xref: /qemu/hw/arm/virt.c (revision 5f9beb50)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
87 
88 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
89     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
90                                                     void *data) \
91     { \
92         MachineClass *mc = MACHINE_CLASS(oc); \
93         virt_machine_##major##_##minor##_options(mc); \
94         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
95         if (latest) { \
96             mc->alias = "virt"; \
97         } \
98     } \
99     static const TypeInfo machvirt_##major##_##minor##_info = { \
100         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
101         .parent = TYPE_VIRT_MACHINE, \
102         .class_init = virt_##major##_##minor##_class_init, \
103     }; \
104     static void machvirt_machine_##major##_##minor##_init(void) \
105     { \
106         type_register_static(&machvirt_##major##_##minor##_info); \
107     } \
108     type_init(machvirt_machine_##major##_##minor##_init);
109 
110 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
111     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
112 #define DEFINE_VIRT_MACHINE(major, minor) \
113     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
114 
115 
116 /* Number of external interrupt lines to configure the GIC with */
117 #define NUM_IRQS 256
118 
119 #define PLATFORM_BUS_NUM_IRQS 64
120 
121 /* Legacy RAM limit in GB (< version 4.0) */
122 #define LEGACY_RAMLIMIT_GB 255
123 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
124 
125 /* Addresses and sizes of our components.
126  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
127  * 128MB..256MB is used for miscellaneous device I/O.
128  * 256MB..1GB is reserved for possible future PCI support (ie where the
129  * PCI memory window will go if we add a PCI host controller).
130  * 1GB and up is RAM (which may happily spill over into the
131  * high memory region beyond 4GB).
132  * This represents a compromise between how much RAM can be given to
133  * a 32 bit VM and leaving space for expansion and in particular for PCI.
134  * Note that devices should generally be placed at multiples of 0x10000,
135  * to accommodate guests using 64K pages.
136  */
137 static const MemMapEntry base_memmap[] = {
138     /* Space up to 0x8000000 is reserved for a boot ROM */
139     [VIRT_FLASH] =              {          0, 0x08000000 },
140     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
141     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
142     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
143     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
144     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
145     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
146     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
147     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
148     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
149     /* This redistributor space allows up to 2*64kB*123 CPUs */
150     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
151     [VIRT_UART] =               { 0x09000000, 0x00001000 },
152     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
153     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
154     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
155     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
156     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
157     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
158     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
159     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
160     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
161     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
162     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
163     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
164     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
165     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
166     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
167     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
168     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
169     /* Actual RAM size depends on initial RAM and device memory settings */
170     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
171 };
172 
173 /*
174  * Highmem IO Regions: This memory map is floating, located after the RAM.
175  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
176  * top of the RAM, so that its base get the same alignment as the size,
177  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
178  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
179  * Note the extended_memmap is sized so that it eventually also includes the
180  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
181  * index of base_memmap).
182  *
183  * The memory map for these Highmem IO Regions can be in legacy or compact
184  * layout, depending on 'compact-highmem' property. With legacy layout, the
185  * PA space for one specific region is always reserved, even if the region
186  * has been disabled or doesn't fit into the PA space. However, the PA space
187  * for the region won't be reserved in these circumstances with compact layout.
188  */
189 static MemMapEntry extended_memmap[] = {
190     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
191     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
192     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
193     /* Second PCIe window */
194     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
195 };
196 
197 static const int a15irqmap[] = {
198     [VIRT_UART] = 1,
199     [VIRT_RTC] = 2,
200     [VIRT_PCIE] = 3, /* ... to 6 */
201     [VIRT_GPIO] = 7,
202     [VIRT_SECURE_UART] = 8,
203     [VIRT_ACPI_GED] = 9,
204     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
205     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
206     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
207     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
208 };
209 
210 static void create_randomness(MachineState *ms, const char *node)
211 {
212     struct {
213         uint64_t kaslr;
214         uint8_t rng[32];
215     } seed;
216 
217     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
218         return;
219     }
220     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
221     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
222 }
223 
224 /*
225  * The CPU object always exposes the NS EL2 virt timer IRQ line,
226  * but we don't want to advertise it to the guest in the dtb or ACPI
227  * table unless it's really going to do something.
228  */
229 static bool ns_el2_virt_timer_present(void)
230 {
231     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
232     CPUARMState *env = &cpu->env;
233 
234     return arm_feature(env, ARM_FEATURE_AARCH64) &&
235         arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
236 }
237 
238 static void create_fdt(VirtMachineState *vms)
239 {
240     MachineState *ms = MACHINE(vms);
241     int nb_numa_nodes = ms->numa_state->num_nodes;
242     void *fdt = create_device_tree(&vms->fdt_size);
243 
244     if (!fdt) {
245         error_report("create_device_tree() failed");
246         exit(1);
247     }
248 
249     ms->fdt = fdt;
250 
251     /* Header */
252     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
253     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
254     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
255     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
256 
257     /* /chosen must exist for load_dtb to fill in necessary properties later */
258     qemu_fdt_add_subnode(fdt, "/chosen");
259     if (vms->dtb_randomness) {
260         create_randomness(ms, "/chosen");
261     }
262 
263     if (vms->secure) {
264         qemu_fdt_add_subnode(fdt, "/secure-chosen");
265         if (vms->dtb_randomness) {
266             create_randomness(ms, "/secure-chosen");
267         }
268     }
269 
270     /* Clock node, for the benefit of the UART. The kernel device tree
271      * binding documentation claims the PL011 node clock properties are
272      * optional but in practice if you omit them the kernel refuses to
273      * probe for the device.
274      */
275     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
276     qemu_fdt_add_subnode(fdt, "/apb-pclk");
277     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
278     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
279     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
280     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
281                                 "clk24mhz");
282     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
283 
284     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
285         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
286         uint32_t *matrix = g_malloc0(size);
287         int idx, i, j;
288 
289         for (i = 0; i < nb_numa_nodes; i++) {
290             for (j = 0; j < nb_numa_nodes; j++) {
291                 idx = (i * nb_numa_nodes + j) * 3;
292                 matrix[idx + 0] = cpu_to_be32(i);
293                 matrix[idx + 1] = cpu_to_be32(j);
294                 matrix[idx + 2] =
295                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
296             }
297         }
298 
299         qemu_fdt_add_subnode(fdt, "/distance-map");
300         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
301                                 "numa-distance-map-v1");
302         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
303                          matrix, size);
304         g_free(matrix);
305     }
306 }
307 
308 static void fdt_add_timer_nodes(const VirtMachineState *vms)
309 {
310     /* On real hardware these interrupts are level-triggered.
311      * On KVM they were edge-triggered before host kernel version 4.4,
312      * and level-triggered afterwards.
313      * On emulated QEMU they are level-triggered.
314      *
315      * Getting the DTB info about them wrong is awkward for some
316      * guest kernels:
317      *  pre-4.8 ignore the DT and leave the interrupt configured
318      *   with whatever the GIC reset value (or the bootloader) left it at
319      *  4.8 before rc6 honour the incorrect data by programming it back
320      *   into the GIC, causing problems
321      *  4.8rc6 and later ignore the DT and always write "level triggered"
322      *   into the GIC
323      *
324      * For backwards-compatibility, virt-2.8 and earlier will continue
325      * to say these are edge-triggered, but later machines will report
326      * the correct information.
327      */
328     ARMCPU *armcpu;
329     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
330     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
331     MachineState *ms = MACHINE(vms);
332 
333     if (vmc->claim_edge_triggered_timers) {
334         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
335     }
336 
337     if (vms->gic_version == VIRT_GIC_VERSION_2) {
338         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
339                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
340                              (1 << MACHINE(vms)->smp.cpus) - 1);
341     }
342 
343     qemu_fdt_add_subnode(ms->fdt, "/timer");
344 
345     armcpu = ARM_CPU(qemu_get_cpu(0));
346     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
347         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
348         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
349                          compat, sizeof(compat));
350     } else {
351         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
352                                 "arm,armv7-timer");
353     }
354     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
355     if (vms->ns_el2_virt_timer_irq) {
356         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
357                                GIC_FDT_IRQ_TYPE_PPI,
358                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
359                                GIC_FDT_IRQ_TYPE_PPI,
360                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
361                                GIC_FDT_IRQ_TYPE_PPI,
362                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
363                                GIC_FDT_IRQ_TYPE_PPI,
364                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
365                                GIC_FDT_IRQ_TYPE_PPI,
366                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
367     } else {
368         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
369                                GIC_FDT_IRQ_TYPE_PPI,
370                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
371                                GIC_FDT_IRQ_TYPE_PPI,
372                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
373                                GIC_FDT_IRQ_TYPE_PPI,
374                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
375                                GIC_FDT_IRQ_TYPE_PPI,
376                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
377     }
378 }
379 
380 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
381 {
382     int cpu;
383     int addr_cells = 1;
384     const MachineState *ms = MACHINE(vms);
385     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
386     int smp_cpus = ms->smp.cpus;
387 
388     /*
389      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
390      * On ARM v8 64-bit systems value should be set to 2,
391      * that corresponds to the MPIDR_EL1 register size.
392      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
393      * in the system, #address-cells can be set to 1, since
394      * MPIDR_EL1[63:32] bits are not used for CPUs
395      * identification.
396      *
397      * Here we actually don't know whether our system is 32- or 64-bit one.
398      * The simplest way to go is to examine affinity IDs of all our CPUs. If
399      * at least one of them has Aff3 populated, we set #address-cells to 2.
400      */
401     for (cpu = 0; cpu < smp_cpus; cpu++) {
402         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
403 
404         if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
405             addr_cells = 2;
406             break;
407         }
408     }
409 
410     qemu_fdt_add_subnode(ms->fdt, "/cpus");
411     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
412     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
413 
414     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
415         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
416         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
417         CPUState *cs = CPU(armcpu);
418 
419         qemu_fdt_add_subnode(ms->fdt, nodename);
420         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
421         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
422                                     armcpu->dtb_compatible);
423 
424         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
425             qemu_fdt_setprop_string(ms->fdt, nodename,
426                                         "enable-method", "psci");
427         }
428 
429         if (addr_cells == 2) {
430             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
431                                  arm_cpu_mp_affinity(armcpu));
432         } else {
433             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
434                                   arm_cpu_mp_affinity(armcpu));
435         }
436 
437         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
438             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
439                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
440         }
441 
442         if (!vmc->no_cpu_topology) {
443             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
444                                   qemu_fdt_alloc_phandle(ms->fdt));
445         }
446 
447         g_free(nodename);
448     }
449 
450     if (!vmc->no_cpu_topology) {
451         /*
452          * Add vCPU topology description through fdt node cpu-map.
453          *
454          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
455          * In a SMP system, the hierarchy of CPUs can be defined through
456          * four entities that are used to describe the layout of CPUs in
457          * the system: socket/cluster/core/thread.
458          *
459          * A socket node represents the boundary of system physical package
460          * and its child nodes must be one or more cluster nodes. A system
461          * can contain several layers of clustering within a single physical
462          * package and cluster nodes can be contained in parent cluster nodes.
463          *
464          * Note: currently we only support one layer of clustering within
465          * each physical package.
