xref: /qemu/hw/arm/virt.c (revision c7eb39cb)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic_common.h"
56 #include "kvm_arm.h"
57 #include "hw/smbios/smbios.h"
58 #include "qapi/visitor.h"
59 #include "standard-headers/linux/input.h"
60 
61 /* Number of external interrupt lines to configure the GIC with */
62 #define NUM_IRQS 256
63 
64 #define PLATFORM_BUS_NUM_IRQS 64
65 
66 static ARMPlatformBusSystemParams platform_bus_params;
67 
68 typedef struct VirtBoardInfo {
69     struct arm_boot_info bootinfo;
70     const char *cpu_model;
71     const MemMapEntry *memmap;
72     const int *irqmap;
73     int smp_cpus;
74     void *fdt;
75     int fdt_size;
76     uint32_t clock_phandle;
77     uint32_t gic_phandle;
78     uint32_t v2m_phandle;
79     bool using_psci;
80 } VirtBoardInfo;
81 
82 typedef struct {
83     MachineClass parent;
84     VirtBoardInfo *daughterboard;
85 } VirtMachineClass;
86 
87 typedef struct {
88     MachineState parent;
89     bool secure;
90     bool highmem;
91     int32_t gic_version;
92 } VirtMachineState;
93 
94 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
95 #define VIRT_MACHINE(obj) \
96     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
97 #define VIRT_MACHINE_GET_CLASS(obj) \
98     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
99 #define VIRT_MACHINE_CLASS(klass) \
100     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
101 
102 
103 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
104     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
105                                                     void *data) \
106     { \
107         MachineClass *mc = MACHINE_CLASS(oc); \
108         virt_machine_##major##_##minor##_options(mc); \
109         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
110         if (latest) { \
111             mc->alias = "virt"; \
112         } \
113     } \
114     static const TypeInfo machvirt_##major##_##minor##_info = { \
115         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
116         .parent = TYPE_VIRT_MACHINE, \
117         .instance_init = virt_##major##_##minor##_instance_init, \
118         .class_init = virt_##major##_##minor##_class_init, \
119     }; \
120     static void machvirt_machine_##major##_##minor##_init(void) \
121     { \
122         type_register_static(&machvirt_##major##_##minor##_info); \
123     } \
124     type_init(machvirt_machine_##major##_##minor##_init);
125 
126 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
127     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
128 #define DEFINE_VIRT_MACHINE(major, minor) \
129     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
130 
131 
132 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
133  * RAM can go up to the 256GB mark, leaving 256GB of the physical
134  * address space unallocated and free for future use between 256G and 512G.
135  * If we need to provide more RAM to VMs in the future then we need to:
136  *  * allocate a second bank of RAM starting at 2TB and working up
137  *  * fix the DT and ACPI table generation code in QEMU to correctly
138  *    report two split lumps of RAM to the guest
139  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
140  * (We don't want to fill all the way up to 512GB with RAM because
141  * we might want it for non-RAM purposes later. Conversely it seems
142  * reasonable to assume that anybody configuring a VM with a quarter
143  * of a terabyte of RAM will be doing it on a host with more than a
144  * terabyte of physical address space.)
145  */
146 #define RAMLIMIT_GB 255
147 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
148 
149 /* Addresses and sizes of our components.
150  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
151  * 128MB..256MB is used for miscellaneous device I/O.
152  * 256MB..1GB is reserved for possible future PCI support (ie where the
153  * PCI memory window will go if we add a PCI host controller).
154  * 1GB and up is RAM (which may happily spill over into the
155  * high memory region beyond 4GB).
156  * This represents a compromise between how much RAM can be given to
157  * a 32 bit VM and leaving space for expansion and in particular for PCI.
158  * Note that devices should generally be placed at multiples of 0x10000,
159  * to accommodate guests using 64K pages.
160  */
161 static const MemMapEntry a15memmap[] = {
162     /* Space up to 0x8000000 is reserved for a boot ROM */
163     [VIRT_FLASH] =              {          0, 0x08000000 },
164     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
165     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
166     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
167     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
168     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
169     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
170     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
171     /* This redistributor space allows up to 2*64kB*123 CPUs */
172     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
173     [VIRT_UART] =               { 0x09000000, 0x00001000 },
174     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
175     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
176     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
177     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
178     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
179     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
180     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
181     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
182     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
183     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
184     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
185     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
186     /* Second PCIe window, 512GB wide at the 512GB boundary */
187     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
188 };
189 
190 static const int a15irqmap[] = {
191     [VIRT_UART] = 1,
192     [VIRT_RTC] = 2,
193     [VIRT_PCIE] = 3, /* ... to 6 */
194     [VIRT_GPIO] = 7,
195     [VIRT_SECURE_UART] = 8,
196     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
197     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
198     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
199 };
200 
201 static VirtBoardInfo machines[] = {
202     {
203         .cpu_model = "cortex-a15",
204         .memmap = a15memmap,
205         .irqmap = a15irqmap,
206     },
207     {
208         .cpu_model = "cortex-a53",
209         .memmap = a15memmap,
210         .irqmap = a15irqmap,
211     },
212     {
213         .cpu_model = "cortex-a57",
214         .memmap = a15memmap,
215         .irqmap = a15irqmap,
216     },
217     {
218         .cpu_model = "host",
219         .memmap = a15memmap,
220         .irqmap = a15irqmap,
221     },
222 };
223 
224 static VirtBoardInfo *find_machine_info(const char *cpu)
225 {
226     int i;
227 
228     for (i = 0; i < ARRAY_SIZE(machines); i++) {
229         if (strcmp(cpu, machines[i].cpu_model) == 0) {
230             return &machines[i];
231         }
232     }
233     return NULL;
234 }
235 
236 static void create_fdt(VirtBoardInfo *vbi)
237 {
238     void *fdt = create_device_tree(&vbi->fdt_size);
239 
240     if (!fdt) {
241         error_report("create_device_tree() failed");
242         exit(1);
243     }
244 
245     vbi->fdt = fdt;
246 
247     /* Header */
248     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
249     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
250     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
251 
252     /*
253      * /chosen and /memory nodes must exist for load_dtb
254      * to fill in necessary properties later
255      */
256     qemu_fdt_add_subnode(fdt, "/chosen");
257     qemu_fdt_add_subnode(fdt, "/memory");
258     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
259 
260     /* Clock node, for the benefit of the UART. The kernel device tree
261      * binding documentation claims the PL011 node clock properties are
262      * optional but in practice if you omit them the kernel refuses to
263      * probe for the device.
