xref: /qemu/hw/arm/virt.c (revision bfa3ab61)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 
52 /* Number of external interrupt lines to configure the GIC with */
53 #define NUM_IRQS 256
54 
55 #define PLATFORM_BUS_NUM_IRQS 64
56 
57 static ARMPlatformBusSystemParams platform_bus_params;
58 
59 typedef struct VirtBoardInfo {
60     struct arm_boot_info bootinfo;
61     const char *cpu_model;
62     const MemMapEntry *memmap;
63     const int *irqmap;
64     int smp_cpus;
65     void *fdt;
66     int fdt_size;
67     uint32_t clock_phandle;
68     uint32_t gic_phandle;
69     uint32_t v2m_phandle;
70 } VirtBoardInfo;
71 
72 typedef struct {
73     MachineClass parent;
74     VirtBoardInfo *daughterboard;
75 } VirtMachineClass;
76 
77 typedef struct {
78     MachineState parent;
79     bool secure;
80 } VirtMachineState;
81 
82 #define TYPE_VIRT_MACHINE   "virt"
83 #define VIRT_MACHINE(obj) \
84     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
85 #define VIRT_MACHINE_GET_CLASS(obj) \
86     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
87 #define VIRT_MACHINE_CLASS(klass) \
88     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
89 
90 /* Addresses and sizes of our components.
91  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
92  * 128MB..256MB is used for miscellaneous device I/O.
93  * 256MB..1GB is reserved for possible future PCI support (ie where the
94  * PCI memory window will go if we add a PCI host controller).
95  * 1GB and up is RAM (which may happily spill over into the
96  * high memory region beyond 4GB).
97  * This represents a compromise between how much RAM can be given to
98  * a 32 bit VM and leaving space for expansion and in particular for PCI.
99  * Note that devices should generally be placed at multiples of 0x10000,
100  * to accommodate guests using 64K pages.
101  */
102 static const MemMapEntry a15memmap[] = {
103     /* Space up to 0x8000000 is reserved for a boot ROM */
104     [VIRT_FLASH] =              {          0, 0x08000000 },
105     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
106     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
107     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
108     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
109     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
110     [VIRT_UART] =               { 0x09000000, 0x00001000 },
111     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
112     [VIRT_FW_CFG] =             { 0x09020000, 0x0000000a },
113     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
114     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
115     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
116     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
117     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
118     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
119     [VIRT_MEM] =                { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
120 };
121 
122 static const int a15irqmap[] = {
123     [VIRT_UART] = 1,
124     [VIRT_RTC] = 2,
125     [VIRT_PCIE] = 3, /* ... to 6 */
126     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
127     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
128     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
129 };
130 
131 static VirtBoardInfo machines[] = {
132     {
133         .cpu_model = "cortex-a15",
134         .memmap = a15memmap,
135         .irqmap = a15irqmap,
136     },
137     {
138         .cpu_model = "cortex-a53",
139         .memmap = a15memmap,
140         .irqmap = a15irqmap,
141     },
142     {
143         .cpu_model = "cortex-a57",
144         .memmap = a15memmap,
145         .irqmap = a15irqmap,
146     },
147     {
148         .cpu_model = "host",
149         .memmap = a15memmap,
150         .irqmap = a15irqmap,
151     },
152 };
153 
154 static VirtBoardInfo *find_machine_info(const char *cpu)
155 {
156     int i;
157 
158     for (i = 0; i < ARRAY_SIZE(machines); i++) {
159         if (strcmp(cpu, machines[i].cpu_model) == 0) {
160             return &machines[i];
161         }
162     }
163     return NULL;
164 }
165 
166 static void create_fdt(VirtBoardInfo *vbi)
167 {
168     void *fdt = create_device_tree(&vbi->fdt_size);
169 
170     if (!fdt) {
171         error_report("create_device_tree() failed");
172         exit(1);
173     }
174 
175     vbi->fdt = fdt;
176 
177     /* Header */
178     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
179     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
180     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
181 
182     /*
183      * /chosen and /memory nodes must exist for load_dtb
184      * to fill in necessary properties later
185      */
186     qemu_fdt_add_subnode(fdt, "/chosen");
187     qemu_fdt_add_subnode(fdt, "/memory");
188     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
189 
190     /* Clock node, for the benefit of the UART. The kernel device tree
191      * binding documentation claims the PL011 node clock properties are
192      * optional but in practice if you omit them the kernel refuses to
193      * probe for the device.
