xref: /qemu/hw/arm/virt.c (revision 2c533c54)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 
62 /* Number of external interrupt lines to configure the GIC with */
63 #define NUM_IRQS 256
64 
65 #define PLATFORM_BUS_NUM_IRQS 64
66 
67 static ARMPlatformBusSystemParams platform_bus_params;
68 
69 typedef struct VirtBoardInfo {
70     struct arm_boot_info bootinfo;
71     const char *cpu_model;
72     const MemMapEntry *memmap;
73     const int *irqmap;
74     int smp_cpus;
75     void *fdt;
76     int fdt_size;
77     uint32_t clock_phandle;
78     uint32_t gic_phandle;
79     uint32_t v2m_phandle;
80     bool using_psci;
81 } VirtBoardInfo;
82 
83 typedef struct {
84     MachineClass parent;
85     VirtBoardInfo *daughterboard;
86     bool disallow_affinity_adjustment;
87 } VirtMachineClass;
88 
89 typedef struct {
90     MachineState parent;
91     bool secure;
92     bool highmem;
93     int32_t gic_version;
94 } VirtMachineState;
95 
96 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
97 #define VIRT_MACHINE(obj) \
98     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
99 #define VIRT_MACHINE_GET_CLASS(obj) \
100     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
101 #define VIRT_MACHINE_CLASS(klass) \
102     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
103 
104 
105 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
106     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
107                                                     void *data) \
108     { \
109         MachineClass *mc = MACHINE_CLASS(oc); \
110         virt_machine_##major##_##minor##_options(mc); \
111         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
112         if (latest) { \
113             mc->alias = "virt"; \
114         } \
115     } \
116     static const TypeInfo machvirt_##major##_##minor##_info = { \
117         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118         .parent = TYPE_VIRT_MACHINE, \
119         .instance_init = virt_##major##_##minor##_instance_init, \
120         .class_init = virt_##major##_##minor##_class_init, \
121     }; \
122     static void machvirt_machine_##major##_##minor##_init(void) \
123     { \
124         type_register_static(&machvirt_##major##_##minor##_info); \
125     } \
126     type_init(machvirt_machine_##major##_##minor##_init);
127 
128 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
129     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
130 #define DEFINE_VIRT_MACHINE(major, minor) \
131     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
132 
133 
134 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
135  * RAM can go up to the 256GB mark, leaving 256GB of the physical
136  * address space unallocated and free for future use between 256G and 512G.
137  * If we need to provide more RAM to VMs in the future then we need to:
138  *  * allocate a second bank of RAM starting at 2TB and working up
139  *  * fix the DT and ACPI table generation code in QEMU to correctly
140  *    report two split lumps of RAM to the guest
141  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
142  * (We don't want to fill all the way up to 512GB with RAM because
143  * we might want it for non-RAM purposes later. Conversely it seems
144  * reasonable to assume that anybody configuring a VM with a quarter
145  * of a terabyte of RAM will be doing it on a host with more than a
146  * terabyte of physical address space.)
147  */
148 #define RAMLIMIT_GB 255
149 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
150 
151 /* Addresses and sizes of our components.
152  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
153  * 128MB..256MB is used for miscellaneous device I/O.
154  * 256MB..1GB is reserved for possible future PCI support (ie where the
155  * PCI memory window will go if we add a PCI host controller).
156  * 1GB and up is RAM (which may happily spill over into the
157  * high memory region beyond 4GB).
158  * This represents a compromise between how much RAM can be given to
159  * a 32 bit VM and leaving space for expansion and in particular for PCI.
160  * Note that devices should generally be placed at multiples of 0x10000,
161  * to accommodate guests using 64K pages.
162  */
163 static const MemMapEntry a15memmap[] = {
164     /* Space up to 0x8000000 is reserved for a boot ROM */
165     [VIRT_FLASH] =              {          0, 0x08000000 },
166     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
167     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
168     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
169     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
170     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
171     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
172     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
173     /* This redistributor space allows up to 2*64kB*123 CPUs */
174     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
175     [VIRT_UART] =               { 0x09000000, 0x00001000 },
176     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
177     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
178     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
179     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
180     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
181     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
182     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
183     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
184     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
185     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
186     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
187     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
188     /* Second PCIe window, 512GB wide at the 512GB boundary */
189     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
190 };
191 
192 static const int a15irqmap[] = {
193     [VIRT_UART] = 1,
194     [VIRT_RTC] = 2,
195     [VIRT_PCIE] = 3, /* ... to 6 */
196     [VIRT_GPIO] = 7,
197     [VIRT_SECURE_UART] = 8,
198     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
199     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
200     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
201 };
202 
203 static VirtBoardInfo machines[] = {
204     {
205         .cpu_model = "cortex-a15",
206         .memmap = a15memmap,
207         .irqmap = a15irqmap,
208     },
209     {
210         .cpu_model = "cortex-a53",
211         .memmap = a15memmap,
212         .irqmap = a15irqmap,
213     },
214     {
215         .cpu_model = "cortex-a57",
216         .memmap = a15memmap,
217         .irqmap = a15irqmap,
218     },
219     {
220         .cpu_model = "host",
221         .memmap = a15memmap,
222         .irqmap = a15irqmap,
223     },
224 };
225 
226 static VirtBoardInfo *find_machine_info(const char *cpu)
227 {
228     int i;
229 
230     for (i = 0; i < ARRAY_SIZE(machines); i++) {
231         if (strcmp(cpu, machines[i].cpu_model) == 0) {
232             return &machines[i];
233         }
234     }
235     return NULL;
236 }
237 
238 static void create_fdt(VirtBoardInfo *vbi)
239 {
240     void *fdt = create_device_tree(&vbi->fdt_size);
241 
242     if (!fdt) {
243         error_report("create_device_tree() failed");
244         exit(1);
245     }
246 
247     vbi->fdt = fdt;
248 
249     /* Header */
250     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
251     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
252     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
253 
254     /*
255      * /chosen and /memory nodes must exist for load_dtb
256      * to fill in necessary properties later
257      */
258     qemu_fdt_add_subnode(fdt, "/chosen");
259     qemu_fdt_add_subnode(fdt, "/memory");
260     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
261 
262     /* Clock node, for the benefit of the UART. The kernel device tree
263      * binding documentation claims the PL011 node clock properties are
264      * optional but in practice if you omit them the kernel refuses to
265      * probe for the device.
