xref: /qemu/hw/arm/virt.c (revision d201cf7a)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/tpm.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/arm/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/irq.h"
66 #include "kvm_arm.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/memory-device.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-mem-pci.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
82 
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85                                                     void *data) \
86     { \
87         MachineClass *mc = MACHINE_CLASS(oc); \
88         virt_machine_##major##_##minor##_options(mc); \
89         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90         if (latest) { \
91             mc->alias = "virt"; \
92         } \
93     } \
94     static const TypeInfo machvirt_##major##_##minor##_info = { \
95         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96         .parent = TYPE_VIRT_MACHINE, \
97         .class_init = virt_##major##_##minor##_class_init, \
98     }; \
99     static void machvirt_machine_##major##_##minor##_init(void) \
100     { \
101         type_register_static(&machvirt_##major##_##minor##_info); \
102     } \
103     type_init(machvirt_machine_##major##_##minor##_init);
104 
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109 
110 
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
113 
114 #define PLATFORM_BUS_NUM_IRQS 64
115 
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119 
120 /* Addresses and sizes of our components.
121  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122  * 128MB..256MB is used for miscellaneous device I/O.
123  * 256MB..1GB is reserved for possible future PCI support (ie where the
124  * PCI memory window will go if we add a PCI host controller).
125  * 1GB and up is RAM (which may happily spill over into the
126  * high memory region beyond 4GB).
127  * This represents a compromise between how much RAM can be given to
128  * a 32 bit VM and leaving space for expansion and in particular for PCI.
129  * Note that devices should generally be placed at multiples of 0x10000,
130  * to accommodate guests using 64K pages.
131  */
132 static const MemMapEntry base_memmap[] = {
133     /* Space up to 0x8000000 is reserved for a boot ROM */
134     [VIRT_FLASH] =              {          0, 0x08000000 },
135     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
136     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
138     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
139     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
140     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
141     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
142     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
144     /* This redistributor space allows up to 2*64kB*123 CPUs */
145     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
146     [VIRT_UART] =               { 0x09000000, 0x00001000 },
147     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
148     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
149     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
150     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
151     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
152     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
155     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
156     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
157     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
158     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
160     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
161     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
162     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
163     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
164     /* Actual RAM size depends on initial RAM and device memory settings */
165     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
166 };
167 
168 /*
169  * Highmem IO Regions: This memory map is floating, located after the RAM.
170  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171  * top of the RAM, so that its base get the same alignment as the size,
172  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174  * Note the extended_memmap is sized so that it eventually also includes the
175  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176  * index of base_memmap).
177  */
178 static MemMapEntry extended_memmap[] = {
179     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
180     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
181     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
182     /* Second PCIe window */
183     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
184 };
185 
186 static const int a15irqmap[] = {
187     [VIRT_UART] = 1,
188     [VIRT_RTC] = 2,
189     [VIRT_PCIE] = 3, /* ... to 6 */
190     [VIRT_GPIO] = 7,
191     [VIRT_SECURE_UART] = 8,
192     [VIRT_ACPI_GED] = 9,
193     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
194     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
195     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
196     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 };
198 
199 static const char *valid_cpus[] = {
200     ARM_CPU_TYPE_NAME("cortex-a7"),
201     ARM_CPU_TYPE_NAME("cortex-a15"),
202     ARM_CPU_TYPE_NAME("cortex-a53"),
203     ARM_CPU_TYPE_NAME("cortex-a57"),
204     ARM_CPU_TYPE_NAME("cortex-a72"),
205     ARM_CPU_TYPE_NAME("a64fx"),
206     ARM_CPU_TYPE_NAME("host"),
207     ARM_CPU_TYPE_NAME("max"),
208 };
209 
210 static bool cpu_type_valid(const char *cpu)
211 {
212     int i;
213 
214     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
215         if (strcmp(cpu, valid_cpus[i]) == 0) {
216             return true;
217         }
218     }
219     return false;
220 }
221 
222 static void create_kaslr_seed(MachineState *ms, const char *node)
223 {
224     uint64_t seed;
225 
226     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
227         return;
228     }
229     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
230 }
231 
232 static void create_fdt(VirtMachineState *vms)
233 {
234     MachineState *ms = MACHINE(vms);
235     int nb_numa_nodes = ms->numa_state->num_nodes;
236     void *fdt = create_device_tree(&vms->fdt_size);
237 
238     if (!fdt) {
239         error_report("create_device_tree() failed");
240         exit(1);
241     }
242 
243     ms->fdt = fdt;
244 
245     /* Header */
246     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
247     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
248     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
249 
250     /* /chosen must exist for load_dtb to fill in necessary properties later */
251     qemu_fdt_add_subnode(fdt, "/chosen");
252     if (vms->dtb_kaslr_seed) {
253         create_kaslr_seed(ms, "/chosen");
254     }
255 
256     if (vms->secure) {
257         qemu_fdt_add_subnode(fdt, "/secure-chosen");
258         if (vms->dtb_kaslr_seed) {
259             create_kaslr_seed(ms, "/secure-chosen");
260         }
261     }
262 
263     /* Clock node, for the benefit of the UART. The kernel device tree
264      * binding documentation claims the PL011 node clock properties are
265      * optional but in practice if you omit them the kernel refuses to
266      * probe for the device.
