xref: /qemu/hw/arm/virt.c (revision 7a21bee2)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/tpm.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/core/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/irq.h"
66 #include "kvm_arm.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/memory-device.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-mem-pci.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
82 
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85                                                     void *data) \
86     { \
87         MachineClass *mc = MACHINE_CLASS(oc); \
88         virt_machine_##major##_##minor##_options(mc); \
89         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90         if (latest) { \
91             mc->alias = "virt"; \
92         } \
93     } \
94     static const TypeInfo machvirt_##major##_##minor##_info = { \
95         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96         .parent = TYPE_VIRT_MACHINE, \
97         .class_init = virt_##major##_##minor##_class_init, \
98     }; \
99     static void machvirt_machine_##major##_##minor##_init(void) \
100     { \
101         type_register_static(&machvirt_##major##_##minor##_info); \
102     } \
103     type_init(machvirt_machine_##major##_##minor##_init);
104 
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109 
110 
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
113 
114 #define PLATFORM_BUS_NUM_IRQS 64
115 
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119 
120 /* Addresses and sizes of our components.
121  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122  * 128MB..256MB is used for miscellaneous device I/O.
123  * 256MB..1GB is reserved for possible future PCI support (ie where the
124  * PCI memory window will go if we add a PCI host controller).
125  * 1GB and up is RAM (which may happily spill over into the
126  * high memory region beyond 4GB).
127  * This represents a compromise between how much RAM can be given to
128  * a 32 bit VM and leaving space for expansion and in particular for PCI.
129  * Note that devices should generally be placed at multiples of 0x10000,
130  * to accommodate guests using 64K pages.
131  */
132 static const MemMapEntry base_memmap[] = {
133     /* Space up to 0x8000000 is reserved for a boot ROM */
134     [VIRT_FLASH] =              {          0, 0x08000000 },
135     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
136     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
138     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
139     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
140     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
141     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
142     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
144     /* This redistributor space allows up to 2*64kB*123 CPUs */
145     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
146     [VIRT_UART] =               { 0x09000000, 0x00001000 },
147     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
148     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
149     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
150     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
151     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
152     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
155     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
156     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
157     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
158     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
160     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
161     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
162     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
163     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
164     /* Actual RAM size depends on initial RAM and device memory settings */
165     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
166 };
167 
168 /*
169  * Highmem IO Regions: This memory map is floating, located after the RAM.
170  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171  * top of the RAM, so that its base get the same alignment as the size,
172  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174  * Note the extended_memmap is sized so that it eventually also includes the
175  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176  * index of base_memmap).
177  */
178 static MemMapEntry extended_memmap[] = {
179     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
180     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
181     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
182     /* Second PCIe window */
183     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
184 };
185 
186 static const int a15irqmap[] = {
187     [VIRT_UART] = 1,
188     [VIRT_RTC] = 2,
189     [VIRT_PCIE] = 3, /* ... to 6 */
190     [VIRT_GPIO] = 7,
191     [VIRT_SECURE_UART] = 8,
192     [VIRT_ACPI_GED] = 9,
193     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
194     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
195     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
196     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 };
198 
199 static const char *valid_cpus[] = {
200     ARM_CPU_TYPE_NAME("cortex-a7"),
201     ARM_CPU_TYPE_NAME("cortex-a15"),
202     ARM_CPU_TYPE_NAME("cortex-a53"),
203     ARM_CPU_TYPE_NAME("cortex-a57"),
204     ARM_CPU_TYPE_NAME("cortex-a72"),
205     ARM_CPU_TYPE_NAME("cortex-a76"),
206     ARM_CPU_TYPE_NAME("a64fx"),
207     ARM_CPU_TYPE_NAME("neoverse-n1"),
208     ARM_CPU_TYPE_NAME("host"),
209     ARM_CPU_TYPE_NAME("max"),
210 };
211 
212 static bool cpu_type_valid(const char *cpu)
213 {
214     int i;
215 
216     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
217         if (strcmp(cpu, valid_cpus[i]) == 0) {
218             return true;
219         }
220     }
221     return false;
222 }
223 
224 static void create_randomness(MachineState *ms, const char *node)
225 {
226     struct {
227         uint64_t kaslr;
228         uint8_t rng[32];
229     } seed;
230 
231     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
232         return;
233     }
234     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
235     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
236 }
237 
238 static void create_fdt(VirtMachineState *vms)
239 {
240     MachineState *ms = MACHINE(vms);
241     int nb_numa_nodes = ms->numa_state->num_nodes;
242     void *fdt = create_device_tree(&vms->fdt_size);
243 
244     if (!fdt) {
245         error_report("create_device_tree() failed");
246         exit(1);
247     }
248 
249     ms->fdt = fdt;
250 
251     /* Header */
252     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
253     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
254     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
255 
256     /* /chosen must exist for load_dtb to fill in necessary properties later */
257     qemu_fdt_add_subnode(fdt, "/chosen");
258     if (vms->dtb_randomness) {
259         create_randomness(ms, "/chosen");
260     }
261 
262     if (vms->secure) {
263         qemu_fdt_add_subnode(fdt, "/secure-chosen");
264         if (vms->dtb_randomness) {
265             create_randomness(ms, "/secure-chosen");
266         }
267     }
268 
269     /* Clock node, for the benefit of the UART. The kernel device tree
270      * binding documentation claims the PL011 node clock properties are
271      * optional but in practice if you omit them the kernel refuses to
272      * probe for the device.
273      */
274     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
275     qemu_fdt_add_subnode(fdt, "/apb-pclk");
276     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
277     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
278     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
279     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
280                                 "clk24mhz");
281     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
282 
283     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
284         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
285         uint32_t *matrix = g_malloc0(size);
286         int idx, i, j;
287 
288         for (i = 0; i < nb_numa_nodes; i++) {
289             for (j = 0; j < nb_numa_nodes; j++) {
290                 idx = (i * nb_numa_nodes + j) * 3;
291                 matrix[idx + 0] = cpu_to_be32(i);
292                 matrix[idx + 1] = cpu_to_be32(j);
293                 matrix[idx + 2] =
294                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
295             }
296         }
297 
298         qemu_fdt_add_subnode(fdt, "/distance-map");
299         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
300                                 "numa-distance-map-v1");
301         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
302                          matrix, size);
303         g_free(matrix);
304     }
305 }
306 
307 static void fdt_add_timer_nodes(const VirtMachineState *vms)
308 {
309     /* On real hardware these interrupts are level-triggered.
310      * On KVM they were edge-triggered before host kernel version 4.4,
311      * and level-triggered afterwards.
312      * On emulated QEMU they are level-triggered.
313      *
314      * Getting the DTB info about them wrong is awkward for some
315      * guest kernels:
316      *  pre-4.8 ignore the DT and leave the interrupt configured
317      *   with whatever the GIC reset value (or the bootloader) left it at
318      *  4.8 before rc6 honour the incorrect data by programming it back
319      *   into the GIC, causing problems
320      *  4.8rc6 and later ignore the DT and always write "level triggered"
321      *   into the GIC
322      *
323      * For backwards-compatibility, virt-2.8 and earlier will continue
324      * to say these are edge-triggered, but later machines will report
325      * the correct information.
326      */
327     ARMCPU *armcpu;
328     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
329     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
330     MachineState *ms = MACHINE(vms);
331 
332     if (vmc->claim_edge_triggered_timers) {
333         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
334     }
335 
336     if (vms->gic_version == VIRT_GIC_VERSION_2) {
337         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
338                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
339                              (1 << MACHINE(vms)->smp.cpus) - 1);
340     }
341 
342     qemu_fdt_add_subnode(ms->fdt, "/timer");
343 
344     armcpu = ARM_CPU(qemu_get_cpu(0));
345     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
346         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
347         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
348                          compat, sizeof(compat));
349     } else {
350         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
351                                 "arm,armv7-timer");
352     }
353     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
354     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
355                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
356                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
357                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
358                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
359 }
360 
361 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
362 {
363     int cpu;
364     int addr_cells = 1;
365     const MachineState *ms = MACHINE(vms);
366     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
367     int smp_cpus = ms->smp.cpus;
368 
369     /*
370      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
371      * On ARM v8 64-bit systems value should be set to 2,
372      * that corresponds to the MPIDR_EL1 register size.
373      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
374      * in the system, #address-cells can be set to 1, since
375      * MPIDR_EL1[63:32] bits are not used for CPUs
376      * identification.
377      *
378      * Here we actually don't know whether our system is 32- or 64-bit one.
379      * The simplest way to go is to examine affinity IDs of all our CPUs. If
380      * at least one of them has Aff3 populated, we set #address-cells to 2.
381      */
382     for (cpu = 0; cpu < smp_cpus; cpu++) {
383         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
384 
385         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
386             addr_cells = 2;
387             break;
388         }
389     }
390 
391     qemu_fdt_add_subnode(ms->fdt, "/cpus");
392     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
393     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
394 
395     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
396         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
397         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
398         CPUState *cs = CPU(armcpu);
399 
400         qemu_fdt_add_subnode(ms->fdt, nodename);
401         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
402         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
403                                     armcpu->dtb_compatible);
404 
405         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
406             qemu_fdt_setprop_string(ms->fdt, nodename,
407                                         "enable-method", "psci");
408         }
409 
410         if (addr_cells == 2) {
411             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
412                                  armcpu->mp_affinity);
413         } else {
414             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
415                                   armcpu->mp_affinity);
416         }
417 
418         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
419             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
420                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
421         }
422 
423         if (!vmc->no_cpu_topology) {
424             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
425                                   qemu_fdt_alloc_phandle(ms->fdt));
426         }
427 
428         g_free(nodename);
429     }
430 
431     if (!vmc->no_cpu_topology) {
432         /*
433          * Add vCPU topology description through fdt node cpu-map.
434          *
435          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
436          * In a SMP system, the hierarchy of CPUs can be defined through
437          * four entities that are used to describe the layout of CPUs in
438          * the system: socket/cluster/core/thread.
439          *
440          * A socket node represents the boundary of system physical package
441          * and its child nodes must be one or more cluster nodes. A system
442          * can contain several layers of clustering within a single physical
443          * package and cluster nodes can be contained in parent cluster nodes.
444          *
445          * Note: currently we only support one layer of clustering within
446          * each physical package.