264      */
265     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
266     qemu_fdt_add_subnode(fdt, "/apb-pclk");
267     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
268     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
269     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
270     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
271                                 "clk24mhz");
272     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
273 
274 }
275 
276 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
277 {
278     uint32_t cpu_suspend_fn;
279     uint32_t cpu_off_fn;
280     uint32_t cpu_on_fn;
281     uint32_t migrate_fn;
282     void *fdt = vbi->fdt;
283     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
284 
285     if (!vbi->using_psci) {
286         return;
287     }
288 
289     qemu_fdt_add_subnode(fdt, "/psci");
290     if (armcpu->psci_version == 2) {
291         const char comp[] = "arm,psci-0.2\0arm,psci";
292         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
293 
294         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
295         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
296             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
297             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
298             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
299         } else {
300             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
301             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
302             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
303         }
304     } else {
305         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
306 
307         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
308         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
309         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
310         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
311     }
312 
313     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
314      * to the instruction that should be used to invoke PSCI functions.
315      * However, the device tree binding uses 'method' instead, so that is
316      * what we should use here.
317      */
318     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
319 
320     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
321     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
322     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
323     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
324 }
325 
326 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
327 {
328     /* Note that on A15 h/w these interrupts are level-triggered,
329      * but for the GIC implementation provided by both QEMU and KVM
330      * they are edge-triggered.
331      */
332     ARMCPU *armcpu;
333     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
334 
335     if (gictype == 2) {
336         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
337                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
338                              (1 << vbi->smp_cpus) - 1);
339     }
340 
341     qemu_fdt_add_subnode(vbi->fdt, "/timer");
342 
343     armcpu = ARM_CPU(qemu_get_cpu(0));
344     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
345         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
346         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
347                          compat, sizeof(compat));
348     } else {
349         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
350                                 "arm,armv7-timer");
351     }
352     qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
353     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
354                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
355                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
356                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
357                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
358 }
359 
360 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
361 {
362     int cpu;
363     int addr_cells = 1;
364     unsigned int i;
365 
366     /*
367      * From Documentation/devicetree/bindings/arm/cpus.txt
368      *  On ARM v8 64-bit systems value should be set to 2,
369      *  that corresponds to the MPIDR_EL1 register size.
370      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
371      *  in the system, #address-cells can be set to 1, since
372      *  MPIDR_EL1[63:32] bits are not used for CPUs
373      *  identification.
374      *
375      *  Here we actually don't know whether our system is 32- or 64-bit one.
376      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
377      *  at least one of them has Aff3 populated, we set #address-cells to 2.
378      */
379     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
380         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
381 
382         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
383             addr_cells = 2;
384             break;
385         }
386     }
387 
388     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
389     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
390     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
391 
392     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
393         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
394         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
395 
396         qemu_fdt_add_subnode(vbi->fdt, nodename);
397         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
398         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
399                                     armcpu->dtb_compatible);
400 
401         if (vbi->using_psci && vbi->smp_cpus > 1) {
402             qemu_fdt_setprop_string(vbi->fdt, nodename,
403                                         "enable-method", "psci");
404         }
405 
406         if (addr_cells == 2) {
407             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
408                                  armcpu->mp_affinity);
409         } else {
410             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
411                                   armcpu->mp_affinity);
412         }
413 
414         for (i = 0; i < nb_numa_nodes; i++) {
415             if (test_bit(cpu, numa_info[i].node_cpu)) {
416                 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
417             }
418         }
419 
420         g_free(nodename);
421     }
422 }
423 
424 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
425 {
426     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
427     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
428     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
429                             "arm,gic-v2m-frame");
430     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
431     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
432                                  2, vbi->memmap[VIRT_GIC_V2M].base,
433                                  2, vbi->memmap[VIRT_GIC_V2M].size);
434     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
435 }
436 
437 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
438 {
439     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
440     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
441 
442     qemu_fdt_add_subnode(vbi->fdt, "/intc");
443     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
444     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
445     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
446     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
447     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
448     if (type == 3) {
449         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
450                                 "arm,gic-v3");
451         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
452                                      2, vbi->memmap[VIRT_GIC_DIST].base,
453                                      2, vbi->memmap[VIRT_GIC_DIST].size,
454                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