267      */
268     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
269     qemu_fdt_add_subnode(fdt, "/apb-pclk");
270     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
271     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
272     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
273     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
274                                 "clk24mhz");
275     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
276 
277     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
278         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
279         uint32_t *matrix = g_malloc0(size);
280         int idx, i, j;
281 
282         for (i = 0; i < nb_numa_nodes; i++) {
283             for (j = 0; j < nb_numa_nodes; j++) {
284                 idx = (i * nb_numa_nodes + j) * 3;
285                 matrix[idx + 0] = cpu_to_be32(i);
286                 matrix[idx + 1] = cpu_to_be32(j);
287                 matrix[idx + 2] =
288                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
289             }
290         }
291 
292         qemu_fdt_add_subnode(fdt, "/distance-map");
293         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
294                                 "numa-distance-map-v1");
295         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
296                          matrix, size);
297         g_free(matrix);
298     }
299 }
300 
301 static void fdt_add_timer_nodes(const VirtMachineState *vms)
302 {
303     /* On real hardware these interrupts are level-triggered.
304      * On KVM they were edge-triggered before host kernel version 4.4,
305      * and level-triggered afterwards.
306      * On emulated QEMU they are level-triggered.
307      *
308      * Getting the DTB info about them wrong is awkward for some
309      * guest kernels:
310      *  pre-4.8 ignore the DT and leave the interrupt configured
311      *   with whatever the GIC reset value (or the bootloader) left it at
312      *  4.8 before rc6 honour the incorrect data by programming it back
313      *   into the GIC, causing problems
314      *  4.8rc6 and later ignore the DT and always write "level triggered"
315      *   into the GIC
316      *
317      * For backwards-compatibility, virt-2.8 and earlier will continue
318      * to say these are edge-triggered, but later machines will report
319      * the correct information.
320      */
321     ARMCPU *armcpu;
322     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
323     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
324     MachineState *ms = MACHINE(vms);
325 
326     if (vmc->claim_edge_triggered_timers) {
327         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
328     }
329 
330     if (vms->gic_version == VIRT_GIC_VERSION_2) {
331         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
332                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
333                              (1 << MACHINE(vms)->smp.cpus) - 1);
334     }
335 
336     qemu_fdt_add_subnode(ms->fdt, "/timer");
337 
338     armcpu = ARM_CPU(qemu_get_cpu(0));
339     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
340         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
341         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
342                          compat, sizeof(compat));
343     } else {
344         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
345                                 "arm,armv7-timer");
346     }
347     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
348     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
349                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
350                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
351                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
352                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
353 }
354 
355 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
356 {
357     int cpu;
358     int addr_cells = 1;
359     const MachineState *ms = MACHINE(vms);
360     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
361     int smp_cpus = ms->smp.cpus;
362 
363     /*
364      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
365      * On ARM v8 64-bit systems value should be set to 2,
366      * that corresponds to the MPIDR_EL1 register size.
367      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
368      * in the system, #address-cells can be set to 1, since
369      * MPIDR_EL1[63:32] bits are not used for CPUs
370      * identification.
371      *
372      * Here we actually don't know whether our system is 32- or 64-bit one.
373      * The simplest way to go is to examine affinity IDs of all our CPUs. If
374      * at least one of them has Aff3 populated, we set #address-cells to 2.
375      */
376     for (cpu = 0; cpu < smp_cpus; cpu++) {
377         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
378 
379         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
380             addr_cells = 2;
381             break;
382         }
383     }
384 
385     qemu_fdt_add_subnode(ms->fdt, "/cpus");
386     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
387     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
388 
389     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
390         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
391         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
392         CPUState *cs = CPU(armcpu);
393 
394         qemu_fdt_add_subnode(ms->fdt, nodename);
395         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
396         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
397                                     armcpu->dtb_compatible);
398 
399         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
400             qemu_fdt_setprop_string(ms->fdt, nodename,
401                                         "enable-method", "psci");
402         }
403 
404         if (addr_cells == 2) {
405             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
406                                  armcpu->mp_affinity);
407         } else {
408             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
409                                   armcpu->mp_affinity);
410         }
411 
412         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
413             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
414                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
415         }
416 
417         if (!vmc->no_cpu_topology) {
418             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
419                                   qemu_fdt_alloc_phandle(ms->fdt));
420         }
421 
422         g_free(nodename);
423     }
424 
425     if (!vmc->no_cpu_topology) {
426         /*
427          * Add vCPU topology description through fdt node cpu-map.
428          *
429          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
430          * In a SMP system, the hierarchy of CPUs can be defined through
431          * four entities that are used to describe the layout of CPUs in
432          * the system: socket/cluster/core/thread.
433          *
434          * A socket node represents the boundary of system physical package
435          * and its child nodes must be one or more cluster nodes. A system
436          * can contain several layers of clustering within a single physical
437          * package and cluster nodes can be contained in parent cluster nodes.
438          *
439          * Note: currently we only support one layer of clustering within
440          * each physical package.