266      */
267     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
268     qemu_fdt_add_subnode(fdt, "/apb-pclk");
269     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
270     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
271     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
272     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
273                                 "clk24mhz");
274     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
275 
276 }
277 
278 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
279 {
280     uint32_t cpu_suspend_fn;
281     uint32_t cpu_off_fn;
282     uint32_t cpu_on_fn;
283     uint32_t migrate_fn;
284     void *fdt = vbi->fdt;
285     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
286 
287     if (!vbi->using_psci) {
288         return;
289     }
290 
291     qemu_fdt_add_subnode(fdt, "/psci");
292     if (armcpu->psci_version == 2) {
293         const char comp[] = "arm,psci-0.2\0arm,psci";
294         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
295 
296         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
297         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
298             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
299             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
300             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
301         } else {
302             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
303             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
304             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
305         }
306     } else {
307         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
308 
309         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
310         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
311         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
312         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
313     }
314 
315     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
316      * to the instruction that should be used to invoke PSCI functions.
317      * However, the device tree binding uses 'method' instead, so that is
318      * what we should use here.
319      */
320     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
321 
322     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
323     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
324     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
325     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
326 }
327 
328 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
329 {
330     /* Note that on A15 h/w these interrupts are level-triggered,
331      * but for the GIC implementation provided by both QEMU and KVM
332      * they are edge-triggered.
333      */
334     ARMCPU *armcpu;
335     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
336 
337     if (gictype == 2) {
338         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
339                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
340                              (1 << vbi->smp_cpus) - 1);
341     }
342 
343     qemu_fdt_add_subnode(vbi->fdt, "/timer");
344 
345     armcpu = ARM_CPU(qemu_get_cpu(0));
346     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
347         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
348         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
349                          compat, sizeof(compat));
350     } else {
351         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
352                                 "arm,armv7-timer");
353     }
354     qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
355     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
356                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
357                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
358                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
359                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
360 }
361 
362 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
363 {
364     int cpu;
365     int addr_cells = 1;
366     unsigned int i;
367 
368     /*
369      * From Documentation/devicetree/bindings/arm/cpus.txt
370      *  On ARM v8 64-bit systems value should be set to 2,
371      *  that corresponds to the MPIDR_EL1 register size.
372      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
373      *  in the system, #address-cells can be set to 1, since
374      *  MPIDR_EL1[63:32] bits are not used for CPUs
375      *  identification.
376      *
377      *  Here we actually don't know whether our system is 32- or 64-bit one.
378      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
379      *  at least one of them has Aff3 populated, we set #address-cells to 2.
380      */
381     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
382         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
383 
384         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
385             addr_cells = 2;
386             break;
387         }
388     }
389 
390     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
391     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
392     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
393 
394     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
395         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
396         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
397 
398         qemu_fdt_add_subnode(vbi->fdt, nodename);
399         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
400         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
401                                     armcpu->dtb_compatible);
402 
403         if (vbi->using_psci && vbi->smp_cpus > 1) {
404             qemu_fdt_setprop_string(vbi->fdt, nodename,
405                                         "enable-method", "psci");
406         }
407 
408         if (addr_cells == 2) {
409             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
410                                  armcpu->mp_affinity);
411         } else {
412             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
413                                   armcpu->mp_affinity);
414         }
415 
416         for (i = 0; i < nb_numa_nodes; i++) {
417             if (test_bit(cpu, numa_info[i].node_cpu)) {
418                 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
419             }
420         }
421 
422         g_free(nodename);
423     }
424 }
425 
426 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
427 {
428     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
429     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
430     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
431                             "arm,gic-v2m-frame");
432     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
433     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
434                                  2, vbi->memmap[VIRT_GIC_V2M].base,
435                                  2, vbi->memmap[VIRT_GIC_V2M].size);
436     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
437 }
438 
439 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
440 {
441     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
442     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
443 
444     qemu_fdt_add_subnode(vbi->fdt, "/intc");
445     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
446     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
447     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
448     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
449     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
450     if (type == 3) {
451         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
452                                 "arm,gic-v3");
453         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
454                                      2, vbi->memmap[VIRT_GIC_DIST].base,
455                                      2, vbi->memmap[VIRT_GIC_DIST].size,
456                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
