xref: /qemu/hw/arm/virt.c (revision 94452ac4)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/tpm.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/core/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/irq.h"
66 #include "kvm_arm.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/memory-device.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-mem-pci.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
82 
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85                                                     void *data) \
86     { \
87         MachineClass *mc = MACHINE_CLASS(oc); \
88         virt_machine_##major##_##minor##_options(mc); \
89         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90         if (latest) { \
91             mc->alias = "virt"; \
92         } \
93     } \
94     static const TypeInfo machvirt_##major##_##minor##_info = { \
95         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96         .parent = TYPE_VIRT_MACHINE, \
97         .class_init = virt_##major##_##minor##_class_init, \
98     }; \
99     static void machvirt_machine_##major##_##minor##_init(void) \
100     { \
101         type_register_static(&machvirt_##major##_##minor##_info); \
102     } \
103     type_init(machvirt_machine_##major##_##minor##_init);
104 
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109 
110 
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
113 
114 #define PLATFORM_BUS_NUM_IRQS 64
115 
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119 
120 /* Addresses and sizes of our components.
121  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122  * 128MB..256MB is used for miscellaneous device I/O.
123  * 256MB..1GB is reserved for possible future PCI support (ie where the
124  * PCI memory window will go if we add a PCI host controller).
125  * 1GB and up is RAM (which may happily spill over into the
126  * high memory region beyond 4GB).
127  * This represents a compromise between how much RAM can be given to
128  * a 32 bit VM and leaving space for expansion and in particular for PCI.
129  * Note that devices should generally be placed at multiples of 0x10000,
130  * to accommodate guests using 64K pages.
131  */
132 static const MemMapEntry base_memmap[] = {
133     /* Space up to 0x8000000 is reserved for a boot ROM */
134     [VIRT_FLASH] =              {          0, 0x08000000 },
135     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
136     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
138     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
139     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
140     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
141     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
142     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
144     /* This redistributor space allows up to 2*64kB*123 CPUs */
145     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
146     [VIRT_UART] =               { 0x09000000, 0x00001000 },
147     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
148     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
149     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
150     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
151     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
152     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
155     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
156     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
157     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
158     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
160     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
161     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
162     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
163     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
164     /* Actual RAM size depends on initial RAM and device memory settings */
165     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
166 };
167 
168 /*
169  * Highmem IO Regions: This memory map is floating, located after the RAM.
170  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171  * top of the RAM, so that its base get the same alignment as the size,
172  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174  * Note the extended_memmap is sized so that it eventually also includes the
175  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176  * index of base_memmap).
177  */
178 static MemMapEntry extended_memmap[] = {
179     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
180     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
181     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
182     /* Second PCIe window */
183     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
184 };
185 
186 static const int a15irqmap[] = {
187     [VIRT_UART] = 1,
188     [VIRT_RTC] = 2,
189     [VIRT_PCIE] = 3, /* ... to 6 */
190     [VIRT_GPIO] = 7,
191     [VIRT_SECURE_UART] = 8,
192     [VIRT_ACPI_GED] = 9,
193     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
194     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
195     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
196     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 };
198 
199 static const char *valid_cpus[] = {
200     ARM_CPU_TYPE_NAME("cortex-a7"),
201     ARM_CPU_TYPE_NAME("cortex-a15"),
202     ARM_CPU_TYPE_NAME("cortex-a35"),
203     ARM_CPU_TYPE_NAME("cortex-a53"),
204     ARM_CPU_TYPE_NAME("cortex-a57"),
205     ARM_CPU_TYPE_NAME("cortex-a72"),
206     ARM_CPU_TYPE_NAME("cortex-a76"),
207     ARM_CPU_TYPE_NAME("a64fx"),
208     ARM_CPU_TYPE_NAME("neoverse-n1"),
209     ARM_CPU_TYPE_NAME("host"),
210     ARM_CPU_TYPE_NAME("max"),
211 };
212 
213 static bool cpu_type_valid(const char *cpu)
214 {
215     int i;
216 
217     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
218         if (strcmp(cpu, valid_cpus[i]) == 0) {
219             return true;
220         }
221     }
222     return false;
223 }
224 
225 static void create_randomness(MachineState *ms, const char *node)
226 {
227     struct {
228         uint64_t kaslr;
229         uint8_t rng[32];
230     } seed;
231 
232     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
233         return;
234     }
235     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
236     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
237 }
238 
239 static void create_fdt(VirtMachineState *vms)
240 {
241     MachineState *ms = MACHINE(vms);
242     int nb_numa_nodes = ms->numa_state->num_nodes;
243     void *fdt = create_device_tree(&vms->fdt_size);
244 
245     if (!fdt) {
246         error_report("create_device_tree() failed");
247         exit(1);
248     }
249 
250     ms->fdt = fdt;
251 
252     /* Header */
253     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
254     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
255     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
256 
257     /* /chosen must exist for load_dtb to fill in necessary properties later */
258     qemu_fdt_add_subnode(fdt, "/chosen");
259     if (vms->dtb_randomness) {
260         create_randomness(ms, "/chosen");
261     }
262 
263     if (vms->secure) {
264         qemu_fdt_add_subnode(fdt, "/secure-chosen");
265         if (vms->dtb_randomness) {
266             create_randomness(ms, "/secure-chosen");
267         }
268     }
269 
270     /* Clock node, for the benefit of the UART. The kernel device tree
271      * binding documentation claims the PL011 node clock properties are
272      * optional but in practice if you omit them the kernel refuses to
273      * probe for the device.
274      */
275     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
276     qemu_fdt_add_subnode(fdt, "/apb-pclk");
277     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
278     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
279     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
280     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
281                                 "clk24mhz");
282     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
283 
284     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
285         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
286         uint32_t *matrix = g_malloc0(size);
287         int idx, i, j;
288 
289         for (i = 0; i < nb_numa_nodes; i++) {
290             for (j = 0; j < nb_numa_nodes; j++) {
291                 idx = (i * nb_numa_nodes + j) * 3;
292                 matrix[idx + 0] = cpu_to_be32(i);
293                 matrix[idx + 1] = cpu_to_be32(j);
294                 matrix[idx + 2] =
295                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
296             }
297         }
298 
299         qemu_fdt_add_subnode(fdt, "/distance-map");
300         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
301                                 "numa-distance-map-v1");
302         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
303                          matrix, size);
304         g_free(matrix);
305     }
306 }
307 
308 static void fdt_add_timer_nodes(const VirtMachineState *vms)
309 {
310     /* On real hardware these interrupts are level-triggered.
311      * On KVM they were edge-triggered before host kernel version 4.4,
312      * and level-triggered afterwards.
313      * On emulated QEMU they are level-triggered.
314      *
315      * Getting the DTB info about them wrong is awkward for some
316      * guest kernels:
317      *  pre-4.8 ignore the DT and leave the interrupt configured
318      *   with whatever the GIC reset value (or the bootloader) left it at
319      *  4.8 before rc6 honour the incorrect data by programming it back
320      *   into the GIC, causing problems
321      *  4.8rc6 and later ignore the DT and always write "level triggered"
322      *   into the GIC
323      *
324      * For backwards-compatibility, virt-2.8 and earlier will continue
325      * to say these are edge-triggered, but later machines will report
326      * the correct information.
327      */
328     ARMCPU *armcpu;
329     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
330     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
331     MachineState *ms = MACHINE(vms);
332 
333     if (vmc->claim_edge_triggered_timers) {
334         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
335     }
336 
337     if (vms->gic_version == VIRT_GIC_VERSION_2) {
338         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
339                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
340                              (1 << MACHINE(vms)->smp.cpus) - 1);
341     }
342 
343     qemu_fdt_add_subnode(ms->fdt, "/timer");
344 
345     armcpu = ARM_CPU(qemu_get_cpu(0));
346     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
347         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
348         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
349                          compat, sizeof(compat));
350     } else {
351         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
352                                 "arm,armv7-timer");
353     }
354     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
355     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
356                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
357                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
358                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
359                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
360 }
361 
362 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
363 {
364     int cpu;
365     int addr_cells = 1;
366     const MachineState *ms = MACHINE(vms);
367     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
368     int smp_cpus = ms->smp.cpus;
369 
370     /*
371      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
372      * On ARM v8 64-bit systems value should be set to 2,
373      * that corresponds to the MPIDR_EL1 register size.
374      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
375      * in the system, #address-cells can be set to 1, since
376      * MPIDR_EL1[63:32] bits are not used for CPUs
377      * identification.
378      *
379      * Here we actually don't know whether our system is 32- or 64-bit one.
380      * The simplest way to go is to examine affinity IDs of all our CPUs. If
381      * at least one of them has Aff3 populated, we set #address-cells to 2.
382      */
383     for (cpu = 0; cpu < smp_cpus; cpu++) {
384         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
385 
386         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
387             addr_cells = 2;
388             break;
389         }
390     }
391 
392     qemu_fdt_add_subnode(ms->fdt, "/cpus");
393     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
394     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
395 
396     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
397         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
398         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
399         CPUState *cs = CPU(armcpu);
400 
401         qemu_fdt_add_subnode(ms->fdt, nodename);
402         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
403         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
404                                     armcpu->dtb_compatible);
405 
406         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
407             qemu_fdt_setprop_string(ms->fdt, nodename,
408                                         "enable-method", "psci");
409         }
410 
411         if (addr_cells == 2) {
412             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
413                                  armcpu->mp_affinity);
414         } else {
415             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
416                                   armcpu->mp_affinity);
417         }
418 
419         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
420             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
421                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
422         }
423 
424         if (!vmc->no_cpu_topology) {
425             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
426                                   qemu_fdt_alloc_phandle(ms->fdt));
427         }
428 
429         g_free(nodename);
430     }
431 
432     if (!vmc->no_cpu_topology) {
433         /*
434          * Add vCPU topology description through fdt node cpu-map.
435          *
436          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
437          * In a SMP system, the hierarchy of CPUs can be defined through
438          * four entities that are used to describe the layout of CPUs in
439          * the system: socket/cluster/core/thread.
440          *
441          * A socket node represents the boundary of system physical package
442          * and its child nodes must be one or more cluster nodes. A system
443          * can contain several layers of clustering within a single physical
444          * package and cluster nodes can be contained in parent cluster nodes.
445          *
446          * Note: currently we only support one layer of clustering within
447          * each physical package.