441          */
442         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
443 
444         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
445             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
446             char *map_path;
447 
448             if (ms->smp.threads > 1) {
449                 map_path = g_strdup_printf(
450                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
451                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
452                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
453                     (cpu / ms->smp.threads) % ms->smp.cores,
454                     cpu % ms->smp.threads);
455             } else {
456                 map_path = g_strdup_printf(
457                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
458                     cpu / (ms->smp.clusters * ms->smp.cores),
459                     (cpu / ms->smp.cores) % ms->smp.clusters,
460                     cpu % ms->smp.cores);
461             }
462             qemu_fdt_add_path(ms->fdt, map_path);
463             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
464 
465             g_free(map_path);
466             g_free(cpu_path);
467         }
468     }
469 }
470 
471 static void fdt_add_its_gic_node(VirtMachineState *vms)
472 {
473     char *nodename;
474     MachineState *ms = MACHINE(vms);
475 
476     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
477     nodename = g_strdup_printf("/intc/its@%" PRIx64,
478                                vms->memmap[VIRT_GIC_ITS].base);
479     qemu_fdt_add_subnode(ms->fdt, nodename);
480     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
481                             "arm,gic-v3-its");
482     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
483     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
484                                  2, vms->memmap[VIRT_GIC_ITS].base,
485                                  2, vms->memmap[VIRT_GIC_ITS].size);
486     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
487     g_free(nodename);
488 }
489 
490 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
491 {
492     MachineState *ms = MACHINE(vms);
493     char *nodename;
494 
495     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
496                                vms->memmap[VIRT_GIC_V2M].base);
497     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
498     qemu_fdt_add_subnode(ms->fdt, nodename);
499     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
500                             "arm,gic-v2m-frame");
501     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
502     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
503                                  2, vms->memmap[VIRT_GIC_V2M].base,
504                                  2, vms->memmap[VIRT_GIC_V2M].size);
505     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
506     g_free(nodename);
507 }
508 
509 static void fdt_add_gic_node(VirtMachineState *vms)
510 {
511     MachineState *ms = MACHINE(vms);
512     char *nodename;
513 
514     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
515     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
516 
517     nodename = g_strdup_printf("/intc@%" PRIx64,
518                                vms->memmap[VIRT_GIC_DIST].base);
519     qemu_fdt_add_subnode(ms->fdt, nodename);
520     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
521     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
522     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
523     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
524     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
525     if (vms->gic_version == VIRT_GIC_VERSION_3) {
526         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
527 
528         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
529                                 "arm,gic-v3");
530 
531         qemu_fdt_setprop_cell(ms->fdt, nodename,
532                               "#redistributor-regions", nb_redist_regions);
533 
534         if (nb_redist_regions == 1) {
535             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
536                                          2, vms->memmap[VIRT_GIC_DIST].base,
537                                          2, vms->memmap[VIRT_GIC_DIST].size,
538                                          2, vms->memmap[VIRT_GIC_REDIST].base,
539                                          2, vms->memmap[VIRT_GIC_REDIST].size);
540         } else {
541             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
542                                  2, vms->memmap[VIRT_GIC_DIST].base,
543                                  2, vms->memmap[VIRT_GIC_DIST].size,
544                                  2, vms->memmap[VIRT_GIC_REDIST].base,
545                                  2, vms->memmap[VIRT_GIC_REDIST].size,
546                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
547                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
548         }
549 
550         if (vms->virt) {
551             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
552                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
553                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
554         }
555     } else {
556         /* 'cortex-a15-gic' means 'GIC v2' */
557         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
558                                 "arm,cortex-a15-gic");
559         if (!vms->virt) {
560             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
561                                          2, vms->memmap[VIRT_GIC_DIST].base,
562                                          2, vms->memmap[VIRT_GIC_DIST].size,
563                                          2, vms->memmap[VIRT_GIC_CPU].base,
564                                          2, vms->memmap[VIRT_GIC_CPU].size);
565         } else {
566             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
567                                          2, vms->memmap[VIRT_GIC_DIST].base,
568                                          2, vms->memmap[VIRT_GIC_DIST].size,
569                                          2, vms->memmap[VIRT_GIC_CPU].base,
570                                          2, vms->memmap[VIRT_GIC_CPU].size,
571                                          2, vms->memmap[VIRT_GIC_HYP].base,
572                                          2, vms->memmap[VIRT_GIC_HYP].size,
573                                          2, vms->memmap[VIRT_GIC_VCPU].base,
574                                          2, vms->memmap[VIRT_GIC_VCPU].size);
575             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
576                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
577                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
578         }
579     }
580 
581     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
582     g_free(nodename);
583 }
584 
585 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
586 {
587     ARMCPU *armcpu = ARM_CPU(first_cpu);
588     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
589     MachineState *ms = MACHINE(vms);
590 
591     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
592         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
593         return;
594     }
595 
596     if (vms->gic_version == VIRT_GIC_VERSION_2) {
597         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
598                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
599                              (1 << MACHINE(vms)->smp.cpus) - 1);
600     }
601 
602     qemu_fdt_add_subnode(ms->fdt, "/pmu");
603     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
604         const char compat[] = "arm,armv8-pmuv3";
605         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
606                          compat, sizeof(compat));
607         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
608                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
609     }
610 }
611 
612 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
613 {
614     DeviceState *dev;
615     MachineState *ms = MACHINE(vms);
616     int irq = vms->irqmap[VIRT_ACPI_GED];
617     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
618 
619     if (ms->ram_slots) {
620         event |= ACPI_GED_MEM_HOTPLUG_EVT;
621     }
622 
623     if (ms->nvdimms_state->is_enabled) {
624         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
625     }
626 
627     dev = qdev_new(TYPE_ACPI_GED);
628     qdev_prop_set_uint32(dev, "ged-event", event);
629 
630     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
631     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
632     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
633 
634     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
635 
636     return dev;
637 }
638 
639 static void create_its(VirtMachineState *vms)
640 {
641     const char *itsclass = its_class_name();
642     DeviceState *dev;
643 
644     if (!strcmp(itsclass, "arm-gicv3-its")) {
645         if (!vms->tcg_its) {
646             itsclass = NULL;
647         }
648     }
649 
650     if (!itsclass) {
651         /* Do nothing if not supported */
652         return;
653     }
654 
655     dev = qdev_new(itsclass);
656 
657     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
658                              &error_abort);
659     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
660     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
661 
662     fdt_add_its_gic_node(vms);
663     vms->msi_controller = VIRT_MSI_CTRL_ITS;
664 }
665 
666 static void create_v2m(VirtMachineState *vms)
667 {
668     int i;
669     int irq = vms->irqmap[VIRT_GIC_V2M];
670     DeviceState *dev;
671 
672     dev = qdev_new("arm-gicv2m");
673     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
674     qdev_prop_set_uint32(dev, "base-spi", irq);
675     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
676     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
677 
678     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
679         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
680                            qdev_get_gpio_in(vms->gic, irq + i));
681     }
682 
683     fdt_add_v2m_gic_node(vms);
684     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
685 }
686 
687 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
688 {
689     MachineState *ms = MACHINE(vms);
690     /* We create a standalone GIC */
691     SysBusDevice *gicbusdev;
692     const char *gictype;
693     int type = vms->gic_version, i;
694     unsigned int smp_cpus = ms->smp.cpus;
695     uint32_t nb_redist_regions = 0;
696 
697     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
698 
699     vms->gic = qdev_new(gictype);
700     qdev_prop_set_uint32(vms->gic, "revision", type);
701     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
702     /* Note that the num-irq property counts both internal and external
703      * interrupts; there are always 32 of the former (mandated by GIC spec).