194      */
195     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
196     qemu_fdt_add_subnode(fdt, "/apb-pclk");
197     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
198     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
199     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
200     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
201                                 "clk24mhz");
202     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
203 
204 }
205 
206 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
207 {
208     uint32_t cpu_suspend_fn;
209     uint32_t cpu_off_fn;
210     uint32_t cpu_on_fn;
211     uint32_t migrate_fn;
212     void *fdt = vbi->fdt;
213     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
214 
215     qemu_fdt_add_subnode(fdt, "/psci");
216     if (armcpu->psci_version == 2) {
217         const char comp[] = "arm,psci-0.2\0arm,psci";
218         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
219 
220         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
221         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
222             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
223             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
224             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
225         } else {
226             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
227             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
228             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
229         }
230     } else {
231         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
232 
233         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
234         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
235         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
236         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
237     }
238 
239     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
240      * to the instruction that should be used to invoke PSCI functions.
241      * However, the device tree binding uses 'method' instead, so that is
242      * what we should use here.
243      */
244     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
245 
246     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
247     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
248     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
249     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
250 }
251 
252 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
253 {
254     /* Note that on A15 h/w these interrupts are level-triggered,
255      * but for the GIC implementation provided by both QEMU and KVM
256      * they are edge-triggered.
257      */
258     ARMCPU *armcpu;
259     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
260 
261     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
262                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
263 
264     qemu_fdt_add_subnode(vbi->fdt, "/timer");
265 
266     armcpu = ARM_CPU(qemu_get_cpu(0));
267     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
268         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
269         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
270                          compat, sizeof(compat));
271     } else {
272         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
273                                 "arm,armv7-timer");
274     }
275     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
276                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
277                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
278                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
279                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
280 }
281 
282 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
283 {
284     int cpu;
285 
286     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
287     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
288     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
289 
290     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
291         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
292         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
293 
294         qemu_fdt_add_subnode(vbi->fdt, nodename);
295         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
296         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
297                                     armcpu->dtb_compatible);
298 
299         if (vbi->smp_cpus > 1) {
300             qemu_fdt_setprop_string(vbi->fdt, nodename,
301                                         "enable-method", "psci");
302         }
303 
304         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", armcpu->mp_affinity);
305         g_free(nodename);
306     }
307 }
308 
309 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
310 {
311     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
312     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
313     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
314                             "arm,gic-v2m-frame");
315     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
316     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
317                                  2, vbi->memmap[VIRT_GIC_V2M].base,
318                                  2, vbi->memmap[VIRT_GIC_V2M].size);
319     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
320 }
321 
322 static void fdt_add_gic_node(VirtBoardInfo *vbi)
323 {
324     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
325     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
326 
327     qemu_fdt_add_subnode(vbi->fdt, "/intc");
328     /* 'cortex-a15-gic' means 'GIC v2' */
329     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
330                             "arm,cortex-a15-gic");
331     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
332     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
333     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
334                                      2, vbi->memmap[VIRT_GIC_DIST].base,
335                                      2, vbi->memmap[VIRT_GIC_DIST].size,
336                                      2, vbi->memmap[VIRT_GIC_CPU].base,
337                                      2, vbi->memmap[VIRT_GIC_CPU].size);
338     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
339     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
340     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
341     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
342 }
343 
344 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
345 {
346     int i;
347     int irq = vbi->irqmap[VIRT_GIC_V2M];
348     DeviceState *dev;
349 
350     dev = qdev_create(NULL, "arm-gicv2m");
351     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
352     qdev_prop_set_uint32(dev, "base-spi", irq);
353     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
354     qdev_init_nofail(dev);
355 
356     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
357         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
358     }
359 
360     fdt_add_v2m_gic_node(vbi);
361 }
362 
363 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic)
364 {
365     /* We create a standalone GIC v2 */
366     DeviceState *gicdev;
367     SysBusDevice *gicbusdev;
368     const char *gictype = "arm_gic";
369     int i;
370 
371     if (kvm_irqchip_in_kernel()) {
372         gictype = "kvm-arm-gic";
373     }
374 
375     gicdev = qdev_create(NULL, gictype);
376     qdev_prop_set_uint32(gicdev, "revision", 2);
377     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
378     /* Note that the num-irq property counts both internal and external
379      * interrupts; there are always 32 of the former (mandated by GIC spec).