447          */
448         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
449 
450         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
451             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
452             char *map_path;
453 
454             if (ms->smp.threads > 1) {
455                 map_path = g_strdup_printf(
456                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
457                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
458                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
459                     (cpu / ms->smp.threads) % ms->smp.cores,
460                     cpu % ms->smp.threads);
461             } else {
462                 map_path = g_strdup_printf(
463                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
464                     cpu / (ms->smp.clusters * ms->smp.cores),
465                     (cpu / ms->smp.cores) % ms->smp.clusters,
466                     cpu % ms->smp.cores);
467             }
468             qemu_fdt_add_path(ms->fdt, map_path);
469             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
470 
471             g_free(map_path);
472             g_free(cpu_path);
473         }
474     }
475 }
476 
477 static void fdt_add_its_gic_node(VirtMachineState *vms)
478 {
479     char *nodename;
480     MachineState *ms = MACHINE(vms);
481 
482     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
483     nodename = g_strdup_printf("/intc/its@%" PRIx64,
484                                vms->memmap[VIRT_GIC_ITS].base);
485     qemu_fdt_add_subnode(ms->fdt, nodename);
486     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
487                             "arm,gic-v3-its");
488     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
489     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
490                                  2, vms->memmap[VIRT_GIC_ITS].base,
491                                  2, vms->memmap[VIRT_GIC_ITS].size);
492     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
493     g_free(nodename);
494 }
495 
496 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
497 {
498     MachineState *ms = MACHINE(vms);
499     char *nodename;
500 
501     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
502                                vms->memmap[VIRT_GIC_V2M].base);
503     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
504     qemu_fdt_add_subnode(ms->fdt, nodename);
505     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
506                             "arm,gic-v2m-frame");
507     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
508     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
509                                  2, vms->memmap[VIRT_GIC_V2M].base,
510                                  2, vms->memmap[VIRT_GIC_V2M].size);
511     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
512     g_free(nodename);
513 }
514 
515 static void fdt_add_gic_node(VirtMachineState *vms)
516 {
517     MachineState *ms = MACHINE(vms);
518     char *nodename;
519 
520     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
521     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
522 
523     nodename = g_strdup_printf("/intc@%" PRIx64,
524                                vms->memmap[VIRT_GIC_DIST].base);
525     qemu_fdt_add_subnode(ms->fdt, nodename);
526     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
527     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
528     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
529     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
530     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
531     if (vms->gic_version != VIRT_GIC_VERSION_2) {
532         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
533 
534         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
535                                 "arm,gic-v3");
536 
537         qemu_fdt_setprop_cell(ms->fdt, nodename,
538                               "#redistributor-regions", nb_redist_regions);
539 
540         if (nb_redist_regions == 1) {
541             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
542                                          2, vms->memmap[VIRT_GIC_DIST].base,
543                                          2, vms->memmap[VIRT_GIC_DIST].size,
544                                          2, vms->memmap[VIRT_GIC_REDIST].base,
545                                          2, vms->memmap[VIRT_GIC_REDIST].size);
546         } else {
547             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
548                                  2, vms->memmap[VIRT_GIC_DIST].base,
549                                  2, vms->memmap[VIRT_GIC_DIST].size,
550                                  2, vms->memmap[VIRT_GIC_REDIST].base,
551                                  2, vms->memmap[VIRT_GIC_REDIST].size,
552                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
553                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
554         }
555 
556         if (vms->virt) {
557             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
558                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
559                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
560         }
561     } else {
562         /* 'cortex-a15-gic' means 'GIC v2' */
563         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
564                                 "arm,cortex-a15-gic");
565         if (!vms->virt) {
566             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
567                                          2, vms->memmap[VIRT_GIC_DIST].base,
568                                          2, vms->memmap[VIRT_GIC_DIST].size,
569                                          2, vms->memmap[VIRT_GIC_CPU].base,
570                                          2, vms->memmap[VIRT_GIC_CPU].size);
571         } else {
572             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
573                                          2, vms->memmap[VIRT_GIC_DIST].base,
574                                          2, vms->memmap[VIRT_GIC_DIST].size,
575                                          2, vms->memmap[VIRT_GIC_CPU].base,
576                                          2, vms->memmap[VIRT_GIC_CPU].size,
577                                          2, vms->memmap[VIRT_GIC_HYP].base,
578                                          2, vms->memmap[VIRT_GIC_HYP].size,
579                                          2, vms->memmap[VIRT_GIC_VCPU].base,
580                                          2, vms->memmap[VIRT_GIC_VCPU].size);
581             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
582                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
583                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
584         }
585     }
586 
587     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
588     g_free(nodename);
589 }
590 
591 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
592 {
593     ARMCPU *armcpu = ARM_CPU(first_cpu);
594     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
595     MachineState *ms = MACHINE(vms);
596 
597     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
598         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
599         return;
600     }
601 
602     if (vms->gic_version == VIRT_GIC_VERSION_2) {
603         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
604                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
605                              (1 << MACHINE(vms)->smp.cpus) - 1);
606     }
607 
608     qemu_fdt_add_subnode(ms->fdt, "/pmu");
609     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
610         const char compat[] = "arm,armv8-pmuv3";
611         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
612                          compat, sizeof(compat));
613         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
614                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
615     }
616 }
617 
618 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
619 {
620     DeviceState *dev;
621     MachineState *ms = MACHINE(vms);
622     int irq = vms->irqmap[VIRT_ACPI_GED];
623     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
624 
625     if (ms->ram_slots) {
626         event |= ACPI_GED_MEM_HOTPLUG_EVT;
627     }
628 
629     if (ms->nvdimms_state->is_enabled) {
630         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
631     }
632 
633     dev = qdev_new(TYPE_ACPI_GED);
634     qdev_prop_set_uint32(dev, "ged-event", event);
635 
636     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
637     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
638     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
639 
640     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
641 
642     return dev;
643 }
644 
645 static void create_its(VirtMachineState *vms)
646 {
647     const char *itsclass = its_class_name();
648     DeviceState *dev;
649 
650     if (!strcmp(itsclass, "arm-gicv3-its")) {
651         if (!vms->tcg_its) {
652             itsclass = NULL;
653         }
654     }
655 
656     if (!itsclass) {
657         /* Do nothing if not supported */
658         return;
659     }
660 
661     dev = qdev_new(itsclass);
662 
663     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
664                              &error_abort);
665     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
666     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
667 
668     fdt_add_its_gic_node(vms);
669     vms->msi_controller = VIRT_MSI_CTRL_ITS;
670 }
671 
672 static void create_v2m(VirtMachineState *vms)
673 {
674     int i;
675     int irq = vms->irqmap[VIRT_GIC_V2M];
676     DeviceState *dev;
677 
678     dev = qdev_new("arm-gicv2m");
679     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
680     qdev_prop_set_uint32(dev, "base-spi", irq);
681     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
682     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
683 
684     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
685         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
686                            qdev_get_gpio_in(vms->gic, irq + i));
687     }
688 
689     fdt_add_v2m_gic_node(vms);
690     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
691 }
692 
693 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
694 {
695     MachineState *ms = MACHINE(vms);
696     /* We create a standalone GIC */
697     SysBusDevice *gicbusdev;
698     const char *gictype;
699     int i;
700     unsigned int smp_cpus = ms->smp.cpus;
701     uint32_t nb_redist_regions = 0;
702     int revision;
703 
704     if (vms->gic_version == VIRT_GIC_VERSION_2) {
705         gictype = gic_class_name();
706     } else {
707         gictype = gicv3_class_name();
708     }
709 
710     switch (vms->gic_version) {
711     case VIRT_GIC_VERSION_2:
712         revision = 2;
713         break;
714     case VIRT_GIC_VERSION_3:
715         revision = 3;
716         break;
717     case VIRT_GIC_VERSION_4:
718         revision = 4;
719         break;
720     default:
721         g_assert_not_reached();
722     }
723     vms->gic = qdev_new(gictype);
724     qdev_prop_set_uint32(vms->gic, "revision", revision);
725     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
726     /* Note that the num-irq property counts both internal and external
727      * interrupts; there are always 32 of the former (mandated by GIC spec).
728      */
729     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
730     if (!kvm_irqchip_in_kernel()) {
731         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
732     }
733 
734     if (vms->gic_version != VIRT_GIC_VERSION_2) {
735         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
736         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
737 
738         nb_redist_regions = virt_gicv3_redist_region_count(vms);
739 
740         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
741                              nb_redist_regions);
742         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
743 
744         if (!kvm_irqchip_in_kernel()) {
745             if (vms->tcg_its) {
746                 object_property_set_link(OBJECT(vms->gic), "sysmem",
747                                          OBJECT(mem), &error_fatal);
748                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
749             }
750         }
751 
752         if (nb_redist_regions == 2) {
753             uint32_t redist1_capacity =
754                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
755 
756             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
757                 MIN(smp_cpus - redist0_count, redist1_capacity));
758         }
759     } else {
760         if (!kvm_irqchip_in_kernel()) {
761             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
762                               vms->virt);
763         }
764     }
765     gicbusdev = SYS_BUS_DEVICE(vms->gic);
766     sysbus_realize_and_unref(gicbusdev, &error_fatal);
767     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
768     if (vms->gic_version != VIRT_GIC_VERSION_2) {
769         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
770         if (nb_redist_regions == 2) {
771             sysbus_mmio_map(gicbusdev, 2,
772                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
773         }
774     } else {
775         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
776         if (vms->virt) {
777             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
778             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
779         }
780     }
781 
782     /* Wire the outputs from each CPU's generic timer and the GICv3
783      * maintenance interrupt signal to the appropriate GIC PPI inputs,
784      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
785      */
786     for (i = 0; i < smp_cpus; i++) {
787         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
788         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
789         int irq;
790         /* Mapping from the output timer irq lines from the CPU to the
791          * GIC PPI inputs we use for the virt board.
792          */
793         const int timer_irq[] = {
794             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
795             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
796             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
797             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
798         };
799 
800         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
801             qdev_connect_gpio_out(cpudev, irq,
802                                   qdev_get_gpio_in(vms->gic,
803                                                    ppibase + timer_irq[irq]));
804         }
805 
806         if (vms->gic_version != VIRT_GIC_VERSION_2) {
807             qemu_irq irq = qdev_get_gpio_in(vms->gic,
808                                             ppibase + ARCH_GIC_MAINT_IRQ);
809             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
810                                         0, irq);
811         } else if (vms->virt) {
812             qemu_irq irq = qdev_get_gpio_in(vms->gic,
813                                             ppibase + ARCH_GIC_MAINT_IRQ);
814             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
815         }
816 
817         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
818                                     qdev_get_gpio_in(vms->gic, ppibase
819                                                      + VIRTUAL_PMU_IRQ));
820 
821         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
822         sysbus_connect_irq(gicbusdev, i + smp_cpus,
823                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
824         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
825                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
826         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
827                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
828     }
829 
830     fdt_add_gic_node(vms);
831 
832     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
833         create_its(vms);
834     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
835         create_v2m(vms);
836     }
837 }
838 
839 static void create_uart(const VirtMachineState *vms, int uart,
840                         MemoryRegion *mem, Chardev *chr)
841 {
842     char *nodename;
843     hwaddr base = vms->memmap[uart].base;
844     hwaddr size = vms->memmap[uart].size;
845     int irq = vms->irqmap[uart];
846     const char compat[] = "arm,pl011\0arm,primecell";
847     const char clocknames[] = "uartclk\0apb_pclk";
848     DeviceState *dev = qdev_new(TYPE_PL011);
849     SysBusDevice *s = SYS_BUS_DEVICE(dev);
850     MachineState *ms = MACHINE(vms);
851 
852     qdev_prop_set_chr(dev, "chardev", chr);
853     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
854     memory_region_add_subregion(mem, base,
855                                 sysbus_mmio_get_region(s, 0));
856     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
857 
858     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
859     qemu_fdt_add_subnode(ms->fdt, nodename);
860     /* Note that we can't use setprop_string because of the embedded NUL */
861     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
862                          compat, sizeof(compat));
863     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
864                                      2, base, 2, size);
865     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
866                                GIC_FDT_IRQ_TYPE_SPI, irq,
867                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
868     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
869                                vms->clock_phandle, vms->clock_phandle);
870     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
871                          clocknames, sizeof(clocknames));
872 
873     if (uart == VIRT_UART) {
874         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
875     } else {
876         /* Mark as not usable by the normal world */
877         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
878         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
879 
880         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
881                                 nodename);
882     }
883 
884     g_free(nodename);
885 }
886 
887 static void create_rtc(const VirtMachineState *vms)
888 {
889     char *nodename;
890     hwaddr base = vms->memmap[VIRT_RTC].base;
891     hwaddr size = vms->memmap[VIRT_RTC].size;
892     int irq = vms->irqmap[VIRT_RTC];
893     const char compat[] = "arm,pl031\0arm,primecell";
894     MachineState *ms = MACHINE(vms);
895 
896     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
897 
898     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
899     qemu_fdt_add_subnode(ms->fdt, nodename);
900     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
901     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
902                                  2, base, 2, size);
903     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
904                            GIC_FDT_IRQ_TYPE_SPI, irq,
905                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
906     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
907     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
908     g_free(nodename);
909 }
910 
911 static DeviceState *gpio_key_dev;
912 static void virt_powerdown_req(Notifier *n, void *opaque)
913 {
914     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
915 
916     if (s->acpi_dev) {
917         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
918     } else {
919         /* use gpio Pin 3 for power button event */
920         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
921     }
922 }
923 
924 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
925                              uint32_t phandle)
926 {
927     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
928                                         qdev_get_gpio_in(pl061_dev, 3));
929 
930     qemu_fdt_add_subnode(fdt, "/gpio-keys");
931     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
932 
933     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
934     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
935                             "label", "GPIO Key Poweroff");
936     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
937                           KEY_POWER);
938     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
939                            "gpios", phandle, 3, 0);
940 }
941 
942 #define SECURE_GPIO_POWEROFF 0
943 #define SECURE_GPIO_RESET    1
944 
945 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
946                                    uint32_t phandle)
947 {
948     DeviceState *gpio_pwr_dev;
949 
950     /* gpio-pwr */
951     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
952 
953     /* connect secure pl061 to gpio-pwr */
954     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
955                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
956     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
957                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
958 
959     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
960     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
961                             "gpio-poweroff");
962     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
963                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
964     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
965     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
966                             "okay");
967 
968     qemu_fdt_add_subnode(fdt, "/gpio-restart");
969     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
970                             "gpio-restart");
971     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
972                            "gpios", phandle, SECURE_GPIO_RESET, 0);
973     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
974     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
975                             "okay");
976 }
977 
978 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
979                                 MemoryRegion *mem)
980 {
981     char *nodename;
982     DeviceState *pl061_dev;
983     hwaddr base = vms->memmap[gpio].base;
984     hwaddr size = vms->memmap[gpio].size;
985     int irq = vms->irqmap[gpio];
986     const char compat[] = "arm,pl061\0arm,primecell";
987     SysBusDevice *s;
988     MachineState *ms = MACHINE(vms);
989 
990     pl061_dev = qdev_new("pl061");
991     /* Pull lines down to 0 if not driven by the PL061 */
992     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
993     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
994     s = SYS_BUS_DEVICE(pl061_dev);
995     sysbus_realize_and_unref(s, &error_fatal);
996     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
997     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
998 
999     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1000     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1001     qemu_fdt_add_subnode(ms->fdt, nodename);
1002     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1003                                  2, base, 2, size);
1004     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1005     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1006     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1007     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1008                            GIC_FDT_IRQ_TYPE_SPI, irq,
1009                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1010     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1011     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1012     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1013 
1014     if (gpio != VIRT_GPIO) {
1015         /* Mark as not usable by the normal world */
1016         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1017         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1018     }
1019     g_free(nodename);
1020 
1021     /* Child gpio devices */
1022     if (gpio == VIRT_GPIO) {
1023         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1024     } else {
1025         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1026     }
1027 }
1028 
1029 static void create_virtio_devices(const VirtMachineState *vms)
1030 {
1031     int i;
1032     hwaddr size = vms->memmap[VIRT_MMIO].size;
1033     MachineState *ms = MACHINE(vms);
1034 
1035     /* We create the transports in forwards order. Since qbus_realize()
1036      * prepends (not appends) new child buses, the incrementing loop below will
1037      * create a list of virtio-mmio buses with decreasing base addresses.
