xref: /qemu/hw/arm/virt.c (revision 5086c997)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/boards.h"
40 #include "hw/arm/boot.h"
41 #include "hw/arm/primecell.h"
42 #include "hw/arm/virt.h"
43 #include "hw/block/flash.h"
44 #include "hw/vfio/vfio-calxeda-xgmac.h"
45 #include "hw/vfio/vfio-amd-xgbe.h"
46 #include "hw/display/ramfb.h"
47 #include "net/net.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/runstate.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/tpm.h"
53 #include "sysemu/kvm.h"
54 #include "hw/loader.h"
55 #include "exec/address-spaces.h"
56 #include "qemu/bitops.h"
57 #include "qemu/error-report.h"
58 #include "qemu/module.h"
59 #include "hw/pci-host/gpex.h"
60 #include "hw/virtio/virtio-pci.h"
61 #include "hw/arm/sysbus-fdt.h"
62 #include "hw/platform-bus.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/arm/fdt.h"
65 #include "hw/intc/arm_gic.h"
66 #include "hw/intc/arm_gicv3_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
82 
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85                                                     void *data) \
86     { \
87         MachineClass *mc = MACHINE_CLASS(oc); \
88         virt_machine_##major##_##minor##_options(mc); \
89         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90         if (latest) { \
91             mc->alias = "virt"; \
92         } \
93     } \
94     static const TypeInfo machvirt_##major##_##minor##_info = { \
95         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96         .parent = TYPE_VIRT_MACHINE, \
97         .class_init = virt_##major##_##minor##_class_init, \
98     }; \
99     static void machvirt_machine_##major##_##minor##_init(void) \
100     { \
101         type_register_static(&machvirt_##major##_##minor##_info); \
102     } \
103     type_init(machvirt_machine_##major##_##minor##_init);
104 
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109 
110 
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
113 
114 #define PLATFORM_BUS_NUM_IRQS 64
115 
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119 
120 /* Addresses and sizes of our components.
121  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122  * 128MB..256MB is used for miscellaneous device I/O.
123  * 256MB..1GB is reserved for possible future PCI support (ie where the
124  * PCI memory window will go if we add a PCI host controller).
125  * 1GB and up is RAM (which may happily spill over into the
126  * high memory region beyond 4GB).
127  * This represents a compromise between how much RAM can be given to
128  * a 32 bit VM and leaving space for expansion and in particular for PCI.
129  * Note that devices should generally be placed at multiples of 0x10000,
130  * to accommodate guests using 64K pages.
131  */
132 static const MemMapEntry base_memmap[] = {
133     /* Space up to 0x8000000 is reserved for a boot ROM */
134     [VIRT_FLASH] =              {          0, 0x08000000 },
135     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
136     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
138     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
139     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
140     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
141     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
142     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
144     /* This redistributor space allows up to 2*64kB*123 CPUs */
145     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
146     [VIRT_UART] =               { 0x09000000, 0x00001000 },
147     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
148     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
149     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
150     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
151     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
152     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
155     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
156     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
157     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
158     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
160     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
161     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
162     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
163     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
164     /* Actual RAM size depends on initial RAM and device memory settings */
165     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
166 };
167 
168 /*
169  * Highmem IO Regions: This memory map is floating, located after the RAM.
170  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171  * top of the RAM, so that its base get the same alignment as the size,
172  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174  * Note the extended_memmap is sized so that it eventually also includes the
175  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176  * index of base_memmap).
177  */
178 static MemMapEntry extended_memmap[] = {
179     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
180     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
181     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
182     /* Second PCIe window */
183     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
184 };
185 
186 static const int a15irqmap[] = {
187     [VIRT_UART] = 1,
188     [VIRT_RTC] = 2,
189     [VIRT_PCIE] = 3, /* ... to 6 */
190     [VIRT_GPIO] = 7,
191     [VIRT_SECURE_UART] = 8,
192     [VIRT_ACPI_GED] = 9,
193     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
194     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
195     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
196     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 };
198 
199 static const char *valid_cpus[] = {
200     ARM_CPU_TYPE_NAME("cortex-a7"),
201     ARM_CPU_TYPE_NAME("cortex-a15"),
202     ARM_CPU_TYPE_NAME("cortex-a53"),
203     ARM_CPU_TYPE_NAME("cortex-a57"),
204     ARM_CPU_TYPE_NAME("cortex-a72"),
205     ARM_CPU_TYPE_NAME("host"),
206     ARM_CPU_TYPE_NAME("max"),
207 };
208 
209 static bool cpu_type_valid(const char *cpu)
210 {
211     int i;
212 
213     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
214         if (strcmp(cpu, valid_cpus[i]) == 0) {
215             return true;
216         }
217     }
218     return false;
219 }
220 
221 static void create_kaslr_seed(VirtMachineState *vms, const char *node)
222 {
223     uint64_t seed;
224 
225     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
226         return;
227     }
228     qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
229 }
230 
231 static void create_fdt(VirtMachineState *vms)
232 {
233     MachineState *ms = MACHINE(vms);
234     int nb_numa_nodes = ms->numa_state->num_nodes;
235     void *fdt = create_device_tree(&vms->fdt_size);
236 
237     if (!fdt) {
238         error_report("create_device_tree() failed");
239         exit(1);
240     }
241 
242     vms->fdt = fdt;
243 
244     /* Header */
245     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
246     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
247     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
248 
249     /* /chosen must exist for load_dtb to fill in necessary properties later */
250     qemu_fdt_add_subnode(fdt, "/chosen");
251     create_kaslr_seed(vms, "/chosen");
252 
253     if (vms->secure) {
254         qemu_fdt_add_subnode(fdt, "/secure-chosen");
255         create_kaslr_seed(vms, "/secure-chosen");
256     }
257 
258     /* Clock node, for the benefit of the UART. The kernel device tree
259      * binding documentation claims the PL011 node clock properties are
260      * optional but in practice if you omit them the kernel refuses to
261      * probe for the device.
262      */
263     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
264     qemu_fdt_add_subnode(fdt, "/apb-pclk");
265     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
266     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
267     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
268     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
269                                 "clk24mhz");
270     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
271 
272     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
273         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
274         uint32_t *matrix = g_malloc0(size);
275         int idx, i, j;
276 
277         for (i = 0; i < nb_numa_nodes; i++) {
278             for (j = 0; j < nb_numa_nodes; j++) {
279                 idx = (i * nb_numa_nodes + j) * 3;
280                 matrix[idx + 0] = cpu_to_be32(i);
281                 matrix[idx + 1] = cpu_to_be32(j);
282                 matrix[idx + 2] =
283                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
284             }
285         }
286 
287         qemu_fdt_add_subnode(fdt, "/distance-map");
288         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
289                                 "numa-distance-map-v1");
290         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
291                          matrix, size);
292         g_free(matrix);
293     }
294 }
295 
296 static void fdt_add_timer_nodes(const VirtMachineState *vms)
297 {
298     /* On real hardware these interrupts are level-triggered.
299      * On KVM they were edge-triggered before host kernel version 4.4,
300      * and level-triggered afterwards.
301      * On emulated QEMU they are level-triggered.
302      *
303      * Getting the DTB info about them wrong is awkward for some
304      * guest kernels:
305      *  pre-4.8 ignore the DT and leave the interrupt configured
306      *   with whatever the GIC reset value (or the bootloader) left it at
307      *  4.8 before rc6 honour the incorrect data by programming it back
308      *   into the GIC, causing problems
309      *  4.8rc6 and later ignore the DT and always write "level triggered"
310      *   into the GIC
311      *
312      * For backwards-compatibility, virt-2.8 and earlier will continue
313      * to say these are edge-triggered, but later machines will report
314      * the correct information.
315      */
316     ARMCPU *armcpu;
317     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
318     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
319 
320     if (vmc->claim_edge_triggered_timers) {
321         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
322     }
323 
324     if (vms->gic_version == VIRT_GIC_VERSION_2) {
325         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
326                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
327                              (1 << MACHINE(vms)->smp.cpus) - 1);
328     }
329 
330     qemu_fdt_add_subnode(vms->fdt, "/timer");
331 
332     armcpu = ARM_CPU(qemu_get_cpu(0));
333     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
334         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
335         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
336                          compat, sizeof(compat));
337     } else {
338         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
339                                 "arm,armv7-timer");
340     }
341     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
342     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
343                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
344                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
345                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
346                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
347 }
348 
349 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
350 {
351     int cpu;
352     int addr_cells = 1;
353     const MachineState *ms = MACHINE(vms);
354     int smp_cpus = ms->smp.cpus;
355 
356     /*
357      * From Documentation/devicetree/bindings/arm/cpus.txt
358      *  On ARM v8 64-bit systems value should be set to 2,
359      *  that corresponds to the MPIDR_EL1 register size.
360      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
361      *  in the system, #address-cells can be set to 1, since
362      *  MPIDR_EL1[63:32] bits are not used for CPUs
363      *  identification.
364      *
365      *  Here we actually don't know whether our system is 32- or 64-bit one.
366      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
367      *  at least one of them has Aff3 populated, we set #address-cells to 2.