704      */
705     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
706     if (!kvm_irqchip_in_kernel()) {
707         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
708     }
709 
710     if (type == 3) {
711         uint32_t redist0_capacity =
712                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
713         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
714 
715         nb_redist_regions = virt_gicv3_redist_region_count(vms);
716 
717         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
718                              nb_redist_regions);
719         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
720 
721         if (!kvm_irqchip_in_kernel()) {
722             if (vms->tcg_its) {
723                 object_property_set_link(OBJECT(vms->gic), "sysmem",
724                                          OBJECT(mem), &error_fatal);
725                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
726             }
727         }
728 
729         if (nb_redist_regions == 2) {
730             uint32_t redist1_capacity =
731                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
732 
733             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
734                 MIN(smp_cpus - redist0_count, redist1_capacity));
735         }
736     } else {
737         if (!kvm_irqchip_in_kernel()) {
738             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
739                               vms->virt);
740         }
741     }
742     gicbusdev = SYS_BUS_DEVICE(vms->gic);
743     sysbus_realize_and_unref(gicbusdev, &error_fatal);
744     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
745     if (type == 3) {
746         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
747         if (nb_redist_regions == 2) {
748             sysbus_mmio_map(gicbusdev, 2,
749                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
750         }
751     } else {
752         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
753         if (vms->virt) {
754             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
755             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
756         }
757     }
758 
759     /* Wire the outputs from each CPU's generic timer and the GICv3
760      * maintenance interrupt signal to the appropriate GIC PPI inputs,
761      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
762      */
763     for (i = 0; i < smp_cpus; i++) {
764         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
765         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
766         int irq;
767         /* Mapping from the output timer irq lines from the CPU to the
768          * GIC PPI inputs we use for the virt board.
769          */
770         const int timer_irq[] = {
771             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
772             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
773             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
774             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
775         };
776 
777         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
778             qdev_connect_gpio_out(cpudev, irq,
779                                   qdev_get_gpio_in(vms->gic,
780                                                    ppibase + timer_irq[irq]));
781         }
782 
783         if (type == 3) {
784             qemu_irq irq = qdev_get_gpio_in(vms->gic,
785                                             ppibase + ARCH_GIC_MAINT_IRQ);
786             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
787                                         0, irq);
788         } else if (vms->virt) {
789             qemu_irq irq = qdev_get_gpio_in(vms->gic,
790                                             ppibase + ARCH_GIC_MAINT_IRQ);
791             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
792         }
793 
794         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
795                                     qdev_get_gpio_in(vms->gic, ppibase
796                                                      + VIRTUAL_PMU_IRQ));
797 
798         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
799         sysbus_connect_irq(gicbusdev, i + smp_cpus,
800                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
801         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
802                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
803         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
804                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
805     }
806 
807     fdt_add_gic_node(vms);
808 
809     if (type == 3 && vms->its) {
810         create_its(vms);
811     } else if (type == 2) {
812         create_v2m(vms);
813     }
814 }
815 
816 static void create_uart(const VirtMachineState *vms, int uart,
817                         MemoryRegion *mem, Chardev *chr)
818 {
819     char *nodename;
820     hwaddr base = vms->memmap[uart].base;
821     hwaddr size = vms->memmap[uart].size;
822     int irq = vms->irqmap[uart];
823     const char compat[] = "arm,pl011\0arm,primecell";
824     const char clocknames[] = "uartclk\0apb_pclk";
825     DeviceState *dev = qdev_new(TYPE_PL011);
826     SysBusDevice *s = SYS_BUS_DEVICE(dev);
827     MachineState *ms = MACHINE(vms);
828 
829     qdev_prop_set_chr(dev, "chardev", chr);
830     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
831     memory_region_add_subregion(mem, base,
832                                 sysbus_mmio_get_region(s, 0));
833     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
834 
835     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
836     qemu_fdt_add_subnode(ms->fdt, nodename);
837     /* Note that we can't use setprop_string because of the embedded NUL */
838     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
839                          compat, sizeof(compat));
840     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
841                                      2, base, 2, size);
842     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
843                                GIC_FDT_IRQ_TYPE_SPI, irq,
844                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
845     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
846                                vms->clock_phandle, vms->clock_phandle);
847     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
848                          clocknames, sizeof(clocknames));
849 
850     if (uart == VIRT_UART) {
851         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
852     } else {
853         /* Mark as not usable by the normal world */
854         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
855         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
856 
857         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
858                                 nodename);
859     }
860 
861     g_free(nodename);
862 }
863 
864 static void create_rtc(const VirtMachineState *vms)
865 {
866     char *nodename;
867     hwaddr base = vms->memmap[VIRT_RTC].base;
868     hwaddr size = vms->memmap[VIRT_RTC].size;
869     int irq = vms->irqmap[VIRT_RTC];
870     const char compat[] = "arm,pl031\0arm,primecell";
871     MachineState *ms = MACHINE(vms);
872 
873     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
874 
875     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