1038      *
1039      * When a -device option is processed from the command line,
1040      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1041      * order. The upshot is that -device options in increasing command line
1042      * order are mapped to virtio-mmio buses with decreasing base addresses.
1043      *
1044      * When this code was originally written, that arrangement ensured that the
1045      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1046      * the first -device on the command line. (The end-to-end order is a
1047      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1048      * guest kernel's name-to-address assignment strategy.)
1049      *
1050      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1051      * the message, if not necessarily the code, of commit 70161ff336.
1052      * Therefore the loop now establishes the inverse of the original intent.
1053      *
1054      * Unfortunately, we can't counteract the kernel change by reversing the
1055      * loop; it would break existing command lines.
1056      *
1057      * In any case, the kernel makes no guarantee about the stability of
1058      * enumeration order of virtio devices (as demonstrated by it changing
1059      * between kernel versions). For reliable and stable identification
1060      * of disks users must use UUIDs or similar mechanisms.
1061      */
1062     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1063         int irq = vms->irqmap[VIRT_MMIO] + i;
1064         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1065 
1066         sysbus_create_simple("virtio-mmio", base,
1067                              qdev_get_gpio_in(vms->gic, irq));
1068     }
1069 
1070     /* We add dtb nodes in reverse order so that they appear in the finished
1071      * device tree lowest address first.
1072      *
1073      * Note that this mapping is independent of the loop above. The previous
1074      * loop influences virtio device to virtio transport assignment, whereas
1075      * this loop controls how virtio transports are laid out in the dtb.
1076      */
1077     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1078         char *nodename;
1079         int irq = vms->irqmap[VIRT_MMIO] + i;
1080         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1081 
1082         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1083         qemu_fdt_add_subnode(ms->fdt, nodename);
1084         qemu_fdt_setprop_string(ms->fdt, nodename,
1085                                 "compatible", "virtio,mmio");
1086         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1087                                      2, base, 2, size);
1088         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1089                                GIC_FDT_IRQ_TYPE_SPI, irq,
1090                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1091         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1092         g_free(nodename);
1093     }
1094 }
1095 
1096 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1097 
1098 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1099                                         const char *name,
1100                                         const char *alias_prop_name)
1101 {
1102     /*
1103      * Create a single flash device.  We use the same parameters as
1104      * the flash devices on the Versatile Express board.
1105      */
1106     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1107 
1108     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1109     qdev_prop_set_uint8(dev, "width", 4);
1110     qdev_prop_set_uint8(dev, "device-width", 2);
1111     qdev_prop_set_bit(dev, "big-endian", false);
1112     qdev_prop_set_uint16(dev, "id0", 0x89);
1113     qdev_prop_set_uint16(dev, "id1", 0x18);
1114     qdev_prop_set_uint16(dev, "id2", 0x00);
1115     qdev_prop_set_uint16(dev, "id3", 0x00);
1116     qdev_prop_set_string(dev, "name", name);
1117     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1118     object_property_add_alias(OBJECT(vms), alias_prop_name,
1119                               OBJECT(dev), "drive");
1120     return PFLASH_CFI01(dev);
1121 }
1122 
1123 static void virt_flash_create(VirtMachineState *vms)
1124 {
1125     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1126     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1127 }
1128 
1129 static void virt_flash_map1(PFlashCFI01 *flash,
1130                             hwaddr base, hwaddr size,
1131                             MemoryRegion *sysmem)
1132 {
1133     DeviceState *dev = DEVICE(flash);
1134 
1135     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1136     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1137     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1138     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1139 
1140     memory_region_add_subregion(sysmem, base,
1141                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1142                                                        0));
1143 }
1144 
1145 static void virt_flash_map(VirtMachineState *vms,
1146                            MemoryRegion *sysmem,
1147                            MemoryRegion *secure_sysmem)
1148 {
1149     /*
1150      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1151      * sysmem is the system memory space. secure_sysmem is the secure view
1152      * of the system, and the first flash device should be made visible only
1153      * there. The second flash device is visible to both secure and nonsecure.
1154      * If sysmem == secure_sysmem this means there is no separate Secure
1155      * address space and both flash devices are generally visible.
1156      */
1157     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1158     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1159 
1160     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1161                     secure_sysmem);
1162     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1163                     sysmem);
1164 }
1165 
1166 static void virt_flash_fdt(VirtMachineState *vms,
1167                            MemoryRegion *sysmem,
1168                            MemoryRegion *secure_sysmem)
1169 {
1170     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1171     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1172     MachineState *ms = MACHINE(vms);
1173     char *nodename;
1174 
1175     if (sysmem == secure_sysmem) {
1176         /* Report both flash devices as a single node in the DT */
1177         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1178         qemu_fdt_add_subnode(ms->fdt, nodename);
1179         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1180         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1181                                      2, flashbase, 2, flashsize,
1182                                      2, flashbase + flashsize, 2, flashsize);
1183         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1184         g_free(nodename);
1185     } else {
1186         /*
1187          * Report the devices as separate nodes so we can mark one as
1188          * only visible to the secure world.
1189          */
1190         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1191         qemu_fdt_add_subnode(ms->fdt, nodename);
1192         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1193         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1194                                      2, flashbase, 2, flashsize);
1195         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1196         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1197         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1198         g_free(nodename);
1199 
1200         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1201         qemu_fdt_add_subnode(ms->fdt, nodename);
1202         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1203         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1204                                      2, flashbase + flashsize, 2, flashsize);
1205         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1206         g_free(nodename);
1207     }
1208 }
1209 
1210 static bool virt_firmware_init(VirtMachineState *vms,
1211                                MemoryRegion *sysmem,
1212                                MemoryRegion *secure_sysmem)
1213 {
1214     int i;
1215     const char *bios_name;
1216     BlockBackend *pflash_blk0;
1217 
1218     /* Map legacy -drive if=pflash to machine properties */
1219     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1220         pflash_cfi01_legacy_drive(vms->flash[i],
1221                                   drive_get(IF_PFLASH, 0, i));
1222     }
1223 
1224     virt_flash_map(vms, sysmem, secure_sysmem);
1225 
1226     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1227 
1228     bios_name = MACHINE(vms)->firmware;
1229     if (bios_name) {
1230         char *fname;
1231         MemoryRegion *mr;
1232         int image_size;
1233 
1234         if (pflash_blk0) {
1235             error_report("The contents of the first flash device may be "
1236                          "specified with -bios or with -drive if=pflash... "
1237                          "but you cannot use both options at once");
1238             exit(1);
1239         }
1240 
1241         /* Fall back to -bios */
1242 
1243         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1244         if (!fname) {
1245             error_report("Could not find ROM image '%s'", bios_name);
1246             exit(1);
1247         }
1248         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1249         image_size = load_image_mr(fname, mr);
1250         g_free(fname);
1251         if (image_size < 0) {
1252             error_report("Could not load ROM image '%s'", bios_name);
1253             exit(1);
1254         }
1255     }
1256 
1257     return pflash_blk0 || bios_name;
1258 }
1259 
1260 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1261 {
1262     MachineState *ms = MACHINE(vms);
1263     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1264     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1265     FWCfgState *fw_cfg;
1266     char *nodename;
1267 
1268     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1269     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1270 
1271     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1272     qemu_fdt_add_subnode(ms->fdt, nodename);
1273     qemu_fdt_setprop_string(ms->fdt, nodename,
1274                             "compatible", "qemu,fw-cfg-mmio");
1275     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1276                                  2, base, 2, size);
1277     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1278     g_free(nodename);
1279     return fw_cfg;
1280 }
1281 
1282 static void create_pcie_irq_map(const MachineState *ms,
1283                                 uint32_t gic_phandle,
1284                                 int first_irq, const char *nodename)
1285 {
1286     int devfn, pin;
1287     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1288     uint32_t *irq_map = full_irq_map;
1289 
1290     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1291         for (pin = 0; pin < 4; pin++) {
1292             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1293             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1294             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1295             int i;
1296 
1297             uint32_t map[] = {
1298                 devfn << 8, 0, 0,                           /* devfn */
1299                 pin + 1,                                    /* PCI pin */
1300                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1301 
1302             /* Convert map to big endian */
1303             for (i = 0; i < 10; i++) {
1304                 irq_map[i] = cpu_to_be32(map[i]);
1305             }
1306             irq_map += 10;
1307         }
1308     }
1309 
1310     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1311                      full_irq_map, sizeof(full_irq_map));
1312 
1313     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1314                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1315                            0, 0,
1316                            0x7           /* PCI irq */);
1317 }
1318 
1319 static void create_smmu(const VirtMachineState *vms,
1320                         PCIBus *bus)
1321 {
1322     char *node;
1323     const char compat[] = "arm,smmu-v3";
1324     int irq =  vms->irqmap[VIRT_SMMU];
1325     int i;
1326     hwaddr base = vms->memmap[VIRT_SMMU].base;
1327     hwaddr size = vms->memmap[VIRT_SMMU].size;
1328     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1329     DeviceState *dev;
1330     MachineState *ms = MACHINE(vms);
1331 
1332     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1333         return;
1334     }
1335 
1336     dev = qdev_new("arm-smmuv3");
1337 
1338     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1339                              &error_abort);
1340     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1341     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1342     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1343         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1344                            qdev_get_gpio_in(vms->gic, irq + i));
1345     }
1346 
1347     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1348     qemu_fdt_add_subnode(ms->fdt, node);
1349     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1350     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1351 
1352     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1353             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1354             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1355             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1356             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1357 
1358     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1359                      sizeof(irq_names));
1360 
1361     qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1362     qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1363     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1364 
1365     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1366 
1367     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1368     g_free(node);
1369 }
1370 
1371 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1372 {
1373     const char compat[] = "virtio,pci-iommu";
1374     uint16_t bdf = vms->virtio_iommu_bdf;
1375     MachineState *ms = MACHINE(vms);
1376     char *node;
1377 
1378     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1379 
1380     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1381     qemu_fdt_add_subnode(ms->fdt, node);
1382     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1383     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1384                                  1, bdf << 8, 1, 0, 1, 0,
1385                                  1, 0, 1, 0);
1386 
1387     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1388     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1389     g_free(node);
1390 
1391     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1392                            0x0, vms->iommu_phandle, 0x0, bdf,
1393                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1394 }
1395 
1396 static void create_pcie(VirtMachineState *vms)
1397 {
1398     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1399     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1400     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1401     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1402     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1403     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1404     hwaddr base_ecam, size_ecam;
1405     hwaddr base = base_mmio;
1406     int nr_pcie_buses;
1407     int irq = vms->irqmap[VIRT_PCIE];
1408     MemoryRegion *mmio_alias;
1409     MemoryRegion *mmio_reg;
1410     MemoryRegion *ecam_alias;
1411     MemoryRegion *ecam_reg;
1412     DeviceState *dev;
1413     char *nodename;
1414     int i, ecam_id;
1415     PCIHostState *pci;
1416     MachineState *ms = MACHINE(vms);
1417 
1418     dev = qdev_new(TYPE_GPEX_HOST);
1419     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1420 
1421     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1422     base_ecam = vms->memmap[ecam_id].base;
1423     size_ecam = vms->memmap[ecam_id].size;
1424     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1425     /* Map only the first size_ecam bytes of ECAM space */
1426     ecam_alias = g_new0(MemoryRegion, 1);
1427     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1428     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1429                              ecam_reg, 0, size_ecam);
1430     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1431 
1432     /* Map the MMIO window into system address space so as to expose
1433      * the section of PCI MMIO space which starts at the same base address
1434      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1435      * the window).
