xref: /qemu/hw/arm/virt.c (revision 7c0dfcf9)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
87 
88 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
89     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
90                                                     void *data) \
91     { \
92         MachineClass *mc = MACHINE_CLASS(oc); \
93         virt_machine_##major##_##minor##_options(mc); \
94         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
95         if (latest) { \
96             mc->alias = "virt"; \
97         } \
98     } \
99     static const TypeInfo machvirt_##major##_##minor##_info = { \
100         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
101         .parent = TYPE_VIRT_MACHINE, \
102         .class_init = virt_##major##_##minor##_class_init, \
103     }; \
104     static void machvirt_machine_##major##_##minor##_init(void) \
105     { \
106         type_register_static(&machvirt_##major##_##minor##_info); \
107     } \
108     type_init(machvirt_machine_##major##_##minor##_init);
109 
110 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
111     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
112 #define DEFINE_VIRT_MACHINE(major, minor) \
113     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
114 
115 
116 /* Number of external interrupt lines to configure the GIC with */
117 #define NUM_IRQS 256
118 
119 #define PLATFORM_BUS_NUM_IRQS 64
120 
121 /* Legacy RAM limit in GB (< version 4.0) */
122 #define LEGACY_RAMLIMIT_GB 255
123 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
124 
125 /* Addresses and sizes of our components.
126  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
127  * 128MB..256MB is used for miscellaneous device I/O.
128  * 256MB..1GB is reserved for possible future PCI support (ie where the
129  * PCI memory window will go if we add a PCI host controller).
130  * 1GB and up is RAM (which may happily spill over into the
131  * high memory region beyond 4GB).
132  * This represents a compromise between how much RAM can be given to
133  * a 32 bit VM and leaving space for expansion and in particular for PCI.
134  * Note that devices should generally be placed at multiples of 0x10000,
135  * to accommodate guests using 64K pages.
136  */
137 static const MemMapEntry base_memmap[] = {
138     /* Space up to 0x8000000 is reserved for a boot ROM */
139     [VIRT_FLASH] =              {          0, 0x08000000 },
140     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
141     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
142     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
143     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
144     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
145     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
146     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
147     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
148     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
149     /* This redistributor space allows up to 2*64kB*123 CPUs */
150     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
151     [VIRT_UART] =               { 0x09000000, 0x00001000 },
152     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
153     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
154     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
155     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
156     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
157     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
158     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
159     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
160     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
161     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
162     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
163     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
164     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
165     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
166     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
167     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
168     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
169     /* Actual RAM size depends on initial RAM and device memory settings */
170     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
171 };
172 
173 /*
174  * Highmem IO Regions: This memory map is floating, located after the RAM.
175  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
176  * top of the RAM, so that its base get the same alignment as the size,
177  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
178  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
179  * Note the extended_memmap is sized so that it eventually also includes the
180  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
181  * index of base_memmap).
182  *
183  * The memory map for these Highmem IO Regions can be in legacy or compact
184  * layout, depending on 'compact-highmem' property. With legacy layout, the
185  * PA space for one specific region is always reserved, even if the region
186  * has been disabled or doesn't fit into the PA space. However, the PA space
187  * for the region won't be reserved in these circumstances with compact layout.
188  */
189 static MemMapEntry extended_memmap[] = {
190     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
191     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
192     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
193     /* Second PCIe window */
194     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
195 };
196 
197 static const int a15irqmap[] = {
198     [VIRT_UART] = 1,
199     [VIRT_RTC] = 2,
200     [VIRT_PCIE] = 3, /* ... to 6 */
201     [VIRT_GPIO] = 7,
202     [VIRT_SECURE_UART] = 8,
203     [VIRT_ACPI_GED] = 9,
204     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
205     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
206     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
207     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
208 };
209 
210 static void create_randomness(MachineState *ms, const char *node)
211 {
212     struct {
213         uint64_t kaslr;
214         uint8_t rng[32];
215     } seed;
216 
217     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
218         return;
219     }
220     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
221     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
222 }
223 
224 static void create_fdt(VirtMachineState *vms)
225 {
226     MachineState *ms = MACHINE(vms);
227     int nb_numa_nodes = ms->numa_state->num_nodes;
228     void *fdt = create_device_tree(&vms->fdt_size);
229 
230     if (!fdt) {
231         error_report("create_device_tree() failed");
232         exit(1);
233     }
234 
235     ms->fdt = fdt;
236 
237     /* Header */
238     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
239     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
240     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
241     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
242 
243     /* /chosen must exist for load_dtb to fill in necessary properties later */
244     qemu_fdt_add_subnode(fdt, "/chosen");
245     if (vms->dtb_randomness) {
246         create_randomness(ms, "/chosen");
247     }
248 
249     if (vms->secure) {
250         qemu_fdt_add_subnode(fdt, "/secure-chosen");
251         if (vms->dtb_randomness) {
252             create_randomness(ms, "/secure-chosen");
253         }
254     }
255 
256     /* Clock node, for the benefit of the UART. The kernel device tree
257      * binding documentation claims the PL011 node clock properties are
258      * optional but in practice if you omit them the kernel refuses to
259      * probe for the device.
260      */
261     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
262     qemu_fdt_add_subnode(fdt, "/apb-pclk");
263     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
264     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
265     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
266     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
267                                 "clk24mhz");
268     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
269 
270     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
271         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
272         uint32_t *matrix = g_malloc0(size);
273         int idx, i, j;
274 
275         for (i = 0; i < nb_numa_nodes; i++) {
276             for (j = 0; j < nb_numa_nodes; j++) {
277                 idx = (i * nb_numa_nodes + j) * 3;
278                 matrix[idx + 0] = cpu_to_be32(i);
279                 matrix[idx + 1] = cpu_to_be32(j);
280                 matrix[idx + 2] =
281                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
282             }
283         }
284 
285         qemu_fdt_add_subnode(fdt, "/distance-map");
286         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
287                                 "numa-distance-map-v1");
288         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
289                          matrix, size);
290         g_free(matrix);
291     }
292 }
293 
294 static void fdt_add_timer_nodes(const VirtMachineState *vms)
295 {
296     /* On real hardware these interrupts are level-triggered.
297      * On KVM they were edge-triggered before host kernel version 4.4,
298      * and level-triggered afterwards.
299      * On emulated QEMU they are level-triggered.
300      *
301      * Getting the DTB info about them wrong is awkward for some
302      * guest kernels:
303      *  pre-4.8 ignore the DT and leave the interrupt configured
304      *   with whatever the GIC reset value (or the bootloader) left it at
305      *  4.8 before rc6 honour the incorrect data by programming it back
306      *   into the GIC, causing problems
307      *  4.8rc6 and later ignore the DT and always write "level triggered"
308      *   into the GIC
309      *
310      * For backwards-compatibility, virt-2.8 and earlier will continue
311      * to say these are edge-triggered, but later machines will report
312      * the correct information.
313      */
314     ARMCPU *armcpu;
315     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
316     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
317     MachineState *ms = MACHINE(vms);
318 
319     if (vmc->claim_edge_triggered_timers) {
320         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
321     }
322 
323     if (vms->gic_version == VIRT_GIC_VERSION_2) {
324         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
325                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
326                              (1 << MACHINE(vms)->smp.cpus) - 1);
327     }
328 
329     qemu_fdt_add_subnode(ms->fdt, "/timer");
330 
331     armcpu = ARM_CPU(qemu_get_cpu(0));
332     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
333         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
334         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
335                          compat, sizeof(compat));
336     } else {
337         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
338                                 "arm,armv7-timer");
339     }
340     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
341     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
342                            GIC_FDT_IRQ_TYPE_PPI,
343                            INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
344                            GIC_FDT_IRQ_TYPE_PPI,
345                            INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
346                            GIC_FDT_IRQ_TYPE_PPI,
347                            INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
348                            GIC_FDT_IRQ_TYPE_PPI,
349                            INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
350 }
351 
352 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
353 {
354     int cpu;
355     int addr_cells = 1;
356     const MachineState *ms = MACHINE(vms);
357     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
358     int smp_cpus = ms->smp.cpus;
359 
360     /*
361      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
362      * On ARM v8 64-bit systems value should be set to 2,
363      * that corresponds to the MPIDR_EL1 register size.
364      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
365      * in the system, #address-cells can be set to 1, since
366      * MPIDR_EL1[63:32] bits are not used for CPUs
367      * identification.
368      *
369      * Here we actually don't know whether our system is 32- or 64-bit one.
370      * The simplest way to go is to examine affinity IDs of all our CPUs. If
371      * at least one of them has Aff3 populated, we set #address-cells to 2.
372      */
373     for (cpu = 0; cpu < smp_cpus; cpu++) {
374         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
375 
376         if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
377             addr_cells = 2;
378             break;
379         }
380     }
381 
382     qemu_fdt_add_subnode(ms->fdt, "/cpus");
383     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
384     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
385 
386     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
387         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
388         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
389         CPUState *cs = CPU(armcpu);
390 
391         qemu_fdt_add_subnode(ms->fdt, nodename);
392         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
393         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
394                                     armcpu->dtb_compatible);
395 
396         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
397             qemu_fdt_setprop_string(ms->fdt, nodename,
398                                         "enable-method", "psci");
399         }
400 
401         if (addr_cells == 2) {
402             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
403                                  arm_cpu_mp_affinity(armcpu));
404         } else {
405             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
406                                   arm_cpu_mp_affinity(armcpu));
407         }
408 
409         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
410             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
411                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
412         }
413 
414         if (!vmc->no_cpu_topology) {
415             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
416                                   qemu_fdt_alloc_phandle(ms->fdt));
417         }
418 
419         g_free(nodename);
420     }
421 
422     if (!vmc->no_cpu_topology) {
423         /*
424          * Add vCPU topology description through fdt node cpu-map.
425          *
426          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
427          * In a SMP system, the hierarchy of CPUs can be defined through
428          * four entities that are used to describe the layout of CPUs in
429          * the system: socket/cluster/core/thread.
430          *
431          * A socket node represents the boundary of system physical package
432          * and its child nodes must be one or more cluster nodes. A system
433          * can contain several layers of clustering within a single physical
434          * package and cluster nodes can be contained in parent cluster nodes.
435          *
436          * Note: currently we only support one layer of clustering within
437          * each physical package.