466          */
467         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
468 
469         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
470             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
471             char *map_path;
472 
473             if (ms->smp.threads > 1) {
474                 map_path = g_strdup_printf(
475                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
476                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
477                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
478                     (cpu / ms->smp.threads) % ms->smp.cores,
479                     cpu % ms->smp.threads);
480             } else {
481                 map_path = g_strdup_printf(
482                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
483                     cpu / (ms->smp.clusters * ms->smp.cores),
484                     (cpu / ms->smp.cores) % ms->smp.clusters,
485                     cpu % ms->smp.cores);
486             }
487             qemu_fdt_add_path(ms->fdt, map_path);
488             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
489 
490             g_free(map_path);
491             g_free(cpu_path);
492         }
493     }
494 }
495 
496 static void fdt_add_its_gic_node(VirtMachineState *vms)
497 {
498     char *nodename;
499     MachineState *ms = MACHINE(vms);
500 
501     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
502     nodename = g_strdup_printf("/intc/its@%" PRIx64,
503                                vms->memmap[VIRT_GIC_ITS].base);
504     qemu_fdt_add_subnode(ms->fdt, nodename);
505     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
506                             "arm,gic-v3-its");
507     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
508     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
509     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
510                                  2, vms->memmap[VIRT_GIC_ITS].base,
511                                  2, vms->memmap[VIRT_GIC_ITS].size);
512     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
513     g_free(nodename);
514 }
515 
516 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
517 {
518     MachineState *ms = MACHINE(vms);
519     char *nodename;
520 
521     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
522                                vms->memmap[VIRT_GIC_V2M].base);
523     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
524     qemu_fdt_add_subnode(ms->fdt, nodename);
525     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
526                             "arm,gic-v2m-frame");
527     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
528     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
529                                  2, vms->memmap[VIRT_GIC_V2M].base,
530                                  2, vms->memmap[VIRT_GIC_V2M].size);
531     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
532     g_free(nodename);
533 }
534 
535 static void fdt_add_gic_node(VirtMachineState *vms)
536 {
537     MachineState *ms = MACHINE(vms);
538     char *nodename;
539 
540     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
541     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
542 
543     nodename = g_strdup_printf("/intc@%" PRIx64,
544                                vms->memmap[VIRT_GIC_DIST].base);
545     qemu_fdt_add_subnode(ms->fdt, nodename);
546     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
547     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
548     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
549     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
550     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
551     if (vms->gic_version != VIRT_GIC_VERSION_2) {
552         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
553 
554         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
555                                 "arm,gic-v3");
556 
557         qemu_fdt_setprop_cell(ms->fdt, nodename,
558                               "#redistributor-regions", nb_redist_regions);
559 
560         if (nb_redist_regions == 1) {
561             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
562                                          2, vms->memmap[VIRT_GIC_DIST].base,
563                                          2, vms->memmap[VIRT_GIC_DIST].size,
564                                          2, vms->memmap[VIRT_GIC_REDIST].base,
565                                          2, vms->memmap[VIRT_GIC_REDIST].size);
566         } else {
567             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
568                                  2, vms->memmap[VIRT_GIC_DIST].base,
569                                  2, vms->memmap[VIRT_GIC_DIST].size,
570                                  2, vms->memmap[VIRT_GIC_REDIST].base,
571                                  2, vms->memmap[VIRT_GIC_REDIST].size,
572                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
573                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
574         }
575 
576         if (vms->virt) {
577             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
578                                    GIC_FDT_IRQ_TYPE_PPI,
579                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
580                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
581         }
582     } else {
583         /* 'cortex-a15-gic' means 'GIC v2' */
584         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
585                                 "arm,cortex-a15-gic");
586         if (!vms->virt) {
587             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
588                                          2, vms->memmap[VIRT_GIC_DIST].base,
589                                          2, vms->memmap[VIRT_GIC_DIST].size,
590                                          2, vms->memmap[VIRT_GIC_CPU].base,
591                                          2, vms->memmap[VIRT_GIC_CPU].size);
592         } else {
593             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
594                                          2, vms->memmap[VIRT_GIC_DIST].base,
595                                          2, vms->memmap[VIRT_GIC_DIST].size,
596                                          2, vms->memmap[VIRT_GIC_CPU].base,
597                                          2, vms->memmap[VIRT_GIC_CPU].size,
598                                          2, vms->memmap[VIRT_GIC_HYP].base,
599                                          2, vms->memmap[VIRT_GIC_HYP].size,
600                                          2, vms->memmap[VIRT_GIC_VCPU].base,
601                                          2, vms->memmap[VIRT_GIC_VCPU].size);
602             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
603                                    GIC_FDT_IRQ_TYPE_PPI,
604                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
605                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
606         }
607     }
608 
609     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
610     g_free(nodename);
611 }
612 
613 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
614 {
615     ARMCPU *armcpu = ARM_CPU(first_cpu);
616     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
617     MachineState *ms = MACHINE(vms);
618 
619     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
620         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
621         return;
622     }
623 
624     if (vms->gic_version == VIRT_GIC_VERSION_2) {
625         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
626                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
627                              (1 << MACHINE(vms)->smp.cpus) - 1);
628     }
629 
630     qemu_fdt_add_subnode(ms->fdt, "/pmu");
631     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
632         const char compat[] = "arm,armv8-pmuv3";
633         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
634                          compat, sizeof(compat));
635         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
636                                GIC_FDT_IRQ_TYPE_PPI,
637                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
638     }
639 }
640 
641 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
642 {
643     DeviceState *dev;
644     MachineState *ms = MACHINE(vms);
645     int irq = vms->irqmap[VIRT_ACPI_GED];
646     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
647 
648     if (ms->ram_slots) {
649         event |= ACPI_GED_MEM_HOTPLUG_EVT;
650     }
651 
652     if (ms->nvdimms_state->is_enabled) {
653         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
654     }
655 
656     dev = qdev_new(TYPE_ACPI_GED);
657     qdev_prop_set_uint32(dev, "ged-event", event);
658     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
659 
660     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
661     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
662     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
663 
664     return dev;
665 }
666 
667 static void create_its(VirtMachineState *vms)
668 {
669     const char *itsclass = its_class_name();
670     DeviceState *dev;
671 
672     if (!strcmp(itsclass, "arm-gicv3-its")) {
673         if (!vms->tcg_its) {
674             itsclass = NULL;
675         }
676     }
677 
678     if (!itsclass) {
679         /* Do nothing if not supported */
680         return;
681     }
682 
683     dev = qdev_new(itsclass);
684 
685     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
686                              &error_abort);
687     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
688     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
689 
690     fdt_add_its_gic_node(vms);
691     vms->msi_controller = VIRT_MSI_CTRL_ITS;
692 }
693 
694 static void create_v2m(VirtMachineState *vms)
695 {
696     int i;
697     int irq = vms->irqmap[VIRT_GIC_V2M];
698     DeviceState *dev;
699 
700     dev = qdev_new("arm-gicv2m");
701     qdev_prop_set_uint32(dev, "base-spi", irq);
702     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
703     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
704     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
705 
706     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
707         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
708                            qdev_get_gpio_in(vms->gic, irq + i));
709     }
710 
711     fdt_add_v2m_gic_node(vms);
712     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
713 }
714 
715 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
716 {
717     MachineState *ms = MACHINE(vms);
718     /* We create a standalone GIC */
719     SysBusDevice *gicbusdev;
720     const char *gictype;
721     int i;
722     unsigned int smp_cpus = ms->smp.cpus;
723     uint32_t nb_redist_regions = 0;
724     int revision;
725 
726     if (vms->gic_version == VIRT_GIC_VERSION_2) {
727         gictype = gic_class_name();
728     } else {
729         gictype = gicv3_class_name();
730     }
731 
732     switch (vms->gic_version) {
733     case VIRT_GIC_VERSION_2:
734         revision = 2;
735         break;
736     case VIRT_GIC_VERSION_3:
737         revision = 3;
738         break;
739     case VIRT_GIC_VERSION_4:
740         revision = 4;
741         break;
742     default:
743         g_assert_not_reached();
744     }
745     vms->gic = qdev_new(gictype);
746     qdev_prop_set_uint32(vms->gic, "revision", revision);
747     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
748     /* Note that the num-irq property counts both internal and external
749      * interrupts; there are always 32 of the former (mandated by GIC spec).
750      */
751     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
752     if (!kvm_irqchip_in_kernel()) {
753         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
754     }
755 
756     if (vms->gic_version != VIRT_GIC_VERSION_2) {
757         QList *redist_region_count;
758         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
759         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
760 
761         nb_redist_regions = virt_gicv3_redist_region_count(vms);
762 
763         redist_region_count = qlist_new();
764         qlist_append_int(redist_region_count, redist0_count);
765         if (nb_redist_regions == 2) {
766             uint32_t redist1_capacity =
767                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
768 
769             qlist_append_int(redist_region_count,
770                 MIN(smp_cpus - redist0_count, redist1_capacity));
771         }
772         qdev_prop_set_array(vms->gic, "redist-region-count",
773                             redist_region_count);
774 
775         if (!kvm_irqchip_in_kernel()) {
776             if (vms->tcg_its) {
777                 object_property_set_link(OBJECT(vms->gic), "sysmem",
778                                          OBJECT(mem), &error_fatal);
779                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
780             }
781         }
782     } else {
783         if (!kvm_irqchip_in_kernel()) {
784             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
785                               vms->virt);
786         }
787     }
788     gicbusdev = SYS_BUS_DEVICE(vms->gic);
789     sysbus_realize_and_unref(gicbusdev, &error_fatal);
790     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
791     if (vms->gic_version != VIRT_GIC_VERSION_2) {
792         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
793         if (nb_redist_regions == 2) {
794             sysbus_mmio_map(gicbusdev, 2,
795                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
796         }
797     } else {
798         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
799         if (vms->virt) {
800             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
801             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
802         }
803     }
804 
805     /* Wire the outputs from each CPU's generic timer and the GICv3
806      * maintenance interrupt signal to the appropriate GIC PPI inputs,
807      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
808      */
809     for (i = 0; i < smp_cpus; i++) {
810         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
811         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
812         /* Mapping from the output timer irq lines from the CPU to the
813          * GIC PPI inputs we use for the virt board.
814          */
815         const int timer_irq[] = {
816             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
817             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
818             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
819             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
820             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
821         };
822 
823         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
824             qdev_connect_gpio_out(cpudev, irq,
825                                   qdev_get_gpio_in(vms->gic,
826                                                    intidbase + timer_irq[irq]));
827         }
828 
829         if (vms->gic_version != VIRT_GIC_VERSION_2) {
830             qemu_irq irq = qdev_get_gpio_in(vms->gic,
831                                             intidbase + ARCH_GIC_MAINT_IRQ);
832             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
833                                         0, irq);
834         } else if (vms->virt) {
835             qemu_irq irq = qdev_get_gpio_in(vms->gic,
836                                             intidbase + ARCH_GIC_MAINT_IRQ);
837             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
838         }
839 
840         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
841                                     qdev_get_gpio_in(vms->gic, intidbase
842                                                      + VIRTUAL_PMU_IRQ));
843 
844         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
845         sysbus_connect_irq(gicbusdev, i + smp_cpus,
846                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
847         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
848                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
849         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
850                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
851     }
852 
853     fdt_add_gic_node(vms);
854 
855     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
856         create_its(vms);
857     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
858         create_v2m(vms);
859     }
860 }
861 
862 static void create_uart(const VirtMachineState *vms, int uart,
863                         MemoryRegion *mem, Chardev *chr)
864 {
865     char *nodename;
866     hwaddr base = vms->memmap[uart].base;
867     hwaddr size = vms->memmap[uart].size;
868     int irq = vms->irqmap[uart];
869     const char compat[] = "arm,pl011\0arm,primecell";
870     const char clocknames[] = "uartclk\0apb_pclk";
871     DeviceState *dev = qdev_new(TYPE_PL011);
872     SysBusDevice *s = SYS_BUS_DEVICE(dev);
873     MachineState *ms = MACHINE(vms);
874 
875     qdev_prop_set_chr(dev, "chardev", chr);
876     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
877     memory_region_add_subregion(mem, base,
878                                 sysbus_mmio_get_region(s, 0));
879     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
880 
881     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
882     qemu_fdt_add_subnode(ms->fdt, nodename);
883     /* Note that we can't use setprop_string because of the embedded NUL */
884     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
885                          compat, sizeof(compat));
886     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
887                                      2, base, 2, size);
888     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
889                                GIC_FDT_IRQ_TYPE_SPI, irq,
890                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
891     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
892                                vms->clock_phandle, vms->clock_phandle);
893     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
894                          clocknames, sizeof(clocknames));
895 
896     if (uart == VIRT_UART) {
897         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
898     } else {
899         /* Mark as not usable by the normal world */
900         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
901         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
902 
903         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
904                                 nodename);
905     }
906 
907     g_free(nodename);
908 }
909 
910 static void create_rtc(const VirtMachineState *vms)
911 {
912     char *nodename;
913     hwaddr base = vms->memmap[VIRT_RTC].base;
914     hwaddr size = vms->memmap[VIRT_RTC].size;
915     int irq = vms->irqmap[VIRT_RTC];
916     const char compat[] = "arm,pl031\0arm,primecell";
917     MachineState *ms = MACHINE(vms);
918 
919     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
920 
921     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
922     qemu_fdt_add_subnode(ms->fdt, nodename);
923     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
924     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
925                                  2, base, 2, size);
926     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
927                            GIC_FDT_IRQ_TYPE_SPI, irq,
928                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
929     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
930     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
931     g_free(nodename);
932 }
933 
934 static DeviceState *gpio_key_dev;
935 static void virt_powerdown_req(Notifier *n, void *opaque)
936 {
937     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
938 
939     if (s->acpi_dev) {
940         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
941     } else {
942         /* use gpio Pin 3 for power button event */
943         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
944     }
945 }
946 
947 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
948                              uint32_t phandle)
949 {
950     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
951                                         qdev_get_gpio_in(pl061_dev, 3));
952 
953     qemu_fdt_add_subnode(fdt, "/gpio-keys");
954     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
955 
956     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
957     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
958                             "label", "GPIO Key Poweroff");
959     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
960                           KEY_POWER);
961     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
962                            "gpios", phandle, 3, 0);
963 }
964 
965 #define SECURE_GPIO_POWEROFF 0
966 #define SECURE_GPIO_RESET    1
967 
968 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
969                                    uint32_t phandle)
970 {
971     DeviceState *gpio_pwr_dev;
972 
973     /* gpio-pwr */
974     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
975 
976     /* connect secure pl061 to gpio-pwr */
977     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
978                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
979     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
980                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
981 
982     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
983     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
984                             "gpio-poweroff");
985     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
986                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
987     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
988     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
989                             "okay");
990 
991     qemu_fdt_add_subnode(fdt, "/gpio-restart");
992     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
993                             "gpio-restart");
994     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
995                            "gpios", phandle, SECURE_GPIO_RESET, 0);
996     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
997     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
998                             "okay");
999 }
1000 
1001 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1002                                 MemoryRegion *mem)
1003 {
1004     char *nodename;
1005     DeviceState *pl061_dev;
1006     hwaddr base = vms->memmap[gpio].base;
1007     hwaddr size = vms->memmap[gpio].size;
1008     int irq = vms->irqmap[gpio];
1009     const char compat[] = "arm,pl061\0arm,primecell";
1010     SysBusDevice *s;
1011     MachineState *ms = MACHINE(vms);
1012 
1013     pl061_dev = qdev_new("pl061");
1014     /* Pull lines down to 0 if not driven by the PL061 */
1015     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1016     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1017     s = SYS_BUS_DEVICE(pl061_dev);
1018     sysbus_realize_and_unref(s, &error_fatal);
1019     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1020     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1021 
1022     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1023     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1024     qemu_fdt_add_subnode(ms->fdt, nodename);
1025     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1026                                  2, base, 2, size);
1027     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1028     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1029     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1030     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1031                            GIC_FDT_IRQ_TYPE_SPI, irq,
1032                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1033     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1034     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1035     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1036 
1037     if (gpio != VIRT_GPIO) {
1038         /* Mark as not usable by the normal world */
1039         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1040         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1041     }
1042     g_free(nodename);
1043 
1044     /* Child gpio devices */
1045     if (gpio == VIRT_GPIO) {
1046         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1047     } else {
1048         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1049     }
1050 }
1051 
1052 static void create_virtio_devices(const VirtMachineState *vms)
1053 {
1054     int i;
1055     hwaddr size = vms->memmap[VIRT_MMIO].size;
1056     MachineState *ms = MACHINE(vms);
1057 
1058     /* We create the transports in forwards order. Since qbus_realize()
1059      * prepends (not appends) new child buses, the incrementing loop below will
1060      * create a list of virtio-mmio buses with decreasing base addresses.