1436      */
1437     mmio_alias = g_new0(MemoryRegion, 1);
1438     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1439     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1440                              mmio_reg, base_mmio, size_mmio);
1441     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1442 
1443     if (vms->highmem_mmio) {
1444         /* Map high MMIO space */
1445         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1446 
1447         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1448                                  mmio_reg, base_mmio_high, size_mmio_high);
1449         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1450                                     high_mmio_alias);
1451     }
1452 
1453     /* Map IO port space */
1454     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1455 
1456     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1457         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1458                            qdev_get_gpio_in(vms->gic, irq + i));
1459         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1460     }
1461 
1462     pci = PCI_HOST_BRIDGE(dev);
1463     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1464     vms->bus = pci->bus;
1465     if (vms->bus) {
1466         for (i = 0; i < nb_nics; i++) {
1467             NICInfo *nd = &nd_table[i];
1468 
1469             if (!nd->model) {
1470                 nd->model = g_strdup("virtio");
1471             }
1472 
1473             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1474         }
1475     }
1476 
1477     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1478     qemu_fdt_add_subnode(ms->fdt, nodename);
1479     qemu_fdt_setprop_string(ms->fdt, nodename,
1480                             "compatible", "pci-host-ecam-generic");
1481     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1482     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1483     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1484     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1485     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1486                            nr_pcie_buses - 1);
1487     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1488 
1489     if (vms->msi_phandle) {
1490         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1491                                vms->msi_phandle);
1492     }
1493 
1494     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1495                                  2, base_ecam, 2, size_ecam);
1496 
1497     if (vms->highmem_mmio) {
1498         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1499                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1500                                      2, base_pio, 2, size_pio,
1501                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1502                                      2, base_mmio, 2, size_mmio,
1503                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1504                                      2, base_mmio_high,
1505                                      2, base_mmio_high, 2, size_mmio_high);
1506     } else {
1507         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1508                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1509                                      2, base_pio, 2, size_pio,
1510                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1511                                      2, base_mmio, 2, size_mmio);
1512     }
1513 
1514     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1515     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1516 
1517     if (vms->iommu) {
1518         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1519 
1520         switch (vms->iommu) {
1521         case VIRT_IOMMU_SMMUV3:
1522             create_smmu(vms, vms->bus);
1523             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1524                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1525             break;
1526         default:
1527             g_assert_not_reached();
1528         }
1529     }
1530 }
1531 
1532 static void create_platform_bus(VirtMachineState *vms)
1533 {
1534     DeviceState *dev;
1535     SysBusDevice *s;
1536     int i;
1537     MemoryRegion *sysmem = get_system_memory();
1538 
1539     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1540     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1541     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1542     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1543     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1544     vms->platform_bus_dev = dev;
1545 
1546     s = SYS_BUS_DEVICE(dev);
1547     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1548         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1549         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1550     }
1551 
1552     memory_region_add_subregion(sysmem,
1553                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1554                                 sysbus_mmio_get_region(s, 0));
1555 }
1556 
1557 static void create_tag_ram(MemoryRegion *tag_sysmem,
1558                            hwaddr base, hwaddr size,
1559                            const char *name)
1560 {
1561     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1562 
1563     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1564     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1565 }
1566 
1567 static void create_secure_ram(VirtMachineState *vms,
1568                               MemoryRegion *secure_sysmem,
1569                               MemoryRegion *secure_tag_sysmem)
1570 {
1571     MemoryRegion *secram = g_new(MemoryRegion, 1);
1572     char *nodename;
1573     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1574     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1575     MachineState *ms = MACHINE(vms);
1576 
1577     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1578                            &error_fatal);
1579     memory_region_add_subregion(secure_sysmem, base, secram);
1580 
1581     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1582     qemu_fdt_add_subnode(ms->fdt, nodename);
1583     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1584     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1585     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1586     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1587 
1588     if (secure_tag_sysmem) {
1589         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1590     }
1591 
1592     g_free(nodename);
1593 }
1594 
1595 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1596 {
1597     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1598                                                  bootinfo);
1599     MachineState *ms = MACHINE(board);
1600 
1601 
1602     *fdt_size = board->fdt_size;
1603     return ms->fdt;
1604 }
1605 
1606 static void virt_build_smbios(VirtMachineState *vms)
1607 {
1608     MachineClass *mc = MACHINE_GET_CLASS(vms);
1609     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1610     uint8_t *smbios_tables, *smbios_anchor;
1611     size_t smbios_tables_len, smbios_anchor_len;
1612     const char *product = "QEMU Virtual Machine";
1613 
1614     if (kvm_enabled()) {
1615         product = "KVM Virtual Machine";
1616     }
1617 
1618     smbios_set_defaults("QEMU", product,
1619                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1620                         true, SMBIOS_ENTRY_POINT_TYPE_64);
1621 
1622     smbios_get_tables(MACHINE(vms), NULL, 0,
1623                       &smbios_tables, &smbios_tables_len,
1624                       &smbios_anchor, &smbios_anchor_len,
1625                       &error_fatal);
1626 
1627     if (smbios_anchor) {
1628         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1629                         smbios_tables, smbios_tables_len);
1630         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1631                         smbios_anchor, smbios_anchor_len);
1632     }
1633 }
1634 
1635 static
1636 void virt_machine_done(Notifier *notifier, void *data)
1637 {
1638     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1639                                          machine_done);
1640     MachineState *ms = MACHINE(vms);
1641     ARMCPU *cpu = ARM_CPU(first_cpu);
1642     struct arm_boot_info *info = &vms->bootinfo;
1643     AddressSpace *as = arm_boot_address_space(cpu, info);
1644 
1645     /*
1646      * If the user provided a dtb, we assume the dynamic sysbus nodes
1647      * already are integrated there. This corresponds to a use case where
1648      * the dynamic sysbus nodes are complex and their generation is not yet
1649      * supported. In that case the user can take charge of the guest dt
1650      * while qemu takes charge of the qom stuff.
1651      */
1652     if (info->dtb_filename == NULL) {
1653         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1654                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1655                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1656                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1657     }
1658     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1659         exit(1);
1660     }
1661 
1662     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1663 
1664     virt_acpi_setup(vms);
1665     virt_build_smbios(vms);
1666 }
1667 
1668 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1669 {
1670     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1671     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1672 
1673     if (!vmc->disallow_affinity_adjustment) {
1674         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1675          * GIC's target-list limitations. 32-bit KVM hosts currently
1676          * always create clusters of 4 CPUs, but that is expected to
1677          * change when they gain support for gicv3. When KVM is enabled
1678          * it will override the changes we make here, therefore our
1679          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1680          * and to improve SGI efficiency.
1681          */
1682         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1683             clustersz = GIC_TARGETLIST_BITS;
1684         } else {
1685             clustersz = GICV3_TARGETLIST_BITS;
1686         }
1687     }
1688     return arm_cpu_mp_affinity(idx, clustersz);
1689 }
1690 
1691 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1692 {
1693     MachineState *ms = MACHINE(vms);
1694     hwaddr base, device_memory_base, device_memory_size, memtop;
1695     int i;
1696 
1697     vms->memmap = extended_memmap;
1698 
1699     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1700         vms->memmap[i] = base_memmap[i];
1701     }
1702 
1703     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1704         error_report("unsupported number of memory slots: %"PRIu64,
1705                      ms->ram_slots);
1706         exit(EXIT_FAILURE);
1707     }
1708 
1709     /*
1710      * !highmem is exactly the same as limiting the PA space to 32bit,
1711      * irrespective of the underlying capabilities of the HW.
1712      */
1713     if (!vms->highmem) {
1714         pa_bits = 32;
1715     }
1716 
1717     /*
1718      * We compute the base of the high IO region depending on the
1719      * amount of initial and device memory. The device memory start/size
1720      * is aligned on 1GiB. We never put the high IO region below 256GiB
1721      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1722      * The device region size assumes 1GiB page max alignment per slot.
1723      */
1724     device_memory_base =
1725         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1726     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1727 
1728     /* Base address of the high IO region */
1729     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1730     if (memtop > BIT_ULL(pa_bits)) {
1731 	    error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1732 			 pa_bits, memtop - BIT_ULL(pa_bits));
1733         exit(EXIT_FAILURE);
1734     }
1735     if (base < device_memory_base) {
1736         error_report("maxmem/slots too huge");
1737         exit(EXIT_FAILURE);
1738     }
1739     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1740         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1741     }
1742 
1743     /* We know for sure that at least the memory fits in the PA space */
1744     vms->highest_gpa = memtop - 1;
1745 
1746     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1747         hwaddr size = extended_memmap[i].size;
1748         bool fits;
1749 
1750         base = ROUND_UP(base, size);
1751         vms->memmap[i].base = base;
1752         vms->memmap[i].size = size;
1753 
1754         /*
1755          * Check each device to see if they fit in the PA space,
1756          * moving highest_gpa as we go.
1757          *
1758          * For each device that doesn't fit, disable it.