368      */
369     for (cpu = 0; cpu < smp_cpus; cpu++) {
370         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
371 
372         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
373             addr_cells = 2;
374             break;
375         }
376     }
377 
378     qemu_fdt_add_subnode(vms->fdt, "/cpus");
379     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
380     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
381 
382     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
383         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
384         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
385         CPUState *cs = CPU(armcpu);
386 
387         qemu_fdt_add_subnode(vms->fdt, nodename);
388         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
389         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
390                                     armcpu->dtb_compatible);
391 
392         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
393             qemu_fdt_setprop_string(vms->fdt, nodename,
394                                         "enable-method", "psci");
395         }
396 
397         if (addr_cells == 2) {
398             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
399                                  armcpu->mp_affinity);
400         } else {
401             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
402                                   armcpu->mp_affinity);
403         }
404 
405         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
406             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
407                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
408         }
409 
410         g_free(nodename);
411     }
412 }
413 
414 static void fdt_add_its_gic_node(VirtMachineState *vms)
415 {
416     char *nodename;
417 
418     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
419     nodename = g_strdup_printf("/intc/its@%" PRIx64,
420                                vms->memmap[VIRT_GIC_ITS].base);
421     qemu_fdt_add_subnode(vms->fdt, nodename);
422     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
423                             "arm,gic-v3-its");
424     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
425     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
426                                  2, vms->memmap[VIRT_GIC_ITS].base,
427                                  2, vms->memmap[VIRT_GIC_ITS].size);
428     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
429     g_free(nodename);
430 }
431 
432 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
433 {
434     char *nodename;
435 
436     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
437                                vms->memmap[VIRT_GIC_V2M].base);
438     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
439     qemu_fdt_add_subnode(vms->fdt, nodename);
440     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
441                             "arm,gic-v2m-frame");
442     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
443     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
444                                  2, vms->memmap[VIRT_GIC_V2M].base,
445                                  2, vms->memmap[VIRT_GIC_V2M].size);
446     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
447     g_free(nodename);
448 }
449 
450 static void fdt_add_gic_node(VirtMachineState *vms)
451 {
452     char *nodename;
453 
454     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
455     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
456 
457     nodename = g_strdup_printf("/intc@%" PRIx64,
458                                vms->memmap[VIRT_GIC_DIST].base);
459     qemu_fdt_add_subnode(vms->fdt, nodename);
460     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
461     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
462     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
463     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
464     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
465     if (vms->gic_version == VIRT_GIC_VERSION_3) {
466         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
467 
468         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
469                                 "arm,gic-v3");
470 
471         qemu_fdt_setprop_cell(vms->fdt, nodename,
472                               "#redistributor-regions", nb_redist_regions);
473 
474         if (nb_redist_regions == 1) {
475             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
476                                          2, vms->memmap[VIRT_GIC_DIST].base,
477                                          2, vms->memmap[VIRT_GIC_DIST].size,
478                                          2, vms->memmap[VIRT_GIC_REDIST].base,
479                                          2, vms->memmap[VIRT_GIC_REDIST].size);
480         } else {
481             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
482                                  2, vms->memmap[VIRT_GIC_DIST].base,
483                                  2, vms->memmap[VIRT_GIC_DIST].size,
484                                  2, vms->memmap[VIRT_GIC_REDIST].base,
485                                  2, vms->memmap[VIRT_GIC_REDIST].size,
486                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
487                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
488         }
489 
490         if (vms->virt) {
491             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
492                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
493                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
494         }
495     } else {
496         /* 'cortex-a15-gic' means 'GIC v2' */
497         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
498                                 "arm,cortex-a15-gic");
499         if (!vms->virt) {
500             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
501                                          2, vms->memmap[VIRT_GIC_DIST].base,
502                                          2, vms->memmap[VIRT_GIC_DIST].size,
503                                          2, vms->memmap[VIRT_GIC_CPU].base,
504                                          2, vms->memmap[VIRT_GIC_CPU].size);
505         } else {
506             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
507                                          2, vms->memmap[VIRT_GIC_DIST].base,
508                                          2, vms->memmap[VIRT_GIC_DIST].size,
509                                          2, vms->memmap[VIRT_GIC_CPU].base,
510                                          2, vms->memmap[VIRT_GIC_CPU].size,
511                                          2, vms->memmap[VIRT_GIC_HYP].base,
512                                          2, vms->memmap[VIRT_GIC_HYP].size,
513                                          2, vms->memmap[VIRT_GIC_VCPU].base,
514                                          2, vms->memmap[VIRT_GIC_VCPU].size);
515             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
516                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
517                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
518         }
519     }
520 
521     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
522     g_free(nodename);
523 }
524 
525 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
526 {
527     ARMCPU *armcpu = ARM_CPU(first_cpu);
528     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
529 
530     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
531         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
532         return;
533     }
534 
535     if (vms->gic_version == VIRT_GIC_VERSION_2) {
536         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
537                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
538                              (1 << MACHINE(vms)->smp.cpus) - 1);
539     }
540 
541     qemu_fdt_add_subnode(vms->fdt, "/pmu");
542     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
543         const char compat[] = "arm,armv8-pmuv3";
544         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
545                          compat, sizeof(compat));
546         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
547                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
548     }
549 }
550 
551 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
552 {
553     DeviceState *dev;
554     MachineState *ms = MACHINE(vms);
555     int irq = vms->irqmap[VIRT_ACPI_GED];
556     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
557 
558     if (ms->ram_slots) {
559         event |= ACPI_GED_MEM_HOTPLUG_EVT;
560     }
561 
562     if (ms->nvdimms_state->is_enabled) {
563         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
564     }
565 
566     dev = qdev_new(TYPE_ACPI_GED);
567     qdev_prop_set_uint32(dev, "ged-event", event);
568 
569     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
570     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
571     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
572 
573     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
574 
575     return dev;
576 }
577 
578 static void create_its(VirtMachineState *vms)
579 {
580     const char *itsclass = its_class_name();
581     DeviceState *dev;
582 
583     if (!itsclass) {
584         /* Do nothing if not supported */
585         return;
586     }
587 
588     dev = qdev_new(itsclass);
589 
590     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
591                              &error_abort);
592     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
593     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
594 
595     fdt_add_its_gic_node(vms);
596     vms->msi_controller = VIRT_MSI_CTRL_ITS;
597 }
598 
599 static void create_v2m(VirtMachineState *vms)
600 {
601     int i;
602     int irq = vms->irqmap[VIRT_GIC_V2M];
603     DeviceState *dev;
604 
605     dev = qdev_new("arm-gicv2m");
606     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
607     qdev_prop_set_uint32(dev, "base-spi", irq);
608     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
609     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
610 
611     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
612         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
613                            qdev_get_gpio_in(vms->gic, irq + i));
614     }
615 
616     fdt_add_v2m_gic_node(vms);
617     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
618 }
619 
620 static void create_gic(VirtMachineState *vms)
621 {
622     MachineState *ms = MACHINE(vms);
623     /* We create a standalone GIC */
624     SysBusDevice *gicbusdev;
625     const char *gictype;
626     int type = vms->gic_version, i;
627     unsigned int smp_cpus = ms->smp.cpus;
628     uint32_t nb_redist_regions = 0;
629 
630     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
631 
632     vms->gic = qdev_new(gictype);
633     qdev_prop_set_uint32(vms->gic, "revision", type);
634     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
635     /* Note that the num-irq property counts both internal and external
636      * interrupts; there are always 32 of the former (mandated by GIC spec).
637      */
638     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
639     if (!kvm_irqchip_in_kernel()) {
640         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
641     }
642 
643     if (type == 3) {
644         uint32_t redist0_capacity =
645                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
646         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
647 
648         nb_redist_regions = virt_gicv3_redist_region_count(vms);
649 
650         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
651                              nb_redist_regions);
652         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
653 
654         if (nb_redist_regions == 2) {
655             uint32_t redist1_capacity =
656                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
657 
658             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
659                 MIN(smp_cpus - redist0_count, redist1_capacity));
660         }
661     } else {
662         if (!kvm_irqchip_in_kernel()) {
663             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
664                               vms->virt);
665         }
666     }
667     gicbusdev = SYS_BUS_DEVICE(vms->gic);
668     sysbus_realize_and_unref(gicbusdev, &error_fatal);
669     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
670     if (type == 3) {
671         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
672         if (nb_redist_regions == 2) {
673             sysbus_mmio_map(gicbusdev, 2,
674                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
675         }
676     } else {
677         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
678         if (vms->virt) {
679             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
680             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
681         }
682     }
683 
684     /* Wire the outputs from each CPU's generic timer and the GICv3
685      * maintenance interrupt signal to the appropriate GIC PPI inputs,
686      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
687      */
688     for (i = 0; i < smp_cpus; i++) {
689         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
690         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
691         int irq;
692         /* Mapping from the output timer irq lines from the CPU to the
693          * GIC PPI inputs we use for the virt board.