438          */
439         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
440 
441         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
442             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
443             char *map_path;
444 
445             if (ms->smp.threads > 1) {
446                 map_path = g_strdup_printf(
447                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
448                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
449                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
450                     (cpu / ms->smp.threads) % ms->smp.cores,
451                     cpu % ms->smp.threads);
452             } else {
453                 map_path = g_strdup_printf(
454                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
455                     cpu / (ms->smp.clusters * ms->smp.cores),
456                     (cpu / ms->smp.cores) % ms->smp.clusters,
457                     cpu % ms->smp.cores);
458             }
459             qemu_fdt_add_path(ms->fdt, map_path);
460             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
461 
462             g_free(map_path);
463             g_free(cpu_path);
464         }
465     }
466 }
467 
468 static void fdt_add_its_gic_node(VirtMachineState *vms)
469 {
470     char *nodename;
471     MachineState *ms = MACHINE(vms);
472 
473     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
474     nodename = g_strdup_printf("/intc/its@%" PRIx64,
475                                vms->memmap[VIRT_GIC_ITS].base);
476     qemu_fdt_add_subnode(ms->fdt, nodename);
477     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
478                             "arm,gic-v3-its");
479     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
480     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
481     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
482                                  2, vms->memmap[VIRT_GIC_ITS].base,
483                                  2, vms->memmap[VIRT_GIC_ITS].size);
484     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
485     g_free(nodename);
486 }
487 
488 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
489 {
490     MachineState *ms = MACHINE(vms);
491     char *nodename;
492 
493     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
494                                vms->memmap[VIRT_GIC_V2M].base);
495     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
496     qemu_fdt_add_subnode(ms->fdt, nodename);
497     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
498                             "arm,gic-v2m-frame");
499     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
500     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
501                                  2, vms->memmap[VIRT_GIC_V2M].base,
502                                  2, vms->memmap[VIRT_GIC_V2M].size);
503     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
504     g_free(nodename);
505 }
506 
507 static void fdt_add_gic_node(VirtMachineState *vms)
508 {
509     MachineState *ms = MACHINE(vms);
510     char *nodename;
511 
512     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
513     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
514 
515     nodename = g_strdup_printf("/intc@%" PRIx64,
516                                vms->memmap[VIRT_GIC_DIST].base);
517     qemu_fdt_add_subnode(ms->fdt, nodename);
518     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
519     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
520     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
521     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
522     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
523     if (vms->gic_version != VIRT_GIC_VERSION_2) {
524         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
525 
526         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
527                                 "arm,gic-v3");
528 
529         qemu_fdt_setprop_cell(ms->fdt, nodename,
530                               "#redistributor-regions", nb_redist_regions);
531 
532         if (nb_redist_regions == 1) {
533             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
534                                          2, vms->memmap[VIRT_GIC_DIST].base,
535                                          2, vms->memmap[VIRT_GIC_DIST].size,
536                                          2, vms->memmap[VIRT_GIC_REDIST].base,
537                                          2, vms->memmap[VIRT_GIC_REDIST].size);
538         } else {
539             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
540                                  2, vms->memmap[VIRT_GIC_DIST].base,
541                                  2, vms->memmap[VIRT_GIC_DIST].size,
542                                  2, vms->memmap[VIRT_GIC_REDIST].base,
543                                  2, vms->memmap[VIRT_GIC_REDIST].size,
544                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
545                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
546         }
547 
548         if (vms->virt) {
549             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
550                                    GIC_FDT_IRQ_TYPE_PPI,
551                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
552                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
553         }
554     } else {
555         /* 'cortex-a15-gic' means 'GIC v2' */
556         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
557                                 "arm,cortex-a15-gic");
558         if (!vms->virt) {
559             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
560                                          2, vms->memmap[VIRT_GIC_DIST].base,
561                                          2, vms->memmap[VIRT_GIC_DIST].size,
562                                          2, vms->memmap[VIRT_GIC_CPU].base,
563                                          2, vms->memmap[VIRT_GIC_CPU].size);
564         } else {
565             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
566                                          2, vms->memmap[VIRT_GIC_DIST].base,
567                                          2, vms->memmap[VIRT_GIC_DIST].size,
568                                          2, vms->memmap[VIRT_GIC_CPU].base,
569                                          2, vms->memmap[VIRT_GIC_CPU].size,
570                                          2, vms->memmap[VIRT_GIC_HYP].base,
571                                          2, vms->memmap[VIRT_GIC_HYP].size,
572                                          2, vms->memmap[VIRT_GIC_VCPU].base,
573                                          2, vms->memmap[VIRT_GIC_VCPU].size);
574             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
575                                    GIC_FDT_IRQ_TYPE_PPI,
576                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
577                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
578         }
579     }
580 
581     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
582     g_free(nodename);
583 }
584 
585 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
586 {
587     ARMCPU *armcpu = ARM_CPU(first_cpu);
588     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
589     MachineState *ms = MACHINE(vms);
590 
591     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
592         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
593         return;
594     }
595 
596     if (vms->gic_version == VIRT_GIC_VERSION_2) {
597         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
598                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
599                              (1 << MACHINE(vms)->smp.cpus) - 1);
600     }
601 
602     qemu_fdt_add_subnode(ms->fdt, "/pmu");
603     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
604         const char compat[] = "arm,armv8-pmuv3";
605         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
606                          compat, sizeof(compat));
607         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
608                                GIC_FDT_IRQ_TYPE_PPI,
609                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
610     }
611 }
612 
613 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
614 {
615     DeviceState *dev;
616     MachineState *ms = MACHINE(vms);
617     int irq = vms->irqmap[VIRT_ACPI_GED];
618     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
619 
620     if (ms->ram_slots) {
621         event |= ACPI_GED_MEM_HOTPLUG_EVT;
622     }
623 
624     if (ms->nvdimms_state->is_enabled) {
625         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
626     }
627 
628     dev = qdev_new(TYPE_ACPI_GED);
629     qdev_prop_set_uint32(dev, "ged-event", event);
630     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
631 
632     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
633     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
634     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
635 
636     return dev;
637 }
638 
639 static void create_its(VirtMachineState *vms)
640 {
641     const char *itsclass = its_class_name();
642     DeviceState *dev;
643 
644     if (!strcmp(itsclass, "arm-gicv3-its")) {
645         if (!vms->tcg_its) {
646             itsclass = NULL;
647         }
648     }
649 
650     if (!itsclass) {
651         /* Do nothing if not supported */
652         return;
653     }
654 
655     dev = qdev_new(itsclass);
656 
657     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
658                              &error_abort);
659     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
660     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
661 
662     fdt_add_its_gic_node(vms);
663     vms->msi_controller = VIRT_MSI_CTRL_ITS;
664 }
665 
666 static void create_v2m(VirtMachineState *vms)
667 {
668     int i;
669     int irq = vms->irqmap[VIRT_GIC_V2M];
670     DeviceState *dev;
671 
672     dev = qdev_new("arm-gicv2m");
673     qdev_prop_set_uint32(dev, "base-spi", irq);
674     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
675     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
676     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
677 
678     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
679         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
680                            qdev_get_gpio_in(vms->gic, irq + i));
681     }
682 
683     fdt_add_v2m_gic_node(vms);
684     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
685 }
686 
687 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
688 {
689     MachineState *ms = MACHINE(vms);
690     /* We create a standalone GIC */
691     SysBusDevice *gicbusdev;
692     const char *gictype;
693     int i;
694     unsigned int smp_cpus = ms->smp.cpus;
695     uint32_t nb_redist_regions = 0;
696     int revision;
697 
698     if (vms->gic_version == VIRT_GIC_VERSION_2) {
699         gictype = gic_class_name();
700     } else {
701         gictype = gicv3_class_name();
702     }
703 
704     switch (vms->gic_version) {
705     case VIRT_GIC_VERSION_2:
706         revision = 2;
707         break;
708     case VIRT_GIC_VERSION_3:
709         revision = 3;
710         break;
711     case VIRT_GIC_VERSION_4:
712         revision = 4;
713         break;
714     default:
715         g_assert_not_reached();
716     }
717     vms->gic = qdev_new(gictype);
718     qdev_prop_set_uint32(vms->gic, "revision", revision);
719     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
720     /* Note that the num-irq property counts both internal and external
721      * interrupts; there are always 32 of the former (mandated by GIC spec).
722      */
723     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
724     if (!kvm_irqchip_in_kernel()) {
725         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
726     }
727 
728     if (vms->gic_version != VIRT_GIC_VERSION_2) {
729         QList *redist_region_count;
730         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
731         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
732 
733         nb_redist_regions = virt_gicv3_redist_region_count(vms);
734 
735         redist_region_count = qlist_new();
736         qlist_append_int(redist_region_count, redist0_count);
737         if (nb_redist_regions == 2) {
738             uint32_t redist1_capacity =
739                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
740 
741             qlist_append_int(redist_region_count,
742                 MIN(smp_cpus - redist0_count, redist1_capacity));
743         }
744         qdev_prop_set_array(vms->gic, "redist-region-count",
745                             redist_region_count);
746 
747         if (!kvm_irqchip_in_kernel()) {
748             if (vms->tcg_its) {
749                 object_property_set_link(OBJECT(vms->gic), "sysmem",
750                                          OBJECT(mem), &error_fatal);
751                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
752             }
753         }
754     } else {
755         if (!kvm_irqchip_in_kernel()) {
756             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
757                               vms->virt);
758         }
759     }
760     gicbusdev = SYS_BUS_DEVICE(vms->gic);
761     sysbus_realize_and_unref(gicbusdev, &error_fatal);
762     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
763     if (vms->gic_version != VIRT_GIC_VERSION_2) {
764         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
765         if (nb_redist_regions == 2) {
766             sysbus_mmio_map(gicbusdev, 2,
767                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
768         }
769     } else {
770         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
771         if (vms->virt) {
772             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
773             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
774         }
775     }
776 
777     /* Wire the outputs from each CPU's generic timer and the GICv3
778      * maintenance interrupt signal to the appropriate GIC PPI inputs,
779      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
780      */
781     for (i = 0; i < smp_cpus; i++) {
782         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
783         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
784         /* Mapping from the output timer irq lines from the CPU to the
785          * GIC PPI inputs we use for the virt board.
786          */
787         const int timer_irq[] = {
788             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
789             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
790             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
791             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
792         };
793 
794         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
795             qdev_connect_gpio_out(cpudev, irq,
796                                   qdev_get_gpio_in(vms->gic,
797                                                    intidbase + timer_irq[irq]));
798         }
799 
800         if (vms->gic_version != VIRT_GIC_VERSION_2) {
801             qemu_irq irq = qdev_get_gpio_in(vms->gic,
802                                             intidbase + ARCH_GIC_MAINT_IRQ);
803             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
804                                         0, irq);
805         } else if (vms->virt) {
806             qemu_irq irq = qdev_get_gpio_in(vms->gic,
807                                             intidbase + ARCH_GIC_MAINT_IRQ);
808             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
809         }
810 
811         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
812                                     qdev_get_gpio_in(vms->gic, intidbase
813                                                      + VIRTUAL_PMU_IRQ));
814 
815         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
816         sysbus_connect_irq(gicbusdev, i + smp_cpus,
817                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
818         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
819                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
820         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
821                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
822     }
823 
824     fdt_add_gic_node(vms);
825 
826     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
827         create_its(vms);
828     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
829         create_v2m(vms);
830     }
831 }
832 
833 static void create_uart(const VirtMachineState *vms, int uart,
834                         MemoryRegion *mem, Chardev *chr)
835 {
836     char *nodename;
837     hwaddr base = vms->memmap[uart].base;
838     hwaddr size = vms->memmap[uart].size;
839     int irq = vms->irqmap[uart];
840     const char compat[] = "arm,pl011\0arm,primecell";
841     const char clocknames[] = "uartclk\0apb_pclk";
842     DeviceState *dev = qdev_new(TYPE_PL011);
843     SysBusDevice *s = SYS_BUS_DEVICE(dev);
844     MachineState *ms = MACHINE(vms);
845 
846     qdev_prop_set_chr(dev, "chardev", chr);
847     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
848     memory_region_add_subregion(mem, base,
849                                 sysbus_mmio_get_region(s, 0));
850     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
851 
852     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
853     qemu_fdt_add_subnode(ms->fdt, nodename);
854     /* Note that we can't use setprop_string because of the embedded NUL */
855     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
856                          compat, sizeof(compat));
857     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
858                                      2, base, 2, size);
859     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
860                                GIC_FDT_IRQ_TYPE_SPI, irq,
861                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
862     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
863                                vms->clock_phandle, vms->clock_phandle);
864     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
865                          clocknames, sizeof(clocknames));
866 
867     if (uart == VIRT_UART) {
868         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
869     } else {
870         /* Mark as not usable by the normal world */
871         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
872         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
873 
874         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
875                                 nodename);
876     }
877 
878     g_free(nodename);
879 }
880 
881 static void create_rtc(const VirtMachineState *vms)
882 {
883     char *nodename;
884     hwaddr base = vms->memmap[VIRT_RTC].base;
885     hwaddr size = vms->memmap[VIRT_RTC].size;
886     int irq = vms->irqmap[VIRT_RTC];
887     const char compat[] = "arm,pl031\0arm,primecell";
888     MachineState *ms = MACHINE(vms);
889 
890     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
891 
892     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
893     qemu_fdt_add_subnode(ms->fdt, nodename);
894     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
895     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
896                                  2, base, 2, size);
897     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
898                            GIC_FDT_IRQ_TYPE_SPI, irq,
899                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
900     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
901     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
902     g_free(nodename);
903 }
904 
905 static DeviceState *gpio_key_dev;
906 static void virt_powerdown_req(Notifier *n, void *opaque)
907 {
908     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
909 
910     if (s->acpi_dev) {
911         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
912     } else {
913         /* use gpio Pin 3 for power button event */
914         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
915     }
916 }
917 
918 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
919                              uint32_t phandle)
920 {
921     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
922                                         qdev_get_gpio_in(pl061_dev, 3));
923 
924     qemu_fdt_add_subnode(fdt, "/gpio-keys");
925     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
926 
927     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
928     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
929                             "label", "GPIO Key Poweroff");
930     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
931                           KEY_POWER);
932     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
933                            "gpios", phandle, 3, 0);
934 }
935 
936 #define SECURE_GPIO_POWEROFF 0
937 #define SECURE_GPIO_RESET    1
938 
939 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
940                                    uint32_t phandle)
941 {
942     DeviceState *gpio_pwr_dev;
943 
944     /* gpio-pwr */
945     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
946 
947     /* connect secure pl061 to gpio-pwr */
948     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
949                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
950     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
951                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
952 
953     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
954     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
955                             "gpio-poweroff");
956     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
957                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
958     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
959     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
960                             "okay");
961 
962     qemu_fdt_add_subnode(fdt, "/gpio-restart");
963     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
964                             "gpio-restart");
965     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
966                            "gpios", phandle, SECURE_GPIO_RESET, 0);
967     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
968     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
969                             "okay");
970 }
971 
972 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
973                                 MemoryRegion *mem)
974 {
975     char *nodename;
976     DeviceState *pl061_dev;
977     hwaddr base = vms->memmap[gpio].base;
978     hwaddr size = vms->memmap[gpio].size;
979     int irq = vms->irqmap[gpio];
980     const char compat[] = "arm,pl061\0arm,primecell";
981     SysBusDevice *s;
982     MachineState *ms = MACHINE(vms);
983 
984     pl061_dev = qdev_new("pl061");
985     /* Pull lines down to 0 if not driven by the PL061 */
986     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
987     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
988     s = SYS_BUS_DEVICE(pl061_dev);
989     sysbus_realize_and_unref(s, &error_fatal);
990     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
991     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
992 
993     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
994     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
995     qemu_fdt_add_subnode(ms->fdt, nodename);
996     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
997                                  2, base, 2, size);
998     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
999     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1000     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1001     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1002                            GIC_FDT_IRQ_TYPE_SPI, irq,
1003                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1004     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1005     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1006     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1007 
1008     if (gpio != VIRT_GPIO) {
1009         /* Mark as not usable by the normal world */
1010         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1011         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1012     }
1013     g_free(nodename);
1014 
1015     /* Child gpio devices */
1016     if (gpio == VIRT_GPIO) {
1017         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1018     } else {
1019         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1020     }
1021 }
1022 
1023 static void create_virtio_devices(const VirtMachineState *vms)
1024 {
1025     int i;
1026     hwaddr size = vms->memmap[VIRT_MMIO].size;
1027     MachineState *ms = MACHINE(vms);
1028 
1029     /* We create the transports in forwards order. Since qbus_realize()
1030      * prepends (not appends) new child buses, the incrementing loop below will
1031      * create a list of virtio-mmio buses with decreasing base addresses.