1759          */
1760         fits = (base + size) <= BIT_ULL(pa_bits);
1761         if (fits) {
1762             vms->highest_gpa = base + size - 1;
1763         }
1764 
1765         switch (i) {
1766         case VIRT_HIGH_GIC_REDIST2:
1767             vms->highmem_redists &= fits;
1768             break;
1769         case VIRT_HIGH_PCIE_ECAM:
1770             vms->highmem_ecam &= fits;
1771             break;
1772         case VIRT_HIGH_PCIE_MMIO:
1773             vms->highmem_mmio &= fits;
1774             break;
1775         }
1776 
1777         base += size;
1778     }
1779 
1780     if (device_memory_size > 0) {
1781         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1782         ms->device_memory->base = device_memory_base;
1783         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1784                            "device-memory", device_memory_size);
1785     }
1786 }
1787 
1788 /*
1789  * finalize_gic_version - Determines the final gic_version
1790  * according to the gic-version property
1791  *
1792  * Default GIC type is v2
1793  */
1794 static void finalize_gic_version(VirtMachineState *vms)
1795 {
1796     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1797 
1798     if (kvm_enabled()) {
1799         int probe_bitmap;
1800 
1801         if (!kvm_irqchip_in_kernel()) {
1802             switch (vms->gic_version) {
1803             case VIRT_GIC_VERSION_HOST:
1804                 warn_report(
1805                     "gic-version=host not relevant with kernel-irqchip=off "
1806                      "as only userspace GICv2 is supported. Using v2 ...");
1807                 return;
1808             case VIRT_GIC_VERSION_MAX:
1809             case VIRT_GIC_VERSION_NOSEL:
1810                 vms->gic_version = VIRT_GIC_VERSION_2;
1811                 return;
1812             case VIRT_GIC_VERSION_2:
1813                 return;
1814             case VIRT_GIC_VERSION_3:
1815                 error_report(
1816                     "gic-version=3 is not supported with kernel-irqchip=off");
1817                 exit(1);
1818             case VIRT_GIC_VERSION_4:
1819                 error_report(
1820                     "gic-version=4 is not supported with kernel-irqchip=off");
1821                 exit(1);
1822             }
1823         }
1824 
1825         probe_bitmap = kvm_arm_vgic_probe();
1826         if (!probe_bitmap) {
1827             error_report("Unable to determine GIC version supported by host");
1828             exit(1);
1829         }
1830 
1831         switch (vms->gic_version) {
1832         case VIRT_GIC_VERSION_HOST:
1833         case VIRT_GIC_VERSION_MAX:
1834             if (probe_bitmap & KVM_ARM_VGIC_V3) {
1835                 vms->gic_version = VIRT_GIC_VERSION_3;
1836             } else {
1837                 vms->gic_version = VIRT_GIC_VERSION_2;
1838             }
1839             return;
1840         case VIRT_GIC_VERSION_NOSEL:
1841             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1842                 vms->gic_version = VIRT_GIC_VERSION_2;
1843             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1844                 /*
1845                  * in case the host does not support v2 in-kernel emulation or
1846                  * the end-user requested more than 8 VCPUs we now default
1847                  * to v3. In any case defaulting to v2 would be broken.
1848                  */
1849                 vms->gic_version = VIRT_GIC_VERSION_3;
1850             } else if (max_cpus > GIC_NCPU) {
1851                 error_report("host only supports in-kernel GICv2 emulation "
1852                              "but more than 8 vcpus are requested");
1853                 exit(1);
1854             }
1855             break;
1856         case VIRT_GIC_VERSION_2:
1857         case VIRT_GIC_VERSION_3:
1858             break;
1859         case VIRT_GIC_VERSION_4:
1860             error_report("gic-version=4 is not supported with KVM");
1861             exit(1);
1862         }
1863 
1864         /* Check chosen version is effectively supported by the host */
1865         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1866             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1867             error_report("host does not support in-kernel GICv2 emulation");
1868             exit(1);
1869         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1870                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1871             error_report("host does not support in-kernel GICv3 emulation");
1872             exit(1);
1873         }
1874         return;
1875     }
1876 
1877     /* TCG mode */
1878     switch (vms->gic_version) {
1879     case VIRT_GIC_VERSION_NOSEL:
1880         vms->gic_version = VIRT_GIC_VERSION_2;
1881         break;
1882     case VIRT_GIC_VERSION_MAX:
1883         if (module_object_class_by_name("arm-gicv3")) {
1884             /* CONFIG_ARM_GICV3_TCG was set */
1885             if (vms->virt) {
1886                 /* GICv4 only makes sense if CPU has EL2 */
1887                 vms->gic_version = VIRT_GIC_VERSION_4;
1888             } else {
1889                 vms->gic_version = VIRT_GIC_VERSION_3;
1890             }
1891         } else {
1892             vms->gic_version = VIRT_GIC_VERSION_2;
1893         }
1894         break;
1895     case VIRT_GIC_VERSION_HOST:
1896         error_report("gic-version=host requires KVM");
1897         exit(1);
1898     case VIRT_GIC_VERSION_4:
1899         if (!vms->virt) {
1900             error_report("gic-version=4 requires virtualization enabled");
1901             exit(1);
1902         }
1903         break;
1904     case VIRT_GIC_VERSION_2:
1905     case VIRT_GIC_VERSION_3:
1906         break;
1907     }
1908 }
1909 
1910 /*
1911  * virt_cpu_post_init() must be called after the CPUs have
1912  * been realized and the GIC has been created.
1913  */
1914 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1915 {
1916     int max_cpus = MACHINE(vms)->smp.max_cpus;
1917     bool aarch64, pmu, steal_time;
1918     CPUState *cpu;
1919 
1920     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1921     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1922     steal_time = object_property_get_bool(OBJECT(first_cpu),
1923                                           "kvm-steal-time", NULL);
1924 
1925     if (kvm_enabled()) {
1926         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1927         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1928 
1929         if (steal_time) {
1930             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1931             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1932 
1933             /* The memory region size must be a multiple of host page size. */
1934             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1935 
1936             if (pvtime_size > pvtime_reg_size) {
1937                 error_report("pvtime requires a %" HWADDR_PRId
1938                              " byte memory region for %d CPUs,"
1939                              " but only %" HWADDR_PRId " has been reserved",
1940                              pvtime_size, max_cpus, pvtime_reg_size);
1941                 exit(1);
1942             }
1943 
1944             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1945             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1946         }
1947 
1948         CPU_FOREACH(cpu) {
1949             if (pmu) {
1950                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1951                 if (kvm_irqchip_in_kernel()) {
1952                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1953                 }
1954                 kvm_arm_pmu_init(cpu);
1955             }
1956             if (steal_time) {
1957                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1958                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1959             }
1960         }
1961     } else {
1962         if (aarch64 && vms->highmem) {
1963             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1964             int pamax = arm_pamax(ARM_CPU(first_cpu));
1965 
1966             if (pamax < requested_pa_size) {
1967                 error_report("VCPU supports less PA bits (%d) than "
1968                              "requested by the memory map (%d)",
1969                              pamax, requested_pa_size);
1970                 exit(1);
1971             }
1972         }
1973     }
1974 }
1975 
1976 static void machvirt_init(MachineState *machine)
1977 {
1978     VirtMachineState *vms = VIRT_MACHINE(machine);
1979     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1980     MachineClass *mc = MACHINE_GET_CLASS(machine);
1981     const CPUArchIdList *possible_cpus;
1982     MemoryRegion *sysmem = get_system_memory();
1983     MemoryRegion *secure_sysmem = NULL;
1984     MemoryRegion *tag_sysmem = NULL;
1985     MemoryRegion *secure_tag_sysmem = NULL;
1986     int n, virt_max_cpus;
1987     bool firmware_loaded;
1988     bool aarch64 = true;
1989     bool has_ged = !vmc->no_ged;
1990     unsigned int smp_cpus = machine->smp.cpus;
1991     unsigned int max_cpus = machine->smp.max_cpus;
1992 
1993     if (!cpu_type_valid(machine->cpu_type)) {
1994         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1995         exit(1);
1996     }
1997 
1998     possible_cpus = mc->possible_cpu_arch_ids(machine);
1999 
2000     /*
2001      * In accelerated mode, the memory map is computed earlier in kvm_type()
2002      * to create a VM with the right number of IPA bits.
2003      */
2004     if (!vms->memmap) {
2005         Object *cpuobj;
2006         ARMCPU *armcpu;
2007         int pa_bits;
2008 
2009         /*
2010          * Instanciate a temporary CPU object to find out about what
2011          * we are about to deal with. Once this is done, get rid of
2012          * the object.
2013          */
2014         cpuobj = object_new(possible_cpus->cpus[0].type);
2015         armcpu = ARM_CPU(cpuobj);
2016 
2017         pa_bits = arm_pamax(armcpu);
2018 
2019         object_unref(cpuobj);
2020 
2021         virt_set_memmap(vms, pa_bits);
2022     }
2023 
2024     /* We can probe only here because during property set
2025      * KVM is not available yet
2026      */
2027     finalize_gic_version(vms);
2028 
2029     if (vms->secure) {
2030         /*
2031          * The Secure view of the world is the same as the NonSecure,
2032          * but with a few extra devices. Create it as a container region
2033          * containing the system memory at low priority; any secure-only
2034          * devices go in at higher priority and take precedence.
2035          */
2036         secure_sysmem = g_new(MemoryRegion, 1);
2037         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2038                            UINT64_MAX);
2039         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2040     }
2041 
2042     firmware_loaded = virt_firmware_init(vms, sysmem,
2043                                          secure_sysmem ?: sysmem);
2044 
2045     /* If we have an EL3 boot ROM then the assumption is that it will
2046      * implement PSCI itself, so disable QEMU's internal implementation
2047      * so it doesn't get in the way. Instead of starting secondary
2048      * CPUs in PSCI powerdown state we will start them all running and
2049      * let the boot ROM sort them out.
2050      * The usual case is that we do use QEMU's PSCI implementation;
2051      * if the guest has EL2 then we will use SMC as the conduit,
2052      * and otherwise we will use HVC (for backwards compatibility and
2053      * because if we're using KVM then we must use HVC).
2054      */
2055     if (vms->secure && firmware_loaded) {
2056         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2057     } else if (vms->virt) {
2058         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2059     } else {
2060         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2061     }
2062 
2063     /*
2064      * The maximum number of CPUs depends on the GIC version, or on how
2065      * many redistributors we can fit into the memory map (which in turn
2066      * depends on whether this is a GICv3 or v4).
2067      */
2068     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2069         virt_max_cpus = GIC_NCPU;
2070     } else {
2071         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST) +
2072             virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2073     }
2074 
2075     if (max_cpus > virt_max_cpus) {
2076         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2077                      "supported by machine 'mach-virt' (%d)",
2078                      max_cpus, virt_max_cpus);
2079         exit(1);
2080     }
2081 
2082     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2083         error_report("mach-virt: %s does not support providing "
2084                      "Security extensions (TrustZone) to the guest CPU",
2085                      kvm_enabled() ? "KVM" : "HVF");
2086         exit(1);
2087     }
2088 
2089     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2090         error_report("mach-virt: %s does not support providing "
2091                      "Virtualization extensions to the guest CPU",
2092                      kvm_enabled() ? "KVM" : "HVF");
2093         exit(1);
2094     }
2095 
2096     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2097         error_report("mach-virt: %s does not support providing "
2098                      "MTE to the guest CPU",
2099                      kvm_enabled() ? "KVM" : "HVF");
2100         exit(1);
2101     }
2102 
2103     create_fdt(vms);
2104 
2105     assert(possible_cpus->len == max_cpus);
2106     for (n = 0; n < possible_cpus->len; n++) {
2107         Object *cpuobj;
2108         CPUState *cs;
2109 
2110         if (n >= smp_cpus) {
2111             break;
2112         }
2113 
2114         cpuobj = object_new(possible_cpus->cpus[n].type);
2115         object_property_set_int(cpuobj, "mp-affinity",
2116                                 possible_cpus->cpus[n].arch_id, NULL);
2117 
2118         cs = CPU(cpuobj);
2119         cs->cpu_index = n;
2120 
2121         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2122                           &error_fatal);
2123 
2124         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2125 
2126         if (!vms->secure) {
2127             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2128         }
2129 
2130         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2131             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2132         }
2133 
2134         if (vmc->kvm_no_adjvtime &&
2135             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2136             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2137         }
2138 
2139         if (vmc->no_kvm_steal_time &&
2140             object_property_find(cpuobj, "kvm-steal-time")) {
2141             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2142         }
2143 
2144         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2145             object_property_set_bool(cpuobj, "pmu", false, NULL);
2146         }
2147 
2148         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2149             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2150         }
2151 
2152         if (object_property_find(cpuobj, "reset-cbar")) {
2153             object_property_set_int(cpuobj, "reset-cbar",
2154                                     vms->memmap[VIRT_CPUPERIPHS].base,
2155                                     &error_abort);
2156         }
2157 
2158         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2159                                  &error_abort);
2160         if (vms->secure) {
2161             object_property_set_link(cpuobj, "secure-memory",
2162                                      OBJECT(secure_sysmem), &error_abort);
2163         }
2164 
2165         if (vms->mte) {
2166             /* Create the memory region only once, but link to all cpus. */
2167             if (!tag_sysmem) {
2168                 /*
2169                  * The property exists only if MemTag is supported.
