133      * so it doesn't get in the way. Instead of starting secondary
1134      * CPUs in PSCI powerdown state we will start them all running and
1135      * let the boot ROM sort them out.
1136      * The usual case is that we do use QEMU's PSCI implementation.
1137      */
1138     vbi->using_psci = !(vms->secure && firmware_loaded);
1139 
1140     /* The maximum number of CPUs depends on the GIC version, or on how
1141      * many redistributors we can fit into the memory map.
1142      */
1143     if (gic_version == 3) {
1144         virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1145     } else {
1146         virt_max_cpus = GIC_NCPU;
1147     }
1148 
1149     if (max_cpus > virt_max_cpus) {
1150         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1151                      "supported by machine 'mach-virt' (%d)",
1152                      max_cpus, virt_max_cpus);
1153         exit(1);
1154     }
1155 
1156     vbi->smp_cpus = smp_cpus;
1157 
1158     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1159         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1160         exit(1);
1161     }
1162 
1163     if (vms->secure) {
1164         if (kvm_enabled()) {
1165             error_report("mach-virt: KVM does not support Security extensions");
1166             exit(1);
1167         }
1168 
1169         /* The Secure view of the world is the same as the NonSecure,
1170          * but with a few extra devices. Create it as a container region
1171          * containing the system memory at low priority; any secure-only
1172          * devices go in at higher priority and take precedence.
1173          */
1174         secure_sysmem = g_new(MemoryRegion, 1);
1175         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1176                            UINT64_MAX);
1177         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1178     }
1179 
1180     create_fdt(vbi);
1181 
1182     for (n = 0; n < smp_cpus; n++) {
1183         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1184         CPUClass *cc = CPU_CLASS(oc);
1185         Object *cpuobj;
1186         Error *err = NULL;
1187         char *cpuopts = g_strdup(cpustr[1]);
1188 
1189         if (!oc) {
1190             error_report("Unable to find CPU definition");
1191             exit(1);
1192         }
1193         cpuobj = object_new(object_class_get_name(oc));
1194 
1195         /* Handle any CPU options specified by the user */
1196         cc->parse_features(CPU(cpuobj), cpuopts, &err);
1197         g_free(cpuopts);
1198         if (err) {
1199             error_report_err(err);
1200             exit(1);
1201         }
1202 
1203         if (!vms->secure) {
1204             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1205         }
1206 
1207         if (vbi->using_psci) {
1208             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1209                                     "psci-conduit", NULL);
1210 
1211             /* Secondary CPUs start in PSCI powered-down state */
1212             if (n > 0) {
1213                 object_property_set_bool(cpuobj, true,
1214                                          "start-powered-off", NULL);
1215             }
1216         }
1217 
1218         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1219             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1220                                     "reset-cbar", &error_abort);
1221         }
1222 
1223         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1224                                  &error_abort);
1225         if (vms->secure) {
1226             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1227                                      "secure-memory", &error_abort);
1228         }
1229 
1230         object_property_set_bool(cpuobj, true, "realized", NULL);
1231     }
1232     g_strfreev(cpustr);
1233     fdt_add_timer_nodes(vbi, gic_version);
1234     fdt_add_cpu_nodes(vbi);
1235     fdt_add_psci_node(vbi);
1236 
1237     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1238                                          machine->ram_size);
1239     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1240 
1241     create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1242 
1243     create_gic(vbi, pic, gic_version, vms->secure);
1244 
1245     create_uart(vbi, pic, VIRT_UART, sysmem);
1246 
1247     if (vms->secure) {
1248         create_secure_ram(vbi, secure_sysmem);
1249         create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem);
1250     }
1251 
1252     create_rtc(vbi, pic);
1253 
1254     create_pcie(vbi, pic, vms->highmem);
1255 
1256     create_gpio(vbi, pic);
1257 
1258     /* Create mmio transports, so the user can create virtio backends
1259      * (which will be automatically plugged in to the transports). If
1260      * no backend is created the transport will just sit harmlessly idle.
1261      */
1262     create_virtio_devices(vbi, pic);
1263 
1264     create_fw_cfg(vbi, &address_space_memory);
1265     rom_set_fw(fw_cfg_find());
1266 
1267     guest_info->smp_cpus = smp_cpus;
1268     guest_info->fw_cfg = fw_cfg_find();
1269     guest_info->memmap = vbi->memmap;
1270     guest_info->irqmap = vbi->irqmap;
1271     guest_info->use_highmem = vms->highmem;
1272     guest_info->gic_version = gic_version;
1273     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1274     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1275 
1276     vbi->bootinfo.ram_size = machine->ram_size;
1277     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1278     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1279     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1280     vbi->bootinfo.nb_cpus = smp_cpus;
1281     vbi->bootinfo.board_id = -1;
1282     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1283     vbi->bootinfo.get_dtb = machvirt_dtb;
1284     vbi->bootinfo.firmware_loaded = firmware_loaded;
1285     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1286 
1287     /*
1288      * arm_load_kernel machine init done notifier registration must
1289      * happen before the platform_bus_create call. In this latter,
1290      * another notifier is registered which adds platform bus nodes.