448          */
449         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
450 
451         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
452             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
453             char *map_path;
454 
455             if (ms->smp.threads > 1) {
456                 map_path = g_strdup_printf(
457                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
458                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
459                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
460                     (cpu / ms->smp.threads) % ms->smp.cores,
461                     cpu % ms->smp.threads);
462             } else {
463                 map_path = g_strdup_printf(
464                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
465                     cpu / (ms->smp.clusters * ms->smp.cores),
466                     (cpu / ms->smp.cores) % ms->smp.clusters,
467                     cpu % ms->smp.cores);
468             }
469             qemu_fdt_add_path(ms->fdt, map_path);
470             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
471 
472             g_free(map_path);
473             g_free(cpu_path);
474         }
475     }
476 }
477 
478 static void fdt_add_its_gic_node(VirtMachineState *vms)
479 {
480     char *nodename;
481     MachineState *ms = MACHINE(vms);
482 
483     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
484     nodename = g_strdup_printf("/intc/its@%" PRIx64,
485                                vms->memmap[VIRT_GIC_ITS].base);
486     qemu_fdt_add_subnode(ms->fdt, nodename);
487     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
488                             "arm,gic-v3-its");
489     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
490     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
491                                  2, vms->memmap[VIRT_GIC_ITS].base,
492                                  2, vms->memmap[VIRT_GIC_ITS].size);
493     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
494     g_free(nodename);
495 }
496 
497 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
498 {
499     MachineState *ms = MACHINE(vms);
500     char *nodename;
501 
502     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
503                                vms->memmap[VIRT_GIC_V2M].base);
504     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
505     qemu_fdt_add_subnode(ms->fdt, nodename);
506     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
507                             "arm,gic-v2m-frame");
508     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
509     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
510                                  2, vms->memmap[VIRT_GIC_V2M].base,
511                                  2, vms->memmap[VIRT_GIC_V2M].size);
512     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
513     g_free(nodename);
514 }
515 
516 static void fdt_add_gic_node(VirtMachineState *vms)
517 {
518     MachineState *ms = MACHINE(vms);
519     char *nodename;
520 
521     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
522     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
523 
524     nodename = g_strdup_printf("/intc@%" PRIx64,
525                                vms->memmap[VIRT_GIC_DIST].base);
526     qemu_fdt_add_subnode(ms->fdt, nodename);
527     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
528     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
529     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
530     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
531     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
532     if (vms->gic_version != VIRT_GIC_VERSION_2) {
533         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
534 
535         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
536                                 "arm,gic-v3");
537 
538         qemu_fdt_setprop_cell(ms->fdt, nodename,
539                               "#redistributor-regions", nb_redist_regions);
540 
541         if (nb_redist_regions == 1) {
542             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
543                                          2, vms->memmap[VIRT_GIC_DIST].base,
544                                          2, vms->memmap[VIRT_GIC_DIST].size,
545                                          2, vms->memmap[VIRT_GIC_REDIST].base,
546                                          2, vms->memmap[VIRT_GIC_REDIST].size);
547         } else {
548             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
549                                  2, vms->memmap[VIRT_GIC_DIST].base,
550                                  2, vms->memmap[VIRT_GIC_DIST].size,
551                                  2, vms->memmap[VIRT_GIC_REDIST].base,
552                                  2, vms->memmap[VIRT_GIC_REDIST].size,
553                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
554                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
555         }
556 
557         if (vms->virt) {
558             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
559                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
560                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
561         }
562     } else {
563         /* 'cortex-a15-gic' means 'GIC v2' */
564         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
565                                 "arm,cortex-a15-gic");
566         if (!vms->virt) {
567             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
568                                          2, vms->memmap[VIRT_GIC_DIST].base,
569                                          2, vms->memmap[VIRT_GIC_DIST].size,
570                                          2, vms->memmap[VIRT_GIC_CPU].base,
571                                          2, vms->memmap[VIRT_GIC_CPU].size);
572         } else {
573             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
574                                          2, vms->memmap[VIRT_GIC_DIST].base,
575                                          2, vms->memmap[VIRT_GIC_DIST].size,
576                                          2, vms->memmap[VIRT_GIC_CPU].base,
577                                          2, vms->memmap[VIRT_GIC_CPU].size,
578                                          2, vms->memmap[VIRT_GIC_HYP].base,
579                                          2, vms->memmap[VIRT_GIC_HYP].size,
580                                          2, vms->memmap[VIRT_GIC_VCPU].base,
581                                          2, vms->memmap[VIRT_GIC_VCPU].size);
582             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
583                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
584                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
585         }
586     }
587 
588     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
589     g_free(nodename);
590 }
591 
592 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
593 {
594     ARMCPU *armcpu = ARM_CPU(first_cpu);
595     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
596     MachineState *ms = MACHINE(vms);
597 
598     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
599         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
600         return;
601     }
602 
603     if (vms->gic_version == VIRT_GIC_VERSION_2) {
604         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
605                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
606                              (1 << MACHINE(vms)->smp.cpus) - 1);
607     }
608 
609     qemu_fdt_add_subnode(ms->fdt, "/pmu");
610     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
611         const char compat[] = "arm,armv8-pmuv3";
612         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
613                          compat, sizeof(compat));
614         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
615                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
616     }
617 }
618 
619 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
620 {
621     DeviceState *dev;
622     MachineState *ms = MACHINE(vms);
623     int irq = vms->irqmap[VIRT_ACPI_GED];
624     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
625 
626     if (ms->ram_slots) {
627         event |= ACPI_GED_MEM_HOTPLUG_EVT;
628     }
629 
630     if (ms->nvdimms_state->is_enabled) {
631         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
632     }
633 
634     dev = qdev_new(TYPE_ACPI_GED);
635     qdev_prop_set_uint32(dev, "ged-event", event);
636 
637     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
638     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
639     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
640 
641     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
642 
643     return dev;
644 }
645 
646 static void create_its(VirtMachineState *vms)
647 {
648     const char *itsclass = its_class_name();
649     DeviceState *dev;
650 
651     if (!strcmp(itsclass, "arm-gicv3-its")) {
652         if (!vms->tcg_its) {
653             itsclass = NULL;
654         }
655     }
656 
657     if (!itsclass) {
658         /* Do nothing if not supported */
659         return;
660     }
661 
662     dev = qdev_new(itsclass);
663 
664     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
665                              &error_abort);
666     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
667     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
668 
669     fdt_add_its_gic_node(vms);
670     vms->msi_controller = VIRT_MSI_CTRL_ITS;
671 }
672 
673 static void create_v2m(VirtMachineState *vms)
674 {
675     int i;
676     int irq = vms->irqmap[VIRT_GIC_V2M];
677     DeviceState *dev;
678 
679     dev = qdev_new("arm-gicv2m");
680     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
681     qdev_prop_set_uint32(dev, "base-spi", irq);
682     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
683     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
684 
685     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
686         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
687                            qdev_get_gpio_in(vms->gic, irq + i));
688     }
689 
690     fdt_add_v2m_gic_node(vms);
691     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
692 }
693 
694 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
695 {
696     MachineState *ms = MACHINE(vms);
697     /* We create a standalone GIC */
698     SysBusDevice *gicbusdev;
699     const char *gictype;
700     int i;
701     unsigned int smp_cpus = ms->smp.cpus;
702     uint32_t nb_redist_regions = 0;
703     int revision;
704 
705     if (vms->gic_version == VIRT_GIC_VERSION_2) {
706         gictype = gic_class_name();
707     } else {
708         gictype = gicv3_class_name();
709     }
710 
711     switch (vms->gic_version) {
712     case VIRT_GIC_VERSION_2:
713         revision = 2;
714         break;
715     case VIRT_GIC_VERSION_3:
716         revision = 3;
717         break;
718     case VIRT_GIC_VERSION_4:
719         revision = 4;
720         break;
721     default:
722         g_assert_not_reached();
723     }
724     vms->gic = qdev_new(gictype);
725     qdev_prop_set_uint32(vms->gic, "revision", revision);
726     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
727     /* Note that the num-irq property counts both internal and external
728      * interrupts; there are always 32 of the former (mandated by GIC spec).
729      */
730     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
731     if (!kvm_irqchip_in_kernel()) {
732         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
733     }
734 
735     if (vms->gic_version != VIRT_GIC_VERSION_2) {
736         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
737         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
738 
739         nb_redist_regions = virt_gicv3_redist_region_count(vms);
740 
741         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
742                              nb_redist_regions);
743         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
744 
745         if (!kvm_irqchip_in_kernel()) {
746             if (vms->tcg_its) {
747                 object_property_set_link(OBJECT(vms->gic), "sysmem",
748                                          OBJECT(mem), &error_fatal);
749                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
750             }
751         }
752 
753         if (nb_redist_regions == 2) {
754             uint32_t redist1_capacity =
755                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
756 
757             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
758                 MIN(smp_cpus - redist0_count, redist1_capacity));
759         }
760     } else {
761         if (!kvm_irqchip_in_kernel()) {
762             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
763                               vms->virt);
764         }
765     }
766     gicbusdev = SYS_BUS_DEVICE(vms->gic);
767     sysbus_realize_and_unref(gicbusdev, &error_fatal);
768     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
769     if (vms->gic_version != VIRT_GIC_VERSION_2) {
770         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
771         if (nb_redist_regions == 2) {
772             sysbus_mmio_map(gicbusdev, 2,
773                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
774         }
775     } else {
776         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
777         if (vms->virt) {
778             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
779             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
780         }
781     }
782 
783     /* Wire the outputs from each CPU's generic timer and the GICv3
784      * maintenance interrupt signal to the appropriate GIC PPI inputs,
785      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
786      */
787     for (i = 0; i < smp_cpus; i++) {
788         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
789         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
790         int irq;
791         /* Mapping from the output timer irq lines from the CPU to the
792          * GIC PPI inputs we use for the virt board.
793          */
794         const int timer_irq[] = {
795             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
796             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
797             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
798             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
799         };
800 
801         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
802             qdev_connect_gpio_out(cpudev, irq,
803                                   qdev_get_gpio_in(vms->gic,
804                                                    ppibase + timer_irq[irq]));
805         }
806 
807         if (vms->gic_version != VIRT_GIC_VERSION_2) {
808             qemu_irq irq = qdev_get_gpio_in(vms->gic,
809                                             ppibase + ARCH_GIC_MAINT_IRQ);
810             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
811                                         0, irq);
812         } else if (vms->virt) {
813             qemu_irq irq = qdev_get_gpio_in(vms->gic,
814                                             ppibase + ARCH_GIC_MAINT_IRQ);
815             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
816         }
817 
818         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
819                                     qdev_get_gpio_in(vms->gic, ppibase
820                                                      + VIRTUAL_PMU_IRQ));
821 
822         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
823         sysbus_connect_irq(gicbusdev, i + smp_cpus,
824                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
825         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
826                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
827         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
828                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
829     }
830 
831     fdt_add_gic_node(vms);
832 
833     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
834         create_its(vms);
835     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
836         create_v2m(vms);
837     }
838 }
839 
840 static void create_uart(const VirtMachineState *vms, int uart,
841                         MemoryRegion *mem, Chardev *chr)
842 {
843     char *nodename;
844     hwaddr base = vms->memmap[uart].base;
845     hwaddr size = vms->memmap[uart].size;
846     int irq = vms->irqmap[uart];
847     const char compat[] = "arm,pl011\0arm,primecell";
848     const char clocknames[] = "uartclk\0apb_pclk";
849     DeviceState *dev = qdev_new(TYPE_PL011);
850     SysBusDevice *s = SYS_BUS_DEVICE(dev);
851     MachineState *ms = MACHINE(vms);
852 
853     qdev_prop_set_chr(dev, "chardev", chr);
854     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
855     memory_region_add_subregion(mem, base,
856                                 sysbus_mmio_get_region(s, 0));
857     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
858 
859     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
860     qemu_fdt_add_subnode(ms->fdt, nodename);
861     /* Note that we can't use setprop_string because of the embedded NUL */
862     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
863                          compat, sizeof(compat));
864     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
865                                      2, base, 2, size);
866     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
867                                GIC_FDT_IRQ_TYPE_SPI, irq,
868                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
869     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
870                                vms->clock_phandle, vms->clock_phandle);
871     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
872                          clocknames, sizeof(clocknames));
873 
874     if (uart == VIRT_UART) {
875         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
876     } else {
877         /* Mark as not usable by the normal world */
878         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
879         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
880 
881         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
882                                 nodename);
883     }
884 
885     g_free(nodename);
886 }
887 
888 static void create_rtc(const VirtMachineState *vms)
889 {
890     char *nodename;
891     hwaddr base = vms->memmap[VIRT_RTC].base;
892     hwaddr size = vms->memmap[VIRT_RTC].size;
893     int irq = vms->irqmap[VIRT_RTC];
894     const char compat[] = "arm,pl031\0arm,primecell";
895     MachineState *ms = MACHINE(vms);
896 
897     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
898 
899     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
900     qemu_fdt_add_subnode(ms->fdt, nodename);
901     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
902     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
903                                  2, base, 2, size);
904     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
905                            GIC_FDT_IRQ_TYPE_SPI, irq,
906                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
907     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
908     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
909     g_free(nodename);
910 }
911 
912 static DeviceState *gpio_key_dev;
913 static void virt_powerdown_req(Notifier *n, void *opaque)
914 {
915     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
916 
917     if (s->acpi_dev) {
918         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
919     } else {
920         /* use gpio Pin 3 for power button event */
921         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
922     }
923 }
924 
925 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
926                              uint32_t phandle)
927 {
928     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
929                                         qdev_get_gpio_in(pl061_dev, 3));
930 
931     qemu_fdt_add_subnode(fdt, "/gpio-keys");
932     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
933 
934     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
935     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
936                             "label", "GPIO Key Poweroff");
937     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
938                           KEY_POWER);
939     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
940                            "gpios", phandle, 3, 0);
941 }
942 
943 #define SECURE_GPIO_POWEROFF 0
944 #define SECURE_GPIO_RESET    1
945 
946 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
947                                    uint32_t phandle)
948 {
949     DeviceState *gpio_pwr_dev;
950 
951     /* gpio-pwr */
952     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
953 
954     /* connect secure pl061 to gpio-pwr */
955     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
956                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
957     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
958                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
959 
960     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
961     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
962                             "gpio-poweroff");
963     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
964                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
965     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
966     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
967                             "okay");
968 
969     qemu_fdt_add_subnode(fdt, "/gpio-restart");
970     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
971                             "gpio-restart");
972     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
973                            "gpios", phandle, SECURE_GPIO_RESET, 0);
974     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
975     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
976                             "okay");
977 }
978 
979 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
980                                 MemoryRegion *mem)
981 {
982     char *nodename;
983     DeviceState *pl061_dev;
984     hwaddr base = vms->memmap[gpio].base;
985     hwaddr size = vms->memmap[gpio].size;
986     int irq = vms->irqmap[gpio];
987     const char compat[] = "arm,pl061\0arm,primecell";
988     SysBusDevice *s;
989     MachineState *ms = MACHINE(vms);
990 
991     pl061_dev = qdev_new("pl061");
992     /* Pull lines down to 0 if not driven by the PL061 */
993     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
994     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
995     s = SYS_BUS_DEVICE(pl061_dev);
996     sysbus_realize_and_unref(s, &error_fatal);
997     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
998     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
999 
1000     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1001     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1002     qemu_fdt_add_subnode(ms->fdt, nodename);
1003     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1004                                  2, base, 2, size);
1005     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1006     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1007     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1008     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1009                            GIC_FDT_IRQ_TYPE_SPI, irq,
1010                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1011     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1012     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1013     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1014 
1015     if (gpio != VIRT_GPIO) {
1016         /* Mark as not usable by the normal world */
1017         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1018         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1019     }
1020     g_free(nodename);
1021 
1022     /* Child gpio devices */
1023     if (gpio == VIRT_GPIO) {
1024         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1025     } else {
1026         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1027     }
1028 }
1029 
1030 static void create_virtio_devices(const VirtMachineState *vms)
1031 {
1032     int i;
1033     hwaddr size = vms->memmap[VIRT_MMIO].size;
1034     MachineState *ms = MACHINE(vms);
1035 
1036     /* We create the transports in forwards order. Since qbus_realize()
1037      * prepends (not appends) new child buses, the incrementing loop below will
1038      * create a list of virtio-mmio buses with decreasing base addresses.