457                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
458     } else {
459         /* 'cortex-a15-gic' means 'GIC v2' */
460         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
461                                 "arm,cortex-a15-gic");
462         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
463                                       2, vbi->memmap[VIRT_GIC_DIST].base,
464                                       2, vbi->memmap[VIRT_GIC_DIST].size,
465                                       2, vbi->memmap[VIRT_GIC_CPU].base,
466                                       2, vbi->memmap[VIRT_GIC_CPU].size);
467     }
468 
469     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
470 }
471 
472 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
473 {
474     CPUState *cpu;
475     ARMCPU *armcpu;
476     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
477 
478     CPU_FOREACH(cpu) {
479         armcpu = ARM_CPU(cpu);
480         if (!armcpu->has_pmu ||
481             !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
482             return;
483         }
484     }
485 
486     if (gictype == 2) {
487         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
488                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
489                              (1 << vbi->smp_cpus) - 1);
490     }
491 
492     armcpu = ARM_CPU(qemu_get_cpu(0));
493     qemu_fdt_add_subnode(vbi->fdt, "/pmu");
494     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
495         const char compat[] = "arm,armv8-pmuv3";
496         qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
497                          compat, sizeof(compat));
498         qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
499                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
500     }
501 }
502 
503 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
504 {
505     int i;
506     int irq = vbi->irqmap[VIRT_GIC_V2M];
507     DeviceState *dev;
508 
509     dev = qdev_create(NULL, "arm-gicv2m");
510     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
511     qdev_prop_set_uint32(dev, "base-spi", irq);
512     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
513     qdev_init_nofail(dev);
514 
515     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
516         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
517     }
518 
519     fdt_add_v2m_gic_node(vbi);
520 }
521 
522 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
523 {
524     /* We create a standalone GIC */
525     DeviceState *gicdev;
526     SysBusDevice *gicbusdev;
527     const char *gictype;
528     int i;
529 
530     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
531 
532     gicdev = qdev_create(NULL, gictype);
533     qdev_prop_set_uint32(gicdev, "revision", type);
534     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
535     /* Note that the num-irq property counts both internal and external
536      * interrupts; there are always 32 of the former (mandated by GIC spec).
537      */
538     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
539     if (!kvm_irqchip_in_kernel()) {
540         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
541     }
542     qdev_init_nofail(gicdev);
543     gicbusdev = SYS_BUS_DEVICE(gicdev);
544     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
545     if (type == 3) {
546         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
547     } else {
548         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
549     }
550 
551     /* Wire the outputs from each CPU's generic timer to the
552      * appropriate GIC PPI inputs, and the GIC's IRQ output to
553      * the CPU's IRQ input.
554      */
555     for (i = 0; i < smp_cpus; i++) {
556         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
557         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
558         int irq;
559         /* Mapping from the output timer irq lines from the CPU to the
560          * GIC PPI inputs we use for the virt board.
561          */
562         const int timer_irq[] = {
563             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
564             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
565             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
566             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
567         };
568 
569         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
570             qdev_connect_gpio_out(cpudev, irq,
571                                   qdev_get_gpio_in(gicdev,
572                                                    ppibase + timer_irq[irq]));
573         }
574 
575         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
576         sysbus_connect_irq(gicbusdev, i + smp_cpus,
577                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
578     }
579 
580     for (i = 0; i < NUM_IRQS; i++) {
581         pic[i] = qdev_get_gpio_in(gicdev, i);
582     }
583 
584     fdt_add_gic_node(vbi, type);
585 
586     if (type == 2) {
587         create_v2m(vbi, pic);
588     }
589 }
590 
591 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
592                         MemoryRegion *mem, CharDriverState *chr)
593 {
594     char *nodename;
595     hwaddr base = vbi->memmap[uart].base;
596     hwaddr size = vbi->memmap[uart].size;
597     int irq = vbi->irqmap[uart];
598     const char compat[] = "arm,pl011\0arm,primecell";
599     const char clocknames[] = "uartclk\0apb_pclk";
600     DeviceState *dev = qdev_create(NULL, "pl011");
601     SysBusDevice *s = SYS_BUS_DEVICE(dev);
602 
603     qdev_prop_set_chr(dev, "chardev", chr);
604     qdev_init_nofail(dev);
605     memory_region_add_subregion(mem, base,
606                                 sysbus_mmio_get_region(s, 0));
607     sysbus_connect_irq(s, 0, pic[irq]);
608 
609     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
610     qemu_fdt_add_subnode(vbi->fdt, nodename);
611     /* Note that we can't use setprop_string because of the embedded NUL */
612     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
613                          compat, sizeof(compat));
614     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
615                                      2, base, 2, size);
616     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
617                                GIC_FDT_IRQ_TYPE_SPI, irq,
618                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
619     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
620                                vbi->clock_phandle, vbi->clock_phandle);
621     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
622                          clocknames, sizeof(clocknames));
623 
624     if (uart == VIRT_UART) {
625         qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
626     } else {
627         /* Mark as not usable by the normal world */
628         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
629         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
630     }
631 
632     g_free(nodename);
633 }
634 
635 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
636 {
637     char *nodename;
638     hwaddr base = vbi->memmap[VIRT_RTC].base;
639     hwaddr size = vbi->memmap[VIRT_RTC].size;
640     int irq = vbi->irqmap[VIRT_RTC];
641     const char compat[] = "arm,pl031\0arm,primecell";
642 
643     sysbus_create_simple("pl031", base, pic[irq]);
644 
645     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
646     qemu_fdt_add_subnode(vbi->fdt, nodename);
647     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
648     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
649                                  2, base, 2, size);
650     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
651                            GIC_FDT_IRQ_TYPE_SPI, irq,
652                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
653     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
654     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
655     g_free(nodename);
656 }
657 
658 static DeviceState *gpio_key_dev;
659 static void virt_powerdown_req(Notifier *n, void *opaque)