380      */
381     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
382     qdev_init_nofail(gicdev);
383     gicbusdev = SYS_BUS_DEVICE(gicdev);
384     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
385     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
386 
387     /* Wire the outputs from each CPU's generic timer to the
388      * appropriate GIC PPI inputs, and the GIC's IRQ output to
389      * the CPU's IRQ input.
390      */
391     for (i = 0; i < smp_cpus; i++) {
392         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
393         int ppibase = NUM_IRQS + i * 32;
394         /* physical timer; we wire it up to the non-secure timer's ID,
395          * since a real A15 always has TrustZone but QEMU doesn't.
396          */
397         qdev_connect_gpio_out(cpudev, 0,
398                               qdev_get_gpio_in(gicdev, ppibase + 30));
399         /* virtual timer */
400         qdev_connect_gpio_out(cpudev, 1,
401                               qdev_get_gpio_in(gicdev, ppibase + 27));
402 
403         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
404         sysbus_connect_irq(gicbusdev, i + smp_cpus,
405                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
406     }
407 
408     for (i = 0; i < NUM_IRQS; i++) {
409         pic[i] = qdev_get_gpio_in(gicdev, i);
410     }
411 
412     fdt_add_gic_node(vbi);
413 
414     create_v2m(vbi, pic);
415 }
416 
417 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
418 {
419     char *nodename;
420     hwaddr base = vbi->memmap[VIRT_UART].base;
421     hwaddr size = vbi->memmap[VIRT_UART].size;
422     int irq = vbi->irqmap[VIRT_UART];
423     const char compat[] = "arm,pl011\0arm,primecell";
424     const char clocknames[] = "uartclk\0apb_pclk";
425 
426     sysbus_create_simple("pl011", base, pic[irq]);
427 
428     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
429     qemu_fdt_add_subnode(vbi->fdt, nodename);
430     /* Note that we can't use setprop_string because of the embedded NUL */
431     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
432                          compat, sizeof(compat));
433     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
434                                      2, base, 2, size);
435     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
436                                GIC_FDT_IRQ_TYPE_SPI, irq,
437                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
438     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
439                                vbi->clock_phandle, vbi->clock_phandle);
440     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
441                          clocknames, sizeof(clocknames));
442 
443     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
444     g_free(nodename);
445 }
446 
447 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
448 {
449     char *nodename;
450     hwaddr base = vbi->memmap[VIRT_RTC].base;
451     hwaddr size = vbi->memmap[VIRT_RTC].size;
452     int irq = vbi->irqmap[VIRT_RTC];
453     const char compat[] = "arm,pl031\0arm,primecell";
454 
455     sysbus_create_simple("pl031", base, pic[irq]);
456 
457     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
458     qemu_fdt_add_subnode(vbi->fdt, nodename);
459     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
460     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
461                                  2, base, 2, size);
462     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
463                            GIC_FDT_IRQ_TYPE_SPI, irq,
464                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
465     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
466     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
467     g_free(nodename);
468 }
469 
470 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
471 {
472     int i;
473     hwaddr size = vbi->memmap[VIRT_MMIO].size;
474 
475     /* We create the transports in forwards order. Since qbus_realize()
476      * prepends (not appends) new child buses, the incrementing loop below will
477      * create a list of virtio-mmio buses with decreasing base addresses.