1039      *
1040      * When a -device option is processed from the command line,
1041      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1042      * order. The upshot is that -device options in increasing command line
1043      * order are mapped to virtio-mmio buses with decreasing base addresses.
1044      *
1045      * When this code was originally written, that arrangement ensured that the
1046      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1047      * the first -device on the command line. (The end-to-end order is a
1048      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1049      * guest kernel's name-to-address assignment strategy.)
1050      *
1051      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1052      * the message, if not necessarily the code, of commit 70161ff336.
1053      * Therefore the loop now establishes the inverse of the original intent.
1054      *
1055      * Unfortunately, we can't counteract the kernel change by reversing the
1056      * loop; it would break existing command lines.
1057      *
1058      * In any case, the kernel makes no guarantee about the stability of
1059      * enumeration order of virtio devices (as demonstrated by it changing
1060      * between kernel versions). For reliable and stable identification
1061      * of disks users must use UUIDs or similar mechanisms.
1062      */
1063     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1064         int irq = vms->irqmap[VIRT_MMIO] + i;
1065         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1066 
1067         sysbus_create_simple("virtio-mmio", base,
1068                              qdev_get_gpio_in(vms->gic, irq));
1069     }
1070 
1071     /* We add dtb nodes in reverse order so that they appear in the finished
1072      * device tree lowest address first.
1073      *
1074      * Note that this mapping is independent of the loop above. The previous
1075      * loop influences virtio device to virtio transport assignment, whereas
1076      * this loop controls how virtio transports are laid out in the dtb.
1077      */
1078     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1079         char *nodename;
1080         int irq = vms->irqmap[VIRT_MMIO] + i;
1081         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1082 
1083         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1084         qemu_fdt_add_subnode(ms->fdt, nodename);
1085         qemu_fdt_setprop_string(ms->fdt, nodename,
1086                                 "compatible", "virtio,mmio");
1087         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1088                                      2, base, 2, size);
1089         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1090                                GIC_FDT_IRQ_TYPE_SPI, irq,
1091                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1092         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1093         g_free(nodename);
1094     }
1095 }
1096 
1097 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1098 
1099 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1100                                         const char *name,
1101                                         const char *alias_prop_name)
1102 {
1103     /*
1104      * Create a single flash device.  We use the same parameters as
1105      * the flash devices on the Versatile Express board.
1106      */
1107     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1108 
1109     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1110     qdev_prop_set_uint8(dev, "width", 4);
1111     qdev_prop_set_uint8(dev, "device-width", 2);
1112     qdev_prop_set_bit(dev, "big-endian", false);
1113     qdev_prop_set_uint16(dev, "id0", 0x89);
1114     qdev_prop_set_uint16(dev, "id1", 0x18);
1115     qdev_prop_set_uint16(dev, "id2", 0x00);
1116     qdev_prop_set_uint16(dev, "id3", 0x00);
1117     qdev_prop_set_string(dev, "name", name);
1118     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1119     object_property_add_alias(OBJECT(vms), alias_prop_name,
1120                               OBJECT(dev), "drive");
1121     return PFLASH_CFI01(dev);
1122 }
1123 
1124 static void virt_flash_create(VirtMachineState *vms)
1125 {
1126     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1127     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1128 }
1129 
1130 static void virt_flash_map1(PFlashCFI01 *flash,
1131                             hwaddr base, hwaddr size,
1132                             MemoryRegion *sysmem)
1133 {
1134     DeviceState *dev = DEVICE(flash);
1135 
1136     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1137     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1138     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1139     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1140 
1141     memory_region_add_subregion(sysmem, base,
1142                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1143                                                        0));
1144 }
1145 
1146 static void virt_flash_map(VirtMachineState *vms,
1147                            MemoryRegion *sysmem,
1148                            MemoryRegion *secure_sysmem)
1149 {
1150     /*
1151      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1152      * sysmem is the system memory space. secure_sysmem is the secure view
1153      * of the system, and the first flash device should be made visible only
1154      * there. The second flash device is visible to both secure and nonsecure.
1155      * If sysmem == secure_sysmem this means there is no separate Secure
1156      * address space and both flash devices are generally visible.
1157      */
1158     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1159     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1160 
1161     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1162                     secure_sysmem);
1163     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1164                     sysmem);
1165 }
1166 
1167 static void virt_flash_fdt(VirtMachineState *vms,
1168                            MemoryRegion *sysmem,
1169                            MemoryRegion *secure_sysmem)
1170 {
1171     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1172     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1173     MachineState *ms = MACHINE(vms);
1174     char *nodename;
1175 
1176     if (sysmem == secure_sysmem) {
1177         /* Report both flash devices as a single node in the DT */
1178         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1179         qemu_fdt_add_subnode(ms->fdt, nodename);
1180         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1181         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1182                                      2, flashbase, 2, flashsize,
1183                                      2, flashbase + flashsize, 2, flashsize);
1184         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1185         g_free(nodename);
1186     } else {
1187         /*
1188          * Report the devices as separate nodes so we can mark one as
1189          * only visible to the secure world.
1190          */
1191         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1192         qemu_fdt_add_subnode(ms->fdt, nodename);
1193         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1194         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1195                                      2, flashbase, 2, flashsize);
1196         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1197         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1198         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1199         g_free(nodename);
1200 
1201         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1202         qemu_fdt_add_subnode(ms->fdt, nodename);
1203         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1204         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1205                                      2, flashbase + flashsize, 2, flashsize);
1206         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1207         g_free(nodename);
1208     }
1209 }
1210 
1211 static bool virt_firmware_init(VirtMachineState *vms,
1212                                MemoryRegion *sysmem,
1213                                MemoryRegion *secure_sysmem)
1214 {
1215     int i;
1216     const char *bios_name;
1217     BlockBackend *pflash_blk0;
1218 
1219     /* Map legacy -drive if=pflash to machine properties */
1220     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1221         pflash_cfi01_legacy_drive(vms->flash[i],
1222                                   drive_get(IF_PFLASH, 0, i));
1223     }
1224 
1225     virt_flash_map(vms, sysmem, secure_sysmem);
1226 
1227     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1228 
1229     bios_name = MACHINE(vms)->firmware;
1230     if (bios_name) {
1231         char *fname;
1232         MemoryRegion *mr;
1233         int image_size;
1234 
1235         if (pflash_blk0) {
1236             error_report("The contents of the first flash device may be "
1237                          "specified with -bios or with -drive if=pflash... "
1238                          "but you cannot use both options at once");
1239             exit(1);
1240         }
1241 
1242         /* Fall back to -bios */
1243 
1244         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1245         if (!fname) {
1246             error_report("Could not find ROM image '%s'", bios_name);
1247             exit(1);
1248         }
1249         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1250         image_size = load_image_mr(fname, mr);
1251         g_free(fname);
1252         if (image_size < 0) {
1253             error_report("Could not load ROM image '%s'", bios_name);
1254             exit(1);
1255         }
1256     }
1257 
1258     return pflash_blk0 || bios_name;
1259 }
1260 
1261 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1262 {
1263     MachineState *ms = MACHINE(vms);
1264     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1265     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1266     FWCfgState *fw_cfg;
1267     char *nodename;
1268 
1269     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1270     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1271 
1272     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1273     qemu_fdt_add_subnode(ms->fdt, nodename);
1274     qemu_fdt_setprop_string(ms->fdt, nodename,
1275                             "compatible", "qemu,fw-cfg-mmio");
1276     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1277                                  2, base, 2, size);
1278     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1279     g_free(nodename);
1280     return fw_cfg;
1281 }
1282 
1283 static void create_pcie_irq_map(const MachineState *ms,
1284                                 uint32_t gic_phandle,
1285                                 int first_irq, const char *nodename)
1286 {
1287     int devfn, pin;
1288     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1289     uint32_t *irq_map = full_irq_map;
1290 
1291     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1292         for (pin = 0; pin < 4; pin++) {
1293             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1294             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1295             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1296             int i;
1297 
1298             uint32_t map[] = {
1299                 devfn << 8, 0, 0,                           /* devfn */
1300                 pin + 1,                                    /* PCI pin */
1301                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1302 
1303             /* Convert map to big endian */
1304             for (i = 0; i < 10; i++) {
1305                 irq_map[i] = cpu_to_be32(map[i]);
1306             }
1307             irq_map += 10;
1308         }
1309     }
1310 
1311     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1312                      full_irq_map, sizeof(full_irq_map));
1313 
1314     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1315                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1316                            0, 0,
1317                            0x7           /* PCI irq */);
1318 }
1319 
1320 static void create_smmu(const VirtMachineState *vms,
1321                         PCIBus *bus)
1322 {
1323     char *node;
1324     const char compat[] = "arm,smmu-v3";
1325     int irq =  vms->irqmap[VIRT_SMMU];
1326     int i;
1327     hwaddr base = vms->memmap[VIRT_SMMU].base;
1328     hwaddr size = vms->memmap[VIRT_SMMU].size;
1329     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1330     DeviceState *dev;
1331     MachineState *ms = MACHINE(vms);
1332 
1333     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1334         return;
1335     }
1336 
1337     dev = qdev_new("arm-smmuv3");
1338 
1339     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1340                              &error_abort);
1341     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1342     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1343     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1344         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1345                            qdev_get_gpio_in(vms->gic, irq + i));
1346     }
1347 
1348     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1349     qemu_fdt_add_subnode(ms->fdt, node);
1350     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1351     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1352 
1353     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1354             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1355             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1356             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1357             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1358 
1359     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1360                      sizeof(irq_names));
1361 
1362     qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1363     qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1364     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1365 
1366     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1367 
1368     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1369     g_free(node);
1370 }
1371 
1372 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1373 {
1374     const char compat[] = "virtio,pci-iommu";
1375     uint16_t bdf = vms->virtio_iommu_bdf;
1376     MachineState *ms = MACHINE(vms);
1377     char *node;
1378 
1379     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1380 
1381     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1382     qemu_fdt_add_subnode(ms->fdt, node);
1383     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1384     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1385                                  1, bdf << 8, 1, 0, 1, 0,
1386                                  1, 0, 1, 0);
1387 
1388     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1389     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1390     g_free(node);
1391 
1392     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1393                            0x0, vms->iommu_phandle, 0x0, bdf,
1394                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1395 }
1396 
1397 static void create_pcie(VirtMachineState *vms)
1398 {
1399     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1400     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1401     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1402     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1403     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1404     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1405     hwaddr base_ecam, size_ecam;
1406     hwaddr base = base_mmio;
1407     int nr_pcie_buses;
1408     int irq = vms->irqmap[VIRT_PCIE];
1409     MemoryRegion *mmio_alias;
1410     MemoryRegion *mmio_reg;
1411     MemoryRegion *ecam_alias;
1412     MemoryRegion *ecam_reg;
1413     DeviceState *dev;
1414     char *nodename;
1415     int i, ecam_id;
1416     PCIHostState *pci;
1417     MachineState *ms = MACHINE(vms);
1418 
1419     dev = qdev_new(TYPE_GPEX_HOST);
1420     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1421 
1422     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1423     base_ecam = vms->memmap[ecam_id].base;
1424     size_ecam = vms->memmap[ecam_id].size;
1425     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1426     /* Map only the first size_ecam bytes of ECAM space */
1427     ecam_alias = g_new0(MemoryRegion, 1);
1428     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1429     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1430                              ecam_reg, 0, size_ecam);
1431     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1432 
1433     /* Map the MMIO window into system address space so as to expose
1434      * the section of PCI MMIO space which starts at the same base address
1435      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1436      * the window).