1032      *
1033      * When a -device option is processed from the command line,
1034      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1035      * order. The upshot is that -device options in increasing command line
1036      * order are mapped to virtio-mmio buses with decreasing base addresses.
1037      *
1038      * When this code was originally written, that arrangement ensured that the
1039      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1040      * the first -device on the command line. (The end-to-end order is a
1041      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1042      * guest kernel's name-to-address assignment strategy.)
1043      *
1044      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1045      * the message, if not necessarily the code, of commit 70161ff336.
1046      * Therefore the loop now establishes the inverse of the original intent.
1047      *
1048      * Unfortunately, we can't counteract the kernel change by reversing the
1049      * loop; it would break existing command lines.
1050      *
1051      * In any case, the kernel makes no guarantee about the stability of
1052      * enumeration order of virtio devices (as demonstrated by it changing
1053      * between kernel versions). For reliable and stable identification
1054      * of disks users must use UUIDs or similar mechanisms.
1055      */
1056     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1057         int irq = vms->irqmap[VIRT_MMIO] + i;
1058         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1059 
1060         sysbus_create_simple("virtio-mmio", base,
1061                              qdev_get_gpio_in(vms->gic, irq));
1062     }
1063 
1064     /* We add dtb nodes in reverse order so that they appear in the finished
1065      * device tree lowest address first.
1066      *
1067      * Note that this mapping is independent of the loop above. The previous
1068      * loop influences virtio device to virtio transport assignment, whereas
1069      * this loop controls how virtio transports are laid out in the dtb.
1070      */
1071     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1072         char *nodename;
1073         int irq = vms->irqmap[VIRT_MMIO] + i;
1074         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1075 
1076         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1077         qemu_fdt_add_subnode(ms->fdt, nodename);
1078         qemu_fdt_setprop_string(ms->fdt, nodename,
1079                                 "compatible", "virtio,mmio");
1080         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1081                                      2, base, 2, size);
1082         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1083                                GIC_FDT_IRQ_TYPE_SPI, irq,
1084                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1085         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1086         g_free(nodename);
1087     }
1088 }
1089 
1090 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1091 
1092 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1093                                         const char *name,
1094                                         const char *alias_prop_name)
1095 {
1096     /*
1097      * Create a single flash device.  We use the same parameters as
1098      * the flash devices on the Versatile Express board.
1099      */
1100     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1101 
1102     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1103     qdev_prop_set_uint8(dev, "width", 4);
1104     qdev_prop_set_uint8(dev, "device-width", 2);
1105     qdev_prop_set_bit(dev, "big-endian", false);
1106     qdev_prop_set_uint16(dev, "id0", 0x89);
1107     qdev_prop_set_uint16(dev, "id1", 0x18);
1108     qdev_prop_set_uint16(dev, "id2", 0x00);
1109     qdev_prop_set_uint16(dev, "id3", 0x00);
1110     qdev_prop_set_string(dev, "name", name);
1111     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1112     object_property_add_alias(OBJECT(vms), alias_prop_name,
1113                               OBJECT(dev), "drive");
1114     return PFLASH_CFI01(dev);
1115 }
1116 
1117 static void virt_flash_create(VirtMachineState *vms)
1118 {
1119     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1120     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1121 }
1122 
1123 static void virt_flash_map1(PFlashCFI01 *flash,
1124                             hwaddr base, hwaddr size,
1125                             MemoryRegion *sysmem)
1126 {
1127     DeviceState *dev = DEVICE(flash);
1128 
1129     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1130     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1131     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1132     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1133 
1134     memory_region_add_subregion(sysmem, base,
1135                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1136                                                        0));
1137 }
1138 
1139 static void virt_flash_map(VirtMachineState *vms,
1140                            MemoryRegion *sysmem,
1141                            MemoryRegion *secure_sysmem)
1142 {
1143     /*
1144      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1145      * sysmem is the system memory space. secure_sysmem is the secure view
1146      * of the system, and the first flash device should be made visible only
1147      * there. The second flash device is visible to both secure and nonsecure.
1148      * If sysmem == secure_sysmem this means there is no separate Secure
1149      * address space and both flash devices are generally visible.
1150      */
1151     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1152     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1153 
1154     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1155                     secure_sysmem);
1156     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1157                     sysmem);
1158 }
1159 
1160 static void virt_flash_fdt(VirtMachineState *vms,
1161                            MemoryRegion *sysmem,
1162                            MemoryRegion *secure_sysmem)
1163 {
1164     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1165     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1166     MachineState *ms = MACHINE(vms);
1167     char *nodename;
1168 
1169     if (sysmem == secure_sysmem) {
1170         /* Report both flash devices as a single node in the DT */
1171         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1172         qemu_fdt_add_subnode(ms->fdt, nodename);
1173         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1174         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1175                                      2, flashbase, 2, flashsize,
1176                                      2, flashbase + flashsize, 2, flashsize);
1177         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1178         g_free(nodename);
1179     } else {
1180         /*
1181          * Report the devices as separate nodes so we can mark one as
1182          * only visible to the secure world.
1183          */
1184         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1185         qemu_fdt_add_subnode(ms->fdt, nodename);
1186         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1187         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1188                                      2, flashbase, 2, flashsize);
1189         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1190         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1191         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1192         g_free(nodename);
1193 
1194         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1195         qemu_fdt_add_subnode(ms->fdt, nodename);
1196         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1197         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1198                                      2, flashbase + flashsize, 2, flashsize);
1199         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1200         g_free(nodename);
1201     }
1202 }
1203 
1204 static bool virt_firmware_init(VirtMachineState *vms,
1205                                MemoryRegion *sysmem,
1206                                MemoryRegion *secure_sysmem)
1207 {
1208     int i;
1209     const char *bios_name;
1210     BlockBackend *pflash_blk0;
1211 
1212     /* Map legacy -drive if=pflash to machine properties */
1213     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1214         pflash_cfi01_legacy_drive(vms->flash[i],
1215                                   drive_get(IF_PFLASH, 0, i));
1216     }
1217 
1218     virt_flash_map(vms, sysmem, secure_sysmem);
1219 
1220     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1221 
1222     bios_name = MACHINE(vms)->firmware;
1223     if (bios_name) {
1224         char *fname;
1225         MemoryRegion *mr;
1226         int image_size;
1227 
1228         if (pflash_blk0) {
1229             error_report("The contents of the first flash device may be "
1230                          "specified with -bios or with -drive if=pflash... "
1231                          "but you cannot use both options at once");
1232             exit(1);
1233         }
1234 
1235         /* Fall back to -bios */
1236 
1237         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1238         if (!fname) {
1239             error_report("Could not find ROM image '%s'", bios_name);
1240             exit(1);
1241         }
1242         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1243         image_size = load_image_mr(fname, mr);
1244         g_free(fname);
1245         if (image_size < 0) {
1246             error_report("Could not load ROM image '%s'", bios_name);
1247             exit(1);
1248         }
1249     }
1250 
1251     return pflash_blk0 || bios_name;
1252 }
1253 
1254 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1255 {
1256     MachineState *ms = MACHINE(vms);
1257     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1258     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1259     FWCfgState *fw_cfg;
1260     char *nodename;
1261 
1262     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1263     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1264 
1265     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1266     qemu_fdt_add_subnode(ms->fdt, nodename);
1267     qemu_fdt_setprop_string(ms->fdt, nodename,
1268                             "compatible", "qemu,fw-cfg-mmio");
1269     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1270                                  2, base, 2, size);
1271     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1272     g_free(nodename);
1273     return fw_cfg;
1274 }
1275 
1276 static void create_pcie_irq_map(const MachineState *ms,
1277                                 uint32_t gic_phandle,
1278                                 int first_irq, const char *nodename)
1279 {
1280     int devfn, pin;
1281     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1282     uint32_t *irq_map = full_irq_map;
1283 
1284     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1285         for (pin = 0; pin < 4; pin++) {
1286             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1287             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1288             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1289             int i;
1290 
1291             uint32_t map[] = {
1292                 devfn << 8, 0, 0,                           /* devfn */
1293                 pin + 1,                                    /* PCI pin */
1294                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1295 
1296             /* Convert map to big endian */
1297             for (i = 0; i < 10; i++) {
1298                 irq_map[i] = cpu_to_be32(map[i]);
1299             }
1300             irq_map += 10;
1301         }
1302     }
1303 
1304     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1305                      full_irq_map, sizeof(full_irq_map));
1306 
1307     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1308                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1309                            0, 0,
1310                            0x7           /* PCI irq */);
1311 }
1312 
1313 static void create_smmu(const VirtMachineState *vms,
1314                         PCIBus *bus)
1315 {
1316     char *node;
1317     const char compat[] = "arm,smmu-v3";
1318     int irq =  vms->irqmap[VIRT_SMMU];
1319     int i;
1320     hwaddr base = vms->memmap[VIRT_SMMU].base;
1321     hwaddr size = vms->memmap[VIRT_SMMU].size;
1322     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1323     DeviceState *dev;
1324     MachineState *ms = MACHINE(vms);
1325 
1326     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1327         return;
1328     }
1329 
1330     dev = qdev_new(TYPE_ARM_SMMUV3);
1331 
1332     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1333                              &error_abort);
1334     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1335     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1336     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1337         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1338                            qdev_get_gpio_in(vms->gic, irq + i));
1339     }
1340 
1341     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1342     qemu_fdt_add_subnode(ms->fdt, node);
1343     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1344     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1345 
1346     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1347             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1348             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1349             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1350             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1351 
1352     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1353                      sizeof(irq_names));
1354 
1355     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1356 
1357     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1358 
1359     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1360     g_free(node);
1361 }
1362 
1363 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1364 {
1365     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1366     uint16_t bdf = vms->virtio_iommu_bdf;
1367     MachineState *ms = MACHINE(vms);
1368     char *node;
1369 
1370     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1371 
1372     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1373                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1374     qemu_fdt_add_subnode(ms->fdt, node);
1375     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1376     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1377                                  1, bdf << 8, 1, 0, 1, 0,
1378                                  1, 0, 1, 0);
1379 
1380     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1381     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1382     g_free(node);
1383 
1384     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1385                            0x0, vms->iommu_phandle, 0x0, bdf,
1386                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1387 }
1388 
1389 static void create_pcie(VirtMachineState *vms)
1390 {
1391     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1392     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1393     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1394     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1395     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1396     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1397     hwaddr base_ecam, size_ecam;
1398     hwaddr base = base_mmio;
1399     int nr_pcie_buses;
1400     int irq = vms->irqmap[VIRT_PCIE];
1401     MemoryRegion *mmio_alias;
1402     MemoryRegion *mmio_reg;
1403     MemoryRegion *ecam_alias;
1404     MemoryRegion *ecam_reg;
1405     DeviceState *dev;
1406     char *nodename;
1407     int i, ecam_id;
1408     PCIHostState *pci;
1409     MachineState *ms = MACHINE(vms);
1410     MachineClass *mc = MACHINE_GET_CLASS(ms);
1411 
1412     dev = qdev_new(TYPE_GPEX_HOST);
1413     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1414 
1415     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1416     base_ecam = vms->memmap[ecam_id].base;
1417     size_ecam = vms->memmap[ecam_id].size;
1418     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1419     /* Map only the first size_ecam bytes of ECAM space */
1420     ecam_alias = g_new0(MemoryRegion, 1);
1421     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1422     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1423                              ecam_reg, 0, size_ecam);
1424     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1425 
1426     /* Map the MMIO window into system address space so as to expose
1427      * the section of PCI MMIO space which starts at the same base address
1428      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1429      * the window).