478      *
479      * When a -device option is processed from the command line,
480      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
481      * order. The upshot is that -device options in increasing command line
482      * order are mapped to virtio-mmio buses with decreasing base addresses.
483      *
484      * When this code was originally written, that arrangement ensured that the
485      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
486      * the first -device on the command line. (The end-to-end order is a
487      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
488      * guest kernel's name-to-address assignment strategy.)
489      *
490      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
491      * the message, if not necessarily the code, of commit 70161ff336.
492      * Therefore the loop now establishes the inverse of the original intent.
493      *
494      * Unfortunately, we can't counteract the kernel change by reversing the
495      * loop; it would break existing command lines.
496      *
497      * In any case, the kernel makes no guarantee about the stability of
498      * enumeration order of virtio devices (as demonstrated by it changing
499      * between kernel versions). For reliable and stable identification
500      * of disks users must use UUIDs or similar mechanisms.
501      */
502     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
503         int irq = vbi->irqmap[VIRT_MMIO] + i;
504         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
505 
506         sysbus_create_simple("virtio-mmio", base, pic[irq]);
507     }
508 
509     /* We add dtb nodes in reverse order so that they appear in the finished
510      * device tree lowest address first.
511      *
512      * Note that this mapping is independent of the loop above. The previous
513      * loop influences virtio device to virtio transport assignment, whereas
514      * this loop controls how virtio transports are laid out in the dtb.
515      */
516     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
517         char *nodename;
518         int irq = vbi->irqmap[VIRT_MMIO] + i;
519         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
520 
521         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
522         qemu_fdt_add_subnode(vbi->fdt, nodename);
523         qemu_fdt_setprop_string(vbi->fdt, nodename,
524                                 "compatible", "virtio,mmio");
525         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
526                                      2, base, 2, size);
527         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
528                                GIC_FDT_IRQ_TYPE_SPI, irq,
529                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
530         g_free(nodename);
531     }
532 }
533 
534 static void create_one_flash(const char *name, hwaddr flashbase,
535                              hwaddr flashsize)
536 {
537     /* Create and map a single flash device. We use the same
538      * parameters as the flash devices on the Versatile Express board.
539      */
540     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
541     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
542     const uint64_t sectorlength = 256 * 1024;
543 
544     if (dinfo) {
545         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
546                             &error_abort);
547     }
548 
549     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
550     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
551     qdev_prop_set_uint8(dev, "width", 4);
552     qdev_prop_set_uint8(dev, "device-width", 2);
553     qdev_prop_set_bit(dev, "big-endian", false);
554     qdev_prop_set_uint16(dev, "id0", 0x89);
555     qdev_prop_set_uint16(dev, "id1", 0x18);
556     qdev_prop_set_uint16(dev, "id2", 0x00);
557     qdev_prop_set_uint16(dev, "id3", 0x00);
558     qdev_prop_set_string(dev, "name", name);
559     qdev_init_nofail(dev);
560 
561     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
562 }
563 
564 static void create_flash(const VirtBoardInfo *vbi)
565 {
566     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
567      * Any file passed via -bios goes in the first of these.