2170                  * If it is, we must allocate the ram to back that up.
2171                  */
2172                 if (!object_property_find(cpuobj, "tag-memory")) {
2173                     error_report("MTE requested, but not supported "
2174                                  "by the guest CPU");
2175                     exit(1);
2176                 }
2177 
2178                 tag_sysmem = g_new(MemoryRegion, 1);
2179                 memory_region_init(tag_sysmem, OBJECT(machine),
2180                                    "tag-memory", UINT64_MAX / 32);
2181 
2182                 if (vms->secure) {
2183                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2184                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2185                                        "secure-tag-memory", UINT64_MAX / 32);
2186 
2187                     /* As with ram, secure-tag takes precedence over tag.  */
2188                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2189                                                         tag_sysmem, -1);
2190                 }
2191             }
2192 
2193             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2194                                      &error_abort);
2195             if (vms->secure) {
2196                 object_property_set_link(cpuobj, "secure-tag-memory",
2197                                          OBJECT(secure_tag_sysmem),
2198                                          &error_abort);
2199             }
2200         }
2201 
2202         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2203         object_unref(cpuobj);
2204     }
2205     fdt_add_timer_nodes(vms);
2206     fdt_add_cpu_nodes(vms);
2207 
2208     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2209                                 machine->ram);
2210     if (machine->device_memory) {
2211         memory_region_add_subregion(sysmem, machine->device_memory->base,
2212                                     &machine->device_memory->mr);
2213     }
2214 
2215     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2216 
2217     create_gic(vms, sysmem);
2218 
2219     virt_cpu_post_init(vms, sysmem);
2220 
2221     fdt_add_pmu_nodes(vms);
2222 
2223     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2224 
2225     if (vms->secure) {
2226         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2227         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2228     }
2229 
2230     if (tag_sysmem) {
2231         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2232                        machine->ram_size, "mach-virt.tag");
2233     }
2234 
2235     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2236 
2237     create_rtc(vms);
2238 
2239     create_pcie(vms);
2240 
2241     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2242         vms->acpi_dev = create_acpi_ged(vms);
2243     } else {
2244         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2245     }
2246 
2247     if (vms->secure && !vmc->no_secure_gpio) {
2248         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2249     }
2250 
2251      /* connect powerdown request */
2252      vms->powerdown_notifier.notify = virt_powerdown_req;
2253      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2254 
2255     /* Create mmio transports, so the user can create virtio backends
2256      * (which will be automatically plugged in to the transports). If
2257      * no backend is created the transport will just sit harmlessly idle.
2258      */
2259     create_virtio_devices(vms);
2260 
2261     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2262     rom_set_fw(vms->fw_cfg);
2263 
2264     create_platform_bus(vms);
2265 
2266     if (machine->nvdimms_state->is_enabled) {
2267         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2268             .space_id = AML_AS_SYSTEM_MEMORY,
2269             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2270             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2271         };
2272 
2273         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2274                                arm_virt_nvdimm_acpi_dsmio,
2275                                vms->fw_cfg, OBJECT(vms));
2276     }
2277 
2278     vms->bootinfo.ram_size = machine->ram_size;
2279     vms->bootinfo.board_id = -1;
2280     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2281     vms->bootinfo.get_dtb = machvirt_dtb;
2282     vms->bootinfo.skip_dtb_autoload = true;
2283     vms->bootinfo.firmware_loaded = firmware_loaded;
2284     vms->bootinfo.psci_conduit = vms->psci_conduit;
2285     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2286 
2287     vms->machine_done.notify = virt_machine_done;
2288     qemu_add_machine_init_done_notifier(&vms->machine_done);
2289 }
2290 
2291 static bool virt_get_secure(Object *obj, Error **errp)
2292 {
2293     VirtMachineState *vms = VIRT_MACHINE(obj);
2294 
2295     return vms->secure;
2296 }
2297 
2298 static void virt_set_secure(Object *obj, bool value, Error **errp)
2299 {
2300     VirtMachineState *vms = VIRT_MACHINE(obj);
2301 
2302     vms->secure = value;
2303 }
2304 
2305 static bool virt_get_virt(Object *obj, Error **errp)
2306 {
2307     VirtMachineState *vms = VIRT_MACHINE(obj);
2308 
2309     return vms->virt;
2310 }
2311 
2312 static void virt_set_virt(Object *obj, bool value, Error **errp)
2313 {
2314     VirtMachineState *vms = VIRT_MACHINE(obj);
2315 
2316     vms->virt = value;
2317 }
2318 
2319 static bool virt_get_highmem(Object *obj, Error **errp)
2320 {
2321     VirtMachineState *vms = VIRT_MACHINE(obj);
2322 
2323     return vms->highmem;
2324 }
2325 
2326 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2327 {
2328     VirtMachineState *vms = VIRT_MACHINE(obj);
2329 
2330     vms->highmem = value;
2331 }
2332 
2333 static bool virt_get_its(Object *obj, Error **errp)
2334 {
2335     VirtMachineState *vms = VIRT_MACHINE(obj);
2336 
2337     return vms->its;
2338 }
2339 
2340 static void virt_set_its(Object *obj, bool value, Error **errp)
2341 {
2342     VirtMachineState *vms = VIRT_MACHINE(obj);
2343 
2344     vms->its = value;
2345 }
2346 
2347 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2348 {
2349     VirtMachineState *vms = VIRT_MACHINE(obj);
2350 
2351     return vms->dtb_randomness;
2352 }
2353 
2354 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2355 {
2356     VirtMachineState *vms = VIRT_MACHINE(obj);
2357 
2358     vms->dtb_randomness = value;
2359 }
2360 
2361 static char *virt_get_oem_id(Object *obj, Error **errp)
2362 {
2363     VirtMachineState *vms = VIRT_MACHINE(obj);
2364 
2365     return g_strdup(vms->oem_id);
2366 }
2367 
2368 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2369 {
2370     VirtMachineState *vms = VIRT_MACHINE(obj);
2371     size_t len = strlen(value);
2372 
2373     if (len > 6) {
2374         error_setg(errp,
2375                    "User specified oem-id value is bigger than 6 bytes in size");
2376         return;
2377     }
2378 
2379     strncpy(vms->oem_id, value, 6);
2380 }
2381 
2382 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2383 {
2384     VirtMachineState *vms = VIRT_MACHINE(obj);
2385 
2386     return g_strdup(vms->oem_table_id);
2387 }
2388 
2389 static void virt_set_oem_table_id(Object *obj, const char *value,
2390                                   Error **errp)
2391 {
2392     VirtMachineState *vms = VIRT_MACHINE(obj);
2393     size_t len = strlen(value);
2394 
2395     if (len > 8) {
2396         error_setg(errp,
2397                    "User specified oem-table-id value is bigger than 8 bytes in size");
2398         return;
2399     }
2400     strncpy(vms->oem_table_id, value, 8);
2401 }
2402 
2403 
2404 bool virt_is_acpi_enabled(VirtMachineState *vms)
2405 {
2406     if (vms->acpi == ON_OFF_AUTO_OFF) {
2407         return false;
2408     }
2409     return true;
2410 }
2411 
2412 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2413                           void *opaque, Error **errp)
2414 {
2415     VirtMachineState *vms = VIRT_MACHINE(obj);
2416     OnOffAuto acpi = vms->acpi;
2417 
2418     visit_type_OnOffAuto(v, name, &acpi, errp);
2419 }
2420 
2421 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2422                           void *opaque, Error **errp)
2423 {
2424     VirtMachineState *vms = VIRT_MACHINE(obj);
2425 
2426     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2427 }
2428 
2429 static bool virt_get_ras(Object *obj, Error **errp)
2430 {
2431     VirtMachineState *vms = VIRT_MACHINE(obj);
2432 
2433     return vms->ras;
2434 }
2435 
2436 static void virt_set_ras(Object *obj, bool value, Error **errp)
2437 {
2438     VirtMachineState *vms = VIRT_MACHINE(obj);
2439 
2440     vms->ras = value;
2441 }
2442 
2443 static bool virt_get_mte(Object *obj, Error **errp)
2444 {
2445     VirtMachineState *vms = VIRT_MACHINE(obj);
2446 
2447     return vms->mte;
2448 }
2449 
2450 static void virt_set_mte(Object *obj, bool value, Error **errp)
2451 {
2452     VirtMachineState *vms = VIRT_MACHINE(obj);
2453 
2454     vms->mte = value;
2455 }
2456 
2457 static char *virt_get_gic_version(Object *obj, Error **errp)
2458 {
2459     VirtMachineState *vms = VIRT_MACHINE(obj);
2460     const char *val;
2461 
2462     switch (vms->gic_version) {
2463     case VIRT_GIC_VERSION_4:
2464         val = "4";
2465         break;
2466     case VIRT_GIC_VERSION_3:
2467         val = "3";
2468         break;
2469     default:
2470         val = "2";
2471         break;
2472     }
2473     return g_strdup(val);
2474 }
2475 
2476 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2477 {
2478     VirtMachineState *vms = VIRT_MACHINE(obj);
2479 
2480     if (!strcmp(value, "4")) {
2481         vms->gic_version = VIRT_GIC_VERSION_4;
2482     } else if (!strcmp(value, "3")) {
2483         vms->gic_version = VIRT_GIC_VERSION_3;
2484     } else if (!strcmp(value, "2")) {
2485         vms->gic_version = VIRT_GIC_VERSION_2;
2486     } else if (!strcmp(value, "host")) {
2487         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2488     } else if (!strcmp(value, "max")) {
2489         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2490     } else {
2491         error_setg(errp, "Invalid gic-version value");
2492         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2493     }
2494 }
2495 
2496 static char *virt_get_iommu(Object *obj, Error **errp)
2497 {
2498     VirtMachineState *vms = VIRT_MACHINE(obj);
2499 
2500     switch (vms->iommu) {
2501     case VIRT_IOMMU_NONE:
2502         return g_strdup("none");
2503     case VIRT_IOMMU_SMMUV3:
2504         return g_strdup("smmuv3");
2505     default:
2506         g_assert_not_reached();
2507     }
2508 }
2509 
2510 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2511 {
2512     VirtMachineState *vms = VIRT_MACHINE(obj);
2513 
2514     if (!strcmp(value, "smmuv3")) {
2515         vms->iommu = VIRT_IOMMU_SMMUV3;
2516     } else if (!strcmp(value, "none")) {
2517         vms->iommu = VIRT_IOMMU_NONE;
2518     } else {
2519         error_setg(errp, "Invalid iommu value");
2520         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2521     }
2522 }
2523 
2524 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2525 {
2526     VirtMachineState *vms = VIRT_MACHINE(obj);
2527 
2528     return vms->default_bus_bypass_iommu;
2529 }
2530 
2531 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2532                                               Error **errp)
2533 {
2534     VirtMachineState *vms = VIRT_MACHINE(obj);
2535 
2536     vms->default_bus_bypass_iommu = value;
2537 }
2538 
2539 static CpuInstanceProperties
2540 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2541 {
2542     MachineClass *mc = MACHINE_GET_CLASS(ms);
2543     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2544 
2545     assert(cpu_index < possible_cpus->len);
2546     return possible_cpus->cpus[cpu_index].props;
2547 }
2548 
2549 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2550 {
2551     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2552 
2553     return socket_id % ms->numa_state->num_nodes;
2554 }
2555 
2556 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2557 {
2558     int n;
2559     unsigned int max_cpus = ms->smp.max_cpus;
2560     VirtMachineState *vms = VIRT_MACHINE(ms);
2561     MachineClass *mc = MACHINE_GET_CLASS(vms);
2562 
2563     if (ms->possible_cpus) {
2564         assert(ms->possible_cpus->len == max_cpus);
2565         return ms->possible_cpus;
2566     }
2567 
2568     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2569                                   sizeof(CPUArchId) * max_cpus);
2570     ms->possible_cpus->len = max_cpus;
2571     for (n = 0; n < ms->possible_cpus->len; n++) {
2572         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2573         ms->possible_cpus->cpus[n].arch_id =
2574             virt_cpu_mp_affinity(vms, n);
2575 
2576         assert(!mc->smp_props.dies_supported);
2577         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2578         ms->possible_cpus->cpus[n].props.socket_id =
2579             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2580         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2581         ms->possible_cpus->cpus[n].props.cluster_id =
2582             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2583         ms->possible_cpus->cpus[n].props.has_core_id = true;
2584         ms->possible_cpus->cpus[n].props.core_id =
2585             (n / ms->smp.threads) % ms->smp.cores;
2586         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2587         ms->possible_cpus->cpus[n].props.thread_id =
2588             n % ms->smp.threads;
2589     }
2590     return ms->possible_cpus;
2591 }
2592 
2593 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2594                                  Error **errp)
2595 {
2596     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2597     const MachineState *ms = MACHINE(hotplug_dev);
2598     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2599 
2600     if (!vms->acpi_dev) {
2601         error_setg(errp,
2602                    "memory hotplug is not enabled: missing acpi-ged device");
2603         return;
2604     }
2605 
2606     if (vms->mte) {
2607         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2608         return;
2609     }
2610 
2611     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2612         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2613         return;
2614     }
2615 
2616     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2617 }
2618 
2619 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2620                              DeviceState *dev, Error **errp)
2621 {
2622     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2623     MachineState *ms = MACHINE(hotplug_dev);
2624     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2625 
2626     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2627 
2628     if (is_nvdimm) {
2629         nvdimm_plug(ms->nvdimms_state);
2630     }
2631 
2632     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2633                          dev, &error_abort);
2634 }
2635 
2636 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2637                                         DeviceState *dev, Error **errp)
2638 {
2639     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2640     Error *local_err = NULL;
2641 
2642     if (!hotplug_dev2 && dev->hotplugged) {
2643         /*
2644          * Without a bus hotplug handler, we cannot control the plug/unplug
2645          * order. We should never reach this point when hotplugging on ARM.