455                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
456     } else {
457         /* 'cortex-a15-gic' means 'GIC v2' */
458         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
459                                 "arm,cortex-a15-gic");
460         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
461                                       2, vbi->memmap[VIRT_GIC_DIST].base,
462                                       2, vbi->memmap[VIRT_GIC_DIST].size,
463                                       2, vbi->memmap[VIRT_GIC_CPU].base,
464                                       2, vbi->memmap[VIRT_GIC_CPU].size);
465     }
466 
467     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
468 }
469 
470 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
471 {
472     CPUState *cpu;
473     ARMCPU *armcpu;
474     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
475 
476     CPU_FOREACH(cpu) {
477         armcpu = ARM_CPU(cpu);
478         if (!armcpu->has_pmu ||
479             !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
480             return;
481         }
482     }
483 
484     if (gictype == 2) {
485         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
486                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
487                              (1 << vbi->smp_cpus) - 1);
488     }
489 
490     armcpu = ARM_CPU(qemu_get_cpu(0));
491     qemu_fdt_add_subnode(vbi->fdt, "/pmu");
492     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
493         const char compat[] = "arm,armv8-pmuv3";
494         qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
495                          compat, sizeof(compat));
496         qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
497                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
498     }
499 }
500 
501 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
502 {
503     int i;
504     int irq = vbi->irqmap[VIRT_GIC_V2M];
505     DeviceState *dev;
506 
507     dev = qdev_create(NULL, "arm-gicv2m");
508     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
509     qdev_prop_set_uint32(dev, "base-spi", irq);
510     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
511     qdev_init_nofail(dev);
512 
513     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
514         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
515     }
516 
517     fdt_add_v2m_gic_node(vbi);
518 }
519 
520 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
521 {
522     /* We create a standalone GIC */
523     DeviceState *gicdev;
524     SysBusDevice *gicbusdev;
525     const char *gictype;
526     int i;
527 
528     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
529 
530     gicdev = qdev_create(NULL, gictype);
531     qdev_prop_set_uint32(gicdev, "revision", type);
532     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
533     /* Note that the num-irq property counts both internal and external
534      * interrupts; there are always 32 of the former (mandated by GIC spec).
535      */
536     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
537     if (!kvm_irqchip_in_kernel()) {
538         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
539     }
540     qdev_init_nofail(gicdev);
541     gicbusdev = SYS_BUS_DEVICE(gicdev);
542     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
543     if (type == 3) {
544         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
545     } else {
546         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
547     }
548 
549     /* Wire the outputs from each CPU's generic timer to the
550      * appropriate GIC PPI inputs, and the GIC's IRQ output to
551      * the CPU's IRQ input.
552      */
553     for (i = 0; i < smp_cpus; i++) {
554         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
555         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
556         int irq;
557         /* Mapping from the output timer irq lines from the CPU to the
558          * GIC PPI inputs we use for the virt board.
559          */
560         const int timer_irq[] = {
561             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
562             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
563             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
564             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
565         };
566 
567         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
568             qdev_connect_gpio_out(cpudev, irq,
569                                   qdev_get_gpio_in(gicdev,
570                                                    ppibase + timer_irq[irq]));
571         }
572 
573         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
574         sysbus_connect_irq(gicbusdev, i + smp_cpus,
575                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
576     }
577 
578     for (i = 0; i < NUM_IRQS; i++) {
579         pic[i] = qdev_get_gpio_in(gicdev, i);
580     }
581 
582     fdt_add_gic_node(vbi, type);
583 
584     if (type == 2) {
585         create_v2m(vbi, pic);
586     }
587 }
588 
589 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
590                         MemoryRegion *mem, CharDriverState *chr)
591 {
592     char *nodename;
593     hwaddr base = vbi->memmap[uart].base;
594     hwaddr size = vbi->memmap[uart].size;
595     int irq = vbi->irqmap[uart];
596     const char compat[] = "arm,pl011\0arm,primecell";
597     const char clocknames[] = "uartclk\0apb_pclk";
598     DeviceState *dev = qdev_create(NULL, "pl011");
599     SysBusDevice *s = SYS_BUS_DEVICE(dev);
600 
601     qdev_prop_set_chr(dev, "chardev", chr);
602     qdev_init_nofail(dev);
603     memory_region_add_subregion(mem, base,
604                                 sysbus_mmio_get_region(s, 0));
605     sysbus_connect_irq(s, 0, pic[irq]);
606 
607     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
608     qemu_fdt_add_subnode(vbi->fdt, nodename);
609     /* Note that we can't use setprop_string because of the embedded NUL */
610     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
611                          compat, sizeof(compat));
612     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
613                                      2, base, 2, size);
614     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
615                                GIC_FDT_IRQ_TYPE_SPI, irq,
616                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
617     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
618                                vbi->clock_phandle, vbi->clock_phandle);
619     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
620                          clocknames, sizeof(clocknames));
621 
622     if (uart == VIRT_UART) {
623         qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
624     } else {
625         /* Mark as not usable by the normal world */
626         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
627         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
628     }
629 
630     g_free(nodename);
631 }
632 
633 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
634 {
635     char *nodename;
636     hwaddr base = vbi->memmap[VIRT_RTC].base;
637     hwaddr size = vbi->memmap[VIRT_RTC].size;
638     int irq = vbi->irqmap[VIRT_RTC];
639     const char compat[] = "arm,pl031\0arm,primecell";
640 
641     sysbus_create_simple("pl031", base, pic[irq]);
642 
643     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
644     qemu_fdt_add_subnode(vbi->fdt, nodename);
645     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
646     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
647                                  2, base, 2, size);
648     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
649                            GIC_FDT_IRQ_TYPE_SPI, irq,
650                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
651     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
652     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
653     g_free(nodename);
654 }
655 
656 static DeviceState *gpio_key_dev;
657 static void virt_powerdown_req(Notifier *n, void *opaque)