1430      */
1431     mmio_alias = g_new0(MemoryRegion, 1);
1432     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1433     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1434                              mmio_reg, base_mmio, size_mmio);
1435     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1436 
1437     if (vms->highmem_mmio) {
1438         /* Map high MMIO space */
1439         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1440 
1441         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1442                                  mmio_reg, base_mmio_high, size_mmio_high);
1443         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1444                                     high_mmio_alias);
1445     }
1446 
1447     /* Map IO port space */
1448     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1449 
1450     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1451         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1452                            qdev_get_gpio_in(vms->gic, irq + i));
1453         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1454     }
1455 
1456     pci = PCI_HOST_BRIDGE(dev);
1457     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1458     vms->bus = pci->bus;
1459     if (vms->bus) {
1460         pci_init_nic_devices(pci->bus, mc->default_nic);
1461     }
1462 
1463     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1464     qemu_fdt_add_subnode(ms->fdt, nodename);
1465     qemu_fdt_setprop_string(ms->fdt, nodename,
1466                             "compatible", "pci-host-ecam-generic");
1467     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1468     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1469     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1470     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1471     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1472                            nr_pcie_buses - 1);
1473     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1474 
1475     if (vms->msi_phandle) {
1476         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1477                                0, vms->msi_phandle, 0, 0x10000);
1478     }
1479 
1480     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1481                                  2, base_ecam, 2, size_ecam);
1482 
1483     if (vms->highmem_mmio) {
1484         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1485                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1486                                      2, base_pio, 2, size_pio,
1487                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1488                                      2, base_mmio, 2, size_mmio,
1489                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1490                                      2, base_mmio_high,
1491                                      2, base_mmio_high, 2, size_mmio_high);
1492     } else {
1493         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1494                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1495                                      2, base_pio, 2, size_pio,
1496                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1497                                      2, base_mmio, 2, size_mmio);
1498     }
1499 
1500     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1501     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1502 
1503     if (vms->iommu) {
1504         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1505 
1506         switch (vms->iommu) {
1507         case VIRT_IOMMU_SMMUV3:
1508             create_smmu(vms, vms->bus);
1509             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1510                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1511             break;
1512         default:
1513             g_assert_not_reached();
1514         }
1515     }
1516 }
1517 
1518 static void create_platform_bus(VirtMachineState *vms)
1519 {
1520     DeviceState *dev;
1521     SysBusDevice *s;
1522     int i;
1523     MemoryRegion *sysmem = get_system_memory();
1524 
1525     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1526     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1527     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1528     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1529     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1530     vms->platform_bus_dev = dev;
1531 
1532     s = SYS_BUS_DEVICE(dev);
1533     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1534         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1535         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1536     }
1537 
1538     memory_region_add_subregion(sysmem,
1539                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1540                                 sysbus_mmio_get_region(s, 0));
1541 }
1542 
1543 static void create_tag_ram(MemoryRegion *tag_sysmem,
1544                            hwaddr base, hwaddr size,
1545                            const char *name)
1546 {
1547     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1548 
1549     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1550     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1551 }
1552 
1553 static void create_secure_ram(VirtMachineState *vms,
1554                               MemoryRegion *secure_sysmem,
1555                               MemoryRegion *secure_tag_sysmem)
1556 {
1557     MemoryRegion *secram = g_new(MemoryRegion, 1);
1558     char *nodename;
1559     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1560     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1561     MachineState *ms = MACHINE(vms);
1562 
1563     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1564                            &error_fatal);
1565     memory_region_add_subregion(secure_sysmem, base, secram);
1566 
1567     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1568     qemu_fdt_add_subnode(ms->fdt, nodename);
1569     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1570     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1571     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1572     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1573 
1574     if (secure_tag_sysmem) {
1575         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1576     }
1577 
1578     g_free(nodename);
1579 }
1580 
1581 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1582 {
1583     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1584                                                  bootinfo);
1585     MachineState *ms = MACHINE(board);
1586 
1587 
1588     *fdt_size = board->fdt_size;
1589     return ms->fdt;
1590 }
1591 
1592 static void virt_build_smbios(VirtMachineState *vms)
1593 {
1594     MachineClass *mc = MACHINE_GET_CLASS(vms);
1595     MachineState *ms = MACHINE(vms);
1596     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1597     uint8_t *smbios_tables, *smbios_anchor;
1598     size_t smbios_tables_len, smbios_anchor_len;
1599     struct smbios_phys_mem_area mem_array;
1600     const char *product = "QEMU Virtual Machine";
1601 
1602     if (kvm_enabled()) {
1603         product = "KVM Virtual Machine";
1604     }
1605 
1606     smbios_set_defaults("QEMU", product,
1607                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1608                         true, SMBIOS_ENTRY_POINT_TYPE_64);
1609 
1610     /* build the array of physical mem area from base_memmap */
1611     mem_array.address = vms->memmap[VIRT_MEM].base;
1612     mem_array.length = ms->ram_size;
1613 
1614     smbios_get_tables(ms, &mem_array, 1,
1615                       &smbios_tables, &smbios_tables_len,
1616                       &smbios_anchor, &smbios_anchor_len,
1617                       &error_fatal);
1618 
1619     if (smbios_anchor) {
1620         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1621                         smbios_tables, smbios_tables_len);
1622         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1623                         smbios_anchor, smbios_anchor_len);
1624     }
1625 }
1626 
1627 static
1628 void virt_machine_done(Notifier *notifier, void *data)
1629 {
1630     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1631                                          machine_done);
1632     MachineState *ms = MACHINE(vms);
1633     ARMCPU *cpu = ARM_CPU(first_cpu);
1634     struct arm_boot_info *info = &vms->bootinfo;
1635     AddressSpace *as = arm_boot_address_space(cpu, info);
1636 
1637     /*
1638      * If the user provided a dtb, we assume the dynamic sysbus nodes
1639      * already are integrated there. This corresponds to a use case where
1640      * the dynamic sysbus nodes are complex and their generation is not yet
1641      * supported. In that case the user can take charge of the guest dt
1642      * while qemu takes charge of the qom stuff.
1643      */
1644     if (info->dtb_filename == NULL) {
1645         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1646                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1647                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1648                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1649     }
1650     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1651         exit(1);
1652     }
1653 
1654     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1655 
1656     virt_acpi_setup(vms);
1657     virt_build_smbios(vms);
1658 }
1659 
1660 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1661 {
1662     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1663     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1664 
1665     if (!vmc->disallow_affinity_adjustment) {
1666         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1667          * GIC's target-list limitations. 32-bit KVM hosts currently
1668          * always create clusters of 4 CPUs, but that is expected to
1669          * change when they gain support for gicv3. When KVM is enabled
1670          * it will override the changes we make here, therefore our
1671          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1672          * and to improve SGI efficiency.
1673          */
1674         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1675             clustersz = GIC_TARGETLIST_BITS;
1676         } else {
1677             clustersz = GICV3_TARGETLIST_BITS;
1678         }
1679     }
1680     return arm_build_mp_affinity(idx, clustersz);
1681 }
1682 
1683 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1684                                                  int index)
1685 {
1686     bool *enabled_array[] = {
1687         &vms->highmem_redists,
1688         &vms->highmem_ecam,
1689         &vms->highmem_mmio,
1690     };
1691 
1692     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1693            ARRAY_SIZE(enabled_array));
1694     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1695 
1696     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1697 }
1698 
1699 static void virt_set_high_memmap(VirtMachineState *vms,
1700                                  hwaddr base, int pa_bits)
1701 {
1702     hwaddr region_base, region_size;
1703     bool *region_enabled, fits;
1704     int i;
1705 
1706     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1707         region_enabled = virt_get_high_memmap_enabled(vms, i);
1708         region_base = ROUND_UP(base, extended_memmap[i].size);
1709         region_size = extended_memmap[i].size;
1710 
1711         vms->memmap[i].base = region_base;
1712         vms->memmap[i].size = region_size;
1713 
1714         /*
1715          * Check each device to see if it fits in the PA space,
1716          * moving highest_gpa as we go. For compatibility, move
1717          * highest_gpa for disabled fitting devices as well, if
1718          * the compact layout has been disabled.
1719          *
1720          * For each device that doesn't fit, disable it.
1721          */
1722         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1723         *region_enabled &= fits;
1724         if (vms->highmem_compact && !*region_enabled) {
1725             continue;
1726         }
1727 
1728         base = region_base + region_size;
1729         if (fits) {
1730             vms->highest_gpa = base - 1;
1731         }
1732     }
1733 }
1734 
1735 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1736 {
1737     MachineState *ms = MACHINE(vms);
1738     hwaddr base, device_memory_base, device_memory_size, memtop;
1739     int i;
1740 
1741     vms->memmap = extended_memmap;
1742 
1743     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1744         vms->memmap[i] = base_memmap[i];
1745     }
1746 
1747     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1748         error_report("unsupported number of memory slots: %"PRIu64,
1749                      ms->ram_slots);
1750         exit(EXIT_FAILURE);
1751     }
1752 
1753     /*
1754      * !highmem is exactly the same as limiting the PA space to 32bit,
1755      * irrespective of the underlying capabilities of the HW.
1756      */
1757     if (!vms->highmem) {
1758         pa_bits = 32;
1759     }
1760 
1761     /*
1762      * We compute the base of the high IO region depending on the
1763      * amount of initial and device memory. The device memory start/size
1764      * is aligned on 1GiB. We never put the high IO region below 256GiB
1765      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1766      * The device region size assumes 1GiB page max alignment per slot.
1767      */
1768     device_memory_base =
1769         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1770     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1771 
1772     /* Base address of the high IO region */
1773     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1774     if (memtop > BIT_ULL(pa_bits)) {
1775         error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1776                      pa_bits, memtop - BIT_ULL(pa_bits));
1777         exit(EXIT_FAILURE);
1778     }
1779     if (base < device_memory_base) {
1780         error_report("maxmem/slots too huge");
1781         exit(EXIT_FAILURE);
1782     }
1783     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1784         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1785     }
1786 
1787     /* We know for sure that at least the memory fits in the PA space */
1788     vms->highest_gpa = memtop - 1;
1789 
1790     virt_set_high_memmap(vms, base, pa_bits);
1791 
1792     if (device_memory_size > 0) {
1793         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1794     }
1795 }
1796 
1797 static VirtGICType finalize_gic_version_do(const char *accel_name,
1798                                            VirtGICType gic_version,
1799                                            int gics_supported,
1800                                            unsigned int max_cpus)
1801 {
1802     /* Convert host/max/nosel to GIC version number */
1803     switch (gic_version) {
1804     case VIRT_GIC_VERSION_HOST:
1805         if (!kvm_enabled()) {
1806             error_report("gic-version=host requires KVM");
1807             exit(1);
1808         }
1809 
1810         /* For KVM, gic-version=host means gic-version=max */
1811         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1812                                        gics_supported, max_cpus);
1813     case VIRT_GIC_VERSION_MAX:
1814         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1815             gic_version = VIRT_GIC_VERSION_4;
1816         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1817             gic_version = VIRT_GIC_VERSION_3;
1818         } else {
1819             gic_version = VIRT_GIC_VERSION_2;
1820         }
1821         break;
1822     case VIRT_GIC_VERSION_NOSEL:
1823         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1824             max_cpus <= GIC_NCPU) {
1825             gic_version = VIRT_GIC_VERSION_2;
1826         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1827             /*
1828              * in case the host does not support v2 emulation or
1829              * the end-user requested more than 8 VCPUs we now default
1830              * to v3. In any case defaulting to v2 would be broken.