660 {
661     /* use gpio Pin 3 for power button event */
662     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
663 }
664 
665 static Notifier virt_system_powerdown_notifier = {
666     .notify = virt_powerdown_req
667 };
668 
669 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
670 {
671     char *nodename;
672     DeviceState *pl061_dev;
673     hwaddr base = vbi->memmap[VIRT_GPIO].base;
674     hwaddr size = vbi->memmap[VIRT_GPIO].size;
675     int irq = vbi->irqmap[VIRT_GPIO];
676     const char compat[] = "arm,pl061\0arm,primecell";
677 
678     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
679 
680     uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
681     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
682     qemu_fdt_add_subnode(vbi->fdt, nodename);
683     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
684                                  2, base, 2, size);
685     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
686     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
687     qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
688     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
689                            GIC_FDT_IRQ_TYPE_SPI, irq,
690                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
691     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
692     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
693     qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
694 
695     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
696                                         qdev_get_gpio_in(pl061_dev, 3));
697     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
698     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
699     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
700     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
701 
702     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
703     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
704                             "label", "GPIO Key Poweroff");
705     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
706                           KEY_POWER);
707     qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
708                            "gpios", phandle, 3, 0);
709 
710     /* connect powerdown request */
711     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
712 
713     g_free(nodename);
714 }
715 
716 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
717 {
718     int i;
719     hwaddr size = vbi->memmap[VIRT_MMIO].size;
720 
721     /* We create the transports in forwards order. Since qbus_realize()
722      * prepends (not appends) new child buses, the incrementing loop below will
723      * create a list of virtio-mmio buses with decreasing base addresses.
724      *
725      * When a -device option is processed from the command line,
726      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
727      * order. The upshot is that -device options in increasing command line
728      * order are mapped to virtio-mmio buses with decreasing base addresses.
729      *
730      * When this code was originally written, that arrangement ensured that the
731      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
732      * the first -device on the command line. (The end-to-end order is a
733      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
734      * guest kernel's name-to-address assignment strategy.)
735      *
736      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
737      * the message, if not necessarily the code, of commit 70161ff336.
738      * Therefore the loop now establishes the inverse of the original intent.
739      *
740      * Unfortunately, we can't counteract the kernel change by reversing the
741      * loop; it would break existing command lines.
742      *
743      * In any case, the kernel makes no guarantee about the stability of
744      * enumeration order of virtio devices (as demonstrated by it changing
745      * between kernel versions). For reliable and stable identification
746      * of disks users must use UUIDs or similar mechanisms.
747      */
748     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
749         int irq = vbi->irqmap[VIRT_MMIO] + i;
750         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
751 
752         sysbus_create_simple("virtio-mmio", base, pic[irq]);
753     }
754 
755     /* We add dtb nodes in reverse order so that they appear in the finished
756      * device tree lowest address first.
757      *
758      * Note that this mapping is independent of the loop above. The previous
759      * loop influences virtio device to virtio transport assignment, whereas
760      * this loop controls how virtio transports are laid out in the dtb.
761      */
762     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
763         char *nodename;
764         int irq = vbi->irqmap[VIRT_MMIO] + i;
765         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
766 
767         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
768         qemu_fdt_add_subnode(vbi->fdt, nodename);
769         qemu_fdt_setprop_string(vbi->fdt, nodename,
770                                 "compatible", "virtio,mmio");
771         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
772                                      2, base, 2, size);
773         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
774                                GIC_FDT_IRQ_TYPE_SPI, irq,
775                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
776         g_free(nodename);
777     }
778 }
779 
780 static void create_one_flash(const char *name, hwaddr flashbase,
781                              hwaddr flashsize, const char *file,
782                              MemoryRegion *sysmem)
783 {
784     /* Create and map a single flash device. We use the same
785      * parameters as the flash devices on the Versatile Express board.
786      */
787     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
788     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
789     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
790     const uint64_t sectorlength = 256 * 1024;
791 
792     if (dinfo) {
793         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
794                             &error_abort);
795     }
796 
797     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
798     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
799     qdev_prop_set_uint8(dev, "width", 4);
800     qdev_prop_set_uint8(dev, "device-width", 2);
801     qdev_prop_set_bit(dev, "big-endian", false);
802     qdev_prop_set_uint16(dev, "id0", 0x89);
803     qdev_prop_set_uint16(dev, "id1", 0x18);
804     qdev_prop_set_uint16(dev, "id2", 0x00);
805     qdev_prop_set_uint16(dev, "id3", 0x00);
806     qdev_prop_set_string(dev, "name", name);
807     qdev_init_nofail(dev);
808 
809     memory_region_add_subregion(sysmem, flashbase,
810                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
811 
812     if (file) {
813         char *fn;
814         int image_size;
815 
816         if (drive_get(IF_PFLASH, 0, 0)) {
817             error_report("The contents of the first flash device may be "
818                          "specified with -bios or with -drive if=pflash... "
819                          "but you cannot use both options at once");
820             exit(1);
821         }
822         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
823         if (!fn) {
824             error_report("Could not find ROM image '%s'", file);
825             exit(1);
826         }
827         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
828         g_free(fn);
829         if (image_size < 0) {
830             error_report("Could not load ROM image '%s'", file);
831             exit(1);
832         }
833     }
834 }
835 
836 static void create_flash(const VirtBoardInfo *vbi,
837                          MemoryRegion *sysmem,
838                          MemoryRegion *secure_sysmem)
839 {
840     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
841      * Any file passed via -bios goes in the first of these.