658 {
659     /* use gpio Pin 3 for power button event */
660     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
661 }
662 
663 static Notifier virt_system_powerdown_notifier = {
664     .notify = virt_powerdown_req
665 };
666 
667 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
668 {
669     char *nodename;
670     DeviceState *pl061_dev;
671     hwaddr base = vbi->memmap[VIRT_GPIO].base;
672     hwaddr size = vbi->memmap[VIRT_GPIO].size;
673     int irq = vbi->irqmap[VIRT_GPIO];
674     const char compat[] = "arm,pl061\0arm,primecell";
675 
676     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
677 
678     uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
679     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
680     qemu_fdt_add_subnode(vbi->fdt, nodename);
681     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
682                                  2, base, 2, size);
683     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
684     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
685     qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
686     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
687                            GIC_FDT_IRQ_TYPE_SPI, irq,
688                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
689     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
690     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
691     qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
692 
693     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
694                                         qdev_get_gpio_in(pl061_dev, 3));
695     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
696     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
697     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
698     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
699 
700     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
701     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
702                             "label", "GPIO Key Poweroff");
703     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
704                           KEY_POWER);
705     qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
706                            "gpios", phandle, 3, 0);
707 
708     /* connect powerdown request */
709     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
710 
711     g_free(nodename);
712 }
713 
714 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
715 {
716     int i;
717     hwaddr size = vbi->memmap[VIRT_MMIO].size;
718 
719     /* We create the transports in forwards order. Since qbus_realize()
720      * prepends (not appends) new child buses, the incrementing loop below will
721      * create a list of virtio-mmio buses with decreasing base addresses.
722      *
723      * When a -device option is processed from the command line,
724      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
725      * order. The upshot is that -device options in increasing command line
726      * order are mapped to virtio-mmio buses with decreasing base addresses.
727      *
728      * When this code was originally written, that arrangement ensured that the
729      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
730      * the first -device on the command line. (The end-to-end order is a
731      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
732      * guest kernel's name-to-address assignment strategy.)
733      *
734      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
735      * the message, if not necessarily the code, of commit 70161ff336.
736      * Therefore the loop now establishes the inverse of the original intent.
737      *
738      * Unfortunately, we can't counteract the kernel change by reversing the
739      * loop; it would break existing command lines.
740      *
741      * In any case, the kernel makes no guarantee about the stability of
742      * enumeration order of virtio devices (as demonstrated by it changing
743      * between kernel versions). For reliable and stable identification
744      * of disks users must use UUIDs or similar mechanisms.
745      */
746     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
747         int irq = vbi->irqmap[VIRT_MMIO] + i;
748         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
749 
750         sysbus_create_simple("virtio-mmio", base, pic[irq]);
751     }
752 
753     /* We add dtb nodes in reverse order so that they appear in the finished
754      * device tree lowest address first.
755      *
756      * Note that this mapping is independent of the loop above. The previous
757      * loop influences virtio device to virtio transport assignment, whereas
758      * this loop controls how virtio transports are laid out in the dtb.
759      */
760     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
761         char *nodename;
762         int irq = vbi->irqmap[VIRT_MMIO] + i;
763         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
764 
765         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
766         qemu_fdt_add_subnode(vbi->fdt, nodename);
767         qemu_fdt_setprop_string(vbi->fdt, nodename,
768                                 "compatible", "virtio,mmio");
769         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
770                                      2, base, 2, size);
771         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
772                                GIC_FDT_IRQ_TYPE_SPI, irq,
773                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
774         g_free(nodename);
775     }
776 }
777 
778 static void create_one_flash(const char *name, hwaddr flashbase,
779                              hwaddr flashsize, const char *file,
780                              MemoryRegion *sysmem)
781 {
782     /* Create and map a single flash device. We use the same
783      * parameters as the flash devices on the Versatile Express board.
784      */
785     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
786     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
787     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
788     const uint64_t sectorlength = 256 * 1024;
789 
790     if (dinfo) {
791         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
792                             &error_abort);
793     }
794 
795     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
796     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
797     qdev_prop_set_uint8(dev, "width", 4);
798     qdev_prop_set_uint8(dev, "device-width", 2);
799     qdev_prop_set_bit(dev, "big-endian", false);
800     qdev_prop_set_uint16(dev, "id0", 0x89);
801     qdev_prop_set_uint16(dev, "id1", 0x18);
802     qdev_prop_set_uint16(dev, "id2", 0x00);
803     qdev_prop_set_uint16(dev, "id3", 0x00);
804     qdev_prop_set_string(dev, "name", name);
805     qdev_init_nofail(dev);
806 
807     memory_region_add_subregion(sysmem, flashbase,
808                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
809 
810     if (file) {
811         char *fn;
812         int image_size;
813 
814         if (drive_get(IF_PFLASH, 0, 0)) {
815             error_report("The contents of the first flash device may be "
816                          "specified with -bios or with -drive if=pflash... "
817                          "but you cannot use both options at once");
818             exit(1);
819         }
820         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
821         if (!fn) {
822             error_report("Could not find ROM image '%s'", file);
823             exit(1);
824         }
825         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
826         g_free(fn);
827         if (image_size < 0) {
828             error_report("Could not load ROM image '%s'", file);
829             exit(1);
830         }
831     }
832 }
833 
834 static void create_flash(const VirtBoardInfo *vbi,
835                          MemoryRegion *sysmem,
836                          MemoryRegion *secure_sysmem)
837 {
838     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
839      * Any file passed via -bios goes in the first of these.