1831              */
1832             gic_version = VIRT_GIC_VERSION_3;
1833         } else if (max_cpus > GIC_NCPU) {
1834             error_report("%s only supports GICv2 emulation but more than 8 "
1835                          "vcpus are requested", accel_name);
1836             exit(1);
1837         }
1838         break;
1839     case VIRT_GIC_VERSION_2:
1840     case VIRT_GIC_VERSION_3:
1841     case VIRT_GIC_VERSION_4:
1842         break;
1843     }
1844 
1845     /* Check chosen version is effectively supported */
1846     switch (gic_version) {
1847     case VIRT_GIC_VERSION_2:
1848         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1849             error_report("%s does not support GICv2 emulation", accel_name);
1850             exit(1);
1851         }
1852         break;
1853     case VIRT_GIC_VERSION_3:
1854         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1855             error_report("%s does not support GICv3 emulation", accel_name);
1856             exit(1);
1857         }
1858         break;
1859     case VIRT_GIC_VERSION_4:
1860         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1861             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1862                          accel_name);
1863             exit(1);
1864         }
1865         break;
1866     default:
1867         error_report("logic error in finalize_gic_version");
1868         exit(1);
1869         break;
1870     }
1871 
1872     return gic_version;
1873 }
1874 
1875 /*
1876  * finalize_gic_version - Determines the final gic_version
1877  * according to the gic-version property
1878  *
1879  * Default GIC type is v2
1880  */
1881 static void finalize_gic_version(VirtMachineState *vms)
1882 {
1883     const char *accel_name = current_accel_name();
1884     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1885     int gics_supported = 0;
1886 
1887     /* Determine which GIC versions the current environment supports */
1888     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1889         int probe_bitmap = kvm_arm_vgic_probe();
1890 
1891         if (!probe_bitmap) {
1892             error_report("Unable to determine GIC version supported by host");
1893             exit(1);
1894         }
1895 
1896         if (probe_bitmap & KVM_ARM_VGIC_V2) {
1897             gics_supported |= VIRT_GIC_VERSION_2_MASK;
1898         }
1899         if (probe_bitmap & KVM_ARM_VGIC_V3) {
1900             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1901         }
1902     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1903         /* KVM w/o kernel irqchip can only deal with GICv2 */
1904         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1905         accel_name = "KVM with kernel-irqchip=off";
1906     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1907         gics_supported |= VIRT_GIC_VERSION_2_MASK;
1908         if (module_object_class_by_name("arm-gicv3")) {
1909             gics_supported |= VIRT_GIC_VERSION_3_MASK;
1910             if (vms->virt) {
1911                 /* GICv4 only makes sense if CPU has EL2 */
1912                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1913             }
1914         }
1915     } else {
1916         error_report("Unsupported accelerator, can not determine GIC support");
1917         exit(1);
1918     }
1919 
1920     /*
1921      * Then convert helpers like host/max to concrete GIC versions and ensure
1922      * the desired version is supported
1923      */
1924     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1925                                                gics_supported, max_cpus);
1926 }
1927 
1928 /*
1929  * virt_cpu_post_init() must be called after the CPUs have
1930  * been realized and the GIC has been created.
1931  */
1932 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1933 {
1934     int max_cpus = MACHINE(vms)->smp.max_cpus;
1935     bool aarch64, pmu, steal_time;
1936     CPUState *cpu;
1937 
1938     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1939     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1940     steal_time = object_property_get_bool(OBJECT(first_cpu),
1941                                           "kvm-steal-time", NULL);
1942 
1943     if (kvm_enabled()) {
1944         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1945         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1946 
1947         if (steal_time) {
1948             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1949             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1950 
1951             /* The memory region size must be a multiple of host page size. */
1952             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1953 
1954             if (pvtime_size > pvtime_reg_size) {
1955                 error_report("pvtime requires a %" HWADDR_PRId
1956                              " byte memory region for %d CPUs,"
1957                              " but only %" HWADDR_PRId " has been reserved",
1958                              pvtime_size, max_cpus, pvtime_reg_size);
1959                 exit(1);
1960             }
1961 
1962             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1963             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1964         }
1965 
1966         CPU_FOREACH(cpu) {
1967             if (pmu) {
1968                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1969                 if (kvm_irqchip_in_kernel()) {
1970                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
1971                 }
1972                 kvm_arm_pmu_init(ARM_CPU(cpu));
1973             }
1974             if (steal_time) {
1975                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
1976                                                   + cpu->cpu_index
1977                                                     * PVTIME_SIZE_PER_CPU);
1978             }
1979         }
1980     } else {
1981         if (aarch64 && vms->highmem) {
1982             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1983             int pamax = arm_pamax(ARM_CPU(first_cpu));
1984 
1985             if (pamax < requested_pa_size) {
1986                 error_report("VCPU supports less PA bits (%d) than "
1987                              "requested by the memory map (%d)",
1988                              pamax, requested_pa_size);
1989                 exit(1);
1990             }
1991         }
1992     }
1993 }
1994 
1995 static void machvirt_init(MachineState *machine)
1996 {
1997     VirtMachineState *vms = VIRT_MACHINE(machine);
1998     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1999     MachineClass *mc = MACHINE_GET_CLASS(machine);
2000     const CPUArchIdList *possible_cpus;
2001     MemoryRegion *sysmem = get_system_memory();
2002     MemoryRegion *secure_sysmem = NULL;
2003     MemoryRegion *tag_sysmem = NULL;
2004     MemoryRegion *secure_tag_sysmem = NULL;
2005     int n, virt_max_cpus;
2006     bool firmware_loaded;
2007     bool aarch64 = true;
2008     bool has_ged = !vmc->no_ged;
2009     unsigned int smp_cpus = machine->smp.cpus;
2010     unsigned int max_cpus = machine->smp.max_cpus;
2011 
2012     possible_cpus = mc->possible_cpu_arch_ids(machine);
2013 
2014     /*
2015      * In accelerated mode, the memory map is computed earlier in kvm_type()
2016      * to create a VM with the right number of IPA bits.
2017      */
2018     if (!vms->memmap) {
2019         Object *cpuobj;
2020         ARMCPU *armcpu;
2021         int pa_bits;
2022 
2023         /*
2024          * Instantiate a temporary CPU object to find out about what
2025          * we are about to deal with. Once this is done, get rid of
2026          * the object.
2027          */
2028         cpuobj = object_new(possible_cpus->cpus[0].type);
2029         armcpu = ARM_CPU(cpuobj);
2030 
2031         pa_bits = arm_pamax(armcpu);
2032 
2033         object_unref(cpuobj);
2034 
2035         virt_set_memmap(vms, pa_bits);
2036     }
2037 
2038     /* We can probe only here because during property set
2039      * KVM is not available yet
2040      */
2041     finalize_gic_version(vms);
2042 
2043     if (vms->secure) {
2044         /*
2045          * The Secure view of the world is the same as the NonSecure,
2046          * but with a few extra devices. Create it as a container region
2047          * containing the system memory at low priority; any secure-only
2048          * devices go in at higher priority and take precedence.
2049          */
2050         secure_sysmem = g_new(MemoryRegion, 1);
2051         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2052                            UINT64_MAX);
2053         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2054     }
2055 
2056     firmware_loaded = virt_firmware_init(vms, sysmem,
2057                                          secure_sysmem ?: sysmem);
2058 
2059     /* If we have an EL3 boot ROM then the assumption is that it will
2060      * implement PSCI itself, so disable QEMU's internal implementation
2061      * so it doesn't get in the way. Instead of starting secondary
2062      * CPUs in PSCI powerdown state we will start them all running and
2063      * let the boot ROM sort them out.
2064      * The usual case is that we do use QEMU's PSCI implementation;
2065      * if the guest has EL2 then we will use SMC as the conduit,
2066      * and otherwise we will use HVC (for backwards compatibility and
2067      * because if we're using KVM then we must use HVC).
2068      */
2069     if (vms->secure && firmware_loaded) {
2070         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2071     } else if (vms->virt) {
2072         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2073     } else {
2074         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2075     }
2076 
2077     /*
2078      * The maximum number of CPUs depends on the GIC version, or on how
2079      * many redistributors we can fit into the memory map (which in turn
2080      * depends on whether this is a GICv3 or v4).
2081      */
2082     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2083         virt_max_cpus = GIC_NCPU;
2084     } else {
2085         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2086         if (vms->highmem_redists) {
2087             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2088         }
2089     }
2090 
2091     if (max_cpus > virt_max_cpus) {
2092         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2093                      "supported by machine 'mach-virt' (%d)",
2094                      max_cpus, virt_max_cpus);
2095         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2096             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2097         }
2098 
2099         exit(1);
2100     }
2101 
2102     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2103         error_report("mach-virt: %s does not support providing "
2104                      "Security extensions (TrustZone) to the guest CPU",
2105                      current_accel_name());
2106         exit(1);
2107     }
2108 
2109     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2110         error_report("mach-virt: %s does not support providing "
2111                      "Virtualization extensions to the guest CPU",
2112                      current_accel_name());
2113         exit(1);
2114     }
2115 
2116     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2117         error_report("mach-virt: %s does not support providing "
2118                      "MTE to the guest CPU",
2119                      current_accel_name());
2120         exit(1);
2121     }
2122 
2123     create_fdt(vms);
2124 
2125     assert(possible_cpus->len == max_cpus);
2126     for (n = 0; n < possible_cpus->len; n++) {
2127         Object *cpuobj;
2128         CPUState *cs;
2129 
2130         if (n >= smp_cpus) {
2131             break;
2132         }
2133 
2134         cpuobj = object_new(possible_cpus->cpus[n].type);
2135         object_property_set_int(cpuobj, "mp-affinity",
2136                                 possible_cpus->cpus[n].arch_id, NULL);
2137 
2138         cs = CPU(cpuobj);
2139         cs->cpu_index = n;
2140 
2141         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2142                           &error_fatal);
2143 
2144         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2145 
2146         if (!vms->secure) {
2147             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2148         }
2149 
2150         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2151             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2152         }
2153 
2154         if (vmc->kvm_no_adjvtime &&
2155             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2156             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2157         }
2158 
2159         if (vmc->no_kvm_steal_time &&
2160             object_property_find(cpuobj, "kvm-steal-time")) {
2161             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2162         }
2163 
2164         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2165             object_property_set_bool(cpuobj, "pmu", false, NULL);
2166         }
2167 
2168         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2169             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2170         }
2171 
2172         if (object_property_find(cpuobj, "reset-cbar")) {
2173             object_property_set_int(cpuobj, "reset-cbar",
2174                                     vms->memmap[VIRT_CPUPERIPHS].base,
2175                                     &error_abort);
2176         }
2177 
2178         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2179                                  &error_abort);
2180         if (vms->secure) {
2181             object_property_set_link(cpuobj, "secure-memory",
2182                                      OBJECT(secure_sysmem), &error_abort);
2183         }
2184 
2185         if (vms->mte) {
2186             /* Create the memory region only once, but link to all cpus. */
2187             if (!tag_sysmem) {
2188                 /*
2189                  * The property exists only if MemTag is supported.
2190                  * If it is, we must allocate the ram to back that up.