842      * sysmem is the system memory space. secure_sysmem is the secure view
843      * of the system, and the first flash device should be made visible only
844      * there. The second flash device is visible to both secure and nonsecure.
845      * If sysmem == secure_sysmem this means there is no separate Secure
846      * address space and both flash devices are generally visible.
847      */
848     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
849     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
850     char *nodename;
851 
852     create_one_flash("virt.flash0", flashbase, flashsize,
853                      bios_name, secure_sysmem);
854     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
855                      NULL, sysmem);
856 
857     if (sysmem == secure_sysmem) {
858         /* Report both flash devices as a single node in the DT */
859         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
860         qemu_fdt_add_subnode(vbi->fdt, nodename);
861         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
862         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
863                                      2, flashbase, 2, flashsize,
864                                      2, flashbase + flashsize, 2, flashsize);
865         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
866         g_free(nodename);
867     } else {
868         /* Report the devices as separate nodes so we can mark one as
869          * only visible to the secure world.
870          */
871         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
872         qemu_fdt_add_subnode(vbi->fdt, nodename);
873         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
874         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
875                                      2, flashbase, 2, flashsize);
876         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
877         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
878         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
879         g_free(nodename);
880 
881         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
882         qemu_fdt_add_subnode(vbi->fdt, nodename);
883         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
884         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
885                                      2, flashbase + flashsize, 2, flashsize);
886         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
887         g_free(nodename);
888     }
889 }
890 
891 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
892 {
893     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
894     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
895     char *nodename;
896 
897     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
898 
899     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
900     qemu_fdt_add_subnode(vbi->fdt, nodename);
901     qemu_fdt_setprop_string(vbi->fdt, nodename,
902                             "compatible", "qemu,fw-cfg-mmio");
903     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
904                                  2, base, 2, size);
905     g_free(nodename);
906 }
907 
908 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
909                                 int first_irq, const char *nodename)
910 {
911     int devfn, pin;
912     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
913     uint32_t *irq_map = full_irq_map;
914 
915     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
916         for (pin = 0; pin < 4; pin++) {
917             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
918             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
919             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
920             int i;
921 
922             uint32_t map[] = {
923                 devfn << 8, 0, 0,                           /* devfn */
924                 pin + 1,                                    /* PCI pin */
925                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
926 
927             /* Convert map to big endian */
928             for (i = 0; i < 10; i++) {
929                 irq_map[i] = cpu_to_be32(map[i]);
930             }
931             irq_map += 10;
932         }
933     }
934 
935     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
936                      full_irq_map, sizeof(full_irq_map));
937 
938     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
939                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
940                            0x7           /* PCI irq */);
941 }
942 
943 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
944                         bool use_highmem)
945 {
946     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
947     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
948     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
949     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
950     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
951     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
952     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
953     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
954     hwaddr base = base_mmio;
955     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
956     int irq = vbi->irqmap[VIRT_PCIE];
957     MemoryRegion *mmio_alias;
958     MemoryRegion *mmio_reg;
959     MemoryRegion *ecam_alias;
960     MemoryRegion *ecam_reg;
961     DeviceState *dev;
962     char *nodename;
963     int i;
964     PCIHostState *pci;
965 
966     dev = qdev_create(NULL, TYPE_GPEX_HOST);
967     qdev_init_nofail(dev);
968 
969     /* Map only the first size_ecam bytes of ECAM space */
970     ecam_alias = g_new0(MemoryRegion, 1);
971     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
972     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
973                              ecam_reg, 0, size_ecam);
974     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
975 
976     /* Map the MMIO window into system address space so as to expose
977      * the section of PCI MMIO space which starts at the same base address
978      * (ie 1:1 mapping for that part of PCI MMIO space visible through
979      * the window).