694          */
695         const int timer_irq[] = {
696             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
697             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
698             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
699             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
700         };
701 
702         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
703             qdev_connect_gpio_out(cpudev, irq,
704                                   qdev_get_gpio_in(vms->gic,
705                                                    ppibase + timer_irq[irq]));
706         }
707 
708         if (type == 3) {
709             qemu_irq irq = qdev_get_gpio_in(vms->gic,
710                                             ppibase + ARCH_GIC_MAINT_IRQ);
711             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
712                                         0, irq);
713         } else if (vms->virt) {
714             qemu_irq irq = qdev_get_gpio_in(vms->gic,
715                                             ppibase + ARCH_GIC_MAINT_IRQ);
716             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
717         }
718 
719         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
720                                     qdev_get_gpio_in(vms->gic, ppibase
721                                                      + VIRTUAL_PMU_IRQ));
722 
723         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
724         sysbus_connect_irq(gicbusdev, i + smp_cpus,
725                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
726         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
727                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
728         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
729                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
730     }
731 
732     fdt_add_gic_node(vms);
733 
734     if (type == 3 && vms->its) {
735         create_its(vms);
736     } else if (type == 2) {
737         create_v2m(vms);
738     }
739 }
740 
741 static void create_uart(const VirtMachineState *vms, int uart,
742                         MemoryRegion *mem, Chardev *chr)
743 {
744     char *nodename;
745     hwaddr base = vms->memmap[uart].base;
746     hwaddr size = vms->memmap[uart].size;
747     int irq = vms->irqmap[uart];
748     const char compat[] = "arm,pl011\0arm,primecell";
749     const char clocknames[] = "uartclk\0apb_pclk";
750     DeviceState *dev = qdev_new(TYPE_PL011);
751     SysBusDevice *s = SYS_BUS_DEVICE(dev);
752 
753     qdev_prop_set_chr(dev, "chardev", chr);
754     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
755     memory_region_add_subregion(mem, base,
756                                 sysbus_mmio_get_region(s, 0));
757     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
758 
759     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
760     qemu_fdt_add_subnode(vms->fdt, nodename);
761     /* Note that we can't use setprop_string because of the embedded NUL */
762     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
763                          compat, sizeof(compat));
764     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
765                                      2, base, 2, size);
766     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
767                                GIC_FDT_IRQ_TYPE_SPI, irq,
768                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
769     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
770                                vms->clock_phandle, vms->clock_phandle);
771     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
772                          clocknames, sizeof(clocknames));
773 
774     if (uart == VIRT_UART) {
775         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
776     } else {
777         /* Mark as not usable by the normal world */
778         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
779         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
780 
781         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
782                                 nodename);
783     }
784 
785     g_free(nodename);
786 }
787 
788 static void create_rtc(const VirtMachineState *vms)
789 {
790     char *nodename;
791     hwaddr base = vms->memmap[VIRT_RTC].base;
792     hwaddr size = vms->memmap[VIRT_RTC].size;
793     int irq = vms->irqmap[VIRT_RTC];
794     const char compat[] = "arm,pl031\0arm,primecell";
795 
796     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
797 
798     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
799     qemu_fdt_add_subnode(vms->fdt, nodename);
800     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
801     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
802                                  2, base, 2, size);
803     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
804                            GIC_FDT_IRQ_TYPE_SPI, irq,
805                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
806     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
807     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
808     g_free(nodename);
809 }
810 
811 static DeviceState *gpio_key_dev;
812 static void virt_powerdown_req(Notifier *n, void *opaque)
813 {
814     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
815 
816     if (s->acpi_dev) {
817         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
818     } else {
819         /* use gpio Pin 3 for power button event */
820         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
821     }
822 }
823 
824 static void create_gpio_keys(const VirtMachineState *vms,
825                              DeviceState *pl061_dev,
826                              uint32_t phandle)
827 {
828     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
829                                         qdev_get_gpio_in(pl061_dev, 3));
830 
831     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
832     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
833     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
834     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
835 
836     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
837     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
838                             "label", "GPIO Key Poweroff");
839     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
840                           KEY_POWER);
841     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
842                            "gpios", phandle, 3, 0);
843 }
844 
845 #define SECURE_GPIO_POWEROFF 0
846 #define SECURE_GPIO_RESET    1
847 
848 static void create_secure_gpio_pwr(const VirtMachineState *vms,
849                                    DeviceState *pl061_dev,
850                                    uint32_t phandle)
851 {
852     DeviceState *gpio_pwr_dev;
853 
854     /* gpio-pwr */
855     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
856 
857     /* connect secure pl061 to gpio-pwr */
858     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
859                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
860     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
861                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
862 
863     qemu_fdt_add_subnode(vms->fdt, "/gpio-poweroff");
864     qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "compatible",
865                             "gpio-poweroff");
866     qemu_fdt_setprop_cells(vms->fdt, "/gpio-poweroff",
867                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
868     qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "status", "disabled");
869     qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "secure-status",
870                             "okay");
871 
872     qemu_fdt_add_subnode(vms->fdt, "/gpio-restart");
873     qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "compatible",
874                             "gpio-restart");
875     qemu_fdt_setprop_cells(vms->fdt, "/gpio-restart",
876                            "gpios", phandle, SECURE_GPIO_RESET, 0);
877     qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "status", "disabled");
878     qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "secure-status",
879                             "okay");
880 }
881 
882 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
883                                 MemoryRegion *mem)
884 {
885     char *nodename;
886     DeviceState *pl061_dev;
887     hwaddr base = vms->memmap[gpio].base;
888     hwaddr size = vms->memmap[gpio].size;
889     int irq = vms->irqmap[gpio];
890     const char compat[] = "arm,pl061\0arm,primecell";
891     SysBusDevice *s;
892 
893     pl061_dev = qdev_new("pl061");
894     s = SYS_BUS_DEVICE(pl061_dev);
895     sysbus_realize_and_unref(s, &error_fatal);
896     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
897     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
898 
899     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
900     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
901     qemu_fdt_add_subnode(vms->fdt, nodename);
902     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
903                                  2, base, 2, size);
904     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
905     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
906     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
907     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
908                            GIC_FDT_IRQ_TYPE_SPI, irq,
909                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
910     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
911     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
912     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
913 
914     if (gpio != VIRT_GPIO) {
915         /* Mark as not usable by the normal world */
916         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
917         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
918     }
919     g_free(nodename);
920 
921     /* Child gpio devices */
922     if (gpio == VIRT_GPIO) {
923         create_gpio_keys(vms, pl061_dev, phandle);
924     } else {
925         create_secure_gpio_pwr(vms, pl061_dev, phandle);
926     }
927 }
928 
929 static void create_virtio_devices(const VirtMachineState *vms)
930 {
931     int i;
932     hwaddr size = vms->memmap[VIRT_MMIO].size;
933 
934     /* We create the transports in forwards order. Since qbus_realize()
935      * prepends (not appends) new child buses, the incrementing loop below will
936      * create a list of virtio-mmio buses with decreasing base addresses.
937      *
938      * When a -device option is processed from the command line,
939      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
940      * order. The upshot is that -device options in increasing command line
941      * order are mapped to virtio-mmio buses with decreasing base addresses.
942      *
943      * When this code was originally written, that arrangement ensured that the
944      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
945      * the first -device on the command line. (The end-to-end order is a
946      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
947      * guest kernel's name-to-address assignment strategy.)
948      *
949      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
950      * the message, if not necessarily the code, of commit 70161ff336.
951      * Therefore the loop now establishes the inverse of the original intent.
952      *
953      * Unfortunately, we can't counteract the kernel change by reversing the
954      * loop; it would break existing command lines.
955      *
956      * In any case, the kernel makes no guarantee about the stability of
957      * enumeration order of virtio devices (as demonstrated by it changing
958      * between kernel versions). For reliable and stable identification
959      * of disks users must use UUIDs or similar mechanisms.
960      */
961     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
962         int irq = vms->irqmap[VIRT_MMIO] + i;
963         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
964 
965         sysbus_create_simple("virtio-mmio", base,
966                              qdev_get_gpio_in(vms->gic, irq));
967     }
968 
969     /* We add dtb nodes in reverse order so that they appear in the finished
970      * device tree lowest address first.
971      *
972      * Note that this mapping is independent of the loop above. The previous
973      * loop influences virtio device to virtio transport assignment, whereas
974      * this loop controls how virtio transports are laid out in the dtb.
975      */
976     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
977         char *nodename;
978         int irq = vms->irqmap[VIRT_MMIO] + i;
979         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
980 
981         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
982         qemu_fdt_add_subnode(vms->fdt, nodename);
983         qemu_fdt_setprop_string(vms->fdt, nodename,
984                                 "compatible", "virtio,mmio");
985         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
986                                      2, base, 2, size);
987         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
988                                GIC_FDT_IRQ_TYPE_SPI, irq,
989                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
990         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
991         g_free(nodename);
992     }
993 }
994 
995 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
996 
997 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
998                                         const char *name,
999                                         const char *alias_prop_name)
1000 {
1001     /*
1002      * Create a single flash device.  We use the same parameters as
1003      * the flash devices on the Versatile Express board.
1004      */
1005     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1006 
1007     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1008     qdev_prop_set_uint8(dev, "width", 4);
1009     qdev_prop_set_uint8(dev, "device-width", 2);
1010     qdev_prop_set_bit(dev, "big-endian", false);
1011     qdev_prop_set_uint16(dev, "id0", 0x89);
1012     qdev_prop_set_uint16(dev, "id1", 0x18);
1013     qdev_prop_set_uint16(dev, "id2", 0x00);
1014     qdev_prop_set_uint16(dev, "id3", 0x00);
1015     qdev_prop_set_string(dev, "name", name);
1016     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1017     object_property_add_alias(OBJECT(vms), alias_prop_name,
1018                               OBJECT(dev), "drive");
1019     return PFLASH_CFI01(dev);
1020 }
1021 
1022 static void virt_flash_create(VirtMachineState *vms)
1023 {
1024     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1025     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1026 }
1027 
1028 static void virt_flash_map1(PFlashCFI01 *flash,
1029                             hwaddr base, hwaddr size,
1030                             MemoryRegion *sysmem)
1031 {
1032     DeviceState *dev = DEVICE(flash);
1033 
1034     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1035     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1036     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1037     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1038 
1039     memory_region_add_subregion(sysmem, base,
1040                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1041                                                        0));
1042 }
1043 
1044 static void virt_flash_map(VirtMachineState *vms,
1045                            MemoryRegion *sysmem,
1046                            MemoryRegion *secure_sysmem)
1047 {
1048     /*
1049      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1050      * sysmem is the system memory space. secure_sysmem is the secure view
1051      * of the system, and the first flash device should be made visible only
1052      * there. The second flash device is visible to both secure and nonsecure.
1053      * If sysmem == secure_sysmem this means there is no separate Secure
1054      * address space and both flash devices are generally visible.
1055      */
1056     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1057     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1058 
1059     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1060                     secure_sysmem);
1061     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1062                     sysmem);
1063 }
1064 
1065 static void virt_flash_fdt(VirtMachineState *vms,
1066                            MemoryRegion *sysmem,
1067                            MemoryRegion *secure_sysmem)
1068 {
1069     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1070     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1071     char *nodename;
1072 
1073     if (sysmem == secure_sysmem) {
1074         /* Report both flash devices as a single node in the DT */
1075         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1076         qemu_fdt_add_subnode(vms->fdt, nodename);
1077         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1078         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1079                                      2, flashbase, 2, flashsize,
1080                                      2, flashbase + flashsize, 2, flashsize);
1081         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1082         g_free(nodename);
1083     } else {
1084         /*
1085          * Report the devices as separate nodes so we can mark one as
1086          * only visible to the secure world.