1061      *
1062      * When a -device option is processed from the command line,
1063      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1064      * order. The upshot is that -device options in increasing command line
1065      * order are mapped to virtio-mmio buses with decreasing base addresses.
1066      *
1067      * When this code was originally written, that arrangement ensured that the
1068      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1069      * the first -device on the command line. (The end-to-end order is a
1070      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1071      * guest kernel's name-to-address assignment strategy.)
1072      *
1073      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1074      * the message, if not necessarily the code, of commit 70161ff336.
1075      * Therefore the loop now establishes the inverse of the original intent.
1076      *
1077      * Unfortunately, we can't counteract the kernel change by reversing the
1078      * loop; it would break existing command lines.
1079      *
1080      * In any case, the kernel makes no guarantee about the stability of
1081      * enumeration order of virtio devices (as demonstrated by it changing
1082      * between kernel versions). For reliable and stable identification
1083      * of disks users must use UUIDs or similar mechanisms.
1084      */
1085     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1086         int irq = vms->irqmap[VIRT_MMIO] + i;
1087         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1088 
1089         sysbus_create_simple("virtio-mmio", base,
1090                              qdev_get_gpio_in(vms->gic, irq));
1091     }
1092 
1093     /* We add dtb nodes in reverse order so that they appear in the finished
1094      * device tree lowest address first.
1095      *
1096      * Note that this mapping is independent of the loop above. The previous
1097      * loop influences virtio device to virtio transport assignment, whereas
1098      * this loop controls how virtio transports are laid out in the dtb.
1099      */
1100     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1101         char *nodename;
1102         int irq = vms->irqmap[VIRT_MMIO] + i;
1103         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1104 
1105         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1106         qemu_fdt_add_subnode(ms->fdt, nodename);
1107         qemu_fdt_setprop_string(ms->fdt, nodename,
1108                                 "compatible", "virtio,mmio");
1109         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1110                                      2, base, 2, size);
1111         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1112                                GIC_FDT_IRQ_TYPE_SPI, irq,
1113                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1114         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1115         g_free(nodename);
1116     }
1117 }
1118 
1119 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1120 
1121 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1122                                         const char *name,
1123                                         const char *alias_prop_name)
1124 {
1125     /*
1126      * Create a single flash device.  We use the same parameters as
1127      * the flash devices on the Versatile Express board.
1128      */
1129     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1130 
1131     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1132     qdev_prop_set_uint8(dev, "width", 4);
1133     qdev_prop_set_uint8(dev, "device-width", 2);
1134     qdev_prop_set_bit(dev, "big-endian", false);
1135     qdev_prop_set_uint16(dev, "id0", 0x89);
1136     qdev_prop_set_uint16(dev, "id1", 0x18);
1137     qdev_prop_set_uint16(dev, "id2", 0x00);
1138     qdev_prop_set_uint16(dev, "id3", 0x00);
1139     qdev_prop_set_string(dev, "name", name);
1140     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1141     object_property_add_alias(OBJECT(vms), alias_prop_name,
1142                               OBJECT(dev), "drive");
1143     return PFLASH_CFI01(dev);
1144 }
1145 
1146 static void virt_flash_create(VirtMachineState *vms)
1147 {
1148     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1149     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1150 }
1151 
1152 static void virt_flash_map1(PFlashCFI01 *flash,
1153                             hwaddr base, hwaddr size,
1154                             MemoryRegion *sysmem)
1155 {
1156     DeviceState *dev = DEVICE(flash);
1157 
1158     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1159     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1160     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1161     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1162 
1163     memory_region_add_subregion(sysmem, base,
1164                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1165                                                        0));
1166 }
1167 
1168 static void virt_flash_map(VirtMachineState *vms,
1169                            MemoryRegion *sysmem,
1170                            MemoryRegion *secure_sysmem)
1171 {
1172     /*
1173      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1174      * sysmem is the system memory space. secure_sysmem is the secure view
1175      * of the system, and the first flash device should be made visible only
1176      * there. The second flash device is visible to both secure and nonsecure.
1177      * If sysmem == secure_sysmem this means there is no separate Secure
1178      * address space and both flash devices are generally visible.
1179      */
1180     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1181     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1182 
1183     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1184                     secure_sysmem);
1185     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1186                     sysmem);
1187 }
1188 
1189 static void virt_flash_fdt(VirtMachineState *vms,
1190                            MemoryRegion *sysmem,
1191                            MemoryRegion *secure_sysmem)
1192 {
1193     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1194     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1195     MachineState *ms = MACHINE(vms);
1196     char *nodename;
1197 
1198     if (sysmem == secure_sysmem) {
1199         /* Report both flash devices as a single node in the DT */
1200         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1201         qemu_fdt_add_subnode(ms->fdt, nodename);
1202         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1203         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1204                                      2, flashbase, 2, flashsize,
1205                                      2, flashbase + flashsize, 2, flashsize);
1206         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1207         g_free(nodename);
1208     } else {
1209         /*
1210          * Report the devices as separate nodes so we can mark one as
1211          * only visible to the secure world.
1212          */
1213         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1214         qemu_fdt_add_subnode(ms->fdt, nodename);
1215         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1216         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1217                                      2, flashbase, 2, flashsize);
1218         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1219         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1220         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1221         g_free(nodename);
1222 
1223         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1224         qemu_fdt_add_subnode(ms->fdt, nodename);
1225         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1226         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1227                                      2, flashbase + flashsize, 2, flashsize);
1228         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1229         g_free(nodename);
1230     }
1231 }
1232 
1233 static bool virt_firmware_init(VirtMachineState *vms,
1234                                MemoryRegion *sysmem,
1235                                MemoryRegion *secure_sysmem)
1236 {
1237     int i;
1238     const char *bios_name;
1239     BlockBackend *pflash_blk0;
1240 
1241     /* Map legacy -drive if=pflash to machine properties */
1242     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1243         pflash_cfi01_legacy_drive(vms->flash[i],
1244                                   drive_get(IF_PFLASH, 0, i));
1245     }
1246 
1247     virt_flash_map(vms, sysmem, secure_sysmem);
1248 
1249     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1250 
1251     bios_name = MACHINE(vms)->firmware;
1252     if (bios_name) {
1253         char *fname;
1254         MemoryRegion *mr;
1255         int image_size;
1256 
1257         if (pflash_blk0) {
1258             error_report("The contents of the first flash device may be "
1259                          "specified with -bios or with -drive if=pflash... "
1260                          "but you cannot use both options at once");
1261             exit(1);
1262         }
1263 
1264         /* Fall back to -bios */
1265 
1266         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1267         if (!fname) {
1268             error_report("Could not find ROM image '%s'", bios_name);
1269             exit(1);
1270         }
1271         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1272         image_size = load_image_mr(fname, mr);
1273         g_free(fname);
1274         if (image_size < 0) {
1275             error_report("Could not load ROM image '%s'", bios_name);
1276             exit(1);
1277         }
1278     }
1279 
1280     return pflash_blk0 || bios_name;
1281 }
1282 
1283 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1284 {
1285     MachineState *ms = MACHINE(vms);
1286     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1287     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1288     FWCfgState *fw_cfg;
1289     char *nodename;
1290 
1291     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1292     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1293 
1294     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1295     qemu_fdt_add_subnode(ms->fdt, nodename);
1296     qemu_fdt_setprop_string(ms->fdt, nodename,
1297                             "compatible", "qemu,fw-cfg-mmio");
1298     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1299                                  2, base, 2, size);
1300     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1301     g_free(nodename);
1302     return fw_cfg;
1303 }
1304 
1305 static void create_pcie_irq_map(const MachineState *ms,
1306                                 uint32_t gic_phandle,
1307                                 int first_irq, const char *nodename)
1308 {
1309     int devfn, pin;
1310     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1311     uint32_t *irq_map = full_irq_map;
1312 
1313     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1314         for (pin = 0; pin < 4; pin++) {
1315             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1316             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1317             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1318             int i;
1319 
1320             uint32_t map[] = {
1321                 devfn << 8, 0, 0,                           /* devfn */
1322                 pin + 1,                                    /* PCI pin */
1323                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1324 
1325             /* Convert map to big endian */
1326             for (i = 0; i < 10; i++) {
1327                 irq_map[i] = cpu_to_be32(map[i]);
1328             }
1329             irq_map += 10;
1330         }
1331     }
1332 
1333     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1334                      full_irq_map, sizeof(full_irq_map));
1335 
1336     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1337                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1338                            0, 0,
1339                            0x7           /* PCI irq */);
1340 }
1341 
1342 static void create_smmu(const VirtMachineState *vms,
1343                         PCIBus *bus)
1344 {
1345     char *node;
1346     const char compat[] = "arm,smmu-v3";
1347     int irq =  vms->irqmap[VIRT_SMMU];
1348     int i;
1349     hwaddr base = vms->memmap[VIRT_SMMU].base;
1350     hwaddr size = vms->memmap[VIRT_SMMU].size;
1351     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1352     DeviceState *dev;
1353     MachineState *ms = MACHINE(vms);
1354 
1355     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1356         return;
1357     }
1358 
1359     dev = qdev_new(TYPE_ARM_SMMUV3);
1360 
1361     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1362                              &error_abort);
1363     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1364     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1365     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1366         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1367                            qdev_get_gpio_in(vms->gic, irq + i));
1368     }
1369 
1370     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1371     qemu_fdt_add_subnode(ms->fdt, node);
1372     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1373     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1374 
1375     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1376             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1377             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1378             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1379             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1380 
1381     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1382                      sizeof(irq_names));
1383 
1384     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1385 
1386     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1387 
1388     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1389     g_free(node);
1390 }
1391 
1392 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1393 {
1394     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1395     uint16_t bdf = vms->virtio_iommu_bdf;
1396     MachineState *ms = MACHINE(vms);
1397     char *node;
1398 
1399     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1400 
1401     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1402                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1403     qemu_fdt_add_subnode(ms->fdt, node);
1404     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1405     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1406                                  1, bdf << 8, 1, 0, 1, 0,
1407                                  1, 0, 1, 0);
1408 
1409     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1410     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1411     g_free(node);
1412 
1413     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1414                            0x0, vms->iommu_phandle, 0x0, bdf,
1415                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1416 }
1417 
1418 static void create_pcie(VirtMachineState *vms)
1419 {
1420     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1421     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1422     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1423     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1424     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1425     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1426     hwaddr base_ecam, size_ecam;
1427     hwaddr base = base_mmio;
1428     int nr_pcie_buses;
1429     int irq = vms->irqmap[VIRT_PCIE];
1430     MemoryRegion *mmio_alias;
1431     MemoryRegion *mmio_reg;
1432     MemoryRegion *ecam_alias;
1433     MemoryRegion *ecam_reg;
1434     DeviceState *dev;
1435     char *nodename;
1436     int i, ecam_id;
1437     PCIHostState *pci;
1438     MachineState *ms = MACHINE(vms);
1439     MachineClass *mc = MACHINE_GET_CLASS(ms);
1440 
1441     dev = qdev_new(TYPE_GPEX_HOST);
1442     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1443 
1444     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1445     base_ecam = vms->memmap[ecam_id].base;
1446     size_ecam = vms->memmap[ecam_id].size;
1447     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1448     /* Map only the first size_ecam bytes of ECAM space */
1449     ecam_alias = g_new0(MemoryRegion, 1);
1450     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1451     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1452                              ecam_reg, 0, size_ecam);
1453     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1454 
1455     /* Map the MMIO window into system address space so as to expose
1456      * the section of PCI MMIO space which starts at the same base address
1457      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1458      * the window).