2191                  */
2192                 if (!object_property_find(cpuobj, "tag-memory")) {
2193                     error_report("MTE requested, but not supported "
2194                                  "by the guest CPU");
2195                     exit(1);
2196                 }
2197 
2198                 tag_sysmem = g_new(MemoryRegion, 1);
2199                 memory_region_init(tag_sysmem, OBJECT(machine),
2200                                    "tag-memory", UINT64_MAX / 32);
2201 
2202                 if (vms->secure) {
2203                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2204                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2205                                        "secure-tag-memory", UINT64_MAX / 32);
2206 
2207                     /* As with ram, secure-tag takes precedence over tag.  */
2208                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2209                                                         tag_sysmem, -1);
2210                 }
2211             }
2212 
2213             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2214                                      &error_abort);
2215             if (vms->secure) {
2216                 object_property_set_link(cpuobj, "secure-tag-memory",
2217                                          OBJECT(secure_tag_sysmem),
2218                                          &error_abort);
2219             }
2220         }
2221 
2222         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2223         object_unref(cpuobj);
2224     }
2225     fdt_add_timer_nodes(vms);
2226     fdt_add_cpu_nodes(vms);
2227 
2228     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2229                                 machine->ram);
2230 
2231     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2232 
2233     create_gic(vms, sysmem);
2234 
2235     virt_cpu_post_init(vms, sysmem);
2236 
2237     fdt_add_pmu_nodes(vms);
2238 
2239     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2240 
2241     if (vms->secure) {
2242         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2243         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2244     }
2245 
2246     if (tag_sysmem) {
2247         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2248                        machine->ram_size, "mach-virt.tag");
2249     }
2250 
2251     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2252 
2253     create_rtc(vms);
2254 
2255     create_pcie(vms);
2256 
2257     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2258         vms->acpi_dev = create_acpi_ged(vms);
2259     } else {
2260         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2261     }
2262 
2263     if (vms->secure && !vmc->no_secure_gpio) {
2264         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2265     }
2266 
2267      /* connect powerdown request */
2268      vms->powerdown_notifier.notify = virt_powerdown_req;
2269      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2270 
2271     /* Create mmio transports, so the user can create virtio backends
2272      * (which will be automatically plugged in to the transports). If
2273      * no backend is created the transport will just sit harmlessly idle.
2274      */
2275     create_virtio_devices(vms);
2276 
2277     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2278     rom_set_fw(vms->fw_cfg);
2279 
2280     create_platform_bus(vms);
2281 
2282     if (machine->nvdimms_state->is_enabled) {
2283         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2284             .space_id = AML_AS_SYSTEM_MEMORY,
2285             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2286             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2287         };
2288 
2289         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2290                                arm_virt_nvdimm_acpi_dsmio,
2291                                vms->fw_cfg, OBJECT(vms));
2292     }
2293 
2294     vms->bootinfo.ram_size = machine->ram_size;
2295     vms->bootinfo.board_id = -1;
2296     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2297     vms->bootinfo.get_dtb = machvirt_dtb;
2298     vms->bootinfo.skip_dtb_autoload = true;
2299     vms->bootinfo.firmware_loaded = firmware_loaded;
2300     vms->bootinfo.psci_conduit = vms->psci_conduit;
2301     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2302 
2303     vms->machine_done.notify = virt_machine_done;
2304     qemu_add_machine_init_done_notifier(&vms->machine_done);
2305 }
2306 
2307 static bool virt_get_secure(Object *obj, Error **errp)
2308 {
2309     VirtMachineState *vms = VIRT_MACHINE(obj);
2310 
2311     return vms->secure;
2312 }
2313 
2314 static void virt_set_secure(Object *obj, bool value, Error **errp)
2315 {
2316     VirtMachineState *vms = VIRT_MACHINE(obj);
2317 
2318     vms->secure = value;
2319 }
2320 
2321 static bool virt_get_virt(Object *obj, Error **errp)
2322 {
2323     VirtMachineState *vms = VIRT_MACHINE(obj);
2324 
2325     return vms->virt;
2326 }
2327 
2328 static void virt_set_virt(Object *obj, bool value, Error **errp)
2329 {
2330     VirtMachineState *vms = VIRT_MACHINE(obj);
2331 
2332     vms->virt = value;
2333 }
2334 
2335 static bool virt_get_highmem(Object *obj, Error **errp)
2336 {
2337     VirtMachineState *vms = VIRT_MACHINE(obj);
2338 
2339     return vms->highmem;
2340 }
2341 
2342 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2343 {
2344     VirtMachineState *vms = VIRT_MACHINE(obj);
2345 
2346     vms->highmem = value;
2347 }
2348 
2349 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2350 {
2351     VirtMachineState *vms = VIRT_MACHINE(obj);
2352 
2353     return vms->highmem_compact;
2354 }
2355 
2356 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2357 {
2358     VirtMachineState *vms = VIRT_MACHINE(obj);
2359 
2360     vms->highmem_compact = value;
2361 }
2362 
2363 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2364 {
2365     VirtMachineState *vms = VIRT_MACHINE(obj);
2366 
2367     return vms->highmem_redists;
2368 }
2369 
2370 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2371 {
2372     VirtMachineState *vms = VIRT_MACHINE(obj);
2373 
2374     vms->highmem_redists = value;
2375 }
2376 
2377 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2378 {
2379     VirtMachineState *vms = VIRT_MACHINE(obj);
2380 
2381     return vms->highmem_ecam;
2382 }
2383 
2384 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2385 {
2386     VirtMachineState *vms = VIRT_MACHINE(obj);
2387 
2388     vms->highmem_ecam = value;
2389 }
2390 
2391 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2392 {
2393     VirtMachineState *vms = VIRT_MACHINE(obj);
2394 
2395     return vms->highmem_mmio;
2396 }
2397 
2398 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2399 {
2400     VirtMachineState *vms = VIRT_MACHINE(obj);
2401 
2402     vms->highmem_mmio = value;
2403 }
2404 
2405 
2406 static bool virt_get_its(Object *obj, Error **errp)
2407 {
2408     VirtMachineState *vms = VIRT_MACHINE(obj);
2409 
2410     return vms->its;
2411 }
2412 
2413 static void virt_set_its(Object *obj, bool value, Error **errp)
2414 {
2415     VirtMachineState *vms = VIRT_MACHINE(obj);
2416 
2417     vms->its = value;
2418 }
2419 
2420 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2421 {
2422     VirtMachineState *vms = VIRT_MACHINE(obj);
2423 
2424     return vms->dtb_randomness;
2425 }
2426 
2427 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2428 {
2429     VirtMachineState *vms = VIRT_MACHINE(obj);
2430 
2431     vms->dtb_randomness = value;
2432 }
2433 
2434 static char *virt_get_oem_id(Object *obj, Error **errp)
2435 {
2436     VirtMachineState *vms = VIRT_MACHINE(obj);
2437 
2438     return g_strdup(vms->oem_id);
2439 }
2440 
2441 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2442 {
2443     VirtMachineState *vms = VIRT_MACHINE(obj);
2444     size_t len = strlen(value);
2445 
2446     if (len > 6) {
2447         error_setg(errp,
2448                    "User specified oem-id value is bigger than 6 bytes in size");
2449         return;
2450     }
2451 
2452     strncpy(vms->oem_id, value, 6);
2453 }
2454 
2455 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2456 {
2457     VirtMachineState *vms = VIRT_MACHINE(obj);
2458 
2459     return g_strdup(vms->oem_table_id);
2460 }
2461 
2462 static void virt_set_oem_table_id(Object *obj, const char *value,
2463                                   Error **errp)
2464 {
2465     VirtMachineState *vms = VIRT_MACHINE(obj);
2466     size_t len = strlen(value);
2467 
2468     if (len > 8) {
2469         error_setg(errp,
2470                    "User specified oem-table-id value is bigger than 8 bytes in size");
2471         return;
2472     }
2473     strncpy(vms->oem_table_id, value, 8);
2474 }
2475 
2476 
2477 bool virt_is_acpi_enabled(VirtMachineState *vms)
2478 {
2479     if (vms->acpi == ON_OFF_AUTO_OFF) {
2480         return false;
2481     }
2482     return true;
2483 }
2484 
2485 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2486                           void *opaque, Error **errp)
2487 {
2488     VirtMachineState *vms = VIRT_MACHINE(obj);
2489     OnOffAuto acpi = vms->acpi;
2490 
2491     visit_type_OnOffAuto(v, name, &acpi, errp);
2492 }
2493 
2494 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2495                           void *opaque, Error **errp)
2496 {
2497     VirtMachineState *vms = VIRT_MACHINE(obj);
2498 
2499     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2500 }
2501 
2502 static bool virt_get_ras(Object *obj, Error **errp)
2503 {
2504     VirtMachineState *vms = VIRT_MACHINE(obj);
2505 
2506     return vms->ras;
2507 }
2508 
2509 static void virt_set_ras(Object *obj, bool value, Error **errp)
2510 {
2511     VirtMachineState *vms = VIRT_MACHINE(obj);
2512 
2513     vms->ras = value;
2514 }
2515 
2516 static bool virt_get_mte(Object *obj, Error **errp)
2517 {
2518     VirtMachineState *vms = VIRT_MACHINE(obj);
2519 
2520     return vms->mte;
2521 }
2522 
2523 static void virt_set_mte(Object *obj, bool value, Error **errp)
2524 {
2525     VirtMachineState *vms = VIRT_MACHINE(obj);
2526 
2527     vms->mte = value;
2528 }
2529 
2530 static char *virt_get_gic_version(Object *obj, Error **errp)
2531 {
2532     VirtMachineState *vms = VIRT_MACHINE(obj);
2533     const char *val;
2534 
2535     switch (vms->gic_version) {
2536     case VIRT_GIC_VERSION_4:
2537         val = "4";
2538         break;
2539     case VIRT_GIC_VERSION_3:
2540         val = "3";
2541         break;
2542     default:
2543         val = "2";
2544         break;
2545     }
2546     return g_strdup(val);
2547 }
2548 
2549 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2550 {
2551     VirtMachineState *vms = VIRT_MACHINE(obj);
2552 
2553     if (!strcmp(value, "4")) {
2554         vms->gic_version = VIRT_GIC_VERSION_4;
2555     } else if (!strcmp(value, "3")) {
2556         vms->gic_version = VIRT_GIC_VERSION_3;
2557     } else if (!strcmp(value, "2")) {
2558         vms->gic_version = VIRT_GIC_VERSION_2;
2559     } else if (!strcmp(value, "host")) {
2560         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2561     } else if (!strcmp(value, "max")) {
2562         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2563     } else {
2564         error_setg(errp, "Invalid gic-version value");
2565         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2566     }
2567 }
2568 
2569 static char *virt_get_iommu(Object *obj, Error **errp)
2570 {
2571     VirtMachineState *vms = VIRT_MACHINE(obj);
2572 
2573     switch (vms->iommu) {
2574     case VIRT_IOMMU_NONE:
2575         return g_strdup("none");
2576     case VIRT_IOMMU_SMMUV3:
2577         return g_strdup("smmuv3");
2578     default:
2579         g_assert_not_reached();
2580     }
2581 }
2582 
2583 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2584 {
2585     VirtMachineState *vms = VIRT_MACHINE(obj);
2586 
2587     if (!strcmp(value, "smmuv3")) {
2588         vms->iommu = VIRT_IOMMU_SMMUV3;
2589     } else if (!strcmp(value, "none")) {
2590         vms->iommu = VIRT_IOMMU_NONE;
2591     } else {
2592         error_setg(errp, "Invalid iommu value");
2593         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2594     }
2595 }
2596 
2597 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2598 {
2599     VirtMachineState *vms = VIRT_MACHINE(obj);
2600 
2601     return vms->default_bus_bypass_iommu;
2602 }
2603 
2604 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2605                                               Error **errp)
2606 {
2607     VirtMachineState *vms = VIRT_MACHINE(obj);
2608 
2609     vms->default_bus_bypass_iommu = value;
2610 }
2611 
2612 static CpuInstanceProperties
2613 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2614 {
2615     MachineClass *mc = MACHINE_GET_CLASS(ms);
2616     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2617 
2618     assert(cpu_index < possible_cpus->len);
2619     return possible_cpus->cpus[cpu_index].props;
2620 }
2621 
2622 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2623 {
2624     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2625 
2626     return socket_id % ms->numa_state->num_nodes;
2627 }
2628 
2629 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2630 {
2631     int n;
2632     unsigned int max_cpus = ms->smp.max_cpus;
2633     VirtMachineState *vms = VIRT_MACHINE(ms);
2634     MachineClass *mc = MACHINE_GET_CLASS(vms);
2635 
2636     if (ms->possible_cpus) {
2637         assert(ms->possible_cpus->len == max_cpus);
2638         return ms->possible_cpus;
2639     }
2640 
2641     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2642                                   sizeof(CPUArchId) * max_cpus);
2643     ms->possible_cpus->len = max_cpus;
2644     for (n = 0; n < ms->possible_cpus->len; n++) {
2645         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2646         ms->possible_cpus->cpus[n].arch_id =
2647             virt_cpu_mp_affinity(vms, n);
2648 
2649         assert(!mc->smp_props.dies_supported);
2650         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2651         ms->possible_cpus->cpus[n].props.socket_id =
2652             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2653         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2654         ms->possible_cpus->cpus[n].props.cluster_id =
2655             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2656         ms->possible_cpus->cpus[n].props.has_core_id = true;
2657         ms->possible_cpus->cpus[n].props.core_id =
2658             (n / ms->smp.threads) % ms->smp.cores;
2659         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2660         ms->possible_cpus->cpus[n].props.thread_id =
2661             n % ms->smp.threads;
2662     }
2663     return ms->possible_cpus;
2664 }
2665 
2666 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2667                                  Error **errp)
2668 {
2669     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2670     const MachineState *ms = MACHINE(hotplug_dev);
2671     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2672 
2673     if (!vms->acpi_dev) {
2674         error_setg(errp,
2675                    "memory hotplug is not enabled: missing acpi-ged device");
2676         return;
2677     }
2678 
2679     if (vms->mte) {
2680         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2681         return;
2682     }
2683 
2684     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2685         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2686         return;
2687     }
2688 
2689     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2690 }
2691 
2692 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2693                              DeviceState *dev, Error **errp)
2694 {
2695     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2696     MachineState *ms = MACHINE(hotplug_dev);
2697     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2698 
2699     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2700 
2701     if (is_nvdimm) {
2702         nvdimm_plug(ms->nvdimms_state);
2703     }
2704 
2705     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2706                          dev, &error_abort);
2707 }
2708 
2709 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2710                                             DeviceState *dev, Error **errp)
2711 {
2712     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2713 
2714     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2715         virt_memory_pre_plug(hotplug_dev, dev, errp);