840      * sysmem is the system memory space. secure_sysmem is the secure view
841      * of the system, and the first flash device should be made visible only
842      * there. The second flash device is visible to both secure and nonsecure.
843      * If sysmem == secure_sysmem this means there is no separate Secure
844      * address space and both flash devices are generally visible.
845      */
846     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
847     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
848     char *nodename;
849 
850     create_one_flash("virt.flash0", flashbase, flashsize,
851                      bios_name, secure_sysmem);
852     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
853                      NULL, sysmem);
854 
855     if (sysmem == secure_sysmem) {
856         /* Report both flash devices as a single node in the DT */
857         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
858         qemu_fdt_add_subnode(vbi->fdt, nodename);
859         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
860         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
861                                      2, flashbase, 2, flashsize,
862                                      2, flashbase + flashsize, 2, flashsize);
863         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
864         g_free(nodename);
865     } else {
866         /* Report the devices as separate nodes so we can mark one as
867          * only visible to the secure world.
868          */
869         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
870         qemu_fdt_add_subnode(vbi->fdt, nodename);
871         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
872         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
873                                      2, flashbase, 2, flashsize);
874         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
875         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
876         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
877         g_free(nodename);
878 
879         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
880         qemu_fdt_add_subnode(vbi->fdt, nodename);
881         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
882         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
883                                      2, flashbase + flashsize, 2, flashsize);
884         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
885         g_free(nodename);
886     }
887 }
888 
889 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
890 {
891     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
892     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
893     char *nodename;
894 
895     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
896 
897     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
898     qemu_fdt_add_subnode(vbi->fdt, nodename);
899     qemu_fdt_setprop_string(vbi->fdt, nodename,
900                             "compatible", "qemu,fw-cfg-mmio");
901     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
902                                  2, base, 2, size);
903     g_free(nodename);
904 }
905 
906 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
907                                 int first_irq, const char *nodename)
908 {
909     int devfn, pin;
910     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
911     uint32_t *irq_map = full_irq_map;
912 
913     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
914         for (pin = 0; pin < 4; pin++) {
915             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
916             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
917             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
918             int i;
919 
920             uint32_t map[] = {
921                 devfn << 8, 0, 0,                           /* devfn */
922                 pin + 1,                                    /* PCI pin */
923                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
924 
925             /* Convert map to big endian */
926             for (i = 0; i < 10; i++) {
927                 irq_map[i] = cpu_to_be32(map[i]);
928             }
929             irq_map += 10;
930         }
931     }
932 
933     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
934                      full_irq_map, sizeof(full_irq_map));
935 
936     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
937                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
938                            0x7           /* PCI irq */);
939 }
940 
941 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
942                         bool use_highmem)
943 {
944     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
945     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
946     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
947     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
948     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
949     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
950     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
951     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
952     hwaddr base = base_mmio;
953     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
954     int irq = vbi->irqmap[VIRT_PCIE];
955     MemoryRegion *mmio_alias;
956     MemoryRegion *mmio_reg;
957     MemoryRegion *ecam_alias;
958     MemoryRegion *ecam_reg;
959     DeviceState *dev;
960     char *nodename;
961     int i;
962     PCIHostState *pci;
963 
964     dev = qdev_create(NULL, TYPE_GPEX_HOST);
965     qdev_init_nofail(dev);
966 
967     /* Map only the first size_ecam bytes of ECAM space */
968     ecam_alias = g_new0(MemoryRegion, 1);
969     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
970     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
971                              ecam_reg, 0, size_ecam);
972     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
973 
974     /* Map the MMIO window into system address space so as to expose
975      * the section of PCI MMIO space which starts at the same base address
976      * (ie 1:1 mapping for that part of PCI MMIO space visible through
977      * the window).