1437      */
1438     mmio_alias = g_new0(MemoryRegion, 1);
1439     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1440     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1441                              mmio_reg, base_mmio, size_mmio);
1442     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1443 
1444     if (vms->highmem_mmio) {
1445         /* Map high MMIO space */
1446         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1447 
1448         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1449                                  mmio_reg, base_mmio_high, size_mmio_high);
1450         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1451                                     high_mmio_alias);
1452     }
1453 
1454     /* Map IO port space */
1455     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1456 
1457     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1458         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1459                            qdev_get_gpio_in(vms->gic, irq + i));
1460         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1461     }
1462 
1463     pci = PCI_HOST_BRIDGE(dev);
1464     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1465     vms->bus = pci->bus;
1466     if (vms->bus) {
1467         for (i = 0; i < nb_nics; i++) {
1468             NICInfo *nd = &nd_table[i];
1469 
1470             if (!nd->model) {
1471                 nd->model = g_strdup("virtio");
1472             }
1473 
1474             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1475         }
1476     }
1477 
1478     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1479     qemu_fdt_add_subnode(ms->fdt, nodename);
1480     qemu_fdt_setprop_string(ms->fdt, nodename,
1481                             "compatible", "pci-host-ecam-generic");
1482     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1483     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1484     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1485     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1486     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1487                            nr_pcie_buses - 1);
1488     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1489 
1490     if (vms->msi_phandle) {
1491         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1492                                vms->msi_phandle);
1493     }
1494 
1495     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1496                                  2, base_ecam, 2, size_ecam);
1497 
1498     if (vms->highmem_mmio) {
1499         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1500                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1501                                      2, base_pio, 2, size_pio,
1502                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1503                                      2, base_mmio, 2, size_mmio,
1504                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1505                                      2, base_mmio_high,
1506                                      2, base_mmio_high, 2, size_mmio_high);
1507     } else {
1508         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1509                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1510                                      2, base_pio, 2, size_pio,
1511                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1512                                      2, base_mmio, 2, size_mmio);
1513     }
1514 
1515     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1516     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1517 
1518     if (vms->iommu) {
1519         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1520 
1521         switch (vms->iommu) {
1522         case VIRT_IOMMU_SMMUV3:
1523             create_smmu(vms, vms->bus);
1524             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1525                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1526             break;
1527         default:
1528             g_assert_not_reached();
1529         }
1530     }
1531 }
1532 
1533 static void create_platform_bus(VirtMachineState *vms)
1534 {
1535     DeviceState *dev;
1536     SysBusDevice *s;
1537     int i;
1538     MemoryRegion *sysmem = get_system_memory();
1539 
1540     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1541     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1542     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1543     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1544     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1545     vms->platform_bus_dev = dev;
1546 
1547     s = SYS_BUS_DEVICE(dev);
1548     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1549         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1550         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1551     }
1552 
1553     memory_region_add_subregion(sysmem,
1554                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1555                                 sysbus_mmio_get_region(s, 0));
1556 }
1557 
1558 static void create_tag_ram(MemoryRegion *tag_sysmem,
1559                            hwaddr base, hwaddr size,
1560                            const char *name)
1561 {
1562     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1563 
1564     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1565     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1566 }
1567 
1568 static void create_secure_ram(VirtMachineState *vms,
1569                               MemoryRegion *secure_sysmem,
1570                               MemoryRegion *secure_tag_sysmem)
1571 {
1572     MemoryRegion *secram = g_new(MemoryRegion, 1);
1573     char *nodename;
1574     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1575     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1576     MachineState *ms = MACHINE(vms);
1577 
1578     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1579                            &error_fatal);
1580     memory_region_add_subregion(secure_sysmem, base, secram);
1581 
1582     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1583     qemu_fdt_add_subnode(ms->fdt, nodename);
1584     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1585     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1586     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1587     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1588 
1589     if (secure_tag_sysmem) {
1590         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1591     }
1592 
1593     g_free(nodename);
1594 }
1595 
1596 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1597 {
1598     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1599                                                  bootinfo);
1600     MachineState *ms = MACHINE(board);
1601 
1602 
1603     *fdt_size = board->fdt_size;
1604     return ms->fdt;
1605 }
1606 
1607 static void virt_build_smbios(VirtMachineState *vms)
1608 {
1609     MachineClass *mc = MACHINE_GET_CLASS(vms);
1610     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1611     uint8_t *smbios_tables, *smbios_anchor;
1612     size_t smbios_tables_len, smbios_anchor_len;
1613     const char *product = "QEMU Virtual Machine";
1614 
1615     if (kvm_enabled()) {
1616         product = "KVM Virtual Machine";
1617     }
1618 
1619     smbios_set_defaults("QEMU", product,
1620                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1621                         true, SMBIOS_ENTRY_POINT_TYPE_64);
1622 
1623     smbios_get_tables(MACHINE(vms), NULL, 0,
1624                       &smbios_tables, &smbios_tables_len,
1625                       &smbios_anchor, &smbios_anchor_len,
1626                       &error_fatal);
1627 
1628     if (smbios_anchor) {
1629         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1630                         smbios_tables, smbios_tables_len);
1631         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1632                         smbios_anchor, smbios_anchor_len);
1633     }
1634 }
1635 
1636 static
1637 void virt_machine_done(Notifier *notifier, void *data)
1638 {
1639     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1640                                          machine_done);
1641     MachineState *ms = MACHINE(vms);
1642     ARMCPU *cpu = ARM_CPU(first_cpu);
1643     struct arm_boot_info *info = &vms->bootinfo;
1644     AddressSpace *as = arm_boot_address_space(cpu, info);
1645 
1646     /*
1647      * If the user provided a dtb, we assume the dynamic sysbus nodes
1648      * already are integrated there. This corresponds to a use case where
1649      * the dynamic sysbus nodes are complex and their generation is not yet
1650      * supported. In that case the user can take charge of the guest dt
1651      * while qemu takes charge of the qom stuff.
1652      */
1653     if (info->dtb_filename == NULL) {
1654         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1655                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1656                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1657                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1658     }
1659     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1660         exit(1);
1661     }
1662 
1663     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1664 
1665     virt_acpi_setup(vms);
1666     virt_build_smbios(vms);
1667 }
1668 
1669 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1670 {
1671     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1672     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1673 
1674     if (!vmc->disallow_affinity_adjustment) {
1675         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1676          * GIC's target-list limitations. 32-bit KVM hosts currently
1677          * always create clusters of 4 CPUs, but that is expected to
1678          * change when they gain support for gicv3. When KVM is enabled
1679          * it will override the changes we make here, therefore our
1680          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1681          * and to improve SGI efficiency.
1682          */
1683         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1684             clustersz = GIC_TARGETLIST_BITS;
1685         } else {
1686             clustersz = GICV3_TARGETLIST_BITS;
1687         }
1688     }
1689     return arm_cpu_mp_affinity(idx, clustersz);
1690 }
1691 
1692 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1693 {
1694     MachineState *ms = MACHINE(vms);
1695     hwaddr base, device_memory_base, device_memory_size, memtop;
1696     int i;
1697 
1698     vms->memmap = extended_memmap;
1699 
1700     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1701         vms->memmap[i] = base_memmap[i];
1702     }
1703 
1704     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1705         error_report("unsupported number of memory slots: %"PRIu64,
1706                      ms->ram_slots);
1707         exit(EXIT_FAILURE);
1708     }
1709 
1710     /*
1711      * !highmem is exactly the same as limiting the PA space to 32bit,
1712      * irrespective of the underlying capabilities of the HW.
1713      */
1714     if (!vms->highmem) {
1715         pa_bits = 32;
1716     }
1717 
1718     /*
1719      * We compute the base of the high IO region depending on the
1720      * amount of initial and device memory. The device memory start/size
1721      * is aligned on 1GiB. We never put the high IO region below 256GiB
1722      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1723      * The device region size assumes 1GiB page max alignment per slot.
1724      */
1725     device_memory_base =
1726         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1727     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1728 
1729     /* Base address of the high IO region */
1730     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1731     if (memtop > BIT_ULL(pa_bits)) {
1732 	    error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1733 			 pa_bits, memtop - BIT_ULL(pa_bits));
1734         exit(EXIT_FAILURE);
1735     }
1736     if (base < device_memory_base) {
1737         error_report("maxmem/slots too huge");
1738         exit(EXIT_FAILURE);
1739     }
1740     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1741         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1742     }
1743 
1744     /* We know for sure that at least the memory fits in the PA space */
1745     vms->highest_gpa = memtop - 1;
1746 
1747     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1748         hwaddr size = extended_memmap[i].size;
1749         bool fits;
1750 
1751         base = ROUND_UP(base, size);
1752         vms->memmap[i].base = base;
1753         vms->memmap[i].size = size;
1754 
1755         /*
1756          * Check each device to see if they fit in the PA space,
1757          * moving highest_gpa as we go.
1758          *
1759          * For each device that doesn't fit, disable it.