2716     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2717         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2718     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2719         hwaddr db_start = 0, db_end = 0;
2720         QList *reserved_regions;
2721         char *resv_prop_str;
2722 
2723         if (vms->iommu != VIRT_IOMMU_NONE) {
2724             error_setg(errp, "virt machine does not support multiple IOMMUs");
2725             return;
2726         }
2727 
2728         switch (vms->msi_controller) {
2729         case VIRT_MSI_CTRL_NONE:
2730             return;
2731         case VIRT_MSI_CTRL_ITS:
2732             /* GITS_TRANSLATER page */
2733             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2734             db_end = base_memmap[VIRT_GIC_ITS].base +
2735                      base_memmap[VIRT_GIC_ITS].size - 1;
2736             break;
2737         case VIRT_MSI_CTRL_GICV2M:
2738             /* MSI_SETSPI_NS page */
2739             db_start = base_memmap[VIRT_GIC_V2M].base;
2740             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2741             break;
2742         }
2743         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2744                                         db_start, db_end,
2745                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2746 
2747         reserved_regions = qlist_new();
2748         qlist_append_str(reserved_regions, resv_prop_str);
2749         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2750         g_free(resv_prop_str);
2751     }
2752 }
2753 
2754 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2755                                         DeviceState *dev, Error **errp)
2756 {
2757     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2758 
2759     if (vms->platform_bus_dev) {
2760         MachineClass *mc = MACHINE_GET_CLASS(vms);
2761 
2762         if (device_is_dynamic_sysbus(mc, dev)) {
2763             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2764                                      SYS_BUS_DEVICE(dev));
2765         }
2766     }
2767 
2768     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2769         virt_memory_plug(hotplug_dev, dev, errp);
2770     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2771         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2772     }
2773 
2774     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2775         PCIDevice *pdev = PCI_DEVICE(dev);
2776 
2777         vms->iommu = VIRT_IOMMU_VIRTIO;
2778         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2779         create_virtio_iommu_dt_bindings(vms);
2780     }
2781 }
2782 
2783 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2784                                      DeviceState *dev, Error **errp)
2785 {
2786     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2787 
2788     if (!vms->acpi_dev) {
2789         error_setg(errp,
2790                    "memory hotplug is not enabled: missing acpi-ged device");
2791         return;
2792     }
2793 
2794     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2795         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2796         return;
2797     }
2798 
2799     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2800                                    errp);
2801 }
2802 
2803 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2804                              DeviceState *dev, Error **errp)
2805 {
2806     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2807     Error *local_err = NULL;
2808 
2809     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2810     if (local_err) {
2811         goto out;
2812     }
2813 
2814     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2815     qdev_unrealize(dev);
2816 
2817 out:
2818     error_propagate(errp, local_err);
2819 }
2820 
2821 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2822                                           DeviceState *dev, Error **errp)
2823 {
2824     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2825         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2826     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2827         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2828                                      errp);
2829     } else {
2830         error_setg(errp, "device unplug request for unsupported device"
2831                    " type: %s", object_get_typename(OBJECT(dev)));
2832     }
2833 }
2834 
2835 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2836                                           DeviceState *dev, Error **errp)
2837 {
2838     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2839         virt_dimm_unplug(hotplug_dev, dev, errp);
2840     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2841         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2842     } else {
2843         error_setg(errp, "virt: device unplug for unsupported device"
2844                    " type: %s", object_get_typename(OBJECT(dev)));
2845     }
2846 }
2847 
2848 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2849                                                         DeviceState *dev)
2850 {
2851     MachineClass *mc = MACHINE_GET_CLASS(machine);
2852 
2853     if (device_is_dynamic_sysbus(mc, dev) ||
2854         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2855         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2856         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2857         return HOTPLUG_HANDLER(machine);
2858     }
2859     return NULL;
2860 }
2861 
2862 /*
2863  * for arm64 kvm_type [7-0] encodes the requested number of bits
2864  * in the IPA address space
2865  */
2866 static int virt_kvm_type(MachineState *ms, const char *type_str)
2867 {
2868     VirtMachineState *vms = VIRT_MACHINE(ms);
2869     int max_vm_pa_size, requested_pa_size;
2870     bool fixed_ipa;
2871 
2872     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2873 
2874     /* we freeze the memory map to compute the highest gpa */
2875     virt_set_memmap(vms, max_vm_pa_size);
2876 
2877     requested_pa_size = 64 - clz64(vms->highest_gpa);
2878 
2879     /*
2880      * KVM requires the IPA size to be at least 32 bits.
2881      */
2882     if (requested_pa_size < 32) {
2883         requested_pa_size = 32;
2884     }
2885 
2886     if (requested_pa_size > max_vm_pa_size) {
2887         error_report("-m and ,maxmem option values "
2888                      "require an IPA range (%d bits) larger than "
2889                      "the one supported by the host (%d bits)",
2890                      requested_pa_size, max_vm_pa_size);
2891         return -1;
2892     }
2893     /*
2894      * We return the requested PA log size, unless KVM only supports
2895      * the implicit legacy 40b IPA setting, in which case the kvm_type
2896      * must be 0.
2897      */
2898     return fixed_ipa ? 0 : requested_pa_size;
2899 }
2900 
2901 static void virt_machine_class_init(ObjectClass *oc, void *data)
2902 {
2903     MachineClass *mc = MACHINE_CLASS(oc);
2904     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2905     static const char * const valid_cpu_types[] = {
2906 #ifdef CONFIG_TCG
2907         ARM_CPU_TYPE_NAME("cortex-a7"),
2908         ARM_CPU_TYPE_NAME("cortex-a15"),
2909 #ifdef TARGET_AARCH64
2910         ARM_CPU_TYPE_NAME("cortex-a35"),
2911         ARM_CPU_TYPE_NAME("cortex-a55"),
2912         ARM_CPU_TYPE_NAME("cortex-a72"),
2913         ARM_CPU_TYPE_NAME("cortex-a76"),
2914         ARM_CPU_TYPE_NAME("cortex-a710"),
2915         ARM_CPU_TYPE_NAME("a64fx"),
2916         ARM_CPU_TYPE_NAME("neoverse-n1"),
2917         ARM_CPU_TYPE_NAME("neoverse-v1"),
2918         ARM_CPU_TYPE_NAME("neoverse-n2"),
2919 #endif /* TARGET_AARCH64 */
2920 #endif /* CONFIG_TCG */
2921 #ifdef TARGET_AARCH64
2922         ARM_CPU_TYPE_NAME("cortex-a53"),
2923         ARM_CPU_TYPE_NAME("cortex-a57"),
2924 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2925         ARM_CPU_TYPE_NAME("host"),
2926 #endif /* CONFIG_KVM || CONFIG_HVF */
2927 #endif /* TARGET_AARCH64 */
2928         ARM_CPU_TYPE_NAME("max"),
2929         NULL
2930     };
2931 
2932     mc->init = machvirt_init;
2933     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2934      * The value may be reduced later when we have more information about the
2935      * configuration of the particular instance.
2936      */
2937     mc->max_cpus = 512;
2938     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2939     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2940     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2941     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2942 #ifdef CONFIG_TPM
2943     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2944 #endif
2945     mc->block_default_type = IF_VIRTIO;
2946     mc->no_cdrom = 1;
2947     mc->pci_allow_0_address = true;
2948     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2949     mc->minimum_page_bits = 12;
2950     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2951     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2952 #ifdef CONFIG_TCG
2953     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2954 #else
2955     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2956 #endif
2957     mc->valid_cpu_types = valid_cpu_types;
2958     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2959     mc->kvm_type = virt_kvm_type;
2960     assert(!mc->get_hotplug_handler);
2961     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2962     hc->pre_plug = virt_machine_device_pre_plug_cb;
2963     hc->plug = virt_machine_device_plug_cb;
2964     hc->unplug_request = virt_machine_device_unplug_request_cb;
2965     hc->unplug = virt_machine_device_unplug_cb;
2966     mc->nvdimm_supported = true;
2967     mc->smp_props.clusters_supported = true;
2968     mc->auto_enable_numa_with_memhp = true;
2969     mc->auto_enable_numa_with_memdev = true;
2970     /* platform instead of architectural choice */
2971     mc->cpu_cluster_has_numa_boundary = true;
2972     mc->default_ram_id = "mach-virt.ram";
2973     mc->default_nic = "virtio-net-pci";
2974 
2975     object_class_property_add(oc, "acpi", "OnOffAuto",
2976         virt_get_acpi, virt_set_acpi,
2977         NULL, NULL);
2978     object_class_property_set_description(oc, "acpi",
2979         "Enable ACPI");
2980     object_class_property_add_bool(oc, "secure", virt_get_secure,
2981                                    virt_set_secure);
2982     object_class_property_set_description(oc, "secure",
2983                                                 "Set on/off to enable/disable the ARM "
2984                                                 "Security Extensions (TrustZone)");
2985 
2986     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2987                                    virt_set_virt);
2988     object_class_property_set_description(oc, "virtualization",
2989                                           "Set on/off to enable/disable emulating a "
2990                                           "guest CPU which implements the ARM "
2991                                           "Virtualization Extensions");
2992 
2993     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2994                                    virt_set_highmem);
2995     object_class_property_set_description(oc, "highmem",
2996                                           "Set on/off to enable/disable using "
2997                                           "physical address space above 32 bits");
2998 
2999     object_class_property_add_bool(oc, "compact-highmem",
3000                                    virt_get_compact_highmem,
3001                                    virt_set_compact_highmem);
3002     object_class_property_set_description(oc, "compact-highmem",
3003                                           "Set on/off to enable/disable compact "
3004                                           "layout for high memory regions");
3005 
3006     object_class_property_add_bool(oc, "highmem-redists",
3007                                    virt_get_highmem_redists,
3008                                    virt_set_highmem_redists);
3009     object_class_property_set_description(oc, "highmem-redists",
3010                                           "Set on/off to enable/disable high "
3011                                           "memory region for GICv3 or GICv4 "
3012                                           "redistributor");
3013 
3014     object_class_property_add_bool(oc, "highmem-ecam",
3015                                    virt_get_highmem_ecam,
3016                                    virt_set_highmem_ecam);
3017     object_class_property_set_description(oc, "highmem-ecam",
3018                                           "Set on/off to enable/disable high "
3019                                           "memory region for PCI ECAM");
3020 
3021     object_class_property_add_bool(oc, "highmem-mmio",
3022                                    virt_get_highmem_mmio,
3023                                    virt_set_highmem_mmio);
3024     object_class_property_set_description(oc, "highmem-mmio",
3025                                           "Set on/off to enable/disable high "
3026                                           "memory region for PCI MMIO");
3027 
3028     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3029                                   virt_set_gic_version);
3030     object_class_property_set_description(oc, "gic-version",
3031                                           "Set GIC version. "
3032                                           "Valid values are 2, 3, 4, host and max");
3033 
3034     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3035     object_class_property_set_description(oc, "iommu",
3036                                           "Set the IOMMU type. "
3037                                           "Valid values are none and smmuv3");
3038 
3039     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3040                                    virt_get_default_bus_bypass_iommu,
3041                                    virt_set_default_bus_bypass_iommu);
3042     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3043                                           "Set on/off to enable/disable "
3044                                           "bypass_iommu for default root bus");
3045 
3046     object_class_property_add_bool(oc, "ras", virt_get_ras,
3047                                    virt_set_ras);
3048     object_class_property_set_description(oc, "ras",
3049                                           "Set on/off to enable/disable reporting host memory errors "
3050                                           "to a KVM guest using ACPI and guest external abort exceptions");
3051 
3052     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3053     object_class_property_set_description(oc, "mte",
3054                                           "Set on/off to enable/disable emulating a "
3055                                           "guest CPU which implements the ARM "
3056                                           "Memory Tagging Extension");
3057 
3058     object_class_property_add_bool(oc, "its", virt_get_its,
3059                                    virt_set_its);
3060     object_class_property_set_description(oc, "its",
3061                                           "Set on/off to enable/disable "
3062                                           "ITS instantiation");
3063 
3064     object_class_property_add_bool(oc, "dtb-randomness",
3065                                    virt_get_dtb_randomness,
3066                                    virt_set_dtb_randomness);
3067     object_class_property_set_description(oc, "dtb-randomness",
3068                                           "Set off to disable passing random or "
3069                                           "non-deterministic dtb nodes to guest");
3070 
3071     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3072                                    virt_get_dtb_randomness,
3073                                    virt_set_dtb_randomness);
3074     object_class_property_set_description(oc, "dtb-kaslr-seed",
3075                                           "Deprecated synonym of dtb-randomness");
3076 
3077     object_class_property_add_str(oc, "x-oem-id",
3078                                   virt_get_oem_id,
3079                                   virt_set_oem_id);
3080     object_class_property_set_description(oc, "x-oem-id",
3081                                           "Override the default value of field OEMID "
3082                                           "in ACPI table header."