1291      * Notifiers are executed in registration reverse order.
1292      */
1293     create_platform_bus(vbi, pic);
1294 }
1295 
1296 static bool virt_get_secure(Object *obj, Error **errp)
1297 {
1298     VirtMachineState *vms = VIRT_MACHINE(obj);
1299 
1300     return vms->secure;
1301 }
1302 
1303 static void virt_set_secure(Object *obj, bool value, Error **errp)
1304 {
1305     VirtMachineState *vms = VIRT_MACHINE(obj);
1306 
1307     vms->secure = value;
1308 }
1309 
1310 static bool virt_get_highmem(Object *obj, Error **errp)
1311 {
1312     VirtMachineState *vms = VIRT_MACHINE(obj);
1313 
1314     return vms->highmem;
1315 }
1316 
1317 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1318 {
1319     VirtMachineState *vms = VIRT_MACHINE(obj);
1320 
1321     vms->highmem = value;
1322 }
1323 
1324 static char *virt_get_gic_version(Object *obj, Error **errp)
1325 {
1326     VirtMachineState *vms = VIRT_MACHINE(obj);
1327     const char *val = vms->gic_version == 3 ? "3" : "2";
1328 
1329     return g_strdup(val);
1330 }
1331 
1332 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1333 {
1334     VirtMachineState *vms = VIRT_MACHINE(obj);
1335 
1336     if (!strcmp(value, "3")) {
1337         vms->gic_version = 3;
1338     } else if (!strcmp(value, "2")) {
1339         vms->gic_version = 2;
1340     } else if (!strcmp(value, "host")) {
1341         vms->gic_version = 0; /* Will probe later */
1342     } else {
1343         error_setg(errp, "Invalid gic-version value");
1344         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1345     }
1346 }
1347 
1348 static void virt_instance_init(Object *obj)
1349 {
1350     VirtMachineState *vms = VIRT_MACHINE(obj);
1351 
1352     /* EL3 is disabled by default on virt: this makes us consistent
1353      * between KVM and TCG for this board, and it also allows us to
1354      * boot UEFI blobs which assume no TrustZone support.
1355      */
1356     vms->secure = false;
1357     object_property_add_bool(obj, "secure", virt_get_secure,
1358                              virt_set_secure, NULL);
1359     object_property_set_description(obj, "secure",
1360                                     "Set on/off to enable/disable the ARM "
1361                                     "Security Extensions (TrustZone)",
1362                                     NULL);
1363 
1364     /* High memory is enabled by default */
1365     vms->highmem = true;
1366     object_property_add_bool(obj, "highmem", virt_get_highmem,
1367                              virt_set_highmem, NULL);
1368     object_property_set_description(obj, "highmem",
1369                                     "Set on/off to enable/disable using "
1370                                     "physical address space above 32 bits",
1371                                     NULL);
1372     /* Default GIC type is v2 */
1373     vms->gic_version = 2;
1374     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1375                         virt_set_gic_version, NULL);
1376     object_property_set_description(obj, "gic-version",
1377                                     "Set GIC version. "
1378                                     "Valid values are 2, 3 and host", NULL);
1379 }
1380 
1381 static void virt_class_init(ObjectClass *oc, void *data)
1382 {
1383     MachineClass *mc = MACHINE_CLASS(oc);
1384 
1385     mc->desc = "ARM Virtual Machine",
1386     mc->init = machvirt_init;
1387     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1388      * it later in machvirt_init, where we have more information about the
1389      * configuration of the particular instance.
1390      */
1391     mc->max_cpus = MAX_CPUMASK_BITS;
1392     mc->has_dynamic_sysbus = true;
1393     mc->block_default_type = IF_VIRTIO;
1394     mc->no_cdrom = 1;
1395     mc->pci_allow_0_address = true;
1396 }
1397 
1398 static const TypeInfo machvirt_info = {
1399     .name = TYPE_VIRT_MACHINE,
1400     .parent = TYPE_MACHINE,
1401     .instance_size = sizeof(VirtMachineState),
1402     .instance_init = virt_instance_init,
1403     .class_size = sizeof(VirtMachineClass),
1404     .class_init = virt_class_init,
1405 };
1406 
1407 static void machvirt_machine_init(void)
1408 {
1409     type_register_static(&machvirt_info);
1410 }
1411 
1412 machine_init(machvirt_machine_init);
1413