1760          */
1761         fits = (base + size) <= BIT_ULL(pa_bits);
1762         if (fits) {
1763             vms->highest_gpa = base + size - 1;
1764         }
1765 
1766         switch (i) {
1767         case VIRT_HIGH_GIC_REDIST2:
1768             vms->highmem_redists &= fits;
1769             break;
1770         case VIRT_HIGH_PCIE_ECAM:
1771             vms->highmem_ecam &= fits;
1772             break;
1773         case VIRT_HIGH_PCIE_MMIO:
1774             vms->highmem_mmio &= fits;
1775             break;
1776         }
1777 
1778         base += size;
1779     }
1780 
1781     if (device_memory_size > 0) {
1782         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1783         ms->device_memory->base = device_memory_base;
1784         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1785                            "device-memory", device_memory_size);
1786     }
1787 }
1788 
1789 /*
1790  * finalize_gic_version - Determines the final gic_version
1791  * according to the gic-version property
1792  *
1793  * Default GIC type is v2
1794  */
1795 static void finalize_gic_version(VirtMachineState *vms)
1796 {
1797     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1798 
1799     if (kvm_enabled()) {
1800         int probe_bitmap;
1801 
1802         if (!kvm_irqchip_in_kernel()) {
1803             switch (vms->gic_version) {
1804             case VIRT_GIC_VERSION_HOST:
1805                 warn_report(
1806                     "gic-version=host not relevant with kernel-irqchip=off "
1807                      "as only userspace GICv2 is supported. Using v2 ...");
1808                 return;
1809             case VIRT_GIC_VERSION_MAX:
1810             case VIRT_GIC_VERSION_NOSEL:
1811                 vms->gic_version = VIRT_GIC_VERSION_2;
1812                 return;
1813             case VIRT_GIC_VERSION_2:
1814                 return;
1815             case VIRT_GIC_VERSION_3:
1816                 error_report(
1817                     "gic-version=3 is not supported with kernel-irqchip=off");
1818                 exit(1);
1819             case VIRT_GIC_VERSION_4:
1820                 error_report(
1821                     "gic-version=4 is not supported with kernel-irqchip=off");
1822                 exit(1);
1823             }
1824         }
1825 
1826         probe_bitmap = kvm_arm_vgic_probe();
1827         if (!probe_bitmap) {
1828             error_report("Unable to determine GIC version supported by host");
1829             exit(1);
1830         }
1831 
1832         switch (vms->gic_version) {
1833         case VIRT_GIC_VERSION_HOST:
1834         case VIRT_GIC_VERSION_MAX:
1835             if (probe_bitmap & KVM_ARM_VGIC_V3) {
1836                 vms->gic_version = VIRT_GIC_VERSION_3;
1837             } else {
1838                 vms->gic_version = VIRT_GIC_VERSION_2;
1839             }
1840             return;
1841         case VIRT_GIC_VERSION_NOSEL:
1842             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1843                 vms->gic_version = VIRT_GIC_VERSION_2;
1844             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1845                 /*
1846                  * in case the host does not support v2 in-kernel emulation or
1847                  * the end-user requested more than 8 VCPUs we now default
1848                  * to v3. In any case defaulting to v2 would be broken.
1849                  */
1850                 vms->gic_version = VIRT_GIC_VERSION_3;
1851             } else if (max_cpus > GIC_NCPU) {
1852                 error_report("host only supports in-kernel GICv2 emulation "
1853                              "but more than 8 vcpus are requested");
1854                 exit(1);
1855             }
1856             break;
1857         case VIRT_GIC_VERSION_2:
1858         case VIRT_GIC_VERSION_3:
1859             break;
1860         case VIRT_GIC_VERSION_4:
1861             error_report("gic-version=4 is not supported with KVM");
1862             exit(1);
1863         }
1864 
1865         /* Check chosen version is effectively supported by the host */
1866         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1867             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1868             error_report("host does not support in-kernel GICv2 emulation");
1869             exit(1);
1870         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1871                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1872             error_report("host does not support in-kernel GICv3 emulation");
1873             exit(1);
1874         }
1875         return;
1876     }
1877 
1878     /* TCG mode */
1879     switch (vms->gic_version) {
1880     case VIRT_GIC_VERSION_NOSEL:
1881         vms->gic_version = VIRT_GIC_VERSION_2;
1882         break;
1883     case VIRT_GIC_VERSION_MAX:
1884         if (module_object_class_by_name("arm-gicv3")) {
1885             /* CONFIG_ARM_GICV3_TCG was set */
1886             if (vms->virt) {
1887                 /* GICv4 only makes sense if CPU has EL2 */
1888                 vms->gic_version = VIRT_GIC_VERSION_4;
1889             } else {
1890                 vms->gic_version = VIRT_GIC_VERSION_3;
1891             }
1892         } else {
1893             vms->gic_version = VIRT_GIC_VERSION_2;
1894         }
1895         break;
1896     case VIRT_GIC_VERSION_HOST:
1897         error_report("gic-version=host requires KVM");
1898         exit(1);
1899     case VIRT_GIC_VERSION_4:
1900         if (!vms->virt) {
1901             error_report("gic-version=4 requires virtualization enabled");
1902             exit(1);
1903         }
1904         break;
1905     case VIRT_GIC_VERSION_2:
1906     case VIRT_GIC_VERSION_3:
1907         break;
1908     }
1909 }
1910 
1911 /*
1912  * virt_cpu_post_init() must be called after the CPUs have
1913  * been realized and the GIC has been created.
1914  */
1915 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1916 {
1917     int max_cpus = MACHINE(vms)->smp.max_cpus;
1918     bool aarch64, pmu, steal_time;
1919     CPUState *cpu;
1920 
1921     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1922     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1923     steal_time = object_property_get_bool(OBJECT(first_cpu),
1924                                           "kvm-steal-time", NULL);
1925 
1926     if (kvm_enabled()) {
1927         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1928         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1929 
1930         if (steal_time) {
1931             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1932             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1933 
1934             /* The memory region size must be a multiple of host page size. */
1935             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1936 
1937             if (pvtime_size > pvtime_reg_size) {
1938                 error_report("pvtime requires a %" HWADDR_PRId
1939                              " byte memory region for %d CPUs,"
1940                              " but only %" HWADDR_PRId " has been reserved",
1941                              pvtime_size, max_cpus, pvtime_reg_size);
1942                 exit(1);
1943             }
1944 
1945             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1946             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1947         }
1948 
1949         CPU_FOREACH(cpu) {
1950             if (pmu) {
1951                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1952                 if (kvm_irqchip_in_kernel()) {
1953                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1954                 }
1955                 kvm_arm_pmu_init(cpu);
1956             }
1957             if (steal_time) {
1958                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1959                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1960             }
1961         }
1962     } else {
1963         if (aarch64 && vms->highmem) {
1964             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1965             int pamax = arm_pamax(ARM_CPU(first_cpu));
1966 
1967             if (pamax < requested_pa_size) {
1968                 error_report("VCPU supports less PA bits (%d) than "
1969                              "requested by the memory map (%d)",
1970                              pamax, requested_pa_size);
1971                 exit(1);
1972             }
1973         }
1974     }
1975 }
1976 
1977 static void machvirt_init(MachineState *machine)
1978 {
1979     VirtMachineState *vms = VIRT_MACHINE(machine);
1980     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1981     MachineClass *mc = MACHINE_GET_CLASS(machine);
1982     const CPUArchIdList *possible_cpus;
1983     MemoryRegion *sysmem = get_system_memory();
1984     MemoryRegion *secure_sysmem = NULL;
1985     MemoryRegion *tag_sysmem = NULL;
1986     MemoryRegion *secure_tag_sysmem = NULL;
1987     int n, virt_max_cpus;
1988     bool firmware_loaded;
1989     bool aarch64 = true;
1990     bool has_ged = !vmc->no_ged;
1991     unsigned int smp_cpus = machine->smp.cpus;
1992     unsigned int max_cpus = machine->smp.max_cpus;
1993 
1994     if (!cpu_type_valid(machine->cpu_type)) {
1995         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1996         exit(1);
1997     }
1998 
1999     possible_cpus = mc->possible_cpu_arch_ids(machine);
2000 
2001     /*
2002      * In accelerated mode, the memory map is computed earlier in kvm_type()
2003      * to create a VM with the right number of IPA bits.
2004      */
2005     if (!vms->memmap) {
2006         Object *cpuobj;
2007         ARMCPU *armcpu;
2008         int pa_bits;
2009 
2010         /*
2011          * Instanciate a temporary CPU object to find out about what
2012          * we are about to deal with. Once this is done, get rid of
2013          * the object.
2014          */
2015         cpuobj = object_new(possible_cpus->cpus[0].type);
2016         armcpu = ARM_CPU(cpuobj);
2017 
2018         pa_bits = arm_pamax(armcpu);
2019 
2020         object_unref(cpuobj);
2021 
2022         virt_set_memmap(vms, pa_bits);
2023     }
2024 
2025     /* We can probe only here because during property set
2026      * KVM is not available yet
2027      */
2028     finalize_gic_version(vms);
2029 
2030     if (vms->secure) {
2031         /*
2032          * The Secure view of the world is the same as the NonSecure,
2033          * but with a few extra devices. Create it as a container region
2034          * containing the system memory at low priority; any secure-only
2035          * devices go in at higher priority and take precedence.
2036          */
2037         secure_sysmem = g_new(MemoryRegion, 1);
2038         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2039                            UINT64_MAX);
2040         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2041     }
2042 
2043     firmware_loaded = virt_firmware_init(vms, sysmem,
2044                                          secure_sysmem ?: sysmem);
2045 
2046     /* If we have an EL3 boot ROM then the assumption is that it will
2047      * implement PSCI itself, so disable QEMU's internal implementation
2048      * so it doesn't get in the way. Instead of starting secondary
2049      * CPUs in PSCI powerdown state we will start them all running and
2050      * let the boot ROM sort them out.
2051      * The usual case is that we do use QEMU's PSCI implementation;
2052      * if the guest has EL2 then we will use SMC as the conduit,
2053      * and otherwise we will use HVC (for backwards compatibility and
2054      * because if we're using KVM then we must use HVC).
2055      */
2056     if (vms->secure && firmware_loaded) {
2057         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2058     } else if (vms->virt) {
2059         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2060     } else {
2061         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2062     }
2063 
2064     /*
2065      * The maximum number of CPUs depends on the GIC version, or on how
2066      * many redistributors we can fit into the memory map (which in turn
2067      * depends on whether this is a GICv3 or v4).
2068      */
2069     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2070         virt_max_cpus = GIC_NCPU;
2071     } else {
2072         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST) +
2073             virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2074     }
2075 
2076     if (max_cpus > virt_max_cpus) {
2077         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2078                      "supported by machine 'mach-virt' (%d)",
2079                      max_cpus, virt_max_cpus);
2080         exit(1);
2081     }
2082 
2083     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2084         error_report("mach-virt: %s does not support providing "
2085                      "Security extensions (TrustZone) to the guest CPU",
2086                      kvm_enabled() ? "KVM" : "HVF");
2087         exit(1);
2088     }
2089 
2090     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2091         error_report("mach-virt: %s does not support providing "
2092                      "Virtualization extensions to the guest CPU",
2093                      kvm_enabled() ? "KVM" : "HVF");
2094         exit(1);
2095     }
2096 
2097     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2098         error_report("mach-virt: %s does not support providing "
2099                      "MTE to the guest CPU",
2100                      kvm_enabled() ? "KVM" : "HVF");
2101         exit(1);
2102     }
2103 
2104     create_fdt(vms);
2105 
2106     assert(possible_cpus->len == max_cpus);
2107     for (n = 0; n < possible_cpus->len; n++) {
2108         Object *cpuobj;
2109         CPUState *cs;
2110 
2111         if (n >= smp_cpus) {
2112             break;
2113         }
2114 
2115         cpuobj = object_new(possible_cpus->cpus[n].type);
2116         object_property_set_int(cpuobj, "mp-affinity",
2117                                 possible_cpus->cpus[n].arch_id, NULL);
2118 
2119         cs = CPU(cpuobj);
2120         cs->cpu_index = n;
2121 
2122         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2123                           &error_fatal);
2124 
2125         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2126 
2127         if (!vms->secure) {
2128             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2129         }
2130 
2131         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2132             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2133         }
2134 
2135         if (vmc->kvm_no_adjvtime &&
2136             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2137             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2138         }
2139 
2140         if (vmc->no_kvm_steal_time &&
2141             object_property_find(cpuobj, "kvm-steal-time")) {
2142             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2143         }
2144 
2145         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2146             object_property_set_bool(cpuobj, "pmu", false, NULL);
2147         }
2148 
2149         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2150             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2151         }
2152 
2153         if (object_property_find(cpuobj, "reset-cbar")) {
2154             object_property_set_int(cpuobj, "reset-cbar",
2155                                     vms->memmap[VIRT_CPUPERIPHS].base,
2156                                     &error_abort);
2157         }
2158 
2159         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2160                                  &error_abort);
2161         if (vms->secure) {
2162             object_property_set_link(cpuobj, "secure-memory",
2163                                      OBJECT(secure_sysmem), &error_abort);
2164         }
2165 
2166         if (vms->mte) {
2167             /* Create the memory region only once, but link to all cpus. */
2168             if (!tag_sysmem) {
2169                 /*
2170                  * The property exists only if MemTag is supported.