1459      */
1460     mmio_alias = g_new0(MemoryRegion, 1);
1461     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1462     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1463                              mmio_reg, base_mmio, size_mmio);
1464     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1465 
1466     if (vms->highmem_mmio) {
1467         /* Map high MMIO space */
1468         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1469 
1470         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1471                                  mmio_reg, base_mmio_high, size_mmio_high);
1472         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1473                                     high_mmio_alias);
1474     }
1475 
1476     /* Map IO port space */
1477     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1478 
1479     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1480         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1481                            qdev_get_gpio_in(vms->gic, irq + i));
1482         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1483     }
1484 
1485     pci = PCI_HOST_BRIDGE(dev);
1486     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1487     vms->bus = pci->bus;
1488     if (vms->bus) {
1489         pci_init_nic_devices(pci->bus, mc->default_nic);
1490     }
1491 
1492     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1493     qemu_fdt_add_subnode(ms->fdt, nodename);
1494     qemu_fdt_setprop_string(ms->fdt, nodename,
1495                             "compatible", "pci-host-ecam-generic");
1496     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1497     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1498     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1499     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1500     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1501                            nr_pcie_buses - 1);
1502     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1503 
1504     if (vms->msi_phandle) {
1505         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1506                                0, vms->msi_phandle, 0, 0x10000);
1507     }
1508 
1509     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1510                                  2, base_ecam, 2, size_ecam);
1511 
1512     if (vms->highmem_mmio) {
1513         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1514                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1515                                      2, base_pio, 2, size_pio,
1516                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1517                                      2, base_mmio, 2, size_mmio,
1518                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1519                                      2, base_mmio_high,
1520                                      2, base_mmio_high, 2, size_mmio_high);
1521     } else {
1522         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1523                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1524                                      2, base_pio, 2, size_pio,
1525                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1526                                      2, base_mmio, 2, size_mmio);
1527     }
1528 
1529     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1530     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1531 
1532     if (vms->iommu) {
1533         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1534 
1535         switch (vms->iommu) {
1536         case VIRT_IOMMU_SMMUV3:
1537             create_smmu(vms, vms->bus);
1538             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1539                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1540             break;
1541         default:
1542             g_assert_not_reached();
1543         }
1544     }
1545 }
1546 
1547 static void create_platform_bus(VirtMachineState *vms)
1548 {
1549     DeviceState *dev;
1550     SysBusDevice *s;
1551     int i;
1552     MemoryRegion *sysmem = get_system_memory();
1553 
1554     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1555     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1556     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1557     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1558     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1559     vms->platform_bus_dev = dev;
1560 
1561     s = SYS_BUS_DEVICE(dev);
1562     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1563         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1564         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1565     }
1566 
1567     memory_region_add_subregion(sysmem,
1568                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1569                                 sysbus_mmio_get_region(s, 0));
1570 }
1571 
1572 static void create_tag_ram(MemoryRegion *tag_sysmem,
1573                            hwaddr base, hwaddr size,
1574                            const char *name)
1575 {
1576     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1577 
1578     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1579     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1580 }
1581 
1582 static void create_secure_ram(VirtMachineState *vms,
1583                               MemoryRegion *secure_sysmem,
1584                               MemoryRegion *secure_tag_sysmem)
1585 {
1586     MemoryRegion *secram = g_new(MemoryRegion, 1);
1587     char *nodename;
1588     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1589     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1590     MachineState *ms = MACHINE(vms);
1591 
1592     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1593                            &error_fatal);
1594     memory_region_add_subregion(secure_sysmem, base, secram);
1595 
1596     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1597     qemu_fdt_add_subnode(ms->fdt, nodename);
1598     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1599     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1600     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1601     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1602 
1603     if (secure_tag_sysmem) {
1604         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1605     }
1606 
1607     g_free(nodename);
1608 }
1609 
1610 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1611 {
1612     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1613                                                  bootinfo);
1614     MachineState *ms = MACHINE(board);
1615 
1616 
1617     *fdt_size = board->fdt_size;
1618     return ms->fdt;
1619 }
1620 
1621 static void virt_build_smbios(VirtMachineState *vms)
1622 {
1623     MachineClass *mc = MACHINE_GET_CLASS(vms);
1624     MachineState *ms = MACHINE(vms);
1625     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1626     uint8_t *smbios_tables, *smbios_anchor;
1627     size_t smbios_tables_len, smbios_anchor_len;
1628     struct smbios_phys_mem_area mem_array;
1629     const char *product = "QEMU Virtual Machine";
1630 
1631     if (kvm_enabled()) {
1632         product = "KVM Virtual Machine";
1633     }
1634 
1635     smbios_set_defaults("QEMU", product,
1636                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1637                         true, SMBIOS_ENTRY_POINT_TYPE_64);
1638 
1639     /* build the array of physical mem area from base_memmap */
1640     mem_array.address = vms->memmap[VIRT_MEM].base;
1641     mem_array.length = ms->ram_size;
1642 
1643     smbios_get_tables(ms, &mem_array, 1,
1644                       &smbios_tables, &smbios_tables_len,
1645                       &smbios_anchor, &smbios_anchor_len,
1646                       &error_fatal);
1647 
1648     if (smbios_anchor) {
1649         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1650                         smbios_tables, smbios_tables_len);
1651         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1652                         smbios_anchor, smbios_anchor_len);
1653     }
1654 }
1655 
1656 static
1657 void virt_machine_done(Notifier *notifier, void *data)
1658 {
1659     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1660                                          machine_done);
1661     MachineState *ms = MACHINE(vms);
1662     ARMCPU *cpu = ARM_CPU(first_cpu);
1663     struct arm_boot_info *info = &vms->bootinfo;
1664     AddressSpace *as = arm_boot_address_space(cpu, info);
1665 
1666     /*
1667      * If the user provided a dtb, we assume the dynamic sysbus nodes
1668      * already are integrated there. This corresponds to a use case where
1669      * the dynamic sysbus nodes are complex and their generation is not yet
1670      * supported. In that case the user can take charge of the guest dt
1671      * while qemu takes charge of the qom stuff.
1672      */
1673     if (info->dtb_filename == NULL) {
1674         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1675                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1676                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1677                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1678     }
1679     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1680         exit(1);
1681     }
1682 
1683     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1684 
1685     virt_acpi_setup(vms);
1686     virt_build_smbios(vms);
1687 }
1688 
1689 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1690 {
1691     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1692     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1693 
1694     if (!vmc->disallow_affinity_adjustment) {
1695         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1696          * GIC's target-list limitations. 32-bit KVM hosts currently
1697          * always create clusters of 4 CPUs, but that is expected to
1698          * change when they gain support for gicv3. When KVM is enabled
1699          * it will override the changes we make here, therefore our
1700          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1701          * and to improve SGI efficiency.
1702          */
1703         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1704             clustersz = GIC_TARGETLIST_BITS;
1705         } else {
1706             clustersz = GICV3_TARGETLIST_BITS;
1707         }
1708     }
1709     return arm_build_mp_affinity(idx, clustersz);
1710 }
1711 
1712 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1713                                                  int index)
1714 {
1715     bool *enabled_array[] = {
1716         &vms->highmem_redists,
1717         &vms->highmem_ecam,
1718         &vms->highmem_mmio,
1719     };
1720 
1721     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1722            ARRAY_SIZE(enabled_array));
1723     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1724 
1725     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1726 }
1727 
1728 static void virt_set_high_memmap(VirtMachineState *vms,
1729                                  hwaddr base, int pa_bits)
1730 {
1731     hwaddr region_base, region_size;
1732     bool *region_enabled, fits;
1733     int i;
1734 
1735     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1736         region_enabled = virt_get_high_memmap_enabled(vms, i);
1737         region_base = ROUND_UP(base, extended_memmap[i].size);
1738         region_size = extended_memmap[i].size;
1739 
1740         vms->memmap[i].base = region_base;
1741         vms->memmap[i].size = region_size;
1742 
1743         /*
1744          * Check each device to see if it fits in the PA space,
1745          * moving highest_gpa as we go. For compatibility, move
1746          * highest_gpa for disabled fitting devices as well, if
1747          * the compact layout has been disabled.
1748          *
1749          * For each device that doesn't fit, disable it.
1750          */
1751         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1752         *region_enabled &= fits;
1753         if (vms->highmem_compact && !*region_enabled) {
1754             continue;
1755         }
1756 
1757         base = region_base + region_size;
1758         if (fits) {
1759             vms->highest_gpa = base - 1;
1760         }
1761     }
1762 }
1763 
1764 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1765 {
1766     MachineState *ms = MACHINE(vms);
1767     hwaddr base, device_memory_base, device_memory_size, memtop;
1768     int i;
1769 
1770     vms->memmap = extended_memmap;
1771 
1772     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1773         vms->memmap[i] = base_memmap[i];
1774     }
1775 
1776     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1777         error_report("unsupported number of memory slots: %"PRIu64,
1778                      ms->ram_slots);
1779         exit(EXIT_FAILURE);
1780     }
1781 
1782     /*
1783      * !highmem is exactly the same as limiting the PA space to 32bit,
1784      * irrespective of the underlying capabilities of the HW.
1785      */
1786     if (!vms->highmem) {
1787         pa_bits = 32;
1788     }
1789 
1790     /*
1791      * We compute the base of the high IO region depending on the
1792      * amount of initial and device memory. The device memory start/size
1793      * is aligned on 1GiB. We never put the high IO region below 256GiB
1794      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1795      * The device region size assumes 1GiB page max alignment per slot.
1796      */
1797     device_memory_base =
1798         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1799     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1800 
1801     /* Base address of the high IO region */
1802     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1803     if (memtop > BIT_ULL(pa_bits)) {
1804         error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1805                      pa_bits, memtop - BIT_ULL(pa_bits));
1806         exit(EXIT_FAILURE);
1807     }
1808     if (base < device_memory_base) {
1809         error_report("maxmem/slots too huge");
1810         exit(EXIT_FAILURE);
1811     }
1812     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1813         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1814     }
1815 
1816     /* We know for sure that at least the memory fits in the PA space */
1817     vms->highest_gpa = memtop - 1;
1818 
1819     virt_set_high_memmap(vms, base, pa_bits);
1820 
1821     if (device_memory_size > 0) {
1822         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1823     }
1824 }
1825 
1826 static VirtGICType finalize_gic_version_do(const char *accel_name,
1827                                            VirtGICType gic_version,
1828                                            int gics_supported,
1829                                            unsigned int max_cpus)
1830 {
1831     /* Convert host/max/nosel to GIC version number */
1832     switch (gic_version) {
1833     case VIRT_GIC_VERSION_HOST:
1834         if (!kvm_enabled()) {
1835             error_report("gic-version=host requires KVM");
1836             exit(1);
1837         }
1838 
1839         /* For KVM, gic-version=host means gic-version=max */
1840         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1841                                        gics_supported, max_cpus);
1842     case VIRT_GIC_VERSION_MAX:
1843         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1844             gic_version = VIRT_GIC_VERSION_4;
1845         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1846             gic_version = VIRT_GIC_VERSION_3;
1847         } else {
1848             gic_version = VIRT_GIC_VERSION_2;
1849         }
1850         break;
1851     case VIRT_GIC_VERSION_NOSEL:
1852         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1853             max_cpus <= GIC_NCPU) {
1854             gic_version = VIRT_GIC_VERSION_2;
1855         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1856             /*
1857              * in case the host does not support v2 emulation or
1858              * the end-user requested more than 8 VCPUs we now default
1859              * to v3. In any case defaulting to v2 would be broken.