568      */
569     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
570     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
571     char *nodename;
572 
573     if (bios_name) {
574         char *fn;
575         int image_size;
576 
577         if (drive_get(IF_PFLASH, 0, 0)) {
578             error_report("The contents of the first flash device may be "
579                          "specified with -bios or with -drive if=pflash... "
580                          "but you cannot use both options at once");
581             exit(1);
582         }
583         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
584         if (!fn) {
585             error_report("Could not find ROM image '%s'", bios_name);
586             exit(1);
587         }
588         image_size = load_image_targphys(fn, flashbase, flashsize);
589         g_free(fn);
590         if (image_size < 0) {
591             error_report("Could not load ROM image '%s'", bios_name);
592             exit(1);
593         }
594     }
595 
596     create_one_flash("virt.flash0", flashbase, flashsize);
597     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
598 
599     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
600     qemu_fdt_add_subnode(vbi->fdt, nodename);
601     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
602     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
603                                  2, flashbase, 2, flashsize,
604                                  2, flashbase + flashsize, 2, flashsize);
605     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
606     g_free(nodename);
607 }
608 
609 static void create_fw_cfg(const VirtBoardInfo *vbi)
610 {
611     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
612     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
613     char *nodename;
614 
615     fw_cfg_init_mem_wide(base + 8, base, 8);
616 
617     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
618     qemu_fdt_add_subnode(vbi->fdt, nodename);
619     qemu_fdt_setprop_string(vbi->fdt, nodename,
620                             "compatible", "qemu,fw-cfg-mmio");
621     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
622                                  2, base, 2, size);
623     g_free(nodename);
624 }
625 
626 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
627                                 int first_irq, const char *nodename)
628 {
629     int devfn, pin;
630     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
631     uint32_t *irq_map = full_irq_map;
632 
633     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
634         for (pin = 0; pin < 4; pin++) {
635             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
636             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
637             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
638             int i;
639 
640             uint32_t map[] = {
641                 devfn << 8, 0, 0,                           /* devfn */
642                 pin + 1,                                    /* PCI pin */
643                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
644 
645             /* Convert map to big endian */
646             for (i = 0; i < 10; i++) {
647                 irq_map[i] = cpu_to_be32(map[i]);
648             }
649             irq_map += 10;
650         }
651     }
652 
653     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
654                      full_irq_map, sizeof(full_irq_map));
655 
656     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
657                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
658                            0x7           /* PCI irq */);
659 }
660 
661 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic)
662 {
663     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
664     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
665     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
666     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
667     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
668     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
669     hwaddr base = base_mmio;
670     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
671     int irq = vbi->irqmap[VIRT_PCIE];
672     MemoryRegion *mmio_alias;
673     MemoryRegion *mmio_reg;
674     MemoryRegion *ecam_alias;
675     MemoryRegion *ecam_reg;
676     DeviceState *dev;
677     char *nodename;
678     int i;
679 
680     dev = qdev_create(NULL, TYPE_GPEX_HOST);
681     qdev_init_nofail(dev);
682 
683     /* Map only the first size_ecam bytes of ECAM space */
684     ecam_alias = g_new0(MemoryRegion, 1);
685     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
686     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
687                              ecam_reg, 0, size_ecam);
688     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
689 
690     /* Map the MMIO window into system address space so as to expose
691      * the section of PCI MMIO space which starts at the same base address
692      * (ie 1:1 mapping for that part of PCI MMIO space visible through
693      * the window).