980      */
981     mmio_alias = g_new0(MemoryRegion, 1);
982     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
983     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
984                              mmio_reg, base_mmio, size_mmio);
985     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
986 
987     if (use_highmem) {
988         /* Map high MMIO space */
989         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
990 
991         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
992                                  mmio_reg, base_mmio_high, size_mmio_high);
993         memory_region_add_subregion(get_system_memory(), base_mmio_high,
994                                     high_mmio_alias);
995     }
996 
997     /* Map IO port space */
998     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
999 
1000     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1001         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1002     }
1003 
1004     pci = PCI_HOST_BRIDGE(dev);
1005     if (pci->bus) {
1006         for (i = 0; i < nb_nics; i++) {
1007             NICInfo *nd = &nd_table[i];
1008 
1009             if (!nd->model) {
1010                 nd->model = g_strdup("virtio");
1011             }
1012 
1013             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1014         }
1015     }
1016 
1017     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1018     qemu_fdt_add_subnode(vbi->fdt, nodename);
1019     qemu_fdt_setprop_string(vbi->fdt, nodename,
1020                             "compatible", "pci-host-ecam-generic");
1021     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1022     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1023     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1024     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1025                            nr_pcie_buses - 1);
1026     qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0);
1027 
1028     if (vbi->v2m_phandle) {
1029         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1030                                vbi->v2m_phandle);
1031     }
1032 
1033     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1034                                  2, base_ecam, 2, size_ecam);
1035 
1036     if (use_highmem) {
1037         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1038                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1039                                      2, base_pio, 2, size_pio,
1040                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1041                                      2, base_mmio, 2, size_mmio,
1042                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1043                                      2, base_mmio_high,
1044                                      2, base_mmio_high, 2, size_mmio_high);
1045     } else {
1046         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1047                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1048                                      2, base_pio, 2, size_pio,
1049                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1050                                      2, base_mmio, 2, size_mmio);
1051     }
1052 
1053     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1054     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1055 
1056     g_free(nodename);
1057 }
1058 
1059 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1060 {
1061     DeviceState *dev;
1062     SysBusDevice *s;
1063     int i;
1064     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1065     MemoryRegion *sysmem = get_system_memory();
1066 
1067     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1068     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1069     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1070     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1071 
1072     fdt_params->system_params = &platform_bus_params;
1073     fdt_params->binfo = &vbi->bootinfo;
1074     fdt_params->intc = "/intc";
1075     /*
1076      * register a machine init done notifier that creates the device tree
1077      * nodes of the platform bus and its children dynamic sysbus devices
1078      */
1079     arm_register_platform_bus_fdt_creator(fdt_params);
1080 
1081     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1082     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1083     qdev_prop_set_uint32(dev, "num_irqs",
1084         platform_bus_params.platform_bus_num_irqs);
1085     qdev_prop_set_uint32(dev, "mmio_size",
1086         platform_bus_params.platform_bus_size);
1087     qdev_init_nofail(dev);
1088     s = SYS_BUS_DEVICE(dev);
1089 
1090     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1091         int irqn = platform_bus_params.platform_bus_first_irq + i;
1092         sysbus_connect_irq(s, i, pic[irqn]);
1093     }
1094 
1095     memory_region_add_subregion(sysmem,
1096                                 platform_bus_params.platform_bus_base,
1097                                 sysbus_mmio_get_region(s, 0));
1098 }
1099 
1100 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1101 {
1102     MemoryRegion *secram = g_new(MemoryRegion, 1);
1103     char *nodename;
1104     hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1105     hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1106 
1107     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1108     vmstate_register_ram_global(secram);
1109     memory_region_add_subregion(secure_sysmem, base, secram);
1110 
1111     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1112     qemu_fdt_add_subnode(vbi->fdt, nodename);
1113     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1114     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1115     qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1116     qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1117 
1118     g_free(nodename);
1119 }
1120 
1121 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1122 {
1123     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1124 
1125     *fdt_size = board->fdt_size;
1126     return board->fdt;
1127 }
1128 
1129 static void virt_build_smbios(VirtGuestInfo *guest_info)
1130 {
1131     FWCfgState *fw_cfg = guest_info->fw_cfg;
1132     uint8_t *smbios_tables, *smbios_anchor;
1133     size_t smbios_tables_len, smbios_anchor_len;
1134     const char *product = "QEMU Virtual Machine";
1135 
1136     if (!fw_cfg) {
1137         return;
1138     }
1139 
1140     if (kvm_enabled()) {
1141         product = "KVM Virtual Machine";
1142     }
1143 
1144     smbios_set_defaults("QEMU", product,
1145                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1146 
1147     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1148                       &smbios_anchor, &smbios_anchor_len);
1149 
1150     if (smbios_anchor) {
1151         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1152                         smbios_tables, smbios_tables_len);
1153         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1154                         smbios_anchor, smbios_anchor_len);
1155     }
1156 }
1157 
1158 static
1159 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1160 {
1161     VirtGuestInfoState *guest_info_state = container_of(notifier,
1162                                               VirtGuestInfoState, machine_done);
1163     virt_acpi_setup(&guest_info_state->info);
1164     virt_build_smbios(&guest_info_state->info);
1165 }
1166 
1167 static void machvirt_init(MachineState *machine)
1168 {
1169     VirtMachineState *vms = VIRT_MACHINE(machine);
1170     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1171     qemu_irq pic[NUM_IRQS];
1172     MemoryRegion *sysmem = get_system_memory();
1173     MemoryRegion *secure_sysmem = NULL;
1174     int gic_version = vms->gic_version;
1175     int n, virt_max_cpus;
1176     MemoryRegion *ram = g_new(MemoryRegion, 1);
1177     const char *cpu_model = machine->cpu_model;
1178     VirtBoardInfo *vbi;
1179     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1180     VirtGuestInfo *guest_info = &guest_info_state->info;
1181     char **cpustr;
1182     ObjectClass *oc;
1183     const char *typename;
1184     CPUClass *cc;
1185     Error *err = NULL;
1186     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1187     uint8_t clustersz;
1188 
1189     if (!cpu_model) {
1190         cpu_model = "cortex-a15";
1191     }
1192 
1193     /* We can probe only here because during property set
1194      * KVM is not available yet
1195      */
1196     if (!gic_version) {
1197         if (!kvm_enabled()) {
1198             error_report("gic-version=host requires KVM");
1199             exit(1);
1200         }
1201 
1202         gic_version = kvm_arm_vgic_probe();
1203         if (!gic_version) {
1204             error_report("Unable to determine GIC version supported by host");
1205             exit(1);
1206         }
1207     }
1208 
1209     /* Separate the actual CPU model name from any appended features */
1210     cpustr = g_strsplit(cpu_model, ",", 2);
1211 
1212     vbi = find_machine_info(cpustr[0]);
1213 
1214     if (!vbi) {
1215         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1216         exit(1);
1217     }
1218 
1219     /* If we have an EL3 boot ROM then the assumption is that it will
1220      * implement PSCI itself, so disable QEMU's internal implementation
1221      * so it doesn't get in the way. Instead of starting secondary
1222      * CPUs in PSCI powerdown state we will start them all running and
1223      * let the boot ROM sort them out.