876     qemu_fdt_add_subnode(ms->fdt, nodename);
877     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
878     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
879                                  2, base, 2, size);
880     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
881                            GIC_FDT_IRQ_TYPE_SPI, irq,
882                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
883     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
884     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
885     g_free(nodename);
886 }
887 
888 static DeviceState *gpio_key_dev;
889 static void virt_powerdown_req(Notifier *n, void *opaque)
890 {
891     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
892 
893     if (s->acpi_dev) {
894         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
895     } else {
896         /* use gpio Pin 3 for power button event */
897         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
898     }
899 }
900 
901 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
902                              uint32_t phandle)
903 {
904     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
905                                         qdev_get_gpio_in(pl061_dev, 3));
906 
907     qemu_fdt_add_subnode(fdt, "/gpio-keys");
908     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
909     qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
910     qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
911 
912     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
913     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
914                             "label", "GPIO Key Poweroff");
915     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
916                           KEY_POWER);
917     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
918                            "gpios", phandle, 3, 0);
919 }
920 
921 #define SECURE_GPIO_POWEROFF 0
922 #define SECURE_GPIO_RESET    1
923 
924 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
925                                    uint32_t phandle)
926 {
927     DeviceState *gpio_pwr_dev;
928 
929     /* gpio-pwr */
930     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
931 
932     /* connect secure pl061 to gpio-pwr */
933     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
934                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
935     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
936                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
937 
938     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
939     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
940                             "gpio-poweroff");
941     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
942                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
943     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
944     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
945                             "okay");
946 
947     qemu_fdt_add_subnode(fdt, "/gpio-restart");
948     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
949                             "gpio-restart");
950     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
951                            "gpios", phandle, SECURE_GPIO_RESET, 0);
952     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
953     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
954                             "okay");
955 }
956 
957 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
958                                 MemoryRegion *mem)
959 {
960     char *nodename;
961     DeviceState *pl061_dev;
962     hwaddr base = vms->memmap[gpio].base;
963     hwaddr size = vms->memmap[gpio].size;
964     int irq = vms->irqmap[gpio];
965     const char compat[] = "arm,pl061\0arm,primecell";
966     SysBusDevice *s;
967     MachineState *ms = MACHINE(vms);
968 
969     pl061_dev = qdev_new("pl061");
970     /* Pull lines down to 0 if not driven by the PL061 */
971     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
972     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
973     s = SYS_BUS_DEVICE(pl061_dev);
974     sysbus_realize_and_unref(s, &error_fatal);
975     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
976     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
977 
978     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
979     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
980     qemu_fdt_add_subnode(ms->fdt, nodename);
981     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
982                                  2, base, 2, size);
983     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
984     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
985     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
986     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
987                            GIC_FDT_IRQ_TYPE_SPI, irq,
988                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
989     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
990     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
991     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
992 
993     if (gpio != VIRT_GPIO) {
994         /* Mark as not usable by the normal world */
995         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
996         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
997     }
998     g_free(nodename);
999 
1000     /* Child gpio devices */
1001     if (gpio == VIRT_GPIO) {
1002         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1003     } else {
1004         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1005     }
1006 }
1007 
1008 static void create_virtio_devices(const VirtMachineState *vms)
1009 {
1010     int i;
1011     hwaddr size = vms->memmap[VIRT_MMIO].size;
1012     MachineState *ms = MACHINE(vms);
1013 
1014     /* We create the transports in forwards order. Since qbus_realize()
1015      * prepends (not appends) new child buses, the incrementing loop below will
1016      * create a list of virtio-mmio buses with decreasing base addresses.
1017      *
1018      * When a -device option is processed from the command line,
1019      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1020      * order. The upshot is that -device options in increasing command line
1021      * order are mapped to virtio-mmio buses with decreasing base addresses.
1022      *
1023      * When this code was originally written, that arrangement ensured that the
1024      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1025      * the first -device on the command line. (The end-to-end order is a
1026      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1027      * guest kernel's name-to-address assignment strategy.)
1028      *
1029      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1030      * the message, if not necessarily the code, of commit 70161ff336.
1031      * Therefore the loop now establishes the inverse of the original intent.
1032      *
1033      * Unfortunately, we can't counteract the kernel change by reversing the
1034      * loop; it would break existing command lines.
1035      *
1036      * In any case, the kernel makes no guarantee about the stability of
1037      * enumeration order of virtio devices (as demonstrated by it changing
1038      * between kernel versions). For reliable and stable identification
1039      * of disks users must use UUIDs or similar mechanisms.