694      */
695     mmio_alias = g_new0(MemoryRegion, 1);
696     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
697     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
698                              mmio_reg, base_mmio, size_mmio);
699     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
700 
701     /* Map IO port space */
702     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
703 
704     for (i = 0; i < GPEX_NUM_IRQS; i++) {
705         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
706     }
707 
708     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
709     qemu_fdt_add_subnode(vbi->fdt, nodename);
710     qemu_fdt_setprop_string(vbi->fdt, nodename,
711                             "compatible", "pci-host-ecam-generic");
712     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
713     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
714     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
715     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
716                            nr_pcie_buses - 1);
717 
718     qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle);
719 
720     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
721                                  2, base_ecam, 2, size_ecam);
722     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
723                                  1, FDT_PCI_RANGE_IOPORT, 2, 0,
724                                  2, base_pio, 2, size_pio,
725                                  1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
726                                  2, base_mmio, 2, size_mmio);
727 
728     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
729     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
730 
731     g_free(nodename);
732 }
733 
734 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
735 {
736     DeviceState *dev;
737     SysBusDevice *s;
738     int i;
739     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
740     MemoryRegion *sysmem = get_system_memory();
741 
742     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
743     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
744     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
745     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
746 
747     fdt_params->system_params = &platform_bus_params;
748     fdt_params->binfo = &vbi->bootinfo;
749     fdt_params->intc = "/intc";
750     /*
751      * register a machine init done notifier that creates the device tree
752      * nodes of the platform bus and its children dynamic sysbus devices
753      */
754     arm_register_platform_bus_fdt_creator(fdt_params);
755 
756     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
757     dev->id = TYPE_PLATFORM_BUS_DEVICE;
758     qdev_prop_set_uint32(dev, "num_irqs",
759         platform_bus_params.platform_bus_num_irqs);
760     qdev_prop_set_uint32(dev, "mmio_size",
761         platform_bus_params.platform_bus_size);
762     qdev_init_nofail(dev);
763     s = SYS_BUS_DEVICE(dev);
764 
765     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
766         int irqn = platform_bus_params.platform_bus_first_irq + i;
767         sysbus_connect_irq(s, i, pic[irqn]);
768     }
769 
770     memory_region_add_subregion(sysmem,
771                                 platform_bus_params.platform_bus_base,
772                                 sysbus_mmio_get_region(s, 0));
773 }
774 
775 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
776 {
777     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
778 
779     *fdt_size = board->fdt_size;
780     return board->fdt;
781 }
782 
783 static
784 void virt_guest_info_machine_done(Notifier *notifier, void *data)
785 {
786     VirtGuestInfoState *guest_info_state = container_of(notifier,
787                                               VirtGuestInfoState, machine_done);
788     virt_acpi_setup(&guest_info_state->info);
789 }
790 
791 static void machvirt_init(MachineState *machine)
792 {
793     VirtMachineState *vms = VIRT_MACHINE(machine);
794     qemu_irq pic[NUM_IRQS];
795     MemoryRegion *sysmem = get_system_memory();
796     int n;
797     MemoryRegion *ram = g_new(MemoryRegion, 1);
798     const char *cpu_model = machine->cpu_model;
799     VirtBoardInfo *vbi;
800     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
801     VirtGuestInfo *guest_info = &guest_info_state->info;
802     char **cpustr;
803 
804     if (!cpu_model) {
805         cpu_model = "cortex-a15";
806     }
807 
808     /* Separate the actual CPU model name from any appended features */
809     cpustr = g_strsplit(cpu_model, ",", 2);
810 
811     vbi = find_machine_info(cpustr[0]);
812 
813     if (!vbi) {
814         error_report("mach-virt: CPU %s not supported", cpustr[0]);
815         exit(1);
816     }
817 
818     vbi->smp_cpus = smp_cpus;
819 
820     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
821         error_report("mach-virt: cannot model more than 30GB RAM");
822         exit(1);
823     }
824 
825     create_fdt(vbi);
826 
827     for (n = 0; n < smp_cpus; n++) {
828         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
829         CPUClass *cc = CPU_CLASS(oc);
830         Object *cpuobj;
831         Error *err = NULL;
832         char *cpuopts = g_strdup(cpustr[1]);
833 
834         if (!oc) {
835             fprintf(stderr, "Unable to find CPU definition\n");
836             exit(1);
837         }
838         cpuobj = object_new(object_class_get_name(oc));
839 
840         /* Handle any CPU options specified by the user */
841         cc->parse_features(CPU(cpuobj), cpuopts, &err);
842         g_free(cpuopts);
843         if (err) {
844             error_report_err(err);
845             exit(1);
846         }
847 
848         if (!vms->secure) {
849             object_property_set_bool(cpuobj, false, "has_el3", NULL);
850         }
851 
852         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
853                                 NULL);
854 
855         /* Secondary CPUs start in PSCI powered-down state */
856         if (n > 0) {
857             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
858         }
859 
860         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
861             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
862                                     "reset-cbar", &error_abort);
863         }
864 
865         object_property_set_bool(cpuobj, true, "realized", NULL);
866     }
867     g_strfreev(cpustr);
868     fdt_add_timer_nodes(vbi);
869     fdt_add_cpu_nodes(vbi);
870     fdt_add_psci_node(vbi);
871 
872     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
873                                          machine->ram_size);
874     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
875 
876     create_flash(vbi);
877 
878     create_gic(vbi, pic);
879 
880     create_uart(vbi, pic);
881 
882     create_rtc(vbi, pic);
883 
884     create_pcie(vbi, pic);
885 
886     /* Create mmio transports, so the user can create virtio backends
887      * (which will be automatically plugged in to the transports). If
888      * no backend is created the transport will just sit harmlessly idle.