1087          */
1088         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1089         qemu_fdt_add_subnode(vms->fdt, nodename);
1090         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1091         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1092                                      2, flashbase, 2, flashsize);
1093         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1094         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1095         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1096         g_free(nodename);
1097 
1098         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1099         qemu_fdt_add_subnode(vms->fdt, nodename);
1100         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1101         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1102                                      2, flashbase + flashsize, 2, flashsize);
1103         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1104         g_free(nodename);
1105     }
1106 }
1107 
1108 static bool virt_firmware_init(VirtMachineState *vms,
1109                                MemoryRegion *sysmem,
1110                                MemoryRegion *secure_sysmem)
1111 {
1112     int i;
1113     const char *bios_name;
1114     BlockBackend *pflash_blk0;
1115 
1116     /* Map legacy -drive if=pflash to machine properties */
1117     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1118         pflash_cfi01_legacy_drive(vms->flash[i],
1119                                   drive_get(IF_PFLASH, 0, i));
1120     }
1121 
1122     virt_flash_map(vms, sysmem, secure_sysmem);
1123 
1124     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1125 
1126     bios_name = MACHINE(vms)->firmware;
1127     if (bios_name) {
1128         char *fname;
1129         MemoryRegion *mr;
1130         int image_size;
1131 
1132         if (pflash_blk0) {
1133             error_report("The contents of the first flash device may be "
1134                          "specified with -bios or with -drive if=pflash... "
1135                          "but you cannot use both options at once");
1136             exit(1);
1137         }
1138 
1139         /* Fall back to -bios */
1140 
1141         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1142         if (!fname) {
1143             error_report("Could not find ROM image '%s'", bios_name);
1144             exit(1);
1145         }
1146         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1147         image_size = load_image_mr(fname, mr);
1148         g_free(fname);
1149         if (image_size < 0) {
1150             error_report("Could not load ROM image '%s'", bios_name);
1151             exit(1);
1152         }
1153     }
1154 
1155     return pflash_blk0 || bios_name;
1156 }
1157 
1158 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1159 {
1160     MachineState *ms = MACHINE(vms);
1161     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1162     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1163     FWCfgState *fw_cfg;
1164     char *nodename;
1165 
1166     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1167     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1168 
1169     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1170     qemu_fdt_add_subnode(vms->fdt, nodename);
1171     qemu_fdt_setprop_string(vms->fdt, nodename,
1172                             "compatible", "qemu,fw-cfg-mmio");
1173     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1174                                  2, base, 2, size);
1175     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1176     g_free(nodename);
1177     return fw_cfg;
1178 }
1179 
1180 static void create_pcie_irq_map(const VirtMachineState *vms,
1181                                 uint32_t gic_phandle,
1182                                 int first_irq, const char *nodename)
1183 {
1184     int devfn, pin;
1185     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1186     uint32_t *irq_map = full_irq_map;
1187 
1188     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1189         for (pin = 0; pin < 4; pin++) {
1190             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1191             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1192             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1193             int i;
1194 
1195             uint32_t map[] = {
1196                 devfn << 8, 0, 0,                           /* devfn */
1197                 pin + 1,                                    /* PCI pin */
1198                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1199 
1200             /* Convert map to big endian */
1201             for (i = 0; i < 10; i++) {
1202                 irq_map[i] = cpu_to_be32(map[i]);
1203             }
1204             irq_map += 10;
1205         }
1206     }
1207 
1208     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1209                      full_irq_map, sizeof(full_irq_map));
1210 
1211     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1212                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1213                            0, 0,
1214                            0x7           /* PCI irq */);
1215 }
1216 
1217 static void create_smmu(const VirtMachineState *vms,
1218                         PCIBus *bus)
1219 {
1220     char *node;
1221     const char compat[] = "arm,smmu-v3";
1222     int irq =  vms->irqmap[VIRT_SMMU];
1223     int i;
1224     hwaddr base = vms->memmap[VIRT_SMMU].base;
1225     hwaddr size = vms->memmap[VIRT_SMMU].size;
1226     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1227     DeviceState *dev;
1228 
1229     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1230         return;
1231     }
1232 
1233     dev = qdev_new("arm-smmuv3");
1234 
1235     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1236                              &error_abort);
1237     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1238     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1239     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1240         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1241                            qdev_get_gpio_in(vms->gic, irq + i));
1242     }
1243 
1244     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1245     qemu_fdt_add_subnode(vms->fdt, node);
1246     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1247     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1248 
1249     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1250             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1251             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1252             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1253             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1254 
1255     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1256                      sizeof(irq_names));
1257 
1258     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1259     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1260     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1261 
1262     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1263 
1264     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1265     g_free(node);
1266 }
1267 
1268 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1269 {
1270     const char compat[] = "virtio,pci-iommu";
1271     uint16_t bdf = vms->virtio_iommu_bdf;
1272     char *node;
1273 
1274     vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1275 
1276     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1277     qemu_fdt_add_subnode(vms->fdt, node);
1278     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1279     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1280                                  1, bdf << 8, 1, 0, 1, 0,
1281                                  1, 0, 1, 0);
1282 
1283     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1284     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1285     g_free(node);
1286 
1287     qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1288                            0x0, vms->iommu_phandle, 0x0, bdf,
1289                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1290 }
1291 
1292 static void create_pcie(VirtMachineState *vms)
1293 {
1294     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1295     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1296     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1297     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1298     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1299     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1300     hwaddr base_ecam, size_ecam;
1301     hwaddr base = base_mmio;
1302     int nr_pcie_buses;
1303     int irq = vms->irqmap[VIRT_PCIE];
1304     MemoryRegion *mmio_alias;
1305     MemoryRegion *mmio_reg;
1306     MemoryRegion *ecam_alias;
1307     MemoryRegion *ecam_reg;
1308     DeviceState *dev;
1309     char *nodename;
1310     int i, ecam_id;
1311     PCIHostState *pci;
1312 
1313     dev = qdev_new(TYPE_GPEX_HOST);
1314     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1315 
1316     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1317     base_ecam = vms->memmap[ecam_id].base;
1318     size_ecam = vms->memmap[ecam_id].size;
1319     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1320     /* Map only the first size_ecam bytes of ECAM space */
1321     ecam_alias = g_new0(MemoryRegion, 1);
1322     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1323     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1324                              ecam_reg, 0, size_ecam);
1325     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1326 
1327     /* Map the MMIO window into system address space so as to expose
1328      * the section of PCI MMIO space which starts at the same base address
1329      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1330      * the window).
1331      */
1332     mmio_alias = g_new0(MemoryRegion, 1);
1333     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1334     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1335                              mmio_reg, base_mmio, size_mmio);
1336     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1337 
1338     if (vms->highmem) {
1339         /* Map high MMIO space */
1340         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1341 
1342         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1343                                  mmio_reg, base_mmio_high, size_mmio_high);
1344         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1345                                     high_mmio_alias);
1346     }
1347 
1348     /* Map IO port space */
1349     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1350 
1351     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1352         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1353                            qdev_get_gpio_in(vms->gic, irq + i));
1354         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1355     }
1356 
1357     pci = PCI_HOST_BRIDGE(dev);
1358     vms->bus = pci->bus;
1359     if (vms->bus) {
1360         for (i = 0; i < nb_nics; i++) {
1361             NICInfo *nd = &nd_table[i];
1362 
1363             if (!nd->model) {
1364                 nd->model = g_strdup("virtio");
1365             }
1366 
1367             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1368         }
1369     }
1370 
1371     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1372     qemu_fdt_add_subnode(vms->fdt, nodename);
1373     qemu_fdt_setprop_string(vms->fdt, nodename,
1374                             "compatible", "pci-host-ecam-generic");
1375     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1376     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1377     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1378     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1379     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1380                            nr_pcie_buses - 1);
1381     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1382 
1383     if (vms->msi_phandle) {
1384         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1385                                vms->msi_phandle);
1386     }
1387 
1388     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1389                                  2, base_ecam, 2, size_ecam);
1390 
1391     if (vms->highmem) {
1392         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1393                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1394                                      2, base_pio, 2, size_pio,
1395                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1396                                      2, base_mmio, 2, size_mmio,
1397                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1398                                      2, base_mmio_high,
1399                                      2, base_mmio_high, 2, size_mmio_high);
1400     } else {
1401         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1402                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1403                                      2, base_pio, 2, size_pio,
1404                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1405                                      2, base_mmio, 2, size_mmio);
1406     }
1407 
1408     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1409     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1410 
1411     if (vms->iommu) {
1412         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1413 
1414         switch (vms->iommu) {
1415         case VIRT_IOMMU_SMMUV3:
1416             create_smmu(vms, vms->bus);
1417             qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1418                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1419             break;
1420         default:
1421             g_assert_not_reached();
1422         }
1423     }
1424 }
1425 
1426 static void create_platform_bus(VirtMachineState *vms)
1427 {
1428     DeviceState *dev;
1429     SysBusDevice *s;
1430     int i;
1431     MemoryRegion *sysmem = get_system_memory();
1432 
1433     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1434     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1435     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1436     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1437     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1438     vms->platform_bus_dev = dev;
1439 
1440     s = SYS_BUS_DEVICE(dev);
1441     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1442         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1443         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1444     }
1445 
1446     memory_region_add_subregion(sysmem,
1447                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1448                                 sysbus_mmio_get_region(s, 0));
1449 }
1450 
1451 static void create_tag_ram(MemoryRegion *tag_sysmem,
1452                            hwaddr base, hwaddr size,
1453                            const char *name)
1454 {
1455     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1456 
1457     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1458     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1459 }
1460 
1461 static void create_secure_ram(VirtMachineState *vms,
1462                               MemoryRegion *secure_sysmem,
1463                               MemoryRegion *secure_tag_sysmem)
1464 {
1465     MemoryRegion *secram = g_new(MemoryRegion, 1);
1466     char *nodename;
1467     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1468     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1469 
1470     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1471                            &error_fatal);
1472     memory_region_add_subregion(secure_sysmem, base, secram);
1473 
1474     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1475     qemu_fdt_add_subnode(vms->fdt, nodename);
1476     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1477     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1478     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1479     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1480 
1481     if (secure_tag_sysmem) {
1482         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1483     }
1484 
1485     g_free(nodename);
1486 }
1487 
1488 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1489 {
1490     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1491                                                  bootinfo);
1492 
1493     *fdt_size = board->fdt_size;
1494     return board->fdt;
1495 }
1496 
1497 static void virt_build_smbios(VirtMachineState *vms)
1498 {
1499     MachineClass *mc = MACHINE_GET_CLASS(vms);
1500     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1501     uint8_t *smbios_tables, *smbios_anchor;
1502     size_t smbios_tables_len, smbios_anchor_len;
1503     const char *product = "QEMU Virtual Machine";
1504 
1505     if (kvm_enabled()) {
1506         product = "KVM Virtual Machine";
1507     }
1508 
1509     smbios_set_defaults("QEMU", product,
1510                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1511                         true, SMBIOS_ENTRY_POINT_30);
1512 
1513     smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1514                       &smbios_anchor, &smbios_anchor_len);
1515 
1516     if (smbios_anchor) {
1517         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1518                         smbios_tables, smbios_tables_len);
1519         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1520                         smbios_anchor, smbios_anchor_len);
1521     }
1522 }
1523 
1524 static
1525 void virt_machine_done(Notifier *notifier, void *data)
1526 {
1527     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1528                                          machine_done);
1529     MachineState *ms = MACHINE(vms);
1530     ARMCPU *cpu = ARM_CPU(first_cpu);
1531     struct arm_boot_info *info = &vms->bootinfo;
1532     AddressSpace *as = arm_boot_address_space(cpu, info);
1533 
1534     /*
1535      * If the user provided a dtb, we assume the dynamic sysbus nodes
1536      * already are integrated there. This corresponds to a use case where
1537      * the dynamic sysbus nodes are complex and their generation is not yet
1538      * supported. In that case the user can take charge of the guest dt
1539      * while qemu takes charge of the qom stuff.