1040      */
1041     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1042         int irq = vms->irqmap[VIRT_MMIO] + i;
1043         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1044 
1045         sysbus_create_simple("virtio-mmio", base,
1046                              qdev_get_gpio_in(vms->gic, irq));
1047     }
1048 
1049     /* We add dtb nodes in reverse order so that they appear in the finished
1050      * device tree lowest address first.
1051      *
1052      * Note that this mapping is independent of the loop above. The previous
1053      * loop influences virtio device to virtio transport assignment, whereas
1054      * this loop controls how virtio transports are laid out in the dtb.
1055      */
1056     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1057         char *nodename;
1058         int irq = vms->irqmap[VIRT_MMIO] + i;
1059         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1060 
1061         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1062         qemu_fdt_add_subnode(ms->fdt, nodename);
1063         qemu_fdt_setprop_string(ms->fdt, nodename,
1064                                 "compatible", "virtio,mmio");
1065         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1066                                      2, base, 2, size);
1067         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1068                                GIC_FDT_IRQ_TYPE_SPI, irq,
1069                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1070         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1071         g_free(nodename);
1072     }
1073 }
1074 
1075 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1076 
1077 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1078                                         const char *name,
1079                                         const char *alias_prop_name)
1080 {
1081     /*
1082      * Create a single flash device.  We use the same parameters as
1083      * the flash devices on the Versatile Express board.
1084      */
1085     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1086 
1087     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1088     qdev_prop_set_uint8(dev, "width", 4);
1089     qdev_prop_set_uint8(dev, "device-width", 2);
1090     qdev_prop_set_bit(dev, "big-endian", false);
1091     qdev_prop_set_uint16(dev, "id0", 0x89);
1092     qdev_prop_set_uint16(dev, "id1", 0x18);
1093     qdev_prop_set_uint16(dev, "id2", 0x00);
1094     qdev_prop_set_uint16(dev, "id3", 0x00);
1095     qdev_prop_set_string(dev, "name", name);
1096     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1097     object_property_add_alias(OBJECT(vms), alias_prop_name,
1098                               OBJECT(dev), "drive");
1099     return PFLASH_CFI01(dev);
1100 }
1101 
1102 static void virt_flash_create(VirtMachineState *vms)
1103 {
1104     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1105     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1106 }
1107 
1108 static void virt_flash_map1(PFlashCFI01 *flash,
1109                             hwaddr base, hwaddr size,
1110                             MemoryRegion *sysmem)
1111 {
1112     DeviceState *dev = DEVICE(flash);
1113 
1114     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1115     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1116     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1117     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1118 
1119     memory_region_add_subregion(sysmem, base,
1120                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1121                                                        0));
1122 }
1123 
1124 static void virt_flash_map(VirtMachineState *vms,
1125                            MemoryRegion *sysmem,
1126                            MemoryRegion *secure_sysmem)
1127 {
1128     /*
1129      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1130      * sysmem is the system memory space. secure_sysmem is the secure view
1131      * of the system, and the first flash device should be made visible only
1132      * there. The second flash device is visible to both secure and nonsecure.
1133      * If sysmem == secure_sysmem this means there is no separate Secure
1134      * address space and both flash devices are generally visible.
1135      */
1136     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1137     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1138 
1139     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1140                     secure_sysmem);
1141     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1142                     sysmem);
1143 }
1144 
1145 static void virt_flash_fdt(VirtMachineState *vms,
1146                            MemoryRegion *sysmem,
1147                            MemoryRegion *secure_sysmem)
1148 {
1149     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1150     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1151     MachineState *ms = MACHINE(vms);
1152     char *nodename;
1153 
1154     if (sysmem == secure_sysmem) {
1155         /* Report both flash devices as a single node in the DT */
1156         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1157         qemu_fdt_add_subnode(ms->fdt, nodename);
1158         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1159         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1160                                      2, flashbase, 2, flashsize,
1161                                      2, flashbase + flashsize, 2, flashsize);
1162         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1163         g_free(nodename);
1164     } else {
1165         /*
1166          * Report the devices as separate nodes so we can mark one as
1167          * only visible to the secure world.