978      */
979     mmio_alias = g_new0(MemoryRegion, 1);
980     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
981     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
982                              mmio_reg, base_mmio, size_mmio);
983     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
984 
985     if (use_highmem) {
986         /* Map high MMIO space */
987         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
988 
989         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
990                                  mmio_reg, base_mmio_high, size_mmio_high);
991         memory_region_add_subregion(get_system_memory(), base_mmio_high,
992                                     high_mmio_alias);
993     }
994 
995     /* Map IO port space */
996     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
997 
998     for (i = 0; i < GPEX_NUM_IRQS; i++) {
999         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1000     }
1001 
1002     pci = PCI_HOST_BRIDGE(dev);
1003     if (pci->bus) {
1004         for (i = 0; i < nb_nics; i++) {
1005             NICInfo *nd = &nd_table[i];
1006 
1007             if (!nd->model) {
1008                 nd->model = g_strdup("virtio");
1009             }
1010 
1011             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1012         }
1013     }
1014 
1015     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1016     qemu_fdt_add_subnode(vbi->fdt, nodename);
1017     qemu_fdt_setprop_string(vbi->fdt, nodename,
1018                             "compatible", "pci-host-ecam-generic");
1019     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1020     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1021     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1022     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1023                            nr_pcie_buses - 1);
1024     qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0);
1025 
1026     if (vbi->v2m_phandle) {
1027         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1028                                vbi->v2m_phandle);
1029     }
1030 
1031     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1032                                  2, base_ecam, 2, size_ecam);
1033 
1034     if (use_highmem) {
1035         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1036                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1037                                      2, base_pio, 2, size_pio,
1038                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1039                                      2, base_mmio, 2, size_mmio,
1040                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1041                                      2, base_mmio_high,
1042                                      2, base_mmio_high, 2, size_mmio_high);
1043     } else {
1044         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1045                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1046                                      2, base_pio, 2, size_pio,
1047                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1048                                      2, base_mmio, 2, size_mmio);
1049     }
1050 
1051     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1052     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1053 
1054     g_free(nodename);
1055 }
1056 
1057 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1058 {
1059     DeviceState *dev;
1060     SysBusDevice *s;
1061     int i;
1062     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1063     MemoryRegion *sysmem = get_system_memory();
1064 
1065     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1066     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1067     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1068     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1069 
1070     fdt_params->system_params = &platform_bus_params;
1071     fdt_params->binfo = &vbi->bootinfo;
1072     fdt_params->intc = "/intc";
1073     /*
1074      * register a machine init done notifier that creates the device tree
1075      * nodes of the platform bus and its children dynamic sysbus devices
1076      */
1077     arm_register_platform_bus_fdt_creator(fdt_params);
1078 
1079     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1080     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1081     qdev_prop_set_uint32(dev, "num_irqs",
1082         platform_bus_params.platform_bus_num_irqs);
1083     qdev_prop_set_uint32(dev, "mmio_size",
1084         platform_bus_params.platform_bus_size);
1085     qdev_init_nofail(dev);
1086     s = SYS_BUS_DEVICE(dev);
1087 
1088     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1089         int irqn = platform_bus_params.platform_bus_first_irq + i;
1090         sysbus_connect_irq(s, i, pic[irqn]);
1091     }
1092 
1093     memory_region_add_subregion(sysmem,
1094                                 platform_bus_params.platform_bus_base,
1095                                 sysbus_mmio_get_region(s, 0));
1096 }
1097 
1098 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1099 {
1100     MemoryRegion *secram = g_new(MemoryRegion, 1);
1101     char *nodename;
1102     hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1103     hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1104 
1105     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1106     vmstate_register_ram_global(secram);
1107     memory_region_add_subregion(secure_sysmem, base, secram);
1108 
1109     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1110     qemu_fdt_add_subnode(vbi->fdt, nodename);
1111     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1112     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1113     qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1114     qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1115 
1116     g_free(nodename);
1117 }
1118 
1119 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1120 {
1121     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1122 
1123     *fdt_size = board->fdt_size;
1124     return board->fdt;
1125 }
1126 
1127 static void virt_build_smbios(VirtGuestInfo *guest_info)
1128 {
1129     FWCfgState *fw_cfg = guest_info->fw_cfg;
1130     uint8_t *smbios_tables, *smbios_anchor;
1131     size_t smbios_tables_len, smbios_anchor_len;
1132     const char *product = "QEMU Virtual Machine";
1133 
1134     if (!fw_cfg) {
1135         return;
1136     }
1137 
1138     if (kvm_enabled()) {
1139         product = "KVM Virtual Machine";
1140     }
1141 
1142     smbios_set_defaults("QEMU", product,
1143                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1144 
1145     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1146                       &smbios_anchor, &smbios_anchor_len);
1147 
1148     if (smbios_anchor) {
1149         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1150                         smbios_tables, smbios_tables_len);
1151         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1152                         smbios_anchor, smbios_anchor_len);
1153     }
1154 }
1155 
1156 static
1157 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1158 {
1159     VirtGuestInfoState *guest_info_state = container_of(notifier,
1160                                               VirtGuestInfoState, machine_done);
1161     virt_acpi_setup(&guest_info_state->info);
1162     virt_build_smbios(&guest_info_state->info);
1163 }
1164 
1165 static void machvirt_init(MachineState *machine)
1166 {
1167     VirtMachineState *vms = VIRT_MACHINE(machine);
1168     qemu_irq pic[NUM_IRQS];
1169     MemoryRegion *sysmem = get_system_memory();
1170     MemoryRegion *secure_sysmem = NULL;
1171     int gic_version = vms->gic_version;
1172     int n, virt_max_cpus;
1173     MemoryRegion *ram = g_new(MemoryRegion, 1);
1174     const char *cpu_model = machine->cpu_model;
1175     VirtBoardInfo *vbi;
1176     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1177     VirtGuestInfo *guest_info = &guest_info_state->info;
1178     char **cpustr;
1179     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1180 
1181     if (!cpu_model) {
1182         cpu_model = "cortex-a15";
1183     }
1184 
1185     /* We can probe only here because during property set
1186      * KVM is not available yet
1187      */
1188     if (!gic_version) {
1189         if (!kvm_enabled()) {
1190             error_report("gic-version=host requires KVM");
1191             exit(1);
1192         }
1193 
1194         gic_version = kvm_arm_vgic_probe();
1195         if (!gic_version) {
1196             error_report("Unable to determine GIC version supported by host");
1197             exit(1);
1198         }
1199     }
1200 
1201     /* Separate the actual CPU model name from any appended features */
1202     cpustr = g_strsplit(cpu_model, ",", 2);
1203 
1204     vbi = find_machine_info(cpustr[0]);
1205 
1206     if (!vbi) {
1207         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1208         exit(1);
1209     }
1210 
1211     /* If we have an EL3 boot ROM then the assumption is that it will
1212      * implement PSCI itself, so disable QEMU's internal implementation
1213      * so it doesn't get in the way. Instead of starting secondary
1214      * CPUs in PSCI powerdown state we will start them all running and
1215      * let the boot ROM sort them out.