1224      * The usual case is that we do use QEMU's PSCI implementation.
1225      */
1226     vbi->using_psci = !(vms->secure && firmware_loaded);
1227 
1228     /* The maximum number of CPUs depends on the GIC version, or on how
1229      * many redistributors we can fit into the memory map.
1230      */
1231     if (gic_version == 3) {
1232         virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1233         clustersz = GICV3_TARGETLIST_BITS;
1234     } else {
1235         virt_max_cpus = GIC_NCPU;
1236         clustersz = GIC_TARGETLIST_BITS;
1237     }
1238 
1239     if (max_cpus > virt_max_cpus) {
1240         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1241                      "supported by machine 'mach-virt' (%d)",
1242                      max_cpus, virt_max_cpus);
1243         exit(1);
1244     }
1245 
1246     vbi->smp_cpus = smp_cpus;
1247 
1248     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1249         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1250         exit(1);
1251     }
1252 
1253     if (vms->secure) {
1254         if (kvm_enabled()) {
1255             error_report("mach-virt: KVM does not support Security extensions");
1256             exit(1);
1257         }
1258 
1259         /* The Secure view of the world is the same as the NonSecure,
1260          * but with a few extra devices. Create it as a container region
1261          * containing the system memory at low priority; any secure-only
1262          * devices go in at higher priority and take precedence.
1263          */
1264         secure_sysmem = g_new(MemoryRegion, 1);
1265         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1266                            UINT64_MAX);
1267         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1268     }
1269 
1270     create_fdt(vbi);
1271 
1272     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1273     if (!oc) {
1274         error_report("Unable to find CPU definition");
1275         exit(1);
1276     }
1277     typename = object_class_get_name(oc);
1278 
1279     /* convert -smp CPU options specified by the user into global props */
1280     cc = CPU_CLASS(oc);
1281     cc->parse_features(typename, cpustr[1], &err);
1282     g_strfreev(cpustr);
1283     if (err) {
1284         error_report_err(err);
1285         exit(1);
1286     }
1287 
1288     for (n = 0; n < smp_cpus; n++) {
1289         Object *cpuobj = object_new(typename);
1290         if (!vmc->disallow_affinity_adjustment) {
1291             /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1292              * GIC's target-list limitations. 32-bit KVM hosts currently
1293              * always create clusters of 4 CPUs, but that is expected to
1294              * change when they gain support for gicv3. When KVM is enabled
1295              * it will override the changes we make here, therefore our
1296              * purposes are to make TCG consistent (with 64-bit KVM hosts)
1297              * and to improve SGI efficiency.
1298              */
1299             uint8_t aff1 = n / clustersz;
1300             uint8_t aff0 = n % clustersz;
1301             object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1302                                     "mp-affinity", NULL);
1303         }
1304 
1305         if (!vms->secure) {
1306             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1307         }
1308 
1309         if (vbi->using_psci) {
1310             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1311                                     "psci-conduit", NULL);
1312 
1313             /* Secondary CPUs start in PSCI powered-down state */
1314             if (n > 0) {
1315                 object_property_set_bool(cpuobj, true,
1316                                          "start-powered-off", NULL);
1317             }
1318         }
1319 
1320         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1321             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1322                                     "reset-cbar", &error_abort);
1323         }
1324 
1325         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1326                                  &error_abort);
1327         if (vms->secure) {
1328             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1329                                      "secure-memory", &error_abort);
1330         }
1331 
1332         object_property_set_bool(cpuobj, true, "realized", NULL);
1333     }
1334     fdt_add_timer_nodes(vbi, gic_version);
1335     fdt_add_cpu_nodes(vbi);
1336     fdt_add_psci_node(vbi);
1337 
1338     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1339                                          machine->ram_size);
1340     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1341 
1342     create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1343 
1344     create_gic(vbi, pic, gic_version, vms->secure);
1345 
1346     fdt_add_pmu_nodes(vbi, gic_version);
1347 
1348     create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1349 
1350     if (vms->secure) {
1351         create_secure_ram(vbi, secure_sysmem);
1352         create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1353     }
1354 
1355     create_rtc(vbi, pic);
1356 
1357     create_pcie(vbi, pic, vms->highmem);
1358 
1359     create_gpio(vbi, pic);
1360 
1361     /* Create mmio transports, so the user can create virtio backends
1362      * (which will be automatically plugged in to the transports). If
1363      * no backend is created the transport will just sit harmlessly idle.
1364      */
1365     create_virtio_devices(vbi, pic);
1366 
1367     create_fw_cfg(vbi, &address_space_memory);
1368     rom_set_fw(fw_cfg_find());
1369 
1370     guest_info->smp_cpus = smp_cpus;
1371     guest_info->fw_cfg = fw_cfg_find();
1372     guest_info->memmap = vbi->memmap;
1373     guest_info->irqmap = vbi->irqmap;
1374     guest_info->use_highmem = vms->highmem;
1375     guest_info->gic_version = gic_version;
1376     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1377     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1378 
1379     vbi->bootinfo.ram_size = machine->ram_size;
1380     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1381     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1382     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1383     vbi->bootinfo.nb_cpus = smp_cpus;
1384     vbi->bootinfo.board_id = -1;
1385     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1386     vbi->bootinfo.get_dtb = machvirt_dtb;
1387     vbi->bootinfo.firmware_loaded = firmware_loaded;
1388     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1389 
1390     /*
1391      * arm_load_kernel machine init done notifier registration must
1392      * happen before the platform_bus_create call. In this latter,
1393      * another notifier is registered which adds platform bus nodes.