1540      */
1541     if (info->dtb_filename == NULL) {
1542         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1543                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1544                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1545                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1546     }
1547     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1548         exit(1);
1549     }
1550 
1551     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1552 
1553     virt_acpi_setup(vms);
1554     virt_build_smbios(vms);
1555 }
1556 
1557 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1558 {
1559     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1560     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1561 
1562     if (!vmc->disallow_affinity_adjustment) {
1563         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1564          * GIC's target-list limitations. 32-bit KVM hosts currently
1565          * always create clusters of 4 CPUs, but that is expected to
1566          * change when they gain support for gicv3. When KVM is enabled
1567          * it will override the changes we make here, therefore our
1568          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1569          * and to improve SGI efficiency.
1570          */
1571         if (vms->gic_version == VIRT_GIC_VERSION_3) {
1572             clustersz = GICV3_TARGETLIST_BITS;
1573         } else {
1574             clustersz = GIC_TARGETLIST_BITS;
1575         }
1576     }
1577     return arm_cpu_mp_affinity(idx, clustersz);
1578 }
1579 
1580 static void virt_set_memmap(VirtMachineState *vms)
1581 {
1582     MachineState *ms = MACHINE(vms);
1583     hwaddr base, device_memory_base, device_memory_size;
1584     int i;
1585 
1586     vms->memmap = extended_memmap;
1587 
1588     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1589         vms->memmap[i] = base_memmap[i];
1590     }
1591 
1592     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1593         error_report("unsupported number of memory slots: %"PRIu64,
1594                      ms->ram_slots);
1595         exit(EXIT_FAILURE);
1596     }
1597 
1598     /*
1599      * We compute the base of the high IO region depending on the
1600      * amount of initial and device memory. The device memory start/size
1601      * is aligned on 1GiB. We never put the high IO region below 256GiB
1602      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1603      * The device region size assumes 1GiB page max alignment per slot.
1604      */
1605     device_memory_base =
1606         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1607     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1608 
1609     /* Base address of the high IO region */
1610     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1611     if (base < device_memory_base) {
1612         error_report("maxmem/slots too huge");
1613         exit(EXIT_FAILURE);
1614     }
1615     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1616         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1617     }
1618 
1619     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1620         hwaddr size = extended_memmap[i].size;
1621 
1622         base = ROUND_UP(base, size);
1623         vms->memmap[i].base = base;
1624         vms->memmap[i].size = size;
1625         base += size;
1626     }
1627     vms->highest_gpa = base - 1;
1628     if (device_memory_size > 0) {
1629         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1630         ms->device_memory->base = device_memory_base;
1631         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1632                            "device-memory", device_memory_size);
1633     }
1634 }
1635 
1636 /*
1637  * finalize_gic_version - Determines the final gic_version
1638  * according to the gic-version property
1639  *
1640  * Default GIC type is v2
1641  */
1642 static void finalize_gic_version(VirtMachineState *vms)
1643 {
1644     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1645 
1646     if (kvm_enabled()) {
1647         int probe_bitmap;
1648 
1649         if (!kvm_irqchip_in_kernel()) {
1650             switch (vms->gic_version) {
1651             case VIRT_GIC_VERSION_HOST:
1652                 warn_report(
1653                     "gic-version=host not relevant with kernel-irqchip=off "
1654                      "as only userspace GICv2 is supported. Using v2 ...");
1655                 return;
1656             case VIRT_GIC_VERSION_MAX:
1657             case VIRT_GIC_VERSION_NOSEL:
1658                 vms->gic_version = VIRT_GIC_VERSION_2;
1659                 return;
1660             case VIRT_GIC_VERSION_2:
1661                 return;
1662             case VIRT_GIC_VERSION_3:
1663                 error_report(
1664                     "gic-version=3 is not supported with kernel-irqchip=off");
1665                 exit(1);
1666             }
1667         }
1668 
1669         probe_bitmap = kvm_arm_vgic_probe();
1670         if (!probe_bitmap) {
1671             error_report("Unable to determine GIC version supported by host");
1672             exit(1);
1673         }
1674 
1675         switch (vms->gic_version) {
1676         case VIRT_GIC_VERSION_HOST:
1677         case VIRT_GIC_VERSION_MAX:
1678             if (probe_bitmap & KVM_ARM_VGIC_V3) {
1679                 vms->gic_version = VIRT_GIC_VERSION_3;
1680             } else {
1681                 vms->gic_version = VIRT_GIC_VERSION_2;
1682             }
1683             return;
1684         case VIRT_GIC_VERSION_NOSEL:
1685             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1686                 vms->gic_version = VIRT_GIC_VERSION_2;
1687             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1688                 /*
1689                  * in case the host does not support v2 in-kernel emulation or
1690                  * the end-user requested more than 8 VCPUs we now default
1691                  * to v3. In any case defaulting to v2 would be broken.
1692                  */
1693                 vms->gic_version = VIRT_GIC_VERSION_3;
1694             } else if (max_cpus > GIC_NCPU) {
1695                 error_report("host only supports in-kernel GICv2 emulation "
1696                              "but more than 8 vcpus are requested");
1697                 exit(1);
1698             }
1699             break;
1700         case VIRT_GIC_VERSION_2:
1701         case VIRT_GIC_VERSION_3:
1702             break;
1703         }
1704 
1705         /* Check chosen version is effectively supported by the host */
1706         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1707             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1708             error_report("host does not support in-kernel GICv2 emulation");
1709             exit(1);
1710         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1711                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1712             error_report("host does not support in-kernel GICv3 emulation");
1713             exit(1);
1714         }
1715         return;
1716     }
1717 
1718     /* TCG mode */
1719     switch (vms->gic_version) {
1720     case VIRT_GIC_VERSION_NOSEL:
1721         vms->gic_version = VIRT_GIC_VERSION_2;
1722         break;
1723     case VIRT_GIC_VERSION_MAX:
1724         vms->gic_version = VIRT_GIC_VERSION_3;
1725         break;
1726     case VIRT_GIC_VERSION_HOST:
1727         error_report("gic-version=host requires KVM");
1728         exit(1);
1729     case VIRT_GIC_VERSION_2:
1730     case VIRT_GIC_VERSION_3:
1731         break;
1732     }
1733 }
1734 
1735 /*
1736  * virt_cpu_post_init() must be called after the CPUs have
1737  * been realized and the GIC has been created.
1738  */
1739 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1740 {
1741     int max_cpus = MACHINE(vms)->smp.max_cpus;
1742     bool aarch64, pmu, steal_time;
1743     CPUState *cpu;
1744 
1745     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1746     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1747     steal_time = object_property_get_bool(OBJECT(first_cpu),
1748                                           "kvm-steal-time", NULL);
1749 
1750     if (kvm_enabled()) {
1751         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1752         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1753 
1754         if (steal_time) {
1755             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1756             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1757 
1758             /* The memory region size must be a multiple of host page size. */
1759             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1760 
1761             if (pvtime_size > pvtime_reg_size) {
1762                 error_report("pvtime requires a %" HWADDR_PRId
1763                              " byte memory region for %d CPUs,"
1764                              " but only %" HWADDR_PRId " has been reserved",
1765                              pvtime_size, max_cpus, pvtime_reg_size);
1766                 exit(1);
1767             }
1768 
1769             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1770             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1771         }
1772 
1773         CPU_FOREACH(cpu) {
1774             if (pmu) {
1775                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1776                 if (kvm_irqchip_in_kernel()) {
1777                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1778                 }
1779                 kvm_arm_pmu_init(cpu);
1780             }
1781             if (steal_time) {
1782                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1783                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1784             }
1785         }
1786     } else {
1787         if (aarch64 && vms->highmem) {
1788             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1789             int pamax = arm_pamax(ARM_CPU(first_cpu));
1790 
1791             if (pamax < requested_pa_size) {
1792                 error_report("VCPU supports less PA bits (%d) than "
1793                              "requested by the memory map (%d)",
1794                              pamax, requested_pa_size);
1795                 exit(1);
1796             }
1797         }
1798     }
1799 }
1800 
1801 static void machvirt_init(MachineState *machine)
1802 {
1803     VirtMachineState *vms = VIRT_MACHINE(machine);
1804     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1805     MachineClass *mc = MACHINE_GET_CLASS(machine);
1806     const CPUArchIdList *possible_cpus;
1807     MemoryRegion *sysmem = get_system_memory();
1808     MemoryRegion *secure_sysmem = NULL;
1809     MemoryRegion *tag_sysmem = NULL;
1810     MemoryRegion *secure_tag_sysmem = NULL;
1811     int n, virt_max_cpus;
1812     bool firmware_loaded;
1813     bool aarch64 = true;
1814     bool has_ged = !vmc->no_ged;
1815     unsigned int smp_cpus = machine->smp.cpus;
1816     unsigned int max_cpus = machine->smp.max_cpus;
1817 
1818     /*
1819      * In accelerated mode, the memory map is computed earlier in kvm_type()
1820      * to create a VM with the right number of IPA bits.