1216      * The usual case is that we do use QEMU's PSCI implementation.
1217      */
1218     vbi->using_psci = !(vms->secure && firmware_loaded);
1219 
1220     /* The maximum number of CPUs depends on the GIC version, or on how
1221      * many redistributors we can fit into the memory map.
1222      */
1223     if (gic_version == 3) {
1224         virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1225     } else {
1226         virt_max_cpus = GIC_NCPU;
1227     }
1228 
1229     if (max_cpus > virt_max_cpus) {
1230         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1231                      "supported by machine 'mach-virt' (%d)",
1232                      max_cpus, virt_max_cpus);
1233         exit(1);
1234     }
1235 
1236     vbi->smp_cpus = smp_cpus;
1237 
1238     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1239         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1240         exit(1);
1241     }
1242 
1243     if (vms->secure) {
1244         if (kvm_enabled()) {
1245             error_report("mach-virt: KVM does not support Security extensions");
1246             exit(1);
1247         }
1248 
1249         /* The Secure view of the world is the same as the NonSecure,
1250          * but with a few extra devices. Create it as a container region
1251          * containing the system memory at low priority; any secure-only
1252          * devices go in at higher priority and take precedence.
1253          */
1254         secure_sysmem = g_new(MemoryRegion, 1);
1255         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1256                            UINT64_MAX);
1257         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1258     }
1259 
1260     create_fdt(vbi);
1261 
1262     for (n = 0; n < smp_cpus; n++) {
1263         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1264         CPUClass *cc = CPU_CLASS(oc);
1265         Object *cpuobj;
1266         Error *err = NULL;
1267         char *cpuopts = g_strdup(cpustr[1]);
1268 
1269         if (!oc) {
1270             error_report("Unable to find CPU definition");
1271             exit(1);
1272         }
1273         cpuobj = object_new(object_class_get_name(oc));
1274 
1275         /* Handle any CPU options specified by the user */
1276         cc->parse_features(CPU(cpuobj), cpuopts, &err);
1277         g_free(cpuopts);
1278         if (err) {
1279             error_report_err(err);
1280             exit(1);
1281         }
1282 
1283         if (!vms->secure) {
1284             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1285         }
1286 
1287         if (vbi->using_psci) {
1288             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1289                                     "psci-conduit", NULL);
1290 
1291             /* Secondary CPUs start in PSCI powered-down state */
1292             if (n > 0) {
1293                 object_property_set_bool(cpuobj, true,
1294                                          "start-powered-off", NULL);
1295             }
1296         }
1297 
1298         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1299             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1300                                     "reset-cbar", &error_abort);
1301         }
1302 
1303         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1304                                  &error_abort);
1305         if (vms->secure) {
1306             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1307                                      "secure-memory", &error_abort);
1308         }
1309 
1310         object_property_set_bool(cpuobj, true, "realized", NULL);
1311     }
1312     g_strfreev(cpustr);
1313     fdt_add_timer_nodes(vbi, gic_version);
1314     fdt_add_cpu_nodes(vbi);
1315     fdt_add_psci_node(vbi);
1316 
1317     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1318                                          machine->ram_size);
1319     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1320 
1321     create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1322 
1323     create_gic(vbi, pic, gic_version, vms->secure);
1324 
1325     fdt_add_pmu_nodes(vbi, gic_version);
1326 
1327     create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1328 
1329     if (vms->secure) {
1330         create_secure_ram(vbi, secure_sysmem);
1331         create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1332     }
1333 
1334     create_rtc(vbi, pic);
1335 
1336     create_pcie(vbi, pic, vms->highmem);
1337 
1338     create_gpio(vbi, pic);
1339 
1340     /* Create mmio transports, so the user can create virtio backends
1341      * (which will be automatically plugged in to the transports). If
1342      * no backend is created the transport will just sit harmlessly idle.
1343      */
1344     create_virtio_devices(vbi, pic);
1345 
1346     create_fw_cfg(vbi, &address_space_memory);
1347     rom_set_fw(fw_cfg_find());
1348 
1349     guest_info->smp_cpus = smp_cpus;
1350     guest_info->fw_cfg = fw_cfg_find();
1351     guest_info->memmap = vbi->memmap;
1352     guest_info->irqmap = vbi->irqmap;
1353     guest_info->use_highmem = vms->highmem;
1354     guest_info->gic_version = gic_version;
1355     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1356     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1357 
1358     vbi->bootinfo.ram_size = machine->ram_size;
1359     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1360     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1361     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1362     vbi->bootinfo.nb_cpus = smp_cpus;
1363     vbi->bootinfo.board_id = -1;
1364     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1365     vbi->bootinfo.get_dtb = machvirt_dtb;
1366     vbi->bootinfo.firmware_loaded = firmware_loaded;
1367     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1368 
1369     /*
1370      * arm_load_kernel machine init done notifier registration must
1371      * happen before the platform_bus_create call. In this latter,
1372      * another notifier is registered which adds platform bus nodes.