3083                                           "The string may be up to 6 bytes in size");
3084 
3085 
3086     object_class_property_add_str(oc, "x-oem-table-id",
3087                                   virt_get_oem_table_id,
3088                                   virt_set_oem_table_id);
3089     object_class_property_set_description(oc, "x-oem-table-id",
3090                                           "Override the default value of field OEM Table ID "
3091                                           "in ACPI table header."
3092                                           "The string may be up to 8 bytes in size");
3093 
3094 }
3095 
3096 static void virt_instance_init(Object *obj)
3097 {
3098     VirtMachineState *vms = VIRT_MACHINE(obj);
3099     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3100 
3101     /* EL3 is disabled by default on virt: this makes us consistent
3102      * between KVM and TCG for this board, and it also allows us to
3103      * boot UEFI blobs which assume no TrustZone support.
3104      */
3105     vms->secure = false;
3106 
3107     /* EL2 is also disabled by default, for similar reasons */
3108     vms->virt = false;
3109 
3110     /* High memory is enabled by default */
3111     vms->highmem = true;
3112     vms->highmem_compact = !vmc->no_highmem_compact;
3113     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3114 
3115     vms->highmem_ecam = !vmc->no_highmem_ecam;
3116     vms->highmem_mmio = true;
3117     vms->highmem_redists = true;
3118 
3119     if (vmc->no_its) {
3120         vms->its = false;
3121     } else {
3122         /* Default allows ITS instantiation */
3123         vms->its = true;
3124 
3125         if (vmc->no_tcg_its) {
3126             vms->tcg_its = false;
3127         } else {
3128             vms->tcg_its = true;
3129         }
3130     }
3131 
3132     /* Default disallows iommu instantiation */
3133     vms->iommu = VIRT_IOMMU_NONE;
3134 
3135     /* The default root bus is attached to iommu by default */
3136     vms->default_bus_bypass_iommu = false;
3137 
3138     /* Default disallows RAS instantiation */
3139     vms->ras = false;
3140 
3141     /* MTE is disabled by default.  */
3142     vms->mte = false;
3143 
3144     /* Supply kaslr-seed and rng-seed by default */
3145     vms->dtb_randomness = true;
3146 
3147     vms->irqmap = a15irqmap;
3148 
3149     virt_flash_create(vms);
3150 
3151     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3152     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3153 }
3154 
3155 static const TypeInfo virt_machine_info = {
3156     .name          = TYPE_VIRT_MACHINE,
3157     .parent        = TYPE_MACHINE,
3158     .abstract      = true,
3159     .instance_size = sizeof(VirtMachineState),
3160     .class_size    = sizeof(VirtMachineClass),
3161     .class_init    = virt_machine_class_init,
3162     .instance_init = virt_instance_init,
3163     .interfaces = (InterfaceInfo[]) {
3164          { TYPE_HOTPLUG_HANDLER },
3165          { }
3166     },
3167 };
3168 
3169 static void machvirt_machine_init(void)
3170 {
3171     type_register_static(&virt_machine_info);
3172 }
3173 type_init(machvirt_machine_init);
3174 
3175 static void virt_machine_9_0_options(MachineClass *mc)
3176 {
3177 }
3178 DEFINE_VIRT_MACHINE_AS_LATEST(9, 0)
3179 
3180 static void virt_machine_8_2_options(MachineClass *mc)
3181 {
3182     virt_machine_9_0_options(mc);
3183     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3184 }
3185 DEFINE_VIRT_MACHINE(8, 2)
3186 
3187 static void virt_machine_8_1_options(MachineClass *mc)
3188 {
3189     virt_machine_8_2_options(mc);
3190     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3191 }
3192 DEFINE_VIRT_MACHINE(8, 1)
3193 
3194 static void virt_machine_8_0_options(MachineClass *mc)
3195 {
3196     virt_machine_8_1_options(mc);
3197     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3198 }
3199 DEFINE_VIRT_MACHINE(8, 0)
3200 
3201 static void virt_machine_7_2_options(MachineClass *mc)
3202 {
3203     virt_machine_8_0_options(mc);
3204     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3205 }
3206 DEFINE_VIRT_MACHINE(7, 2)
3207 
3208 static void virt_machine_7_1_options(MachineClass *mc)
3209 {
3210     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3211 
3212     virt_machine_7_2_options(mc);
3213     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3214     /* Compact layout for high memory regions was introduced with 7.2 */
3215     vmc->no_highmem_compact = true;
3216 }
3217 DEFINE_VIRT_MACHINE(7, 1)
3218 
3219 static void virt_machine_7_0_options(MachineClass *mc)
3220 {
3221     virt_machine_7_1_options(mc);
3222     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3223 }
3224 DEFINE_VIRT_MACHINE(7, 0)
3225 
3226 static void virt_machine_6_2_options(MachineClass *mc)
3227 {
3228     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3229 
3230     virt_machine_7_0_options(mc);
3231     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3232     vmc->no_tcg_lpa2 = true;
3233 }
3234 DEFINE_VIRT_MACHINE(6, 2)
3235 
3236 static void virt_machine_6_1_options(MachineClass *mc)
3237 {
3238     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3239 
3240     virt_machine_6_2_options(mc);
3241     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3242     mc->smp_props.prefer_sockets = true;
3243     vmc->no_cpu_topology = true;
3244 
3245     /* qemu ITS was introduced with 6.2 */
3246     vmc->no_tcg_its = true;
3247 }
3248 DEFINE_VIRT_MACHINE(6, 1)
3249 
3250 static void virt_machine_6_0_options(MachineClass *mc)
3251 {
3252     virt_machine_6_1_options(mc);
3253     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3254 }
3255 DEFINE_VIRT_MACHINE(6, 0)
3256 
3257 static void virt_machine_5_2_options(MachineClass *mc)
3258 {
3259     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3260 
3261     virt_machine_6_0_options(mc);
3262     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3263     vmc->no_secure_gpio = true;
3264 }
3265 DEFINE_VIRT_MACHINE(5, 2)
3266 
3267 static void virt_machine_5_1_options(MachineClass *mc)
3268 {
3269     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3270 
3271     virt_machine_5_2_options(mc);
3272     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3273     vmc->no_kvm_steal_time = true;
3274 }
3275 DEFINE_VIRT_MACHINE(5, 1)
3276 
3277 static void virt_machine_5_0_options(MachineClass *mc)
3278 {
3279     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3280 
3281     virt_machine_5_1_options(mc);
3282     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3283     mc->numa_mem_supported = true;
3284     vmc->acpi_expose_flash = true;
3285     mc->auto_enable_numa_with_memdev = false;
3286 }
3287 DEFINE_VIRT_MACHINE(5, 0)
3288 
3289 static void virt_machine_4_2_options(MachineClass *mc)
3290 {
3291     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3292 
3293     virt_machine_5_0_options(mc);
3294     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3295     vmc->kvm_no_adjvtime = true;
3296 }
3297 DEFINE_VIRT_MACHINE(4, 2)
3298 
3299 static void virt_machine_4_1_options(MachineClass *mc)
3300 {
3301     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3302 
3303     virt_machine_4_2_options(mc);
3304     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3305     vmc->no_ged = true;
3306     mc->auto_enable_numa_with_memhp = false;
3307 }
3308 DEFINE_VIRT_MACHINE(4, 1)
3309 
3310 static void virt_machine_4_0_options(MachineClass *mc)
3311 {
3312     virt_machine_4_1_options(mc);
3313     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3314 }
3315 DEFINE_VIRT_MACHINE(4, 0)
3316 
3317 static void virt_machine_3_1_options(MachineClass *mc)
3318 {
3319     virt_machine_4_0_options(mc);
3320     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3321 }
3322 DEFINE_VIRT_MACHINE(3, 1)
3323 
3324 static void virt_machine_3_0_options(MachineClass *mc)
3325 {
3326     virt_machine_3_1_options(mc);
3327     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3328 }
3329 DEFINE_VIRT_MACHINE(3, 0)
3330 
3331 static void virt_machine_2_12_options(MachineClass *mc)
3332 {
3333     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3334 
3335     virt_machine_3_0_options(mc);
3336     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3337     vmc->no_highmem_ecam = true;
3338     mc->max_cpus = 255;
3339 }
3340 DEFINE_VIRT_MACHINE(2, 12)
3341 
3342 static void virt_machine_2_11_options(MachineClass *mc)
3343 {
3344     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3345 
3346     virt_machine_2_12_options(mc);
3347     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3348     vmc->smbios_old_sys_ver = true;
3349 }
3350 DEFINE_VIRT_MACHINE(2, 11)
3351 
3352 static void virt_machine_2_10_options(MachineClass *mc)
3353 {
3354     virt_machine_2_11_options(mc);
3355     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3356     /* before 2.11 we never faulted accesses to bad addresses */
3357     mc->ignore_memory_transaction_failures = true;
3358 }
3359 DEFINE_VIRT_MACHINE(2, 10)
3360 
3361 static void virt_machine_2_9_options(MachineClass *mc)
3362 {
3363     virt_machine_2_10_options(mc);
3364     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3365 }
3366 DEFINE_VIRT_MACHINE(2, 9)
3367 
3368 static void virt_machine_2_8_options(MachineClass *mc)
3369 {
3370     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3371 
3372     virt_machine_2_9_options(mc);
3373     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3374     /* For 2.8 and earlier we falsely claimed in the DT that
3375      * our timers were edge-triggered, not level-triggered.
3376      */
3377     vmc->claim_edge_triggered_timers = true;
3378 }
3379 DEFINE_VIRT_MACHINE(2, 8)
3380 
3381 static void virt_machine_2_7_options(MachineClass *mc)
3382 {
3383     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3384 
3385     virt_machine_2_8_options(mc);
3386     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3387     /* ITS was introduced with 2.8 */
3388     vmc->no_its = true;
3389     /* Stick with 1K pages for migration compatibility */
3390     mc->minimum_page_bits = 0;
3391 }
3392 DEFINE_VIRT_MACHINE(2, 7)
3393 
3394 static void virt_machine_2_6_options(MachineClass *mc)
3395 {
3396     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3397 
3398     virt_machine_2_7_options(mc);
3399     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3400     vmc->disallow_affinity_adjustment = true;
3401     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3402     vmc->no_pmu = true;
3403 }
3404 DEFINE_VIRT_MACHINE(2, 6)
3405