1168          */
1169         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1170         qemu_fdt_add_subnode(ms->fdt, nodename);
1171         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1172         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1173                                      2, flashbase, 2, flashsize);
1174         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1175         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1176         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1177         g_free(nodename);
1178 
1179         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1180         qemu_fdt_add_subnode(ms->fdt, nodename);
1181         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1182         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1183                                      2, flashbase + flashsize, 2, flashsize);
1184         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1185         g_free(nodename);
1186     }
1187 }
1188 
1189 static bool virt_firmware_init(VirtMachineState *vms,
1190                                MemoryRegion *sysmem,
1191                                MemoryRegion *secure_sysmem)
1192 {
1193     int i;
1194     const char *bios_name;
1195     BlockBackend *pflash_blk0;
1196 
1197     /* Map legacy -drive if=pflash to machine properties */
1198     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1199         pflash_cfi01_legacy_drive(vms->flash[i],
1200                                   drive_get(IF_PFLASH, 0, i));
1201     }
1202 
1203     virt_flash_map(vms, sysmem, secure_sysmem);
1204 
1205     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1206 
1207     bios_name = MACHINE(vms)->firmware;
1208     if (bios_name) {
1209         char *fname;
1210         MemoryRegion *mr;
1211         int image_size;
1212 
1213         if (pflash_blk0) {
1214             error_report("The contents of the first flash device may be "
1215                          "specified with -bios or with -drive if=pflash... "
1216                          "but you cannot use both options at once");
1217             exit(1);
1218         }
1219 
1220         /* Fall back to -bios */
1221 
1222         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1223         if (!fname) {
1224             error_report("Could not find ROM image '%s'", bios_name);
1225             exit(1);
1226         }
1227         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1228         image_size = load_image_mr(fname, mr);
1229         g_free(fname);
1230         if (image_size < 0) {
1231             error_report("Could not load ROM image '%s'", bios_name);
1232             exit(1);
1233         }
1234     }
1235 
1236     return pflash_blk0 || bios_name;
1237 }
1238 
1239 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1240 {
1241     MachineState *ms = MACHINE(vms);
1242     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1243     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1244     FWCfgState *fw_cfg;
1245     char *nodename;
1246 
1247     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1248     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1249 
1250     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1251     qemu_fdt_add_subnode(ms->fdt, nodename);
1252     qemu_fdt_setprop_string(ms->fdt, nodename,
1253                             "compatible", "qemu,fw-cfg-mmio");
1254     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1255                                  2, base, 2, size);
1256     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1257     g_free(nodename);
1258     return fw_cfg;
1259 }
1260 
1261 static void create_pcie_irq_map(const MachineState *ms,
1262                                 uint32_t gic_phandle,
1263                                 int first_irq, const char *nodename)
1264 {
1265     int devfn, pin;
1266     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1267     uint32_t *irq_map = full_irq_map;
1268 
1269     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1270         for (pin = 0; pin < 4; pin++) {
1271             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1272             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1273             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1274             int i;
1275 
1276             uint32_t map[] = {
1277                 devfn << 8, 0, 0,                           /* devfn */
1278                 pin + 1,                                    /* PCI pin */
1279                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1280 
1281             /* Convert map to big endian */
1282             for (i = 0; i < 10; i++) {
1283                 irq_map[i] = cpu_to_be32(map[i]);
1284             }
1285             irq_map += 10;
1286         }
1287     }
1288 
1289     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1290                      full_irq_map, sizeof(full_irq_map));
1291 
1292     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1293                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1294                            0, 0,
1295                            0x7           /* PCI irq */);
1296 }
1297 
1298 static void create_smmu(const VirtMachineState *vms,
1299                         PCIBus *bus)
1300 {
1301     char *node;
1302     const char compat[] = "arm,smmu-v3";
1303     int irq =  vms->irqmap[VIRT_SMMU];
1304     int i;
1305     hwaddr base = vms->memmap[VIRT_SMMU].base;
1306     hwaddr size = vms->memmap[VIRT_SMMU].size;
1307     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1308     DeviceState *dev;
1309     MachineState *ms = MACHINE(vms);
1310 
1311     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1312         return;
1313     }
1314 
1315     dev = qdev_new("arm-smmuv3");
1316 
1317     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1318                              &error_abort);
1319     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1320     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1321     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1322         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1323                            qdev_get_gpio_in(vms->gic, irq + i));
1324     }
1325 
1326     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1327     qemu_fdt_add_subnode(ms->fdt, node);
1328     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1329     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1330 
1331     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1332             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1333             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1334             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1335             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1336 
1337     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1338                      sizeof(irq_names));
1339 
1340     qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1341     qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1342     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1343 
1344     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1345 
1346     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1347     g_free(node);
1348 }
1349 
1350 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1351 {
1352     const char compat[] = "virtio,pci-iommu";
1353     uint16_t bdf = vms->virtio_iommu_bdf;
1354     MachineState *ms = MACHINE(vms);
1355     char *node;
1356 
1357     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1358 
1359     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1360     qemu_fdt_add_subnode(ms->fdt, node);
1361     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1362     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1363                                  1, bdf << 8, 1, 0, 1, 0,
1364                                  1, 0, 1, 0);
1365 
1366     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1367     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1368     g_free(node);
1369 
1370     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1371                            0x0, vms->iommu_phandle, 0x0, bdf,
1372                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1373 }
1374 
1375 static void create_pcie(VirtMachineState *vms)
1376 {
1377     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1378     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1379     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1380     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1381     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1382     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1383     hwaddr base_ecam, size_ecam;
1384     hwaddr base = base_mmio;
1385     int nr_pcie_buses;
1386     int irq = vms->irqmap[VIRT_PCIE];
1387     MemoryRegion *mmio_alias;
1388     MemoryRegion *mmio_reg;
1389     MemoryRegion *ecam_alias;
1390     MemoryRegion *ecam_reg;
1391     DeviceState *dev;
1392     char *nodename;
1393     int i, ecam_id;
1394     PCIHostState *pci;
1395     MachineState *ms = MACHINE(vms);
1396 
1397     dev = qdev_new(TYPE_GPEX_HOST);
1398     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1399 
1400     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1401     base_ecam = vms->memmap[ecam_id].base;
1402     size_ecam = vms->memmap[ecam_id].size;
1403     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1404     /* Map only the first size_ecam bytes of ECAM space */
1405     ecam_alias = g_new0(MemoryRegion, 1);
1406     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1407     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1408                              ecam_reg, 0, size_ecam);
1409     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1410 
1411     /* Map the MMIO window into system address space so as to expose
1412      * the section of PCI MMIO space which starts at the same base address
1413      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1414      * the window).