2171                  * If it is, we must allocate the ram to back that up.
2172                  */
2173                 if (!object_property_find(cpuobj, "tag-memory")) {
2174                     error_report("MTE requested, but not supported "
2175                                  "by the guest CPU");
2176                     exit(1);
2177                 }
2178 
2179                 tag_sysmem = g_new(MemoryRegion, 1);
2180                 memory_region_init(tag_sysmem, OBJECT(machine),
2181                                    "tag-memory", UINT64_MAX / 32);
2182 
2183                 if (vms->secure) {
2184                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2185                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2186                                        "secure-tag-memory", UINT64_MAX / 32);
2187 
2188                     /* As with ram, secure-tag takes precedence over tag.  */
2189                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2190                                                         tag_sysmem, -1);
2191                 }
2192             }
2193 
2194             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2195                                      &error_abort);
2196             if (vms->secure) {
2197                 object_property_set_link(cpuobj, "secure-tag-memory",
2198                                          OBJECT(secure_tag_sysmem),
2199                                          &error_abort);
2200             }
2201         }
2202 
2203         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2204         object_unref(cpuobj);
2205     }
2206     fdt_add_timer_nodes(vms);
2207     fdt_add_cpu_nodes(vms);
2208 
2209     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2210                                 machine->ram);
2211     if (machine->device_memory) {
2212         memory_region_add_subregion(sysmem, machine->device_memory->base,
2213                                     &machine->device_memory->mr);
2214     }
2215 
2216     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2217 
2218     create_gic(vms, sysmem);
2219 
2220     virt_cpu_post_init(vms, sysmem);
2221 
2222     fdt_add_pmu_nodes(vms);
2223 
2224     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2225 
2226     if (vms->secure) {
2227         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2228         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2229     }
2230 
2231     if (tag_sysmem) {
2232         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2233                        machine->ram_size, "mach-virt.tag");
2234     }
2235 
2236     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2237 
2238     create_rtc(vms);
2239 
2240     create_pcie(vms);
2241 
2242     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2243         vms->acpi_dev = create_acpi_ged(vms);
2244     } else {
2245         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2246     }
2247 
2248     if (vms->secure && !vmc->no_secure_gpio) {
2249         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2250     }
2251 
2252      /* connect powerdown request */
2253      vms->powerdown_notifier.notify = virt_powerdown_req;
2254      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2255 
2256     /* Create mmio transports, so the user can create virtio backends
2257      * (which will be automatically plugged in to the transports). If
2258      * no backend is created the transport will just sit harmlessly idle.
2259      */
2260     create_virtio_devices(vms);
2261 
2262     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2263     rom_set_fw(vms->fw_cfg);
2264 
2265     create_platform_bus(vms);
2266 
2267     if (machine->nvdimms_state->is_enabled) {
2268         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2269             .space_id = AML_AS_SYSTEM_MEMORY,
2270             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2271             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2272         };
2273 
2274         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2275                                arm_virt_nvdimm_acpi_dsmio,
2276                                vms->fw_cfg, OBJECT(vms));
2277     }
2278 
2279     vms->bootinfo.ram_size = machine->ram_size;
2280     vms->bootinfo.board_id = -1;
2281     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2282     vms->bootinfo.get_dtb = machvirt_dtb;
2283     vms->bootinfo.skip_dtb_autoload = true;
2284     vms->bootinfo.firmware_loaded = firmware_loaded;
2285     vms->bootinfo.psci_conduit = vms->psci_conduit;
2286     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2287 
2288     vms->machine_done.notify = virt_machine_done;
2289     qemu_add_machine_init_done_notifier(&vms->machine_done);
2290 }
2291 
2292 static bool virt_get_secure(Object *obj, Error **errp)
2293 {
2294     VirtMachineState *vms = VIRT_MACHINE(obj);
2295 
2296     return vms->secure;
2297 }
2298 
2299 static void virt_set_secure(Object *obj, bool value, Error **errp)
2300 {
2301     VirtMachineState *vms = VIRT_MACHINE(obj);
2302 
2303     vms->secure = value;
2304 }
2305 
2306 static bool virt_get_virt(Object *obj, Error **errp)
2307 {
2308     VirtMachineState *vms = VIRT_MACHINE(obj);
2309 
2310     return vms->virt;
2311 }
2312 
2313 static void virt_set_virt(Object *obj, bool value, Error **errp)
2314 {
2315     VirtMachineState *vms = VIRT_MACHINE(obj);
2316 
2317     vms->virt = value;
2318 }
2319 
2320 static bool virt_get_highmem(Object *obj, Error **errp)
2321 {
2322     VirtMachineState *vms = VIRT_MACHINE(obj);
2323 
2324     return vms->highmem;
2325 }
2326 
2327 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2328 {
2329     VirtMachineState *vms = VIRT_MACHINE(obj);
2330 
2331     vms->highmem = value;
2332 }
2333 
2334 static bool virt_get_its(Object *obj, Error **errp)
2335 {
2336     VirtMachineState *vms = VIRT_MACHINE(obj);
2337 
2338     return vms->its;
2339 }
2340 
2341 static void virt_set_its(Object *obj, bool value, Error **errp)
2342 {
2343     VirtMachineState *vms = VIRT_MACHINE(obj);
2344 
2345     vms->its = value;
2346 }
2347 
2348 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2349 {
2350     VirtMachineState *vms = VIRT_MACHINE(obj);
2351 
2352     return vms->dtb_randomness;
2353 }
2354 
2355 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2356 {
2357     VirtMachineState *vms = VIRT_MACHINE(obj);
2358 
2359     vms->dtb_randomness = value;
2360 }
2361 
2362 static char *virt_get_oem_id(Object *obj, Error **errp)
2363 {
2364     VirtMachineState *vms = VIRT_MACHINE(obj);
2365 
2366     return g_strdup(vms->oem_id);
2367 }
2368 
2369 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2370 {
2371     VirtMachineState *vms = VIRT_MACHINE(obj);
2372     size_t len = strlen(value);
2373 
2374     if (len > 6) {
2375         error_setg(errp,
2376                    "User specified oem-id value is bigger than 6 bytes in size");
2377         return;
2378     }
2379 
2380     strncpy(vms->oem_id, value, 6);
2381 }
2382 
2383 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2384 {
2385     VirtMachineState *vms = VIRT_MACHINE(obj);
2386 
2387     return g_strdup(vms->oem_table_id);
2388 }
2389 
2390 static void virt_set_oem_table_id(Object *obj, const char *value,
2391                                   Error **errp)
2392 {
2393     VirtMachineState *vms = VIRT_MACHINE(obj);
2394     size_t len = strlen(value);
2395 
2396     if (len > 8) {
2397         error_setg(errp,
2398                    "User specified oem-table-id value is bigger than 8 bytes in size");
2399         return;
2400     }
2401     strncpy(vms->oem_table_id, value, 8);
2402 }
2403 
2404 
2405 bool virt_is_acpi_enabled(VirtMachineState *vms)
2406 {
2407     if (vms->acpi == ON_OFF_AUTO_OFF) {
2408         return false;
2409     }
2410     return true;
2411 }
2412 
2413 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2414                           void *opaque, Error **errp)
2415 {
2416     VirtMachineState *vms = VIRT_MACHINE(obj);
2417     OnOffAuto acpi = vms->acpi;
2418 
2419     visit_type_OnOffAuto(v, name, &acpi, errp);
2420 }
2421 
2422 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2423                           void *opaque, Error **errp)
2424 {
2425     VirtMachineState *vms = VIRT_MACHINE(obj);
2426 
2427     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2428 }
2429 
2430 static bool virt_get_ras(Object *obj, Error **errp)
2431 {
2432     VirtMachineState *vms = VIRT_MACHINE(obj);
2433 
2434     return vms->ras;
2435 }
2436 
2437 static void virt_set_ras(Object *obj, bool value, Error **errp)
2438 {
2439     VirtMachineState *vms = VIRT_MACHINE(obj);
2440 
2441     vms->ras = value;
2442 }
2443 
2444 static bool virt_get_mte(Object *obj, Error **errp)
2445 {
2446     VirtMachineState *vms = VIRT_MACHINE(obj);
2447 
2448     return vms->mte;
2449 }
2450 
2451 static void virt_set_mte(Object *obj, bool value, Error **errp)
2452 {
2453     VirtMachineState *vms = VIRT_MACHINE(obj);
2454 
2455     vms->mte = value;
2456 }
2457 
2458 static char *virt_get_gic_version(Object *obj, Error **errp)
2459 {
2460     VirtMachineState *vms = VIRT_MACHINE(obj);
2461     const char *val;
2462 
2463     switch (vms->gic_version) {
2464     case VIRT_GIC_VERSION_4:
2465         val = "4";
2466         break;
2467     case VIRT_GIC_VERSION_3:
2468         val = "3";
2469         break;
2470     default:
2471         val = "2";
2472         break;
2473     }
2474     return g_strdup(val);
2475 }
2476 
2477 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2478 {
2479     VirtMachineState *vms = VIRT_MACHINE(obj);
2480 
2481     if (!strcmp(value, "4")) {
2482         vms->gic_version = VIRT_GIC_VERSION_4;
2483     } else if (!strcmp(value, "3")) {
2484         vms->gic_version = VIRT_GIC_VERSION_3;
2485     } else if (!strcmp(value, "2")) {
2486         vms->gic_version = VIRT_GIC_VERSION_2;
2487     } else if (!strcmp(value, "host")) {
2488         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2489     } else if (!strcmp(value, "max")) {
2490         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2491     } else {
2492         error_setg(errp, "Invalid gic-version value");
2493         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2494     }
2495 }
2496 
2497 static char *virt_get_iommu(Object *obj, Error **errp)
2498 {
2499     VirtMachineState *vms = VIRT_MACHINE(obj);
2500 
2501     switch (vms->iommu) {
2502     case VIRT_IOMMU_NONE:
2503         return g_strdup("none");
2504     case VIRT_IOMMU_SMMUV3:
2505         return g_strdup("smmuv3");
2506     default:
2507         g_assert_not_reached();
2508     }
2509 }
2510 
2511 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2512 {
2513     VirtMachineState *vms = VIRT_MACHINE(obj);
2514 
2515     if (!strcmp(value, "smmuv3")) {
2516         vms->iommu = VIRT_IOMMU_SMMUV3;
2517     } else if (!strcmp(value, "none")) {
2518         vms->iommu = VIRT_IOMMU_NONE;
2519     } else {
2520         error_setg(errp, "Invalid iommu value");
2521         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2522     }
2523 }
2524 
2525 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2526 {
2527     VirtMachineState *vms = VIRT_MACHINE(obj);
2528 
2529     return vms->default_bus_bypass_iommu;
2530 }
2531 
2532 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2533                                               Error **errp)
2534 {
2535     VirtMachineState *vms = VIRT_MACHINE(obj);
2536 
2537     vms->default_bus_bypass_iommu = value;
2538 }
2539 
2540 static CpuInstanceProperties
2541 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2542 {
2543     MachineClass *mc = MACHINE_GET_CLASS(ms);
2544     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2545 
2546     assert(cpu_index < possible_cpus->len);
2547     return possible_cpus->cpus[cpu_index].props;
2548 }
2549 
2550 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2551 {
2552     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2553 
2554     return socket_id % ms->numa_state->num_nodes;
2555 }
2556 
2557 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2558 {
2559     int n;
2560     unsigned int max_cpus = ms->smp.max_cpus;
2561     VirtMachineState *vms = VIRT_MACHINE(ms);
2562     MachineClass *mc = MACHINE_GET_CLASS(vms);
2563 
2564     if (ms->possible_cpus) {
2565         assert(ms->possible_cpus->len == max_cpus);
2566         return ms->possible_cpus;
2567     }
2568 
2569     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2570                                   sizeof(CPUArchId) * max_cpus);
2571     ms->possible_cpus->len = max_cpus;
2572     for (n = 0; n < ms->possible_cpus->len; n++) {
2573         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2574         ms->possible_cpus->cpus[n].arch_id =
2575             virt_cpu_mp_affinity(vms, n);
2576 
2577         assert(!mc->smp_props.dies_supported);
2578         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2579         ms->possible_cpus->cpus[n].props.socket_id =
2580             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2581         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2582         ms->possible_cpus->cpus[n].props.cluster_id =
2583             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2584         ms->possible_cpus->cpus[n].props.has_core_id = true;
2585         ms->possible_cpus->cpus[n].props.core_id =
2586             (n / ms->smp.threads) % ms->smp.cores;
2587         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2588         ms->possible_cpus->cpus[n].props.thread_id =
2589             n % ms->smp.threads;
2590     }
2591     return ms->possible_cpus;
2592 }
2593 
2594 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2595                                  Error **errp)
2596 {
2597     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2598     const MachineState *ms = MACHINE(hotplug_dev);
2599     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2600 
2601     if (!vms->acpi_dev) {
2602         error_setg(errp,
2603                    "memory hotplug is not enabled: missing acpi-ged device");
2604         return;
2605     }
2606 
2607     if (vms->mte) {
2608         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2609         return;
2610     }
2611 
2612     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2613         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2614         return;
2615     }
2616 
2617     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2618 }
2619 
2620 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2621                              DeviceState *dev, Error **errp)
2622 {
2623     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2624     MachineState *ms = MACHINE(hotplug_dev);
2625     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2626 
2627     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2628 
2629     if (is_nvdimm) {
2630         nvdimm_plug(ms->nvdimms_state);
2631     }
2632 
2633     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2634                          dev, &error_abort);
2635 }
2636 
2637 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2638                                         DeviceState *dev, Error **errp)
2639 {
2640     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2641     Error *local_err = NULL;
2642 
2643     if (!hotplug_dev2 && dev->hotplugged) {
2644         /*
2645          * Without a bus hotplug handler, we cannot control the plug/unplug
2646          * order. We should never reach this point when hotplugging on ARM.