1860              */
1861             gic_version = VIRT_GIC_VERSION_3;
1862         } else if (max_cpus > GIC_NCPU) {
1863             error_report("%s only supports GICv2 emulation but more than 8 "
1864                          "vcpus are requested", accel_name);
1865             exit(1);
1866         }
1867         break;
1868     case VIRT_GIC_VERSION_2:
1869     case VIRT_GIC_VERSION_3:
1870     case VIRT_GIC_VERSION_4:
1871         break;
1872     }
1873 
1874     /* Check chosen version is effectively supported */
1875     switch (gic_version) {
1876     case VIRT_GIC_VERSION_2:
1877         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1878             error_report("%s does not support GICv2 emulation", accel_name);
1879             exit(1);
1880         }
1881         break;
1882     case VIRT_GIC_VERSION_3:
1883         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1884             error_report("%s does not support GICv3 emulation", accel_name);
1885             exit(1);
1886         }
1887         break;
1888     case VIRT_GIC_VERSION_4:
1889         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1890             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1891                          accel_name);
1892             exit(1);
1893         }
1894         break;
1895     default:
1896         error_report("logic error in finalize_gic_version");
1897         exit(1);
1898         break;
1899     }
1900 
1901     return gic_version;
1902 }
1903 
1904 /*
1905  * finalize_gic_version - Determines the final gic_version
1906  * according to the gic-version property
1907  *
1908  * Default GIC type is v2
1909  */
1910 static void finalize_gic_version(VirtMachineState *vms)
1911 {
1912     const char *accel_name = current_accel_name();
1913     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1914     int gics_supported = 0;
1915 
1916     /* Determine which GIC versions the current environment supports */
1917     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1918         int probe_bitmap = kvm_arm_vgic_probe();
1919 
1920         if (!probe_bitmap) {
1921             error_report("Unable to determine GIC version supported by host");
1922             exit(1);
1923         }
1924 
1925         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1926             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1927         }
1928         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1929             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1930         }
1931     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1932         /* KVM w/o kernel irqchip can only deal with GICv2 */
1933         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1934         accel_name = "KVM with kernel-irqchip=off";
1935     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1936         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1937         if (module_object_class_by_name("arm-gicv3")) {
1938             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1939             if (vms->virt) {
1940                 /* GICv4 only makes sense if CPU has EL2 */
1941                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1942             }
1943         }
1944     } else {
1945         error_report("Unsupported accelerator, can not determine GIC support");
1946         exit(1);
1947     }
1948 
1949     /*
1950      * Then convert helpers like host/max to concrete GIC versions and ensure
1951      * the desired version is supported
1952      */
1953     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1954                                                gics_supported, max_cpus);
1955 }
1956 
1957 /*
1958  * virt_cpu_post_init() must be called after the CPUs have
1959  * been realized and the GIC has been created.
1960  */
1961 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1962 {
1963     int max_cpus = MACHINE(vms)->smp.max_cpus;
1964     bool aarch64, pmu, steal_time;
1965     CPUState *cpu;
1966 
1967     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1968     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1969     steal_time = object_property_get_bool(OBJECT(first_cpu),
1970                                           "kvm-steal-time", NULL);
1971 
1972     if (kvm_enabled()) {
1973         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1974         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1975 
1976         if (steal_time) {
1977             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1978             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1979 
1980             /* The memory region size must be a multiple of host page size. */
1981             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1982 
1983             if (pvtime_size > pvtime_reg_size) {
1984                 error_report("pvtime requires a %" HWADDR_PRId
1985                              " byte memory region for %d CPUs,"
1986                              " but only %" HWADDR_PRId " has been reserved",
1987                              pvtime_size, max_cpus, pvtime_reg_size);
1988                 exit(1);
1989             }
1990 
1991             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1992             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1993         }
1994 
1995         CPU_FOREACH(cpu) {
1996             if (pmu) {
1997                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1998                 if (kvm_irqchip_in_kernel()) {
1999                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2000                 }
2001                 kvm_arm_pmu_init(ARM_CPU(cpu));
2002             }
2003             if (steal_time) {
2004                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2005                                                   + cpu->cpu_index
2006                                                     * PVTIME_SIZE_PER_CPU);
2007             }
2008         }
2009     } else {
2010         if (aarch64 && vms->highmem) {
2011             int requested_pa_size = 64 - clz64(vms->highest_gpa);
2012             int pamax = arm_pamax(ARM_CPU(first_cpu));
2013 
2014             if (pamax < requested_pa_size) {
2015                 error_report("VCPU supports less PA bits (%d) than "
2016                              "requested by the memory map (%d)",
2017                              pamax, requested_pa_size);
2018                 exit(1);
2019             }
2020         }
2021     }
2022 }
2023 
2024 static void machvirt_init(MachineState *machine)
2025 {
2026     VirtMachineState *vms = VIRT_MACHINE(machine);
2027     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2028     MachineClass *mc = MACHINE_GET_CLASS(machine);
2029     const CPUArchIdList *possible_cpus;
2030     MemoryRegion *sysmem = get_system_memory();
2031     MemoryRegion *secure_sysmem = NULL;
2032     MemoryRegion *tag_sysmem = NULL;
2033     MemoryRegion *secure_tag_sysmem = NULL;
2034     int n, virt_max_cpus;
2035     bool firmware_loaded;
2036     bool aarch64 = true;
2037     bool has_ged = !vmc->no_ged;
2038     unsigned int smp_cpus = machine->smp.cpus;
2039     unsigned int max_cpus = machine->smp.max_cpus;
2040 
2041     possible_cpus = mc->possible_cpu_arch_ids(machine);
2042 
2043     /*
2044      * In accelerated mode, the memory map is computed earlier in kvm_type()
2045      * to create a VM with the right number of IPA bits.
2046      */
2047     if (!vms->memmap) {
2048         Object *cpuobj;
2049         ARMCPU *armcpu;
2050         int pa_bits;
2051 
2052         /*
2053          * Instantiate a temporary CPU object to find out about what
2054          * we are about to deal with. Once this is done, get rid of
2055          * the object.
2056          */
2057         cpuobj = object_new(possible_cpus->cpus[0].type);
2058         armcpu = ARM_CPU(cpuobj);
2059 
2060         pa_bits = arm_pamax(armcpu);
2061 
2062         object_unref(cpuobj);
2063 
2064         virt_set_memmap(vms, pa_bits);
2065     }
2066 
2067     /* We can probe only here because during property set
2068      * KVM is not available yet
2069      */
2070     finalize_gic_version(vms);
2071 
2072     if (vms->secure) {
2073         /*
2074          * The Secure view of the world is the same as the NonSecure,
2075          * but with a few extra devices. Create it as a container region
2076          * containing the system memory at low priority; any secure-only
2077          * devices go in at higher priority and take precedence.
2078          */
2079         secure_sysmem = g_new(MemoryRegion, 1);
2080         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2081                            UINT64_MAX);
2082         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2083     }
2084 
2085     firmware_loaded = virt_firmware_init(vms, sysmem,
2086                                          secure_sysmem ?: sysmem);
2087 
2088     /* If we have an EL3 boot ROM then the assumption is that it will
2089      * implement PSCI itself, so disable QEMU's internal implementation
2090      * so it doesn't get in the way. Instead of starting secondary
2091      * CPUs in PSCI powerdown state we will start them all running and
2092      * let the boot ROM sort them out.
2093      * The usual case is that we do use QEMU's PSCI implementation;
2094      * if the guest has EL2 then we will use SMC as the conduit,
2095      * and otherwise we will use HVC (for backwards compatibility and
2096      * because if we're using KVM then we must use HVC).
2097      */
2098     if (vms->secure && firmware_loaded) {
2099         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2100     } else if (vms->virt) {
2101         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2102     } else {
2103         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2104     }
2105 
2106     /*
2107      * The maximum number of CPUs depends on the GIC version, or on how
2108      * many redistributors we can fit into the memory map (which in turn
2109      * depends on whether this is a GICv3 or v4).
2110      */
2111     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2112         virt_max_cpus = GIC_NCPU;
2113     } else {
2114         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2115         if (vms->highmem_redists) {
2116             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2117         }
2118     }
2119 
2120     if (max_cpus > virt_max_cpus) {
2121         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2122                      "supported by machine 'mach-virt' (%d)",
2123                      max_cpus, virt_max_cpus);
2124         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2125             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2126         }
2127 
2128         exit(1);
2129     }
2130 
2131     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2132         error_report("mach-virt: %s does not support providing "
2133                      "Security extensions (TrustZone) to the guest CPU",
2134                      current_accel_name());
2135         exit(1);
2136     }
2137 
2138     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2139         error_report("mach-virt: %s does not support providing "
2140                      "Virtualization extensions to the guest CPU",
2141                      current_accel_name());
2142         exit(1);
2143     }
2144 
2145     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2146         error_report("mach-virt: %s does not support providing "
2147                      "MTE to the guest CPU",
2148                      current_accel_name());
2149         exit(1);
2150     }
2151 
2152     create_fdt(vms);
2153 
2154     assert(possible_cpus->len == max_cpus);
2155     for (n = 0; n < possible_cpus->len; n++) {
2156         Object *cpuobj;
2157         CPUState *cs;
2158 
2159         if (n >= smp_cpus) {
2160             break;
2161         }
2162 
2163         cpuobj = object_new(possible_cpus->cpus[n].type);
2164         object_property_set_int(cpuobj, "mp-affinity",
2165                                 possible_cpus->cpus[n].arch_id, NULL);
2166 
2167         cs = CPU(cpuobj);
2168         cs->cpu_index = n;
2169 
2170         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2171                           &error_fatal);
2172 
2173         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2174 
2175         if (!vms->secure) {
2176             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2177         }
2178 
2179         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2180             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2181         }
2182 
2183         if (vmc->kvm_no_adjvtime &&
2184             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2185             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2186         }
2187 
2188         if (vmc->no_kvm_steal_time &&
2189             object_property_find(cpuobj, "kvm-steal-time")) {
2190             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2191         }
2192 
2193         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2194             object_property_set_bool(cpuobj, "pmu", false, NULL);
2195         }
2196 
2197         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2198             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2199         }
2200 
2201         if (object_property_find(cpuobj, "reset-cbar")) {
2202             object_property_set_int(cpuobj, "reset-cbar",
2203                                     vms->memmap[VIRT_CPUPERIPHS].base,
2204                                     &error_abort);
2205         }
2206 
2207         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2208                                  &error_abort);
2209         if (vms->secure) {
2210             object_property_set_link(cpuobj, "secure-memory",
2211                                      OBJECT(secure_sysmem), &error_abort);
2212         }
2213 
2214         if (vms->mte) {
2215             /* Create the memory region only once, but link to all cpus. */
2216             if (!tag_sysmem) {
2217                 /*
2218                  * The property exists only if MemTag is supported.
2219                  * If it is, we must allocate the ram to back that up.