1821      */
1822     if (!vms->memmap) {
1823         virt_set_memmap(vms);
1824     }
1825 
1826     /* We can probe only here because during property set
1827      * KVM is not available yet
1828      */
1829     finalize_gic_version(vms);
1830 
1831     if (!cpu_type_valid(machine->cpu_type)) {
1832         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1833         exit(1);
1834     }
1835 
1836     if (vms->secure) {
1837         if (kvm_enabled()) {
1838             error_report("mach-virt: KVM does not support Security extensions");
1839             exit(1);
1840         }
1841 
1842         /*
1843          * The Secure view of the world is the same as the NonSecure,
1844          * but with a few extra devices. Create it as a container region
1845          * containing the system memory at low priority; any secure-only
1846          * devices go in at higher priority and take precedence.
1847          */
1848         secure_sysmem = g_new(MemoryRegion, 1);
1849         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1850                            UINT64_MAX);
1851         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1852     }
1853 
1854     firmware_loaded = virt_firmware_init(vms, sysmem,
1855                                          secure_sysmem ?: sysmem);
1856 
1857     /* If we have an EL3 boot ROM then the assumption is that it will
1858      * implement PSCI itself, so disable QEMU's internal implementation
1859      * so it doesn't get in the way. Instead of starting secondary
1860      * CPUs in PSCI powerdown state we will start them all running and
1861      * let the boot ROM sort them out.
1862      * The usual case is that we do use QEMU's PSCI implementation;
1863      * if the guest has EL2 then we will use SMC as the conduit,
1864      * and otherwise we will use HVC (for backwards compatibility and
1865      * because if we're using KVM then we must use HVC).
1866      */
1867     if (vms->secure && firmware_loaded) {
1868         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1869     } else if (vms->virt) {
1870         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1871     } else {
1872         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1873     }
1874 
1875     /* The maximum number of CPUs depends on the GIC version, or on how
1876      * many redistributors we can fit into the memory map.
1877      */
1878     if (vms->gic_version == VIRT_GIC_VERSION_3) {
1879         virt_max_cpus =
1880             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1881         virt_max_cpus +=
1882             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1883     } else {
1884         virt_max_cpus = GIC_NCPU;
1885     }
1886 
1887     if (max_cpus > virt_max_cpus) {
1888         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1889                      "supported by machine 'mach-virt' (%d)",
1890                      max_cpus, virt_max_cpus);
1891         exit(1);
1892     }
1893 
1894     if (vms->virt && kvm_enabled()) {
1895         error_report("mach-virt: KVM does not support providing "
1896                      "Virtualization extensions to the guest CPU");
1897         exit(1);
1898     }
1899 
1900     if (vms->mte && kvm_enabled()) {
1901         error_report("mach-virt: KVM does not support providing "
1902                      "MTE to the guest CPU");
1903         exit(1);
1904     }
1905 
1906     create_fdt(vms);
1907 
1908     possible_cpus = mc->possible_cpu_arch_ids(machine);
1909     assert(possible_cpus->len == max_cpus);
1910     for (n = 0; n < possible_cpus->len; n++) {
1911         Object *cpuobj;
1912         CPUState *cs;
1913 
1914         if (n >= smp_cpus) {
1915             break;
1916         }
1917 
1918         cpuobj = object_new(possible_cpus->cpus[n].type);
1919         object_property_set_int(cpuobj, "mp-affinity",
1920                                 possible_cpus->cpus[n].arch_id, NULL);
1921 
1922         cs = CPU(cpuobj);
1923         cs->cpu_index = n;
1924 
1925         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1926                           &error_fatal);
1927 
1928         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1929 
1930         if (!vms->secure) {
1931             object_property_set_bool(cpuobj, "has_el3", false, NULL);
1932         }
1933 
1934         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1935             object_property_set_bool(cpuobj, "has_el2", false, NULL);
1936         }
1937 
1938         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1939             object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1940                                     NULL);
1941 
1942             /* Secondary CPUs start in PSCI powered-down state */
1943             if (n > 0) {
1944                 object_property_set_bool(cpuobj, "start-powered-off", true,
1945                                          NULL);
1946             }
1947         }
1948 
1949         if (vmc->kvm_no_adjvtime &&
1950             object_property_find(cpuobj, "kvm-no-adjvtime")) {
1951             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1952         }
1953 
1954         if (vmc->no_kvm_steal_time &&
1955             object_property_find(cpuobj, "kvm-steal-time")) {
1956             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1957         }
1958 
1959         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1960             object_property_set_bool(cpuobj, "pmu", false, NULL);
1961         }
1962 
1963         if (object_property_find(cpuobj, "reset-cbar")) {
1964             object_property_set_int(cpuobj, "reset-cbar",
1965                                     vms->memmap[VIRT_CPUPERIPHS].base,
1966                                     &error_abort);
1967         }
1968 
1969         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1970                                  &error_abort);
1971         if (vms->secure) {
1972             object_property_set_link(cpuobj, "secure-memory",
1973                                      OBJECT(secure_sysmem), &error_abort);
1974         }
1975 
1976         if (vms->mte) {
1977             /* Create the memory region only once, but link to all cpus. */
1978             if (!tag_sysmem) {
1979                 /*
1980                  * The property exists only if MemTag is supported.
1981                  * If it is, we must allocate the ram to back that up.
1982                  */
1983                 if (!object_property_find(cpuobj, "tag-memory")) {
1984                     error_report("MTE requested, but not supported "
1985                                  "by the guest CPU");
1986                     exit(1);
1987                 }
1988 
1989                 tag_sysmem = g_new(MemoryRegion, 1);
1990                 memory_region_init(tag_sysmem, OBJECT(machine),
1991                                    "tag-memory", UINT64_MAX / 32);
1992 
1993                 if (vms->secure) {
1994                     secure_tag_sysmem = g_new(MemoryRegion, 1);
1995                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
1996                                        "secure-tag-memory", UINT64_MAX / 32);
1997 
1998                     /* As with ram, secure-tag takes precedence over tag.  */
1999                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2000                                                         tag_sysmem, -1);
2001                 }
2002             }
2003 
2004             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2005                                      &error_abort);
2006             if (vms->secure) {
2007                 object_property_set_link(cpuobj, "secure-tag-memory",
2008                                          OBJECT(secure_tag_sysmem),
2009                                          &error_abort);
2010             }
2011         }
2012 
2013         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2014         object_unref(cpuobj);
2015     }
2016     fdt_add_timer_nodes(vms);
2017     fdt_add_cpu_nodes(vms);
2018 
2019     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2020                                 machine->ram);
2021     if (machine->device_memory) {
2022         memory_region_add_subregion(sysmem, machine->device_memory->base,
2023                                     &machine->device_memory->mr);
2024     }
2025 
2026     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2027 
2028     create_gic(vms);
2029 
2030     virt_cpu_post_init(vms, sysmem);
2031 
2032     fdt_add_pmu_nodes(vms);
2033 
2034     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2035 
2036     if (vms->secure) {
2037         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2038         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2039     }
2040 
2041     if (tag_sysmem) {
2042         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2043                        machine->ram_size, "mach-virt.tag");
2044     }
2045 
2046     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2047 
2048     create_rtc(vms);
2049 
2050     create_pcie(vms);
2051 
2052     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2053         vms->acpi_dev = create_acpi_ged(vms);
2054     } else {
2055         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2056     }
2057 
2058     if (vms->secure && !vmc->no_secure_gpio) {
2059         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2060     }
2061 
2062      /* connect powerdown request */
2063      vms->powerdown_notifier.notify = virt_powerdown_req;
2064      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2065 
2066     /* Create mmio transports, so the user can create virtio backends
2067      * (which will be automatically plugged in to the transports). If
2068      * no backend is created the transport will just sit harmlessly idle.