2647          * However, it's nice to add a safety net, similar to what we have
2648          * on x86.
2649          */
2650         error_setg(errp, "hotplug of virtio based memory devices not supported"
2651                    " on this bus.");
2652         return;
2653     }
2654     /*
2655      * First, see if we can plug this memory device at all. If that
2656      * succeeds, branch of to the actual hotplug handler.
2657      */
2658     memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2659                            &local_err);
2660     if (!local_err && hotplug_dev2) {
2661         hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2662     }
2663     error_propagate(errp, local_err);
2664 }
2665 
2666 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2667                                     DeviceState *dev, Error **errp)
2668 {
2669     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2670     Error *local_err = NULL;
2671 
2672     /*
2673      * Plug the memory device first and then branch off to the actual
2674      * hotplug handler. If that one fails, we can easily undo the memory
2675      * device bits.
2676      */
2677     memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2678     if (hotplug_dev2) {
2679         hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2680         if (local_err) {
2681             memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2682         }
2683     }
2684     error_propagate(errp, local_err);
2685 }
2686 
2687 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2688                                               DeviceState *dev, Error **errp)
2689 {
2690     /* We don't support hot unplug of virtio based memory devices */
2691     error_setg(errp, "virtio based memory devices cannot be unplugged.");
2692 }
2693 
2694 
2695 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2696                                             DeviceState *dev, Error **errp)
2697 {
2698     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2699 
2700     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2701         virt_memory_pre_plug(hotplug_dev, dev, errp);
2702     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2703         virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2704     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2705         hwaddr db_start = 0, db_end = 0;
2706         char *resv_prop_str;
2707 
2708         if (vms->iommu != VIRT_IOMMU_NONE) {
2709             error_setg(errp, "virt machine does not support multiple IOMMUs");
2710             return;
2711         }
2712 
2713         switch (vms->msi_controller) {
2714         case VIRT_MSI_CTRL_NONE:
2715             return;
2716         case VIRT_MSI_CTRL_ITS:
2717             /* GITS_TRANSLATER page */
2718             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2719             db_end = base_memmap[VIRT_GIC_ITS].base +
2720                      base_memmap[VIRT_GIC_ITS].size - 1;
2721             break;
2722         case VIRT_MSI_CTRL_GICV2M:
2723             /* MSI_SETSPI_NS page */
2724             db_start = base_memmap[VIRT_GIC_V2M].base;
2725             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2726             break;
2727         }
2728         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2729                                         db_start, db_end,
2730                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2731 
2732         object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2733         object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2734                                 resv_prop_str, errp);
2735         g_free(resv_prop_str);
2736     }
2737 }
2738 
2739 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2740                                         DeviceState *dev, Error **errp)
2741 {
2742     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2743 
2744     if (vms->platform_bus_dev) {
2745         MachineClass *mc = MACHINE_GET_CLASS(vms);
2746 
2747         if (device_is_dynamic_sysbus(mc, dev)) {
2748             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2749                                      SYS_BUS_DEVICE(dev));
2750         }
2751     }
2752     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2753         virt_memory_plug(hotplug_dev, dev, errp);
2754     }
2755 
2756     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2757         virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2758     }
2759 
2760     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2761         PCIDevice *pdev = PCI_DEVICE(dev);
2762 
2763         vms->iommu = VIRT_IOMMU_VIRTIO;
2764         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2765         create_virtio_iommu_dt_bindings(vms);
2766     }
2767 }
2768 
2769 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2770                                      DeviceState *dev, Error **errp)
2771 {
2772     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2773     Error *local_err = NULL;
2774 
2775     if (!vms->acpi_dev) {
2776         error_setg(&local_err,
2777                    "memory hotplug is not enabled: missing acpi-ged device");
2778         goto out;
2779     }
2780 
2781     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2782         error_setg(&local_err,
2783                    "nvdimm device hot unplug is not supported yet.");
2784         goto out;
2785     }
2786 
2787     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2788                                    &local_err);
2789 out:
2790     error_propagate(errp, local_err);
2791 }
2792 
2793 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2794                              DeviceState *dev, Error **errp)
2795 {
2796     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2797     Error *local_err = NULL;
2798 
2799     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2800     if (local_err) {
2801         goto out;
2802     }
2803 
2804     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2805     qdev_unrealize(dev);
2806 
2807 out:
2808     error_propagate(errp, local_err);
2809 }
2810 
2811 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2812                                           DeviceState *dev, Error **errp)
2813 {
2814     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2815         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2816     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2817         virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2818     } else {
2819         error_setg(errp, "device unplug request for unsupported device"
2820                    " type: %s", object_get_typename(OBJECT(dev)));
2821     }
2822 }
2823 
2824 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2825                                           DeviceState *dev, Error **errp)
2826 {
2827     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2828         virt_dimm_unplug(hotplug_dev, dev, errp);
2829     } else {
2830         error_setg(errp, "virt: device unplug for unsupported device"
2831                    " type: %s", object_get_typename(OBJECT(dev)));
2832     }
2833 }
2834 
2835 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2836                                                         DeviceState *dev)
2837 {
2838     MachineClass *mc = MACHINE_GET_CLASS(machine);
2839 
2840     if (device_is_dynamic_sysbus(mc, dev) ||
2841         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2842         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2843         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2844         return HOTPLUG_HANDLER(machine);
2845     }
2846     return NULL;
2847 }
2848 
2849 /*
2850  * for arm64 kvm_type [7-0] encodes the requested number of bits
2851  * in the IPA address space
2852  */
2853 static int virt_kvm_type(MachineState *ms, const char *type_str)
2854 {
2855     VirtMachineState *vms = VIRT_MACHINE(ms);
2856     int max_vm_pa_size, requested_pa_size;
2857     bool fixed_ipa;
2858 
2859     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2860 
2861     /* we freeze the memory map to compute the highest gpa */
2862     virt_set_memmap(vms, max_vm_pa_size);
2863 
2864     requested_pa_size = 64 - clz64(vms->highest_gpa);
2865 
2866     /*
2867      * KVM requires the IPA size to be at least 32 bits.
2868      */
2869     if (requested_pa_size < 32) {
2870         requested_pa_size = 32;
2871     }
2872 
2873     if (requested_pa_size > max_vm_pa_size) {
2874         error_report("-m and ,maxmem option values "
2875                      "require an IPA range (%d bits) larger than "
2876                      "the one supported by the host (%d bits)",
2877                      requested_pa_size, max_vm_pa_size);
2878         exit(1);
2879     }
2880     /*
2881      * We return the requested PA log size, unless KVM only supports
2882      * the implicit legacy 40b IPA setting, in which case the kvm_type
2883      * must be 0.
2884      */
2885     return fixed_ipa ? 0 : requested_pa_size;
2886 }
2887 
2888 static void virt_machine_class_init(ObjectClass *oc, void *data)
2889 {
2890     MachineClass *mc = MACHINE_CLASS(oc);
2891     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2892 
2893     mc->init = machvirt_init;
2894     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2895      * The value may be reduced later when we have more information about the
2896      * configuration of the particular instance.