2220                  */
2221                 if (!object_property_find(cpuobj, "tag-memory")) {
2222                     error_report("MTE requested, but not supported "
2223                                  "by the guest CPU");
2224                     exit(1);
2225                 }
2226 
2227                 tag_sysmem = g_new(MemoryRegion, 1);
2228                 memory_region_init(tag_sysmem, OBJECT(machine),
2229                                    "tag-memory", UINT64_MAX / 32);
2230 
2231                 if (vms->secure) {
2232                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2233                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2234                                        "secure-tag-memory", UINT64_MAX / 32);
2235 
2236                     /* As with ram, secure-tag takes precedence over tag.  */
2237                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2238                                                         tag_sysmem, -1);
2239                 }
2240             }
2241 
2242             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2243                                      &error_abort);
2244             if (vms->secure) {
2245                 object_property_set_link(cpuobj, "secure-tag-memory",
2246                                          OBJECT(secure_tag_sysmem),
2247                                          &error_abort);
2248             }
2249         }
2250 
2251         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2252         object_unref(cpuobj);
2253     }
2254 
2255     /* Now we've created the CPUs we can see if they have the hypvirt timer */
2256     vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2257         !vmc->no_ns_el2_virt_timer_irq;
2258 
2259     fdt_add_timer_nodes(vms);
2260     fdt_add_cpu_nodes(vms);
2261 
2262     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2263                                 machine->ram);
2264 
2265     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2266 
2267     create_gic(vms, sysmem);
2268 
2269     virt_cpu_post_init(vms, sysmem);
2270 
2271     fdt_add_pmu_nodes(vms);
2272 
2273     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2274 
2275     if (vms->secure) {
2276         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2277         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2278     }
2279 
2280     if (tag_sysmem) {
2281         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2282                        machine->ram_size, "mach-virt.tag");
2283     }
2284 
2285     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2286 
2287     create_rtc(vms);
2288 
2289     create_pcie(vms);
2290 
2291     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2292         vms->acpi_dev = create_acpi_ged(vms);
2293     } else {
2294         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2295     }
2296 
2297     if (vms->secure && !vmc->no_secure_gpio) {
2298         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2299     }
2300 
2301      /* connect powerdown request */
2302      vms->powerdown_notifier.notify = virt_powerdown_req;
2303      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2304 
2305     /* Create mmio transports, so the user can create virtio backends
2306      * (which will be automatically plugged in to the transports). If
2307      * no backend is created the transport will just sit harmlessly idle.
2308      */
2309     create_virtio_devices(vms);
2310 
2311     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2312     rom_set_fw(vms->fw_cfg);
2313 
2314     create_platform_bus(vms);
2315 
2316     if (machine->nvdimms_state->is_enabled) {
2317         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2318             .space_id = AML_AS_SYSTEM_MEMORY,
2319             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2320             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2321         };
2322 
2323         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2324                                arm_virt_nvdimm_acpi_dsmio,
2325                                vms->fw_cfg, OBJECT(vms));
2326     }
2327 
2328     vms->bootinfo.ram_size = machine->ram_size;
2329     vms->bootinfo.board_id = -1;
2330     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2331     vms->bootinfo.get_dtb = machvirt_dtb;
2332     vms->bootinfo.skip_dtb_autoload = true;
2333     vms->bootinfo.firmware_loaded = firmware_loaded;
2334     vms->bootinfo.psci_conduit = vms->psci_conduit;
2335     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2336 
2337     vms->machine_done.notify = virt_machine_done;
2338     qemu_add_machine_init_done_notifier(&vms->machine_done);
2339 }
2340 
2341 static bool virt_get_secure(Object *obj, Error **errp)
2342 {
2343     VirtMachineState *vms = VIRT_MACHINE(obj);
2344 
2345     return vms->secure;
2346 }
2347 
2348 static void virt_set_secure(Object *obj, bool value, Error **errp)
2349 {
2350     VirtMachineState *vms = VIRT_MACHINE(obj);
2351 
2352     vms->secure = value;
2353 }
2354 
2355 static bool virt_get_virt(Object *obj, Error **errp)
2356 {
2357     VirtMachineState *vms = VIRT_MACHINE(obj);
2358 
2359     return vms->virt;
2360 }
2361 
2362 static void virt_set_virt(Object *obj, bool value, Error **errp)
2363 {
2364     VirtMachineState *vms = VIRT_MACHINE(obj);
2365 
2366     vms->virt = value;
2367 }
2368 
2369 static bool virt_get_highmem(Object *obj, Error **errp)
2370 {
2371     VirtMachineState *vms = VIRT_MACHINE(obj);
2372 
2373     return vms->highmem;
2374 }
2375 
2376 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2377 {
2378     VirtMachineState *vms = VIRT_MACHINE(obj);
2379 
2380     vms->highmem = value;
2381 }
2382 
2383 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2384 {
2385     VirtMachineState *vms = VIRT_MACHINE(obj);
2386 
2387     return vms->highmem_compact;
2388 }
2389 
2390 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2391 {
2392     VirtMachineState *vms = VIRT_MACHINE(obj);
2393 
2394     vms->highmem_compact = value;
2395 }
2396 
2397 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2398 {
2399     VirtMachineState *vms = VIRT_MACHINE(obj);
2400 
2401     return vms->highmem_redists;
2402 }
2403 
2404 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2405 {
2406     VirtMachineState *vms = VIRT_MACHINE(obj);
2407 
2408     vms->highmem_redists = value;
2409 }
2410 
2411 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2412 {
2413     VirtMachineState *vms = VIRT_MACHINE(obj);
2414 
2415     return vms->highmem_ecam;
2416 }
2417 
2418 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2419 {
2420     VirtMachineState *vms = VIRT_MACHINE(obj);
2421 
2422     vms->highmem_ecam = value;
2423 }
2424 
2425 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2426 {
2427     VirtMachineState *vms = VIRT_MACHINE(obj);
2428 
2429     return vms->highmem_mmio;
2430 }
2431 
2432 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2433 {
2434     VirtMachineState *vms = VIRT_MACHINE(obj);
2435 
2436     vms->highmem_mmio = value;
2437 }
2438 
2439 
2440 static bool virt_get_its(Object *obj, Error **errp)
2441 {
2442     VirtMachineState *vms = VIRT_MACHINE(obj);
2443 
2444     return vms->its;
2445 }
2446 
2447 static void virt_set_its(Object *obj, bool value, Error **errp)
2448 {
2449     VirtMachineState *vms = VIRT_MACHINE(obj);
2450 
2451     vms->its = value;
2452 }
2453 
2454 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2455 {
2456     VirtMachineState *vms = VIRT_MACHINE(obj);
2457 
2458     return vms->dtb_randomness;
2459 }
2460 
2461 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2462 {
2463     VirtMachineState *vms = VIRT_MACHINE(obj);
2464 
2465     vms->dtb_randomness = value;
2466 }
2467 
2468 static char *virt_get_oem_id(Object *obj, Error **errp)
2469 {
2470     VirtMachineState *vms = VIRT_MACHINE(obj);
2471 
2472     return g_strdup(vms->oem_id);
2473 }
2474 
2475 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2476 {
2477     VirtMachineState *vms = VIRT_MACHINE(obj);
2478     size_t len = strlen(value);
2479 
2480     if (len > 6) {
2481         error_setg(errp,
2482                    "User specified oem-id value is bigger than 6 bytes in size");
2483         return;
2484     }
2485 
2486     strncpy(vms->oem_id, value, 6);
2487 }
2488 
2489 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2490 {
2491     VirtMachineState *vms = VIRT_MACHINE(obj);
2492 
2493     return g_strdup(vms->oem_table_id);
2494 }
2495 
2496 static void virt_set_oem_table_id(Object *obj, const char *value,
2497                                   Error **errp)
2498 {
2499     VirtMachineState *vms = VIRT_MACHINE(obj);
2500     size_t len = strlen(value);
2501 
2502     if (len > 8) {
2503         error_setg(errp,
2504                    "User specified oem-table-id value is bigger than 8 bytes in size");
2505         return;
2506     }
2507     strncpy(vms->oem_table_id, value, 8);
2508 }
2509 
2510 
2511 bool virt_is_acpi_enabled(VirtMachineState *vms)
2512 {
2513     if (vms->acpi == ON_OFF_AUTO_OFF) {
2514         return false;
2515     }
2516     return true;
2517 }
2518 
2519 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2520                           void *opaque, Error **errp)
2521 {
2522     VirtMachineState *vms = VIRT_MACHINE(obj);
2523     OnOffAuto acpi = vms->acpi;
2524 
2525     visit_type_OnOffAuto(v, name, &acpi, errp);
2526 }
2527 
2528 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2529                           void *opaque, Error **errp)
2530 {
2531     VirtMachineState *vms = VIRT_MACHINE(obj);
2532 
2533     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2534 }
2535 
2536 static bool virt_get_ras(Object *obj, Error **errp)
2537 {
2538     VirtMachineState *vms = VIRT_MACHINE(obj);
2539 
2540     return vms->ras;
2541 }
2542 
2543 static void virt_set_ras(Object *obj, bool value, Error **errp)
2544 {
2545     VirtMachineState *vms = VIRT_MACHINE(obj);
2546 
2547     vms->ras = value;
2548 }
2549 
2550 static bool virt_get_mte(Object *obj, Error **errp)
2551 {
2552     VirtMachineState *vms = VIRT_MACHINE(obj);
2553 
2554     return vms->mte;
2555 }
2556 
2557 static void virt_set_mte(Object *obj, bool value, Error **errp)
2558 {
2559     VirtMachineState *vms = VIRT_MACHINE(obj);
2560 
2561     vms->mte = value;
2562 }
2563 
2564 static char *virt_get_gic_version(Object *obj, Error **errp)
2565 {
2566     VirtMachineState *vms = VIRT_MACHINE(obj);
2567     const char *val;
2568 
2569     switch (vms->gic_version) {
2570     case VIRT_GIC_VERSION_4:
2571         val = "4";
2572         break;
2573     case VIRT_GIC_VERSION_3:
2574         val = "3";
2575         break;
2576     default:
2577         val = "2";
2578         break;
2579     }
2580     return g_strdup(val);
2581 }
2582 
2583 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2584 {
2585     VirtMachineState *vms = VIRT_MACHINE(obj);
2586 
2587     if (!strcmp(value, "4")) {
2588         vms->gic_version = VIRT_GIC_VERSION_4;
2589     } else if (!strcmp(value, "3")) {
2590         vms->gic_version = VIRT_GIC_VERSION_3;
2591     } else if (!strcmp(value, "2")) {
2592         vms->gic_version = VIRT_GIC_VERSION_2;
2593     } else if (!strcmp(value, "host")) {
2594         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2595     } else if (!strcmp(value, "max")) {
2596         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2597     } else {
2598         error_setg(errp, "Invalid gic-version value");
2599         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2600     }
2601 }
2602 
2603 static char *virt_get_iommu(Object *obj, Error **errp)
2604 {
2605     VirtMachineState *vms = VIRT_MACHINE(obj);
2606 
2607     switch (vms->iommu) {
2608     case VIRT_IOMMU_NONE:
2609         return g_strdup("none");
2610     case VIRT_IOMMU_SMMUV3:
2611         return g_strdup("smmuv3");
2612     default:
2613         g_assert_not_reached();
2614     }
2615 }
2616 
2617 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2618 {
2619     VirtMachineState *vms = VIRT_MACHINE(obj);
2620 
2621     if (!strcmp(value, "smmuv3")) {
2622         vms->iommu = VIRT_IOMMU_SMMUV3;
2623     } else if (!strcmp(value, "none")) {
2624         vms->iommu = VIRT_IOMMU_NONE;
2625     } else {
2626         error_setg(errp, "Invalid iommu value");
2627         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2628     }
2629 }
2630 
2631 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2632 {
2633     VirtMachineState *vms = VIRT_MACHINE(obj);
2634 
2635     return vms->default_bus_bypass_iommu;
2636 }
2637 
2638 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2639                                               Error **errp)
2640 {
2641     VirtMachineState *vms = VIRT_MACHINE(obj);
2642 
2643     vms->default_bus_bypass_iommu = value;
2644 }
2645 
2646 static CpuInstanceProperties
2647 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2648 {
2649     MachineClass *mc = MACHINE_GET_CLASS(ms);
2650     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2651 
2652     assert(cpu_index < possible_cpus->len);
2653     return possible_cpus->cpus[cpu_index].props;
2654 }
2655 
2656 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2657 {
2658     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2659 
2660     return socket_id % ms->numa_state->num_nodes;
2661 }
2662 
2663 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2664 {
2665     int n;
2666     unsigned int max_cpus = ms->smp.max_cpus;
2667     VirtMachineState *vms = VIRT_MACHINE(ms);
2668     MachineClass *mc = MACHINE_GET_CLASS(vms);
2669 
2670     if (ms->possible_cpus) {
2671         assert(ms->possible_cpus->len == max_cpus);
2672         return ms->possible_cpus;
2673     }
2674 
2675     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2676                                   sizeof(CPUArchId) * max_cpus);
2677     ms->possible_cpus->len = max_cpus;
2678     for (n = 0; n < ms->possible_cpus->len; n++) {
2679         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2680         ms->possible_cpus->cpus[n].arch_id =
2681             virt_cpu_mp_affinity(vms, n);
2682 
2683         assert(!mc->smp_props.dies_supported);
2684         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2685         ms->possible_cpus->cpus[n].props.socket_id =
2686             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2687         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2688         ms->possible_cpus->cpus[n].props.cluster_id =
2689             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2690         ms->possible_cpus->cpus[n].props.has_core_id = true;
2691         ms->possible_cpus->cpus[n].props.core_id =
2692             (n / ms->smp.threads) % ms->smp.cores;
2693         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2694         ms->possible_cpus->cpus[n].props.thread_id =
2695             n % ms->smp.threads;
2696     }
2697     return ms->possible_cpus;
2698 }
2699 
2700 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2701                                  Error **errp)
2702 {
2703     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2704     const MachineState *ms = MACHINE(hotplug_dev);
2705     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2706 
2707     if (!vms->acpi_dev) {
2708         error_setg(errp,
2709                    "memory hotplug is not enabled: missing acpi-ged device");
2710         return;
2711     }
2712 
2713     if (vms->mte) {
2714         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2715         return;
2716     }
2717 
2718     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2719         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2720         return;
2721     }
2722 
2723     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2724 }
2725 
2726 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2727                              DeviceState *dev, Error **errp)
2728 {
2729     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2730     MachineState *ms = MACHINE(hotplug_dev);
2731     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2732 
2733     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2734 
2735     if (is_nvdimm) {
2736         nvdimm_plug(ms->nvdimms_state);
2737     }
2738 
2739     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2740                          dev, &error_abort);
2741 }
2742 
2743 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2744                                             DeviceState *dev, Error **errp)
2745 {
2746     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2747 