2069      */
2070     create_virtio_devices(vms);
2071 
2072     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2073     rom_set_fw(vms->fw_cfg);
2074 
2075     create_platform_bus(vms);
2076 
2077     if (machine->nvdimms_state->is_enabled) {
2078         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2079             .space_id = AML_AS_SYSTEM_MEMORY,
2080             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2081             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2082         };
2083 
2084         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2085                                arm_virt_nvdimm_acpi_dsmio,
2086                                vms->fw_cfg, OBJECT(vms));
2087     }
2088 
2089     vms->bootinfo.ram_size = machine->ram_size;
2090     vms->bootinfo.nb_cpus = smp_cpus;
2091     vms->bootinfo.board_id = -1;
2092     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2093     vms->bootinfo.get_dtb = machvirt_dtb;
2094     vms->bootinfo.skip_dtb_autoload = true;
2095     vms->bootinfo.firmware_loaded = firmware_loaded;
2096     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2097 
2098     vms->machine_done.notify = virt_machine_done;
2099     qemu_add_machine_init_done_notifier(&vms->machine_done);
2100 }
2101 
2102 static bool virt_get_secure(Object *obj, Error **errp)
2103 {
2104     VirtMachineState *vms = VIRT_MACHINE(obj);
2105 
2106     return vms->secure;
2107 }
2108 
2109 static void virt_set_secure(Object *obj, bool value, Error **errp)
2110 {
2111     VirtMachineState *vms = VIRT_MACHINE(obj);
2112 
2113     vms->secure = value;
2114 }
2115 
2116 static bool virt_get_virt(Object *obj, Error **errp)
2117 {
2118     VirtMachineState *vms = VIRT_MACHINE(obj);
2119 
2120     return vms->virt;
2121 }
2122 
2123 static void virt_set_virt(Object *obj, bool value, Error **errp)
2124 {
2125     VirtMachineState *vms = VIRT_MACHINE(obj);
2126 
2127     vms->virt = value;
2128 }
2129 
2130 static bool virt_get_highmem(Object *obj, Error **errp)
2131 {
2132     VirtMachineState *vms = VIRT_MACHINE(obj);
2133 
2134     return vms->highmem;
2135 }
2136 
2137 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2138 {
2139     VirtMachineState *vms = VIRT_MACHINE(obj);
2140 
2141     vms->highmem = value;
2142 }
2143 
2144 static bool virt_get_its(Object *obj, Error **errp)
2145 {
2146     VirtMachineState *vms = VIRT_MACHINE(obj);
2147 
2148     return vms->its;
2149 }
2150 
2151 static void virt_set_its(Object *obj, bool value, Error **errp)
2152 {
2153     VirtMachineState *vms = VIRT_MACHINE(obj);
2154 
2155     vms->its = value;
2156 }
2157 
2158 bool virt_is_acpi_enabled(VirtMachineState *vms)
2159 {
2160     if (vms->acpi == ON_OFF_AUTO_OFF) {
2161         return false;
2162     }
2163     return true;
2164 }
2165 
2166 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2167                           void *opaque, Error **errp)
2168 {
2169     VirtMachineState *vms = VIRT_MACHINE(obj);
2170     OnOffAuto acpi = vms->acpi;
2171 
2172     visit_type_OnOffAuto(v, name, &acpi, errp);
2173 }
2174 
2175 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2176                           void *opaque, Error **errp)
2177 {
2178     VirtMachineState *vms = VIRT_MACHINE(obj);
2179 
2180     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2181 }
2182 
2183 static bool virt_get_ras(Object *obj, Error **errp)
2184 {
2185     VirtMachineState *vms = VIRT_MACHINE(obj);
2186 
2187     return vms->ras;
2188 }
2189 
2190 static void virt_set_ras(Object *obj, bool value, Error **errp)
2191 {
2192     VirtMachineState *vms = VIRT_MACHINE(obj);
2193 
2194     vms->ras = value;
2195 }
2196 
2197 static bool virt_get_mte(Object *obj, Error **errp)
2198 {
2199     VirtMachineState *vms = VIRT_MACHINE(obj);
2200 
2201     return vms->mte;
2202 }
2203 
2204 static void virt_set_mte(Object *obj, bool value, Error **errp)
2205 {
2206     VirtMachineState *vms = VIRT_MACHINE(obj);
2207 
2208     vms->mte = value;
2209 }
2210 
2211 static char *virt_get_gic_version(Object *obj, Error **errp)
2212 {
2213     VirtMachineState *vms = VIRT_MACHINE(obj);
2214     const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2215 
2216     return g_strdup(val);
2217 }
2218 
2219 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2220 {
2221     VirtMachineState *vms = VIRT_MACHINE(obj);
2222 
2223     if (!strcmp(value, "3")) {
2224         vms->gic_version = VIRT_GIC_VERSION_3;
2225     } else if (!strcmp(value, "2")) {
2226         vms->gic_version = VIRT_GIC_VERSION_2;
2227     } else if (!strcmp(value, "host")) {
2228         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2229     } else if (!strcmp(value, "max")) {
2230         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2231     } else {
2232         error_setg(errp, "Invalid gic-version value");
2233         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2234     }
2235 }
2236 
2237 static char *virt_get_iommu(Object *obj, Error **errp)
2238 {
2239     VirtMachineState *vms = VIRT_MACHINE(obj);
2240 
2241     switch (vms->iommu) {
2242     case VIRT_IOMMU_NONE:
2243         return g_strdup("none");
2244     case VIRT_IOMMU_SMMUV3:
2245         return g_strdup("smmuv3");
2246     default:
2247         g_assert_not_reached();
2248     }
2249 }
2250 
2251 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2252 {
2253     VirtMachineState *vms = VIRT_MACHINE(obj);
2254 
2255     if (!strcmp(value, "smmuv3")) {
2256         vms->iommu = VIRT_IOMMU_SMMUV3;
2257     } else if (!strcmp(value, "none")) {
2258         vms->iommu = VIRT_IOMMU_NONE;
2259     } else {
2260         error_setg(errp, "Invalid iommu value");
2261         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2262     }
2263 }
2264 
2265 static CpuInstanceProperties
2266 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2267 {
2268     MachineClass *mc = MACHINE_GET_CLASS(ms);
2269     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2270 
2271     assert(cpu_index < possible_cpus->len);
2272     return possible_cpus->cpus[cpu_index].props;
2273 }
2274 
2275 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2276 {
2277     return idx % ms->numa_state->num_nodes;
2278 }
2279 
2280 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2281 {
2282     int n;
2283     unsigned int max_cpus = ms->smp.max_cpus;
2284     VirtMachineState *vms = VIRT_MACHINE(ms);
2285 
2286     if (ms->possible_cpus) {
2287         assert(ms->possible_cpus->len == max_cpus);
2288         return ms->possible_cpus;
2289     }
2290 
2291     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2292                                   sizeof(CPUArchId) * max_cpus);
2293     ms->possible_cpus->len = max_cpus;
2294     for (n = 0; n < ms->possible_cpus->len; n++) {
2295         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2296         ms->possible_cpus->cpus[n].arch_id =
2297             virt_cpu_mp_affinity(vms, n);
2298         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2299         ms->possible_cpus->cpus[n].props.thread_id = n;
2300     }
2301     return ms->possible_cpus;
2302 }
2303 
2304 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2305                                  Error **errp)
2306 {
2307     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2308     const MachineState *ms = MACHINE(hotplug_dev);
2309     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2310 
2311     if (!vms->acpi_dev) {
2312         error_setg(errp,
2313                    "memory hotplug is not enabled: missing acpi-ged device");
2314         return;
2315     }
2316 
2317     if (vms->mte) {
2318         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2319         return;
2320     }
2321 
2322     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2323         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2324         return;
2325     }
2326 
2327     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2328 }
2329 
2330 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2331                              DeviceState *dev, Error **errp)
2332 {
2333     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2334     MachineState *ms = MACHINE(hotplug_dev);
2335     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2336 
2337     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2338 
2339     if (is_nvdimm) {
2340         nvdimm_plug(ms->nvdimms_state);
2341     }
2342 
2343     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2344                          dev, &error_abort);
2345 }
2346 
2347 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2348                                             DeviceState *dev, Error **errp)
2349 {
2350     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2351 
2352     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2353         virt_memory_pre_plug(hotplug_dev, dev, errp);
2354     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2355         hwaddr db_start = 0, db_end = 0;
2356         char *resv_prop_str;
2357 
2358         switch (vms->msi_controller) {
2359         case VIRT_MSI_CTRL_NONE:
2360             return;
2361         case VIRT_MSI_CTRL_ITS:
2362             /* GITS_TRANSLATER page */
2363             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2364             db_end = base_memmap[VIRT_GIC_ITS].base +
2365                      base_memmap[VIRT_GIC_ITS].size - 1;
2366             break;
2367         case VIRT_MSI_CTRL_GICV2M:
2368             /* MSI_SETSPI_NS page */
2369             db_start = base_memmap[VIRT_GIC_V2M].base;
2370             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2371             break;
2372         }
2373         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2374                                         db_start, db_end,
2375                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2376 
2377         qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2378         qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2379         g_free(resv_prop_str);
2380     }
2381 }
2382 
2383 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2384                                         DeviceState *dev, Error **errp)
2385 {
2386     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2387 
2388     if (vms->platform_bus_dev) {
2389         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2390             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2391                                      SYS_BUS_DEVICE(dev));
2392         }
2393     }
2394     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2395         virt_memory_plug(hotplug_dev, dev, errp);
2396     }
2397     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2398         PCIDevice *pdev = PCI_DEVICE(dev);
2399 
2400         vms->iommu = VIRT_IOMMU_VIRTIO;
2401         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2402         create_virtio_iommu_dt_bindings(vms);
2403     }
2404 }
2405 
2406 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2407                                      DeviceState *dev, Error **errp)
2408 {
2409     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2410     Error *local_err = NULL;
2411 
2412     if (!vms->acpi_dev) {
2413         error_setg(&local_err,
2414                    "memory hotplug is not enabled: missing acpi-ged device");
2415         goto out;
2416     }
2417 
2418     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2419         error_setg(&local_err,
2420                    "nvdimm device hot unplug is not supported yet.");
2421         goto out;
2422     }
2423 
2424     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2425                                    &local_err);
2426 out:
2427     error_propagate(errp, local_err);
2428 }
2429 
2430 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2431                              DeviceState *dev, Error **errp)
2432 {
2433     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2434     Error *local_err = NULL;
2435 
2436     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2437     if (local_err) {
2438         goto out;
2439     }
2440 
2441     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2442     qdev_unrealize(dev);
2443 
2444 out:
2445     error_propagate(errp, local_err);
2446 }
2447 
2448 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2449                                           DeviceState *dev, Error **errp)
2450 {
2451     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2452         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2453     } else {
2454         error_setg(errp, "device unplug request for unsupported device"
2455                    " type: %s", object_get_typename(OBJECT(dev)));
2456     }
2457 }
2458 
2459 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2460                                           DeviceState *dev, Error **errp)
2461 {
2462     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2463         virt_dimm_unplug(hotplug_dev, dev, errp);
2464     } else {
2465         error_setg(errp, "virt: device unplug for unsupported device"
2466                    " type: %s", object_get_typename(OBJECT(dev)));
2467     }
2468 }
2469 
2470 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2471                                                         DeviceState *dev)
2472 {
2473     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2474        (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2475         return HOTPLUG_HANDLER(machine);
2476     }
2477     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2478         VirtMachineState *vms = VIRT_MACHINE(machine);
2479 
2480         if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2481             return HOTPLUG_HANDLER(machine);
2482         }
2483     }
2484     return NULL;
2485 }
2486 
2487 /*
2488  * for arm64 kvm_type [7-0] encodes the requested number of bits
2489  * in the IPA address space
2490  */
2491 static int virt_kvm_type(MachineState *ms, const char *type_str)
2492 {
2493     VirtMachineState *vms = VIRT_MACHINE(ms);
2494     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2495     int requested_pa_size;
2496 
2497     /* we freeze the memory map to compute the highest gpa */
2498     virt_set_memmap(vms);
2499 
2500     requested_pa_size = 64 - clz64(vms->highest_gpa);
2501 
2502     if (requested_pa_size > max_vm_pa_size) {
2503         error_report("-m and ,maxmem option values "
2504                      "require an IPA range (%d bits) larger than "
2505                      "the one supported by the host (%d bits)",
2506                      requested_pa_size, max_vm_pa_size);
2507        exit(1);
2508     }
2509     /*
2510      * By default we return 0 which corresponds to an implicit legacy
2511      * 40b IPA setting. Otherwise we return the actual requested PA
2512      * logsize
2513      */
2514     return requested_pa_size > 40 ? requested_pa_size : 0;
2515 }
2516 
2517 static void virt_machine_class_init(ObjectClass *oc, void *data)
2518 {
2519     MachineClass *mc = MACHINE_CLASS(oc);
2520     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2521 
2522     mc->init = machvirt_init;
2523     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2524      * The value may be reduced later when we have more information about the
2525      * configuration of the particular instance.