2897      */
2898     mc->max_cpus = 512;
2899     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2900     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2901     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2902     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2903 #ifdef CONFIG_TPM
2904     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2905 #endif
2906     mc->block_default_type = IF_VIRTIO;
2907     mc->no_cdrom = 1;
2908     mc->pci_allow_0_address = true;
2909     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2910     mc->minimum_page_bits = 12;
2911     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2912     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2913     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2914     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2915     mc->kvm_type = virt_kvm_type;
2916     assert(!mc->get_hotplug_handler);
2917     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2918     hc->pre_plug = virt_machine_device_pre_plug_cb;
2919     hc->plug = virt_machine_device_plug_cb;
2920     hc->unplug_request = virt_machine_device_unplug_request_cb;
2921     hc->unplug = virt_machine_device_unplug_cb;
2922     mc->nvdimm_supported = true;
2923     mc->smp_props.clusters_supported = true;
2924     mc->auto_enable_numa_with_memhp = true;
2925     mc->auto_enable_numa_with_memdev = true;
2926     mc->default_ram_id = "mach-virt.ram";
2927 
2928     object_class_property_add(oc, "acpi", "OnOffAuto",
2929         virt_get_acpi, virt_set_acpi,
2930         NULL, NULL);
2931     object_class_property_set_description(oc, "acpi",
2932         "Enable ACPI");
2933     object_class_property_add_bool(oc, "secure", virt_get_secure,
2934                                    virt_set_secure);
2935     object_class_property_set_description(oc, "secure",
2936                                                 "Set on/off to enable/disable the ARM "
2937                                                 "Security Extensions (TrustZone)");
2938 
2939     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2940                                    virt_set_virt);
2941     object_class_property_set_description(oc, "virtualization",
2942                                           "Set on/off to enable/disable emulating a "
2943                                           "guest CPU which implements the ARM "
2944                                           "Virtualization Extensions");
2945 
2946     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2947                                    virt_set_highmem);
2948     object_class_property_set_description(oc, "highmem",
2949                                           "Set on/off to enable/disable using "
2950                                           "physical address space above 32 bits");
2951 
2952     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2953                                   virt_set_gic_version);
2954     object_class_property_set_description(oc, "gic-version",
2955                                           "Set GIC version. "
2956                                           "Valid values are 2, 3, 4, host and max");
2957 
2958     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2959     object_class_property_set_description(oc, "iommu",
2960                                           "Set the IOMMU type. "
2961                                           "Valid values are none and smmuv3");
2962 
2963     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
2964                                    virt_get_default_bus_bypass_iommu,
2965                                    virt_set_default_bus_bypass_iommu);
2966     object_class_property_set_description(oc, "default-bus-bypass-iommu",
2967                                           "Set on/off to enable/disable "
2968                                           "bypass_iommu for default root bus");
2969 
2970     object_class_property_add_bool(oc, "ras", virt_get_ras,
2971                                    virt_set_ras);
2972     object_class_property_set_description(oc, "ras",
2973                                           "Set on/off to enable/disable reporting host memory errors "
2974                                           "to a KVM guest using ACPI and guest external abort exceptions");
2975 
2976     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2977     object_class_property_set_description(oc, "mte",
2978                                           "Set on/off to enable/disable emulating a "
2979                                           "guest CPU which implements the ARM "
2980                                           "Memory Tagging Extension");
2981 
2982     object_class_property_add_bool(oc, "its", virt_get_its,
2983                                    virt_set_its);
2984     object_class_property_set_description(oc, "its",
2985                                           "Set on/off to enable/disable "
2986                                           "ITS instantiation");
2987 
2988     object_class_property_add_bool(oc, "dtb-randomness",
2989                                    virt_get_dtb_randomness,
2990                                    virt_set_dtb_randomness);
2991     object_class_property_set_description(oc, "dtb-randomness",
2992                                           "Set off to disable passing random or "
2993                                           "non-deterministic dtb nodes to guest");
2994 
2995     object_class_property_add_bool(oc, "dtb-kaslr-seed",
2996                                    virt_get_dtb_randomness,
2997                                    virt_set_dtb_randomness);
2998     object_class_property_set_description(oc, "dtb-kaslr-seed",
2999                                           "Deprecated synonym of dtb-randomness");
3000 
3001     object_class_property_add_str(oc, "x-oem-id",
3002                                   virt_get_oem_id,
3003                                   virt_set_oem_id);
3004     object_class_property_set_description(oc, "x-oem-id",
3005                                           "Override the default value of field OEMID "
3006                                           "in ACPI table header."
3007                                           "The string may be up to 6 bytes in size");
3008 
3009 
3010     object_class_property_add_str(oc, "x-oem-table-id",
3011                                   virt_get_oem_table_id,
3012                                   virt_set_oem_table_id);
3013     object_class_property_set_description(oc, "x-oem-table-id",
3014                                           "Override the default value of field OEM Table ID "
3015                                           "in ACPI table header."
3016                                           "The string may be up to 8 bytes in size");
3017 
3018 }
3019 
3020 static void virt_instance_init(Object *obj)
3021 {
3022     VirtMachineState *vms = VIRT_MACHINE(obj);
3023     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3024 
3025     /* EL3 is disabled by default on virt: this makes us consistent
3026      * between KVM and TCG for this board, and it also allows us to
3027      * boot UEFI blobs which assume no TrustZone support.
3028      */
3029     vms->secure = false;
3030 
3031     /* EL2 is also disabled by default, for similar reasons */
3032     vms->virt = false;
3033 
3034     /* High memory is enabled by default */
3035     vms->highmem = true;
3036     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3037 
3038     vms->highmem_ecam = !vmc->no_highmem_ecam;
3039     vms->highmem_mmio = true;
3040     vms->highmem_redists = true;
3041 
3042     if (vmc->no_its) {
3043         vms->its = false;
3044     } else {
3045         /* Default allows ITS instantiation */
3046         vms->its = true;
3047 
3048         if (vmc->no_tcg_its) {
3049             vms->tcg_its = false;
3050         } else {
3051             vms->tcg_its = true;
3052         }
3053     }
3054 
3055     /* Default disallows iommu instantiation */
3056     vms->iommu = VIRT_IOMMU_NONE;
3057 
3058     /* The default root bus is attached to iommu by default */
3059     vms->default_bus_bypass_iommu = false;
3060 
3061     /* Default disallows RAS instantiation */
3062     vms->ras = false;
3063 
3064     /* MTE is disabled by default.  */
3065     vms->mte = false;
3066 
3067     /* Supply kaslr-seed and rng-seed by default */
3068     vms->dtb_randomness = true;
3069 
3070     vms->irqmap = a15irqmap;
3071 
3072     virt_flash_create(vms);
3073 
3074     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3075     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3076 }
3077 
3078 static const TypeInfo virt_machine_info = {
3079     .name          = TYPE_VIRT_MACHINE,
3080     .parent        = TYPE_MACHINE,
3081     .abstract      = true,
3082     .instance_size = sizeof(VirtMachineState),
3083     .class_size    = sizeof(VirtMachineClass),
3084     .class_init    = virt_machine_class_init,
3085     .instance_init = virt_instance_init,
3086     .interfaces = (InterfaceInfo[]) {
3087          { TYPE_HOTPLUG_HANDLER },
3088          { }
3089     },
3090 };
3091 
3092 static void machvirt_machine_init(void)
3093 {
3094     type_register_static(&virt_machine_info);
3095 }
3096 type_init(machvirt_machine_init);
3097 
3098 static void virt_machine_7_2_options(MachineClass *mc)
3099 {
3100 }
3101 DEFINE_VIRT_MACHINE_AS_LATEST(7, 2)
3102 
3103 static void virt_machine_7_1_options(MachineClass *mc)
3104 {
3105     virt_machine_7_2_options(mc);
3106     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3107 }
3108 DEFINE_VIRT_MACHINE(7, 1)
3109 
3110 static void virt_machine_7_0_options(MachineClass *mc)
3111 {
3112     virt_machine_7_1_options(mc);
3113     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3114 }
3115 DEFINE_VIRT_MACHINE(7, 0)
3116 
3117 static void virt_machine_6_2_options(MachineClass *mc)
3118 {
3119     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3120 
3121     virt_machine_7_0_options(mc);
3122     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3123     vmc->no_tcg_lpa2 = true;
3124 }
3125 DEFINE_VIRT_MACHINE(6, 2)
3126 
3127 static void virt_machine_6_1_options(MachineClass *mc)
3128 {
3129     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3130 
3131     virt_machine_6_2_options(mc);
3132     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3133     mc->smp_props.prefer_sockets = true;
3134     vmc->no_cpu_topology = true;
3135 
3136     /* qemu ITS was introduced with 6.2 */
3137     vmc->no_tcg_its = true;
3138 }
3139 DEFINE_VIRT_MACHINE(6, 1)
3140 
3141 static void virt_machine_6_0_options(MachineClass *mc)
3142 {
3143     virt_machine_6_1_options(mc);
3144     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3145 }
3146 DEFINE_VIRT_MACHINE(6, 0)
3147 
3148 static void virt_machine_5_2_options(MachineClass *mc)
3149 {
3150     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3151 
3152     virt_machine_6_0_options(mc);
3153     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3154     vmc->no_secure_gpio = true;
3155 }
3156 DEFINE_VIRT_MACHINE(5, 2)
3157 
3158 static void virt_machine_5_1_options(MachineClass *mc)
3159 {
3160     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3161 
3162     virt_machine_5_2_options(mc);
3163     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3164     vmc->no_kvm_steal_time = true;
3165 }
3166 DEFINE_VIRT_MACHINE(5, 1)
3167 
3168 static void virt_machine_5_0_options(MachineClass *mc)
3169 {
3170     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3171 
3172     virt_machine_5_1_options(mc);
3173     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3174     mc->numa_mem_supported = true;
3175     vmc->acpi_expose_flash = true;
3176     mc->auto_enable_numa_with_memdev = false;
3177 }
3178 DEFINE_VIRT_MACHINE(5, 0)
3179 
3180 static void virt_machine_4_2_options(MachineClass *mc)
3181 {
3182     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3183 
3184     virt_machine_5_0_options(mc);
3185     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3186     vmc->kvm_no_adjvtime = true;
3187 }
3188 DEFINE_VIRT_MACHINE(4, 2)
3189 
3190 static void virt_machine_4_1_options(MachineClass *mc)
3191 {
3192     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3193 
3194     virt_machine_4_2_options(mc);
3195     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3196     vmc->no_ged = true;
3197     mc->auto_enable_numa_with_memhp = false;
3198 }
3199 DEFINE_VIRT_MACHINE(4, 1)
3200 
3201 static void virt_machine_4_0_options(MachineClass *mc)
3202 {
3203     virt_machine_4_1_options(mc);
3204     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3205 }
3206 DEFINE_VIRT_MACHINE(4, 0)
3207 
3208 static void virt_machine_3_1_options(MachineClass *mc)
3209 {
3210     virt_machine_4_0_options(mc);
3211     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3212 }
3213 DEFINE_VIRT_MACHINE(3, 1)
3214 
3215 static void virt_machine_3_0_options(MachineClass *mc)
3216 {
3217     virt_machine_3_1_options(mc);
3218     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3219 }
3220 DEFINE_VIRT_MACHINE(3, 0)
3221 
3222 static void virt_machine_2_12_options(MachineClass *mc)
3223 {
3224     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3225 
3226     virt_machine_3_0_options(mc);
3227     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3228     vmc->no_highmem_ecam = true;
3229     mc->max_cpus = 255;
3230 }
3231 DEFINE_VIRT_MACHINE(2, 12)
3232 
3233 static void virt_machine_2_11_options(MachineClass *mc)
3234 {
3235     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3236 
3237     virt_machine_2_12_options(mc);
3238     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3239     vmc->smbios_old_sys_ver = true;
3240 }
3241 DEFINE_VIRT_MACHINE(2, 11)
3242 
3243 static void virt_machine_2_10_options(MachineClass *mc)
3244 {
3245     virt_machine_2_11_options(mc);
3246     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3247     /* before 2.11 we never faulted accesses to bad addresses */
3248     mc->ignore_memory_transaction_failures = true;
3249 }
3250 DEFINE_VIRT_MACHINE(2, 10)
3251 
3252 static void virt_machine_2_9_options(MachineClass *mc)
3253 {
3254     virt_machine_2_10_options(mc);
3255     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3256 }
3257 DEFINE_VIRT_MACHINE(2, 9)
3258 
3259 static void virt_machine_2_8_options(MachineClass *mc)
3260 {
3261     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3262 
3263     virt_machine_2_9_options(mc);
3264     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3265     /* For 2.8 and earlier we falsely claimed in the DT that
3266      * our timers were edge-triggered, not level-triggered.
3267      */
3268     vmc->claim_edge_triggered_timers = true;
3269 }
3270 DEFINE_VIRT_MACHINE(2, 8)
3271 
3272 static void virt_machine_2_7_options(MachineClass *mc)
3273 {
3274     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3275 
3276     virt_machine_2_8_options(mc);
3277     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3278     /* ITS was introduced with 2.8 */
3279     vmc->no_its = true;
3280     /* Stick with 1K pages for migration compatibility */
3281     mc->minimum_page_bits = 0;
3282 }
3283 DEFINE_VIRT_MACHINE(2, 7)
3284 
3285 static void virt_machine_2_6_options(MachineClass *mc)
3286 {
3287     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3288 
3289     virt_machine_2_7_options(mc);
3290     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3291     vmc->disallow_affinity_adjustment = true;
3292     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3293     vmc->no_pmu = true;
3294 }
3295 DEFINE_VIRT_MACHINE(2, 6)
3296