889      */
890     create_virtio_devices(vbi, pic);
891 
892     create_fw_cfg(vbi);
893     rom_set_fw(fw_cfg_find());
894 
895     guest_info->smp_cpus = smp_cpus;
896     guest_info->fw_cfg = fw_cfg_find();
897     guest_info->memmap = vbi->memmap;
898     guest_info->irqmap = vbi->irqmap;
899     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
900     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
901 
902     vbi->bootinfo.ram_size = machine->ram_size;
903     vbi->bootinfo.kernel_filename = machine->kernel_filename;
904     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
905     vbi->bootinfo.initrd_filename = machine->initrd_filename;
906     vbi->bootinfo.nb_cpus = smp_cpus;
907     vbi->bootinfo.board_id = -1;
908     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
909     vbi->bootinfo.get_dtb = machvirt_dtb;
910     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
911     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
912 
913     /*
914      * arm_load_kernel machine init done notifier registration must
915      * happen before the platform_bus_create call. In this latter,
916      * another notifier is registered which adds platform bus nodes.
917      * Notifiers are executed in registration reverse order.
918      */
919     create_platform_bus(vbi, pic);
920 }
921 
922 static bool virt_get_secure(Object *obj, Error **errp)
923 {
924     VirtMachineState *vms = VIRT_MACHINE(obj);
925 
926     return vms->secure;
927 }
928 
929 static void virt_set_secure(Object *obj, bool value, Error **errp)
930 {
931     VirtMachineState *vms = VIRT_MACHINE(obj);
932 
933     vms->secure = value;
934 }
935 
936 static void virt_instance_init(Object *obj)
937 {
938     VirtMachineState *vms = VIRT_MACHINE(obj);
939 
940     /* EL3 is enabled by default on virt */
941     vms->secure = true;
942     object_property_add_bool(obj, "secure", virt_get_secure,
943                              virt_set_secure, NULL);
944     object_property_set_description(obj, "secure",
945                                     "Set on/off to enable/disable the ARM "
946                                     "Security Extensions (TrustZone)",
947                                     NULL);
948 }
949 
950 static void virt_class_init(ObjectClass *oc, void *data)
951 {
952     MachineClass *mc = MACHINE_CLASS(oc);
953 
954     mc->name = TYPE_VIRT_MACHINE;
955     mc->desc = "ARM Virtual Machine",
956     mc->init = machvirt_init;
957     mc->max_cpus = 8;
958     mc->has_dynamic_sysbus = true;
959 }
960 
961 static const TypeInfo machvirt_info = {
962     .name = TYPE_VIRT_MACHINE,
963     .parent = TYPE_MACHINE,
964     .instance_size = sizeof(VirtMachineState),
965     .instance_init = virt_instance_init,
966     .class_size = sizeof(VirtMachineClass),
967     .class_init = virt_class_init,
968 };
969 
970 static void machvirt_machine_init(void)
971 {
972     type_register_static(&machvirt_info);
973 }
974 
975 machine_init(machvirt_machine_init);
976