1373      * Notifiers are executed in registration reverse order.
1374      */
1375     create_platform_bus(vbi, pic);
1376 }
1377 
1378 static bool virt_get_secure(Object *obj, Error **errp)
1379 {
1380     VirtMachineState *vms = VIRT_MACHINE(obj);
1381 
1382     return vms->secure;
1383 }
1384 
1385 static void virt_set_secure(Object *obj, bool value, Error **errp)
1386 {
1387     VirtMachineState *vms = VIRT_MACHINE(obj);
1388 
1389     vms->secure = value;
1390 }
1391 
1392 static bool virt_get_highmem(Object *obj, Error **errp)
1393 {
1394     VirtMachineState *vms = VIRT_MACHINE(obj);
1395 
1396     return vms->highmem;
1397 }
1398 
1399 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1400 {
1401     VirtMachineState *vms = VIRT_MACHINE(obj);
1402 
1403     vms->highmem = value;
1404 }
1405 
1406 static char *virt_get_gic_version(Object *obj, Error **errp)
1407 {
1408     VirtMachineState *vms = VIRT_MACHINE(obj);
1409     const char *val = vms->gic_version == 3 ? "3" : "2";
1410 
1411     return g_strdup(val);
1412 }
1413 
1414 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1415 {
1416     VirtMachineState *vms = VIRT_MACHINE(obj);
1417 
1418     if (!strcmp(value, "3")) {
1419         vms->gic_version = 3;
1420     } else if (!strcmp(value, "2")) {
1421         vms->gic_version = 2;
1422     } else if (!strcmp(value, "host")) {
1423         vms->gic_version = 0; /* Will probe later */
1424     } else {
1425         error_setg(errp, "Invalid gic-version value");
1426         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1427     }
1428 }
1429 
1430 static void virt_machine_class_init(ObjectClass *oc, void *data)
1431 {
1432     MachineClass *mc = MACHINE_CLASS(oc);
1433 
1434     mc->init = machvirt_init;
1435     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1436      * it later in machvirt_init, where we have more information about the
1437      * configuration of the particular instance.
1438      */
1439     mc->max_cpus = MAX_CPUMASK_BITS;
1440     mc->has_dynamic_sysbus = true;
1441     mc->block_default_type = IF_VIRTIO;
1442     mc->no_cdrom = 1;
1443     mc->pci_allow_0_address = true;
1444 }
1445 
1446 static const TypeInfo virt_machine_info = {
1447     .name          = TYPE_VIRT_MACHINE,
1448     .parent        = TYPE_MACHINE,
1449     .abstract      = true,
1450     .instance_size = sizeof(VirtMachineState),
1451     .class_size    = sizeof(VirtMachineClass),
1452     .class_init    = virt_machine_class_init,
1453 };
1454 
1455 static void machvirt_machine_init(void)
1456 {
1457     type_register_static(&virt_machine_info);
1458 }
1459 type_init(machvirt_machine_init);
1460 
1461 static void virt_2_7_instance_init(Object *obj)
1462 {
1463     VirtMachineState *vms = VIRT_MACHINE(obj);
1464 
1465     /* EL3 is disabled by default on virt: this makes us consistent
1466      * between KVM and TCG for this board, and it also allows us to
1467      * boot UEFI blobs which assume no TrustZone support.
1468      */
1469     vms->secure = false;
1470     object_property_add_bool(obj, "secure", virt_get_secure,
1471                              virt_set_secure, NULL);
1472     object_property_set_description(obj, "secure",
1473                                     "Set on/off to enable/disable the ARM "
1474                                     "Security Extensions (TrustZone)",
1475                                     NULL);
1476 
1477     /* High memory is enabled by default */
1478     vms->highmem = true;
1479     object_property_add_bool(obj, "highmem", virt_get_highmem,
1480                              virt_set_highmem, NULL);
1481     object_property_set_description(obj, "highmem",
1482                                     "Set on/off to enable/disable using "
1483                                     "physical address space above 32 bits",
1484                                     NULL);
1485     /* Default GIC type is v2 */
1486     vms->gic_version = 2;
1487     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1488                         virt_set_gic_version, NULL);
1489     object_property_set_description(obj, "gic-version",
1490                                     "Set GIC version. "
1491                                     "Valid values are 2, 3 and host", NULL);
1492 }
1493 
1494 static void virt_machine_2_7_options(MachineClass *mc)
1495 {
1496 }
1497 DEFINE_VIRT_MACHINE_AS_LATEST(2, 7)
1498 
1499 #define VIRT_COMPAT_2_6 \
1500     HW_COMPAT_2_6
1501 
1502 static void virt_2_6_instance_init(Object *obj)
1503 {
1504     virt_2_7_instance_init(obj);
1505 }
1506 
1507 static void virt_machine_2_6_options(MachineClass *mc)
1508 {
1509     virt_machine_2_7_options(mc);
1510     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1511 }
1512 DEFINE_VIRT_MACHINE(2, 6)
1513