2646          * However, it's nice to add a safety net, similar to what we have
2647          * on x86.
2648          */
2649         error_setg(errp, "hotplug of virtio based memory devices not supported"
2650                    " on this bus.");
2651         return;
2652     }
2653     /*
2654      * First, see if we can plug this memory device at all. If that
2655      * succeeds, branch of to the actual hotplug handler.
2656      */
2657     memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2658                            &local_err);
2659     if (!local_err && hotplug_dev2) {
2660         hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2661     }
2662     error_propagate(errp, local_err);
2663 }
2664 
2665 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2666                                     DeviceState *dev, Error **errp)
2667 {
2668     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2669     Error *local_err = NULL;
2670 
2671     /*
2672      * Plug the memory device first and then branch off to the actual
2673      * hotplug handler. If that one fails, we can easily undo the memory
2674      * device bits.
2675      */
2676     memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2677     if (hotplug_dev2) {
2678         hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2679         if (local_err) {
2680             memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2681         }
2682     }
2683     error_propagate(errp, local_err);
2684 }
2685 
2686 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2687                                               DeviceState *dev, Error **errp)
2688 {
2689     /* We don't support hot unplug of virtio based memory devices */
2690     error_setg(errp, "virtio based memory devices cannot be unplugged.");
2691 }
2692 
2693 
2694 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2695                                             DeviceState *dev, Error **errp)
2696 {
2697     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2698 
2699     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2700         virt_memory_pre_plug(hotplug_dev, dev, errp);
2701     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2702         virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2703     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2704         hwaddr db_start = 0, db_end = 0;
2705         char *resv_prop_str;
2706 
2707         if (vms->iommu != VIRT_IOMMU_NONE) {
2708             error_setg(errp, "virt machine does not support multiple IOMMUs");
2709             return;
2710         }
2711 
2712         switch (vms->msi_controller) {
2713         case VIRT_MSI_CTRL_NONE:
2714             return;
2715         case VIRT_MSI_CTRL_ITS:
2716             /* GITS_TRANSLATER page */
2717             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2718             db_end = base_memmap[VIRT_GIC_ITS].base +
2719                      base_memmap[VIRT_GIC_ITS].size - 1;
2720             break;
2721         case VIRT_MSI_CTRL_GICV2M:
2722             /* MSI_SETSPI_NS page */
2723             db_start = base_memmap[VIRT_GIC_V2M].base;
2724             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2725             break;
2726         }
2727         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2728                                         db_start, db_end,
2729                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2730 
2731         object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2732         object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2733                                 resv_prop_str, errp);
2734         g_free(resv_prop_str);
2735     }
2736 }
2737 
2738 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2739                                         DeviceState *dev, Error **errp)
2740 {
2741     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2742 
2743     if (vms->platform_bus_dev) {
2744         MachineClass *mc = MACHINE_GET_CLASS(vms);
2745 
2746         if (device_is_dynamic_sysbus(mc, dev)) {
2747             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2748                                      SYS_BUS_DEVICE(dev));
2749         }
2750     }
2751     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2752         virt_memory_plug(hotplug_dev, dev, errp);
2753     }
2754 
2755     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2756         virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2757     }
2758 
2759     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2760         PCIDevice *pdev = PCI_DEVICE(dev);
2761 
2762         vms->iommu = VIRT_IOMMU_VIRTIO;
2763         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2764         create_virtio_iommu_dt_bindings(vms);
2765     }
2766 }
2767 
2768 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2769                                      DeviceState *dev, Error **errp)
2770 {
2771     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2772     Error *local_err = NULL;
2773 
2774     if (!vms->acpi_dev) {
2775         error_setg(&local_err,
2776                    "memory hotplug is not enabled: missing acpi-ged device");
2777         goto out;
2778     }
2779 
2780     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2781         error_setg(&local_err,
2782                    "nvdimm device hot unplug is not supported yet.");
2783         goto out;
2784     }
2785 
2786     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2787                                    &local_err);
2788 out:
2789     error_propagate(errp, local_err);
2790 }
2791 
2792 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2793                              DeviceState *dev, Error **errp)
2794 {
2795     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2796     Error *local_err = NULL;
2797 
2798     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2799     if (local_err) {
2800         goto out;
2801     }
2802 
2803     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2804     qdev_unrealize(dev);
2805 
2806 out:
2807     error_propagate(errp, local_err);
2808 }
2809 
2810 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2811                                           DeviceState *dev, Error **errp)
2812 {
2813     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2814         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2815     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2816         virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2817     } else {
2818         error_setg(errp, "device unplug request for unsupported device"
2819                    " type: %s", object_get_typename(OBJECT(dev)));
2820     }
2821 }
2822 
2823 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2824                                           DeviceState *dev, Error **errp)
2825 {
2826     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2827         virt_dimm_unplug(hotplug_dev, dev, errp);
2828     } else {
2829         error_setg(errp, "virt: device unplug for unsupported device"
2830                    " type: %s", object_get_typename(OBJECT(dev)));
2831     }
2832 }
2833 
2834 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2835                                                         DeviceState *dev)
2836 {
2837     MachineClass *mc = MACHINE_GET_CLASS(machine);
2838 
2839     if (device_is_dynamic_sysbus(mc, dev) ||
2840         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2841         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2842         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2843         return HOTPLUG_HANDLER(machine);
2844     }
2845     return NULL;
2846 }
2847 
2848 /*
2849  * for arm64 kvm_type [7-0] encodes the requested number of bits
2850  * in the IPA address space
2851  */
2852 static int virt_kvm_type(MachineState *ms, const char *type_str)
2853 {
2854     VirtMachineState *vms = VIRT_MACHINE(ms);
2855     int max_vm_pa_size, requested_pa_size;
2856     bool fixed_ipa;
2857 
2858     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2859 
2860     /* we freeze the memory map to compute the highest gpa */
2861     virt_set_memmap(vms, max_vm_pa_size);
2862 
2863     requested_pa_size = 64 - clz64(vms->highest_gpa);
2864 
2865     /*
2866      * KVM requires the IPA size to be at least 32 bits.
2867      */
2868     if (requested_pa_size < 32) {
2869         requested_pa_size = 32;
2870     }
2871 
2872     if (requested_pa_size > max_vm_pa_size) {
2873         error_report("-m and ,maxmem option values "
2874                      "require an IPA range (%d bits) larger than "
2875                      "the one supported by the host (%d bits)",
2876                      requested_pa_size, max_vm_pa_size);
2877         exit(1);
2878     }
2879     /*
2880      * We return the requested PA log size, unless KVM only supports
2881      * the implicit legacy 40b IPA setting, in which case the kvm_type
2882      * must be 0.
2883      */
2884     return fixed_ipa ? 0 : requested_pa_size;
2885 }
2886 
2887 static void virt_machine_class_init(ObjectClass *oc, void *data)
2888 {
2889     MachineClass *mc = MACHINE_CLASS(oc);
2890     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2891 
2892     mc->init = machvirt_init;
2893     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2894      * The value may be reduced later when we have more information about the
2895      * configuration of the particular instance.