2748     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2749         virt_memory_pre_plug(hotplug_dev, dev, errp);
2750     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2751         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2752     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2753         hwaddr db_start = 0, db_end = 0;
2754         QList *reserved_regions;
2755         char *resv_prop_str;
2756 
2757         if (vms->iommu != VIRT_IOMMU_NONE) {
2758             error_setg(errp, "virt machine does not support multiple IOMMUs");
2759             return;
2760         }
2761 
2762         switch (vms->msi_controller) {
2763         case VIRT_MSI_CTRL_NONE:
2764             return;
2765         case VIRT_MSI_CTRL_ITS:
2766             /* GITS_TRANSLATER page */
2767             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2768             db_end = base_memmap[VIRT_GIC_ITS].base +
2769                      base_memmap[VIRT_GIC_ITS].size - 1;
2770             break;
2771         case VIRT_MSI_CTRL_GICV2M:
2772             /* MSI_SETSPI_NS page */
2773             db_start = base_memmap[VIRT_GIC_V2M].base;
2774             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2775             break;
2776         }
2777         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2778                                         db_start, db_end,
2779                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2780 
2781         reserved_regions = qlist_new();
2782         qlist_append_str(reserved_regions, resv_prop_str);
2783         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2784         g_free(resv_prop_str);
2785     }
2786 }
2787 
2788 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2789                                         DeviceState *dev, Error **errp)
2790 {
2791     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2792 
2793     if (vms->platform_bus_dev) {
2794         MachineClass *mc = MACHINE_GET_CLASS(vms);
2795 
2796         if (device_is_dynamic_sysbus(mc, dev)) {
2797             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2798                                      SYS_BUS_DEVICE(dev));
2799         }
2800     }
2801 
2802     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2803         virt_memory_plug(hotplug_dev, dev, errp);
2804     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2805         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2806     }
2807 
2808     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2809         PCIDevice *pdev = PCI_DEVICE(dev);
2810 
2811         vms->iommu = VIRT_IOMMU_VIRTIO;
2812         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2813         create_virtio_iommu_dt_bindings(vms);
2814     }
2815 }
2816 
2817 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2818                                      DeviceState *dev, Error **errp)
2819 {
2820     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2821 
2822     if (!vms->acpi_dev) {
2823         error_setg(errp,
2824                    "memory hotplug is not enabled: missing acpi-ged device");
2825         return;
2826     }
2827 
2828     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2829         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2830         return;
2831     }
2832 
2833     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2834                                    errp);
2835 }
2836 
2837 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2838                              DeviceState *dev, Error **errp)
2839 {
2840     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2841     Error *local_err = NULL;
2842 
2843     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2844     if (local_err) {
2845         goto out;
2846     }
2847 
2848     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2849     qdev_unrealize(dev);
2850 
2851 out:
2852     error_propagate(errp, local_err);
2853 }
2854 
2855 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2856                                           DeviceState *dev, Error **errp)
2857 {
2858     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2859         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2860     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2861         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2862                                      errp);
2863     } else {
2864         error_setg(errp, "device unplug request for unsupported device"
2865                    " type: %s", object_get_typename(OBJECT(dev)));
2866     }
2867 }
2868 
2869 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2870                                           DeviceState *dev, Error **errp)
2871 {
2872     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2873         virt_dimm_unplug(hotplug_dev, dev, errp);
2874     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2875         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2876     } else {
2877         error_setg(errp, "virt: device unplug for unsupported device"
2878                    " type: %s", object_get_typename(OBJECT(dev)));
2879     }
2880 }
2881 
2882 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2883                                                         DeviceState *dev)
2884 {
2885     MachineClass *mc = MACHINE_GET_CLASS(machine);
2886 
2887     if (device_is_dynamic_sysbus(mc, dev) ||
2888         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2889         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2890         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2891         return HOTPLUG_HANDLER(machine);
2892     }
2893     return NULL;
2894 }
2895 
2896 /*
2897  * for arm64 kvm_type [7-0] encodes the requested number of bits
2898  * in the IPA address space
2899  */
2900 static int virt_kvm_type(MachineState *ms, const char *type_str)
2901 {
2902     VirtMachineState *vms = VIRT_MACHINE(ms);
2903     int max_vm_pa_size, requested_pa_size;
2904     bool fixed_ipa;
2905 
2906     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2907 
2908     /* we freeze the memory map to compute the highest gpa */
2909     virt_set_memmap(vms, max_vm_pa_size);
2910 
2911     requested_pa_size = 64 - clz64(vms->highest_gpa);
2912 
2913     /*
2914      * KVM requires the IPA size to be at least 32 bits.
2915      */
2916     if (requested_pa_size < 32) {
2917         requested_pa_size = 32;
2918     }
2919 
2920     if (requested_pa_size > max_vm_pa_size) {
2921         error_report("-m and ,maxmem option values "
2922                      "require an IPA range (%d bits) larger than "
2923                      "the one supported by the host (%d bits)",
2924                      requested_pa_size, max_vm_pa_size);
2925         return -1;
2926     }
2927     /*
2928      * We return the requested PA log size, unless KVM only supports
2929      * the implicit legacy 40b IPA setting, in which case the kvm_type
2930      * must be 0.
2931      */
2932     return fixed_ipa ? 0 : requested_pa_size;
2933 }
2934 
2935 static void virt_machine_class_init(ObjectClass *oc, void *data)
2936 {
2937     MachineClass *mc = MACHINE_CLASS(oc);
2938     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2939     static const char * const valid_cpu_types[] = {
2940 #ifdef CONFIG_TCG
2941         ARM_CPU_TYPE_NAME("cortex-a7"),
2942         ARM_CPU_TYPE_NAME("cortex-a15"),
2943 #ifdef TARGET_AARCH64
2944         ARM_CPU_TYPE_NAME("cortex-a35"),
2945         ARM_CPU_TYPE_NAME("cortex-a55"),
2946         ARM_CPU_TYPE_NAME("cortex-a72"),
2947         ARM_CPU_TYPE_NAME("cortex-a76"),
2948         ARM_CPU_TYPE_NAME("cortex-a710"),
2949         ARM_CPU_TYPE_NAME("a64fx"),
2950         ARM_CPU_TYPE_NAME("neoverse-n1"),
2951         ARM_CPU_TYPE_NAME("neoverse-v1"),
2952         ARM_CPU_TYPE_NAME("neoverse-n2"),
2953 #endif /* TARGET_AARCH64 */
2954 #endif /* CONFIG_TCG */
2955 #ifdef TARGET_AARCH64
2956         ARM_CPU_TYPE_NAME("cortex-a53"),
2957         ARM_CPU_TYPE_NAME("cortex-a57"),
2958 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2959         ARM_CPU_TYPE_NAME("host"),
2960 #endif /* CONFIG_KVM || CONFIG_HVF */
2961 #endif /* TARGET_AARCH64 */
2962         ARM_CPU_TYPE_NAME("max"),
2963         NULL
2964     };
2965 
2966     mc->init = machvirt_init;
2967     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2968      * The value may be reduced later when we have more information about the
2969      * configuration of the particular instance.
2970      */
2971     mc->max_cpus = 512;
2972     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2973     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2974     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2975     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2976 #ifdef CONFIG_TPM
2977     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2978 #endif
2979     mc->block_default_type = IF_VIRTIO;
2980     mc->no_cdrom = 1;
2981     mc->pci_allow_0_address = true;
2982     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2983     mc->minimum_page_bits = 12;
2984     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2985     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2986 #ifdef CONFIG_TCG
2987     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2988 #else
2989     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2990 #endif
2991     mc->valid_cpu_types = valid_cpu_types;
2992     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2993     mc->kvm_type = virt_kvm_type;
2994     assert(!mc->get_hotplug_handler);
2995     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2996     hc->pre_plug = virt_machine_device_pre_plug_cb;
2997     hc->plug = virt_machine_device_plug_cb;
2998     hc->unplug_request = virt_machine_device_unplug_request_cb;
2999     hc->unplug = virt_machine_device_unplug_cb;
3000     mc->nvdimm_supported = true;
3001     mc->smp_props.clusters_supported = true;
3002     mc->auto_enable_numa_with_memhp = true;
3003     mc->auto_enable_numa_with_memdev = true;
3004     /* platform instead of architectural choice */
3005     mc->cpu_cluster_has_numa_boundary = true;
3006     mc->default_ram_id = "mach-virt.ram";
3007     mc->default_nic = "virtio-net-pci";
3008 
3009     object_class_property_add(oc, "acpi", "OnOffAuto",
3010         virt_get_acpi, virt_set_acpi,
3011         NULL, NULL);
3012     object_class_property_set_description(oc, "acpi",
3013         "Enable ACPI");
3014     object_class_property_add_bool(oc, "secure", virt_get_secure,
3015                                    virt_set_secure);
3016     object_class_property_set_description(oc, "secure",
3017                                                 "Set on/off to enable/disable the ARM "
3018                                                 "Security Extensions (TrustZone)");
3019 
3020     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3021                                    virt_set_virt);
3022     object_class_property_set_description(oc, "virtualization",
3023                                           "Set on/off to enable/disable emulating a "
3024                                           "guest CPU which implements the ARM "
3025                                           "Virtualization Extensions");
3026 
3027     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3028                                    virt_set_highmem);
3029     object_class_property_set_description(oc, "highmem",
3030                                           "Set on/off to enable/disable using "
3031                                           "physical address space above 32 bits");
3032 
3033     object_class_property_add_bool(oc, "compact-highmem",
3034                                    virt_get_compact_highmem,
3035                                    virt_set_compact_highmem);
3036     object_class_property_set_description(oc, "compact-highmem",
3037                                           "Set on/off to enable/disable compact "
3038                                           "layout for high memory regions");
3039 
3040     object_class_property_add_bool(oc, "highmem-redists",
3041                                    virt_get_highmem_redists,
3042                                    virt_set_highmem_redists);
3043     object_class_property_set_description(oc, "highmem-redists",
3044                                           "Set on/off to enable/disable high "
3045                                           "memory region for GICv3 or GICv4 "
3046                                           "redistributor");
3047 
3048     object_class_property_add_bool(oc, "highmem-ecam",
3049                                    virt_get_highmem_ecam,
3050                                    virt_set_highmem_ecam);
3051     object_class_property_set_description(oc, "highmem-ecam",
3052                                           "Set on/off to enable/disable high "
3053                                           "memory region for PCI ECAM");
3054 
3055     object_class_property_add_bool(oc, "highmem-mmio",
3056                                    virt_get_highmem_mmio,
3057                                    virt_set_highmem_mmio);
3058     object_class_property_set_description(oc, "highmem-mmio",
3059                                           "Set on/off to enable/disable high "
3060                                           "memory region for PCI MMIO");
3061 
3062     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3063                                   virt_set_gic_version);
3064     object_class_property_set_description(oc, "gic-version",
3065                                           "Set GIC version. "
3066                                           "Valid values are 2, 3, 4, host and max");
3067 
3068     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3069     object_class_property_set_description(oc, "iommu",
3070                                           "Set the IOMMU type. "
3071                                           "Valid values are none and smmuv3");
3072 
3073     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3074                                    virt_get_default_bus_bypass_iommu,
3075                                    virt_set_default_bus_bypass_iommu);
3076     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3077                                           "Set on/off to enable/disable "
3078                                           "bypass_iommu for default root bus");
3079 
3080     object_class_property_add_bool(oc, "ras", virt_get_ras,
3081                                    virt_set_ras);
3082     object_class_property_set_description(oc, "ras",
3083                                           "Set on/off to enable/disable reporting host memory errors "
3084                                           "to a KVM guest using ACPI and guest external abort exceptions");
3085 
3086     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3087     object_class_property_set_description(oc, "mte",
3088                                           "Set on/off to enable/disable emulating a "
3089                                           "guest CPU which implements the ARM "
3090                                           "Memory Tagging Extension");
3091 
3092     object_class_property_add_bool(oc, "its", virt_get_its,
3093                                    virt_set_its);
3094     object_class_property_set_description(oc, "its",
3095                                           "Set on/off to enable/disable "
3096                                           "ITS instantiation");
3097 
3098     object_class_property_add_bool(oc, "dtb-randomness",
3099                                    virt_get_dtb_randomness,
3100                                    virt_set_dtb_randomness);
3101     object_class_property_set_description(oc, "dtb-randomness",
3102                                           "Set off to disable passing random or "
3103                                           "non-deterministic dtb nodes to guest");
3104 
3105     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3106                                    virt_get_dtb_randomness,
3107                                    virt_set_dtb_randomness);
3108     object_class_property_set_description(oc, "dtb-kaslr-seed",
3109                                           "Deprecated synonym of dtb-randomness");
3110 
3111     object_class_property_add_str(oc, "x-oem-id",
3112                                   virt_get_oem_id,
3113                                   virt_set_oem_id);
3114     object_class_property_set_description(oc, "x-oem-id",
3115                                           "Override the default value of field OEMID "
3116                                           "in ACPI table header."