1394      * Notifiers are executed in registration reverse order.
1395      */
1396     create_platform_bus(vbi, pic);
1397 }
1398 
1399 static bool virt_get_secure(Object *obj, Error **errp)
1400 {
1401     VirtMachineState *vms = VIRT_MACHINE(obj);
1402 
1403     return vms->secure;
1404 }
1405 
1406 static void virt_set_secure(Object *obj, bool value, Error **errp)
1407 {
1408     VirtMachineState *vms = VIRT_MACHINE(obj);
1409 
1410     vms->secure = value;
1411 }
1412 
1413 static bool virt_get_highmem(Object *obj, Error **errp)
1414 {
1415     VirtMachineState *vms = VIRT_MACHINE(obj);
1416 
1417     return vms->highmem;
1418 }
1419 
1420 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1421 {
1422     VirtMachineState *vms = VIRT_MACHINE(obj);
1423 
1424     vms->highmem = value;
1425 }
1426 
1427 static char *virt_get_gic_version(Object *obj, Error **errp)
1428 {
1429     VirtMachineState *vms = VIRT_MACHINE(obj);
1430     const char *val = vms->gic_version == 3 ? "3" : "2";
1431 
1432     return g_strdup(val);
1433 }
1434 
1435 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1436 {
1437     VirtMachineState *vms = VIRT_MACHINE(obj);
1438 
1439     if (!strcmp(value, "3")) {
1440         vms->gic_version = 3;
1441     } else if (!strcmp(value, "2")) {
1442         vms->gic_version = 2;
1443     } else if (!strcmp(value, "host")) {
1444         vms->gic_version = 0; /* Will probe later */
1445     } else {
1446         error_setg(errp, "Invalid gic-version value");
1447         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1448     }
1449 }
1450 
1451 static void virt_machine_class_init(ObjectClass *oc, void *data)
1452 {
1453     MachineClass *mc = MACHINE_CLASS(oc);
1454 
1455     mc->init = machvirt_init;
1456     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1457      * it later in machvirt_init, where we have more information about the
1458      * configuration of the particular instance.
1459      */
1460     mc->max_cpus = MAX_CPUMASK_BITS;
1461     mc->has_dynamic_sysbus = true;
1462     mc->block_default_type = IF_VIRTIO;
1463     mc->no_cdrom = 1;
1464     mc->pci_allow_0_address = true;
1465 }
1466 
1467 static const TypeInfo virt_machine_info = {
1468     .name          = TYPE_VIRT_MACHINE,
1469     .parent        = TYPE_MACHINE,
1470     .abstract      = true,
1471     .instance_size = sizeof(VirtMachineState),
1472     .class_size    = sizeof(VirtMachineClass),
1473     .class_init    = virt_machine_class_init,
1474 };
1475 
1476 static void machvirt_machine_init(void)
1477 {
1478     type_register_static(&virt_machine_info);
1479 }
1480 type_init(machvirt_machine_init);
1481 
1482 static void virt_2_7_instance_init(Object *obj)
1483 {
1484     VirtMachineState *vms = VIRT_MACHINE(obj);
1485 
1486     /* EL3 is disabled by default on virt: this makes us consistent
1487      * between KVM and TCG for this board, and it also allows us to
1488      * boot UEFI blobs which assume no TrustZone support.
1489      */
1490     vms->secure = false;
1491     object_property_add_bool(obj, "secure", virt_get_secure,
1492                              virt_set_secure, NULL);
1493     object_property_set_description(obj, "secure",
1494                                     "Set on/off to enable/disable the ARM "
1495                                     "Security Extensions (TrustZone)",
1496                                     NULL);
1497 
1498     /* High memory is enabled by default */
1499     vms->highmem = true;
1500     object_property_add_bool(obj, "highmem", virt_get_highmem,
1501                              virt_set_highmem, NULL);
1502     object_property_set_description(obj, "highmem",
1503                                     "Set on/off to enable/disable using "
1504                                     "physical address space above 32 bits",
1505                                     NULL);
1506     /* Default GIC type is v2 */
1507     vms->gic_version = 2;
1508     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1509                         virt_set_gic_version, NULL);
1510     object_property_set_description(obj, "gic-version",
1511                                     "Set GIC version. "
1512                                     "Valid values are 2, 3 and host", NULL);
1513 }
1514 
1515 static void virt_machine_2_7_options(MachineClass *mc)
1516 {
1517 }
1518 DEFINE_VIRT_MACHINE_AS_LATEST(2, 7)
1519 
1520 #define VIRT_COMPAT_2_6 \
1521     HW_COMPAT_2_6
1522 
1523 static void virt_2_6_instance_init(Object *obj)
1524 {
1525     virt_2_7_instance_init(obj);
1526 }
1527 
1528 static void virt_machine_2_6_options(MachineClass *mc)
1529 {
1530     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1531 
1532     virt_machine_2_7_options(mc);
1533     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1534     vmc->disallow_affinity_adjustment = true;
1535 }
1536 DEFINE_VIRT_MACHINE(2, 6)
1537