2896      */
2897     mc->max_cpus = 512;
2898     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2899     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2900     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2901     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2902 #ifdef CONFIG_TPM
2903     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2904 #endif
2905     mc->block_default_type = IF_VIRTIO;
2906     mc->no_cdrom = 1;
2907     mc->pci_allow_0_address = true;
2908     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2909     mc->minimum_page_bits = 12;
2910     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2911     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2912     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2913     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2914     mc->kvm_type = virt_kvm_type;
2915     assert(!mc->get_hotplug_handler);
2916     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2917     hc->pre_plug = virt_machine_device_pre_plug_cb;
2918     hc->plug = virt_machine_device_plug_cb;
2919     hc->unplug_request = virt_machine_device_unplug_request_cb;
2920     hc->unplug = virt_machine_device_unplug_cb;
2921     mc->nvdimm_supported = true;
2922     mc->smp_props.clusters_supported = true;
2923     mc->auto_enable_numa_with_memhp = true;
2924     mc->auto_enable_numa_with_memdev = true;
2925     mc->default_ram_id = "mach-virt.ram";
2926 
2927     object_class_property_add(oc, "acpi", "OnOffAuto",
2928         virt_get_acpi, virt_set_acpi,
2929         NULL, NULL);
2930     object_class_property_set_description(oc, "acpi",
2931         "Enable ACPI");
2932     object_class_property_add_bool(oc, "secure", virt_get_secure,
2933                                    virt_set_secure);
2934     object_class_property_set_description(oc, "secure",
2935                                                 "Set on/off to enable/disable the ARM "
2936                                                 "Security Extensions (TrustZone)");
2937 
2938     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2939                                    virt_set_virt);
2940     object_class_property_set_description(oc, "virtualization",
2941                                           "Set on/off to enable/disable emulating a "
2942                                           "guest CPU which implements the ARM "
2943                                           "Virtualization Extensions");
2944 
2945     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2946                                    virt_set_highmem);
2947     object_class_property_set_description(oc, "highmem",
2948                                           "Set on/off to enable/disable using "
2949                                           "physical address space above 32 bits");
2950 
2951     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2952                                   virt_set_gic_version);
2953     object_class_property_set_description(oc, "gic-version",
2954                                           "Set GIC version. "
2955                                           "Valid values are 2, 3, 4, host and max");
2956 
2957     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2958     object_class_property_set_description(oc, "iommu",
2959                                           "Set the IOMMU type. "
2960                                           "Valid values are none and smmuv3");
2961 
2962     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
2963                                    virt_get_default_bus_bypass_iommu,
2964                                    virt_set_default_bus_bypass_iommu);
2965     object_class_property_set_description(oc, "default-bus-bypass-iommu",
2966                                           "Set on/off to enable/disable "
2967                                           "bypass_iommu for default root bus");
2968 
2969     object_class_property_add_bool(oc, "ras", virt_get_ras,
2970                                    virt_set_ras);
2971     object_class_property_set_description(oc, "ras",
2972                                           "Set on/off to enable/disable reporting host memory errors "
2973                                           "to a KVM guest using ACPI and guest external abort exceptions");
2974 
2975     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2976     object_class_property_set_description(oc, "mte",
2977                                           "Set on/off to enable/disable emulating a "
2978                                           "guest CPU which implements the ARM "
2979                                           "Memory Tagging Extension");
2980 
2981     object_class_property_add_bool(oc, "its", virt_get_its,
2982                                    virt_set_its);
2983     object_class_property_set_description(oc, "its",
2984                                           "Set on/off to enable/disable "
2985                                           "ITS instantiation");
2986 
2987     object_class_property_add_bool(oc, "dtb-randomness",
2988                                    virt_get_dtb_randomness,
2989                                    virt_set_dtb_randomness);
2990     object_class_property_set_description(oc, "dtb-randomness",
2991                                           "Set off to disable passing random or "
2992                                           "non-deterministic dtb nodes to guest");
2993 
2994     object_class_property_add_bool(oc, "dtb-kaslr-seed",
2995                                    virt_get_dtb_randomness,
2996                                    virt_set_dtb_randomness);
2997     object_class_property_set_description(oc, "dtb-kaslr-seed",
2998                                           "Deprecated synonym of dtb-randomness");
2999 
3000     object_class_property_add_str(oc, "x-oem-id",
3001                                   virt_get_oem_id,
3002                                   virt_set_oem_id);
3003     object_class_property_set_description(oc, "x-oem-id",
3004                                           "Override the default value of field OEMID "
3005                                           "in ACPI table header."
3006                                           "The string may be up to 6 bytes in size");
3007 
3008 
3009     object_class_property_add_str(oc, "x-oem-table-id",
3010                                   virt_get_oem_table_id,
3011                                   virt_set_oem_table_id);
3012     object_class_property_set_description(oc, "x-oem-table-id",
3013                                           "Override the default value of field OEM Table ID "
3014                                           "in ACPI table header."
3015                                           "The string may be up to 8 bytes in size");
3016 
3017 }
3018 
3019 static void virt_instance_init(Object *obj)
3020 {
3021     VirtMachineState *vms = VIRT_MACHINE(obj);
3022     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3023 
3024     /* EL3 is disabled by default on virt: this makes us consistent
3025      * between KVM and TCG for this board, and it also allows us to
3026      * boot UEFI blobs which assume no TrustZone support.
3027      */
3028     vms->secure = false;
3029 
3030     /* EL2 is also disabled by default, for similar reasons */
3031     vms->virt = false;
3032 
3033     /* High memory is enabled by default */
3034     vms->highmem = true;
3035     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3036 
3037     vms->highmem_ecam = !vmc->no_highmem_ecam;
3038     vms->highmem_mmio = true;
3039     vms->highmem_redists = true;
3040 
3041     if (vmc->no_its) {
3042         vms->its = false;
3043     } else {
3044         /* Default allows ITS instantiation */
3045         vms->its = true;
3046 
3047         if (vmc->no_tcg_its) {
3048             vms->tcg_its = false;
3049         } else {
3050             vms->tcg_its = true;
3051         }
3052     }
3053 
3054     /* Default disallows iommu instantiation */
3055     vms->iommu = VIRT_IOMMU_NONE;
3056 
3057     /* The default root bus is attached to iommu by default */
3058     vms->default_bus_bypass_iommu = false;
3059 
3060     /* Default disallows RAS instantiation */
3061     vms->ras = false;
3062 
3063     /* MTE is disabled by default.  */
3064     vms->mte = false;
3065 
3066     /* Supply kaslr-seed and rng-seed by default */
3067     vms->dtb_randomness = true;
3068 
3069     vms->irqmap = a15irqmap;
3070 
3071     virt_flash_create(vms);
3072 
3073     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3074     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3075 }
3076 
3077 static const TypeInfo virt_machine_info = {
3078     .name          = TYPE_VIRT_MACHINE,
3079     .parent        = TYPE_MACHINE,
3080     .abstract      = true,
3081     .instance_size = sizeof(VirtMachineState),
3082     .class_size    = sizeof(VirtMachineClass),
3083     .class_init    = virt_machine_class_init,
3084     .instance_init = virt_instance_init,
3085     .interfaces = (InterfaceInfo[]) {
3086          { TYPE_HOTPLUG_HANDLER },
3087          { }
3088     },
3089 };
3090 
3091 static void machvirt_machine_init(void)
3092 {
3093     type_register_static(&virt_machine_info);
3094 }
3095 type_init(machvirt_machine_init);
3096 
3097 static void virt_machine_7_1_options(MachineClass *mc)
3098 {
3099 }
3100 DEFINE_VIRT_MACHINE_AS_LATEST(7, 1)
3101 
3102 static void virt_machine_7_0_options(MachineClass *mc)
3103 {
3104     virt_machine_7_1_options(mc);
3105     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3106 }
3107 DEFINE_VIRT_MACHINE(7, 0)
3108 
3109 static void virt_machine_6_2_options(MachineClass *mc)
3110 {
3111     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3112 
3113     virt_machine_7_0_options(mc);
3114     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3115     vmc->no_tcg_lpa2 = true;
3116 }
3117 DEFINE_VIRT_MACHINE(6, 2)
3118 
3119 static void virt_machine_6_1_options(MachineClass *mc)
3120 {
3121     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3122 
3123     virt_machine_6_2_options(mc);
3124     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3125     mc->smp_props.prefer_sockets = true;
3126     vmc->no_cpu_topology = true;
3127 
3128     /* qemu ITS was introduced with 6.2 */
3129     vmc->no_tcg_its = true;
3130 }
3131 DEFINE_VIRT_MACHINE(6, 1)
3132 
3133 static void virt_machine_6_0_options(MachineClass *mc)
3134 {
3135     virt_machine_6_1_options(mc);
3136     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3137 }
3138 DEFINE_VIRT_MACHINE(6, 0)
3139 
3140 static void virt_machine_5_2_options(MachineClass *mc)
3141 {
3142     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3143 
3144     virt_machine_6_0_options(mc);
3145     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3146     vmc->no_secure_gpio = true;
3147 }
3148 DEFINE_VIRT_MACHINE(5, 2)
3149 
3150 static void virt_machine_5_1_options(MachineClass *mc)
3151 {
3152     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3153 
3154     virt_machine_5_2_options(mc);
3155     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3156     vmc->no_kvm_steal_time = true;
3157 }
3158 DEFINE_VIRT_MACHINE(5, 1)
3159 
3160 static void virt_machine_5_0_options(MachineClass *mc)
3161 {
3162     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3163 
3164     virt_machine_5_1_options(mc);
3165     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3166     mc->numa_mem_supported = true;
3167     vmc->acpi_expose_flash = true;
3168     mc->auto_enable_numa_with_memdev = false;
3169 }
3170 DEFINE_VIRT_MACHINE(5, 0)
3171 
3172 static void virt_machine_4_2_options(MachineClass *mc)
3173 {
3174     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3175 
3176     virt_machine_5_0_options(mc);
3177     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3178     vmc->kvm_no_adjvtime = true;
3179 }
3180 DEFINE_VIRT_MACHINE(4, 2)
3181 
3182 static void virt_machine_4_1_options(MachineClass *mc)
3183 {
3184     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3185 
3186     virt_machine_4_2_options(mc);
3187     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3188     vmc->no_ged = true;
3189     mc->auto_enable_numa_with_memhp = false;
3190 }
3191 DEFINE_VIRT_MACHINE(4, 1)
3192 
3193 static void virt_machine_4_0_options(MachineClass *mc)
3194 {
3195     virt_machine_4_1_options(mc);
3196     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3197 }
3198 DEFINE_VIRT_MACHINE(4, 0)
3199 
3200 static void virt_machine_3_1_options(MachineClass *mc)
3201 {
3202     virt_machine_4_0_options(mc);
3203     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3204 }
3205 DEFINE_VIRT_MACHINE(3, 1)
3206 
3207 static void virt_machine_3_0_options(MachineClass *mc)
3208 {
3209     virt_machine_3_1_options(mc);
3210     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3211 }
3212 DEFINE_VIRT_MACHINE(3, 0)
3213 
3214 static void virt_machine_2_12_options(MachineClass *mc)
3215 {
3216     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3217 
3218     virt_machine_3_0_options(mc);
3219     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3220     vmc->no_highmem_ecam = true;
3221     mc->max_cpus = 255;
3222 }
3223 DEFINE_VIRT_MACHINE(2, 12)
3224 
3225 static void virt_machine_2_11_options(MachineClass *mc)
3226 {
3227     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3228 
3229     virt_machine_2_12_options(mc);
3230     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3231     vmc->smbios_old_sys_ver = true;
3232 }
3233 DEFINE_VIRT_MACHINE(2, 11)
3234 
3235 static void virt_machine_2_10_options(MachineClass *mc)
3236 {
3237     virt_machine_2_11_options(mc);
3238     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3239     /* before 2.11 we never faulted accesses to bad addresses */
3240     mc->ignore_memory_transaction_failures = true;
3241 }
3242 DEFINE_VIRT_MACHINE(2, 10)
3243 
3244 static void virt_machine_2_9_options(MachineClass *mc)
3245 {
3246     virt_machine_2_10_options(mc);
3247     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3248 }
3249 DEFINE_VIRT_MACHINE(2, 9)
3250 
3251 static void virt_machine_2_8_options(MachineClass *mc)
3252 {
3253     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3254 
3255     virt_machine_2_9_options(mc);
3256     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3257     /* For 2.8 and earlier we falsely claimed in the DT that
3258      * our timers were edge-triggered, not level-triggered.
3259      */
3260     vmc->claim_edge_triggered_timers = true;
3261 }
3262 DEFINE_VIRT_MACHINE(2, 8)
3263 
3264 static void virt_machine_2_7_options(MachineClass *mc)
3265 {
3266     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3267 
3268     virt_machine_2_8_options(mc);
3269     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3270     /* ITS was introduced with 2.8 */
3271     vmc->no_its = true;
3272     /* Stick with 1K pages for migration compatibility */
3273     mc->minimum_page_bits = 0;
3274 }
3275 DEFINE_VIRT_MACHINE(2, 7)
3276 
3277 static void virt_machine_2_6_options(MachineClass *mc)
3278 {
3279     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3280 
3281     virt_machine_2_7_options(mc);
3282     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3283     vmc->disallow_affinity_adjustment = true;
3284     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3285     vmc->no_pmu = true;
3286 }
3287 DEFINE_VIRT_MACHINE(2, 6)
3288