3117                                           "The string may be up to 6 bytes in size");
3118 
3119 
3120     object_class_property_add_str(oc, "x-oem-table-id",
3121                                   virt_get_oem_table_id,
3122                                   virt_set_oem_table_id);
3123     object_class_property_set_description(oc, "x-oem-table-id",
3124                                           "Override the default value of field OEM Table ID "
3125                                           "in ACPI table header."
3126                                           "The string may be up to 8 bytes in size");
3127 
3128 }
3129 
3130 static void virt_instance_init(Object *obj)
3131 {
3132     VirtMachineState *vms = VIRT_MACHINE(obj);
3133     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3134 
3135     /* EL3 is disabled by default on virt: this makes us consistent
3136      * between KVM and TCG for this board, and it also allows us to
3137      * boot UEFI blobs which assume no TrustZone support.
3138      */
3139     vms->secure = false;
3140 
3141     /* EL2 is also disabled by default, for similar reasons */
3142     vms->virt = false;
3143 
3144     /* High memory is enabled by default */
3145     vms->highmem = true;
3146     vms->highmem_compact = !vmc->no_highmem_compact;
3147     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3148 
3149     vms->highmem_ecam = !vmc->no_highmem_ecam;
3150     vms->highmem_mmio = true;
3151     vms->highmem_redists = true;
3152 
3153     if (vmc->no_its) {
3154         vms->its = false;
3155     } else {
3156         /* Default allows ITS instantiation */
3157         vms->its = true;
3158 
3159         if (vmc->no_tcg_its) {
3160             vms->tcg_its = false;
3161         } else {
3162             vms->tcg_its = true;
3163         }
3164     }
3165 
3166     /* Default disallows iommu instantiation */
3167     vms->iommu = VIRT_IOMMU_NONE;
3168 
3169     /* The default root bus is attached to iommu by default */
3170     vms->default_bus_bypass_iommu = false;
3171 
3172     /* Default disallows RAS instantiation */
3173     vms->ras = false;
3174 
3175     /* MTE is disabled by default.  */
3176     vms->mte = false;
3177 
3178     /* Supply kaslr-seed and rng-seed by default */
3179     vms->dtb_randomness = true;
3180 
3181     vms->irqmap = a15irqmap;
3182 
3183     virt_flash_create(vms);
3184 
3185     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3186     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3187 }
3188 
3189 static const TypeInfo virt_machine_info = {
3190     .name          = TYPE_VIRT_MACHINE,
3191     .parent        = TYPE_MACHINE,
3192     .abstract      = true,
3193     .instance_size = sizeof(VirtMachineState),
3194     .class_size    = sizeof(VirtMachineClass),
3195     .class_init    = virt_machine_class_init,
3196     .instance_init = virt_instance_init,
3197     .interfaces = (InterfaceInfo[]) {
3198          { TYPE_HOTPLUG_HANDLER },
3199          { }
3200     },
3201 };
3202 
3203 static void machvirt_machine_init(void)
3204 {
3205     type_register_static(&virt_machine_info);
3206 }
3207 type_init(machvirt_machine_init);
3208 
3209 static void virt_machine_9_0_options(MachineClass *mc)
3210 {
3211 }
3212 DEFINE_VIRT_MACHINE_AS_LATEST(9, 0)
3213 
3214 static void virt_machine_8_2_options(MachineClass *mc)
3215 {
3216     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3217 
3218     virt_machine_9_0_options(mc);
3219     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3220     /*
3221      * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3222      * earlier machines. (Exposing it tickles a bug in older EDK2
3223      * guest BIOS binaries.)
3224      */
3225     vmc->no_ns_el2_virt_timer_irq = true;
3226 }
3227 DEFINE_VIRT_MACHINE(8, 2)
3228 
3229 static void virt_machine_8_1_options(MachineClass *mc)
3230 {
3231     virt_machine_8_2_options(mc);
3232     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3233 }
3234 DEFINE_VIRT_MACHINE(8, 1)
3235 
3236 static void virt_machine_8_0_options(MachineClass *mc)
3237 {
3238     virt_machine_8_1_options(mc);
3239     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3240 }
3241 DEFINE_VIRT_MACHINE(8, 0)
3242 
3243 static void virt_machine_7_2_options(MachineClass *mc)
3244 {
3245     virt_machine_8_0_options(mc);
3246     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3247 }
3248 DEFINE_VIRT_MACHINE(7, 2)
3249 
3250 static void virt_machine_7_1_options(MachineClass *mc)
3251 {
3252     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3253 
3254     virt_machine_7_2_options(mc);
3255     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3256     /* Compact layout for high memory regions was introduced with 7.2 */
3257     vmc->no_highmem_compact = true;
3258 }
3259 DEFINE_VIRT_MACHINE(7, 1)
3260 
3261 static void virt_machine_7_0_options(MachineClass *mc)
3262 {
3263     virt_machine_7_1_options(mc);
3264     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3265 }
3266 DEFINE_VIRT_MACHINE(7, 0)
3267 
3268 static void virt_machine_6_2_options(MachineClass *mc)
3269 {
3270     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3271 
3272     virt_machine_7_0_options(mc);
3273     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3274     vmc->no_tcg_lpa2 = true;
3275 }
3276 DEFINE_VIRT_MACHINE(6, 2)
3277 
3278 static void virt_machine_6_1_options(MachineClass *mc)
3279 {
3280     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3281 
3282     virt_machine_6_2_options(mc);
3283     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3284     mc->smp_props.prefer_sockets = true;
3285     vmc->no_cpu_topology = true;
3286 
3287     /* qemu ITS was introduced with 6.2 */
3288     vmc->no_tcg_its = true;
3289 }
3290 DEFINE_VIRT_MACHINE(6, 1)
3291 
3292 static void virt_machine_6_0_options(MachineClass *mc)
3293 {
3294     virt_machine_6_1_options(mc);
3295     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3296 }
3297 DEFINE_VIRT_MACHINE(6, 0)
3298 
3299 static void virt_machine_5_2_options(MachineClass *mc)
3300 {
3301     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3302 
3303     virt_machine_6_0_options(mc);
3304     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3305     vmc->no_secure_gpio = true;
3306 }
3307 DEFINE_VIRT_MACHINE(5, 2)
3308 
3309 static void virt_machine_5_1_options(MachineClass *mc)
3310 {
3311     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3312 
3313     virt_machine_5_2_options(mc);
3314     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3315     vmc->no_kvm_steal_time = true;
3316 }
3317 DEFINE_VIRT_MACHINE(5, 1)
3318 
3319 static void virt_machine_5_0_options(MachineClass *mc)
3320 {
3321     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3322 
3323     virt_machine_5_1_options(mc);
3324     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3325     mc->numa_mem_supported = true;
3326     vmc->acpi_expose_flash = true;
3327     mc->auto_enable_numa_with_memdev = false;
3328 }
3329 DEFINE_VIRT_MACHINE(5, 0)
3330 
3331 static void virt_machine_4_2_options(MachineClass *mc)
3332 {
3333     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3334 
3335     virt_machine_5_0_options(mc);
3336     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3337     vmc->kvm_no_adjvtime = true;
3338 }
3339 DEFINE_VIRT_MACHINE(4, 2)
3340 
3341 static void virt_machine_4_1_options(MachineClass *mc)
3342 {
3343     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3344 
3345     virt_machine_4_2_options(mc);
3346     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3347     vmc->no_ged = true;
3348     mc->auto_enable_numa_with_memhp = false;
3349 }
3350 DEFINE_VIRT_MACHINE(4, 1)
3351 
3352 static void virt_machine_4_0_options(MachineClass *mc)
3353 {
3354     virt_machine_4_1_options(mc);
3355     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3356 }
3357 DEFINE_VIRT_MACHINE(4, 0)
3358 
3359 static void virt_machine_3_1_options(MachineClass *mc)
3360 {
3361     virt_machine_4_0_options(mc);
3362     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3363 }
3364 DEFINE_VIRT_MACHINE(3, 1)
3365 
3366 static void virt_machine_3_0_options(MachineClass *mc)
3367 {
3368     virt_machine_3_1_options(mc);
3369     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3370 }
3371 DEFINE_VIRT_MACHINE(3, 0)
3372 
3373 static void virt_machine_2_12_options(MachineClass *mc)
3374 {
3375     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3376 
3377     virt_machine_3_0_options(mc);
3378     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3379     vmc->no_highmem_ecam = true;
3380     mc->max_cpus = 255;
3381 }
3382 DEFINE_VIRT_MACHINE(2, 12)
3383 
3384 static void virt_machine_2_11_options(MachineClass *mc)
3385 {
3386     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3387 
3388     virt_machine_2_12_options(mc);
3389     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3390     vmc->smbios_old_sys_ver = true;
3391 }
3392 DEFINE_VIRT_MACHINE(2, 11)
3393 
3394 static void virt_machine_2_10_options(MachineClass *mc)
3395 {
3396     virt_machine_2_11_options(mc);
3397     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3398     /* before 2.11 we never faulted accesses to bad addresses */
3399     mc->ignore_memory_transaction_failures = true;
3400 }
3401 DEFINE_VIRT_MACHINE(2, 10)
3402 
3403 static void virt_machine_2_9_options(MachineClass *mc)
3404 {
3405     virt_machine_2_10_options(mc);
3406     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3407 }
3408 DEFINE_VIRT_MACHINE(2, 9)
3409 
3410 static void virt_machine_2_8_options(MachineClass *mc)
3411 {
3412     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3413 
3414     virt_machine_2_9_options(mc);
3415     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3416     /* For 2.8 and earlier we falsely claimed in the DT that
3417      * our timers were edge-triggered, not level-triggered.
3418      */
3419     vmc->claim_edge_triggered_timers = true;
3420 }
3421 DEFINE_VIRT_MACHINE(2, 8)
3422 
3423 static void virt_machine_2_7_options(MachineClass *mc)
3424 {
3425     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3426 
3427     virt_machine_2_8_options(mc);
3428     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3429     /* ITS was introduced with 2.8 */
3430     vmc->no_its = true;
3431     /* Stick with 1K pages for migration compatibility */
3432     mc->minimum_page_bits = 0;
3433 }
3434 DEFINE_VIRT_MACHINE(2, 7)
3435 
3436 static void virt_machine_2_6_options(MachineClass *mc)
3437 {
3438     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3439 
3440     virt_machine_2_7_options(mc);
3441     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3442     vmc->disallow_affinity_adjustment = true;
3443     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3444     vmc->no_pmu = true;
3445 }
3446 DEFINE_VIRT_MACHINE(2, 6)
3447