2526      */
2527     mc->max_cpus = 512;
2528     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2529     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2530     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2531     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2532     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2533     mc->block_default_type = IF_VIRTIO;
2534     mc->no_cdrom = 1;
2535     mc->pci_allow_0_address = true;
2536     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2537     mc->minimum_page_bits = 12;
2538     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2539     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2540     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2541     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2542     mc->kvm_type = virt_kvm_type;
2543     assert(!mc->get_hotplug_handler);
2544     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2545     hc->pre_plug = virt_machine_device_pre_plug_cb;
2546     hc->plug = virt_machine_device_plug_cb;
2547     hc->unplug_request = virt_machine_device_unplug_request_cb;
2548     hc->unplug = virt_machine_device_unplug_cb;
2549     mc->nvdimm_supported = true;
2550     mc->auto_enable_numa_with_memhp = true;
2551     mc->auto_enable_numa_with_memdev = true;
2552     mc->default_ram_id = "mach-virt.ram";
2553 
2554     object_class_property_add(oc, "acpi", "OnOffAuto",
2555         virt_get_acpi, virt_set_acpi,
2556         NULL, NULL);
2557     object_class_property_set_description(oc, "acpi",
2558         "Enable ACPI");
2559     object_class_property_add_bool(oc, "secure", virt_get_secure,
2560                                    virt_set_secure);
2561     object_class_property_set_description(oc, "secure",
2562                                                 "Set on/off to enable/disable the ARM "
2563                                                 "Security Extensions (TrustZone)");
2564 
2565     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2566                                    virt_set_virt);
2567     object_class_property_set_description(oc, "virtualization",
2568                                           "Set on/off to enable/disable emulating a "
2569                                           "guest CPU which implements the ARM "
2570                                           "Virtualization Extensions");
2571 
2572     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2573                                    virt_set_highmem);
2574     object_class_property_set_description(oc, "highmem",
2575                                           "Set on/off to enable/disable using "
2576                                           "physical address space above 32 bits");
2577 
2578     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2579                                   virt_set_gic_version);
2580     object_class_property_set_description(oc, "gic-version",
2581                                           "Set GIC version. "
2582                                           "Valid values are 2, 3, host and max");
2583 
2584     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2585     object_class_property_set_description(oc, "iommu",
2586                                           "Set the IOMMU type. "
2587                                           "Valid values are none and smmuv3");
2588 
2589     object_class_property_add_bool(oc, "ras", virt_get_ras,
2590                                    virt_set_ras);
2591     object_class_property_set_description(oc, "ras",
2592                                           "Set on/off to enable/disable reporting host memory errors "
2593                                           "to a KVM guest using ACPI and guest external abort exceptions");
2594 
2595     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2596     object_class_property_set_description(oc, "mte",
2597                                           "Set on/off to enable/disable emulating a "
2598                                           "guest CPU which implements the ARM "
2599                                           "Memory Tagging Extension");
2600 
2601     object_class_property_add_bool(oc, "its", virt_get_its,
2602                                    virt_set_its);
2603     object_class_property_set_description(oc, "its",
2604                                           "Set on/off to enable/disable "
2605                                           "ITS instantiation");
2606 
2607 }
2608 
2609 static void virt_instance_init(Object *obj)
2610 {
2611     VirtMachineState *vms = VIRT_MACHINE(obj);
2612     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2613 
2614     /* EL3 is disabled by default on virt: this makes us consistent
2615      * between KVM and TCG for this board, and it also allows us to
2616      * boot UEFI blobs which assume no TrustZone support.
2617      */
2618     vms->secure = false;
2619 
2620     /* EL2 is also disabled by default, for similar reasons */
2621     vms->virt = false;
2622 
2623     /* High memory is enabled by default */
2624     vms->highmem = true;
2625     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2626 
2627     vms->highmem_ecam = !vmc->no_highmem_ecam;
2628 
2629     if (vmc->no_its) {
2630         vms->its = false;
2631     } else {
2632         /* Default allows ITS instantiation */
2633         vms->its = true;
2634     }
2635 
2636     /* Default disallows iommu instantiation */
2637     vms->iommu = VIRT_IOMMU_NONE;
2638 
2639     /* Default disallows RAS instantiation */
2640     vms->ras = false;
2641 
2642     /* MTE is disabled by default.  */
2643     vms->mte = false;
2644 
2645     vms->irqmap = a15irqmap;
2646 
2647     virt_flash_create(vms);
2648 }
2649 
2650 static const TypeInfo virt_machine_info = {
2651     .name          = TYPE_VIRT_MACHINE,
2652     .parent        = TYPE_MACHINE,
2653     .abstract      = true,
2654     .instance_size = sizeof(VirtMachineState),
2655     .class_size    = sizeof(VirtMachineClass),
2656     .class_init    = virt_machine_class_init,
2657     .instance_init = virt_instance_init,
2658     .interfaces = (InterfaceInfo[]) {
2659          { TYPE_HOTPLUG_HANDLER },
2660          { }
2661     },
2662 };
2663 
2664 static void machvirt_machine_init(void)
2665 {
2666     type_register_static(&virt_machine_info);
2667 }
2668 type_init(machvirt_machine_init);
2669 
2670 static void virt_machine_6_0_options(MachineClass *mc)
2671 {
2672 }
2673 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
2674 
2675 static void virt_machine_5_2_options(MachineClass *mc)
2676 {
2677     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2678 
2679     virt_machine_6_0_options(mc);
2680     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2681     vmc->no_secure_gpio = true;
2682 }
2683 DEFINE_VIRT_MACHINE(5, 2)
2684 
2685 static void virt_machine_5_1_options(MachineClass *mc)
2686 {
2687     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2688 
2689     virt_machine_5_2_options(mc);
2690     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2691     vmc->no_kvm_steal_time = true;
2692 }
2693 DEFINE_VIRT_MACHINE(5, 1)
2694 
2695 static void virt_machine_5_0_options(MachineClass *mc)
2696 {
2697     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2698 
2699     virt_machine_5_1_options(mc);
2700     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2701     mc->numa_mem_supported = true;
2702     vmc->acpi_expose_flash = true;
2703     mc->auto_enable_numa_with_memdev = false;
2704 }
2705 DEFINE_VIRT_MACHINE(5, 0)
2706 
2707 static void virt_machine_4_2_options(MachineClass *mc)
2708 {
2709     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2710 
2711     virt_machine_5_0_options(mc);
2712     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2713     vmc->kvm_no_adjvtime = true;
2714 }
2715 DEFINE_VIRT_MACHINE(4, 2)
2716 
2717 static void virt_machine_4_1_options(MachineClass *mc)
2718 {
2719     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2720 
2721     virt_machine_4_2_options(mc);
2722     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2723     vmc->no_ged = true;
2724     mc->auto_enable_numa_with_memhp = false;
2725 }
2726 DEFINE_VIRT_MACHINE(4, 1)
2727 
2728 static void virt_machine_4_0_options(MachineClass *mc)
2729 {
2730     virt_machine_4_1_options(mc);
2731     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2732 }
2733 DEFINE_VIRT_MACHINE(4, 0)
2734 
2735 static void virt_machine_3_1_options(MachineClass *mc)
2736 {
2737     virt_machine_4_0_options(mc);
2738     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2739 }
2740 DEFINE_VIRT_MACHINE(3, 1)
2741 
2742 static void virt_machine_3_0_options(MachineClass *mc)
2743 {
2744     virt_machine_3_1_options(mc);
2745     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2746 }
2747 DEFINE_VIRT_MACHINE(3, 0)
2748 
2749 static void virt_machine_2_12_options(MachineClass *mc)
2750 {
2751     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2752 
2753     virt_machine_3_0_options(mc);
2754     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2755     vmc->no_highmem_ecam = true;
2756     mc->max_cpus = 255;
2757 }
2758 DEFINE_VIRT_MACHINE(2, 12)
2759 
2760 static void virt_machine_2_11_options(MachineClass *mc)
2761 {
2762     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2763 
2764     virt_machine_2_12_options(mc);
2765     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2766     vmc->smbios_old_sys_ver = true;
2767 }
2768 DEFINE_VIRT_MACHINE(2, 11)
2769 
2770 static void virt_machine_2_10_options(MachineClass *mc)
2771 {
2772     virt_machine_2_11_options(mc);
2773     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2774     /* before 2.11 we never faulted accesses to bad addresses */
2775     mc->ignore_memory_transaction_failures = true;
2776 }
2777 DEFINE_VIRT_MACHINE(2, 10)
2778 
2779 static void virt_machine_2_9_options(MachineClass *mc)
2780 {
2781     virt_machine_2_10_options(mc);
2782     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2783 }
2784 DEFINE_VIRT_MACHINE(2, 9)
2785 
2786 static void virt_machine_2_8_options(MachineClass *mc)
2787 {
2788     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2789 
2790     virt_machine_2_9_options(mc);
2791     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2792     /* For 2.8 and earlier we falsely claimed in the DT that
2793      * our timers were edge-triggered, not level-triggered.
2794      */
2795     vmc->claim_edge_triggered_timers = true;
2796 }
2797 DEFINE_VIRT_MACHINE(2, 8)
2798 
2799 static void virt_machine_2_7_options(MachineClass *mc)
2800 {
2801     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2802 
2803     virt_machine_2_8_options(mc);
2804     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2805     /* ITS was introduced with 2.8 */
2806     vmc->no_its = true;
2807     /* Stick with 1K pages for migration compatibility */
2808     mc->minimum_page_bits = 0;
2809 }
2810 DEFINE_VIRT_MACHINE(2, 7)
2811 
2812 static void virt_machine_2_6_options(MachineClass *mc)
2813 {
2814     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2815 
2816     virt_machine_2_7_options(mc);
2817     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2818     vmc->disallow_affinity_adjustment = true;
2819     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2820     vmc->no_pmu = true;
2821 }
2822 DEFINE_VIRT_MACHINE(2, 6)
2823