1415      */
1416     mmio_alias = g_new0(MemoryRegion, 1);
1417     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1418     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1419                              mmio_reg, base_mmio, size_mmio);
1420     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1421 
1422     if (vms->highmem_mmio) {
1423         /* Map high MMIO space */
1424         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1425 
1426         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1427                                  mmio_reg, base_mmio_high, size_mmio_high);
1428         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1429                                     high_mmio_alias);
1430     }
1431 
1432     /* Map IO port space */
1433     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1434 
1435     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1436         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1437                            qdev_get_gpio_in(vms->gic, irq + i));
1438         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1439     }
1440 
1441     pci = PCI_HOST_BRIDGE(dev);
1442     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1443     vms->bus = pci->bus;
1444     if (vms->bus) {
1445         for (i = 0; i < nb_nics; i++) {
1446             NICInfo *nd = &nd_table[i];
1447 
1448             if (!nd->model) {
1449                 nd->model = g_strdup("virtio");
1450             }
1451 
1452             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1453         }
1454     }
1455 
1456     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1457     qemu_fdt_add_subnode(ms->fdt, nodename);
1458     qemu_fdt_setprop_string(ms->fdt, nodename,
1459                             "compatible", "pci-host-ecam-generic");
1460     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1461     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1462     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1463     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1464     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1465                            nr_pcie_buses - 1);
1466     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1467 
1468     if (vms->msi_phandle) {
1469         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1470                                vms->msi_phandle);
1471     }
1472 
1473     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1474                                  2, base_ecam, 2, size_ecam);
1475 
1476     if (vms->highmem_mmio) {
1477         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1478                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1479                                      2, base_pio, 2, size_pio,
1480                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1481                                      2, base_mmio, 2, size_mmio,
1482                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1483                                      2, base_mmio_high,
1484                                      2, base_mmio_high, 2, size_mmio_high);
1485     } else {
1486         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1487                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1488                                      2, base_pio, 2, size_pio,
1489                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1490                                      2, base_mmio, 2, size_mmio);
1491     }
1492 
1493     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1494     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1495 
1496     if (vms->iommu) {
1497         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1498 
1499         switch (vms->iommu) {
1500         case VIRT_IOMMU_SMMUV3:
1501             create_smmu(vms, vms->bus);
1502             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1503                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1504             break;
1505         default:
1506             g_assert_not_reached();
1507         }
1508     }
1509 }
1510 
1511 static void create_platform_bus(VirtMachineState *vms)
1512 {
1513     DeviceState *dev;
1514     SysBusDevice *s;
1515     int i;
1516     MemoryRegion *sysmem = get_system_memory();
1517 
1518     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1519     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1520     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1521     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1522     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1523     vms->platform_bus_dev = dev;
1524 
1525     s = SYS_BUS_DEVICE(dev);
1526     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1527         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1528         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1529     }
1530 
1531     memory_region_add_subregion(sysmem,
1532                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1533                                 sysbus_mmio_get_region(s, 0));
1534 }
1535 
1536 static void create_tag_ram(MemoryRegion *tag_sysmem,
1537                            hwaddr base, hwaddr size,
1538                            const char *name)
1539 {
1540     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1541 
1542     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1543     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1544 }
1545 
1546 static void create_secure_ram(VirtMachineState *vms,
1547                               MemoryRegion *secure_sysmem,
1548                               MemoryRegion *secure_tag_sysmem)
1549 {
1550     MemoryRegion *secram = g_new(MemoryRegion, 1);
1551     char *nodename;
1552     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1553     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1554     MachineState *ms = MACHINE(vms);
1555 
1556     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1557                            &error_fatal);
1558     memory_region_add_subregion(secure_sysmem, base, secram);
1559 
1560     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1561     qemu_fdt_add_subnode(ms->fdt, nodename);
1562     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1563     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1564     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1565     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1566 
1567     if (secure_tag_sysmem) {
1568         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1569     }
1570 
1571     g_free(nodename);
1572 }
1573 
1574 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1575 {
1576     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1577                                                  bootinfo);
1578     MachineState *ms = MACHINE(board);
1579 
1580 
1581     *fdt_size = board->fdt_size;
1582     return ms->fdt;
1583 }
1584 
1585 static void virt_build_smbios(VirtMachineState *vms)
1586 {
1587     MachineClass *mc = MACHINE_GET_CLASS(vms);
1588     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1589     uint8_t *smbios_tables, *smbios_anchor;
1590     size_t smbios_tables_len, smbios_anchor_len;
1591     const char *product = "QEMU Virtual Machine";
1592 
1593     if (kvm_enabled()) {
1594         product = "KVM Virtual Machine";
1595     }
1596 
1597     smbios_set_defaults("QEMU", product,
1598                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1599                         true, SMBIOS_ENTRY_POINT_TYPE_64);
1600 
1601     smbios_get_tables(MACHINE(vms), NULL, 0,
1602                       &smbios_tables, &smbios_tables_len,
1603                       &smbios_anchor, &smbios_anchor_len,
1604                       &error_fatal);
1605 
1606     if (smbios_anchor) {
1607         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1608                         smbios_tables, smbios_tables_len);
1609         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1610                         smbios_anchor, smbios_anchor_len);
1611     }
1612 }
1613 
1614 static
1615 void virt_machine_done(Notifier *notifier, void *data)
1616 {
1617     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1618                                          machine_done);
1619     MachineState *ms = MACHINE(vms);
1620     ARMCPU *cpu = ARM_CPU(first_cpu);
1621     struct arm_boot_info *info = &vms->bootinfo;
1622     AddressSpace *as = arm_boot_address_space(cpu, info);
1623 
1624     /*
1625      * If the user provided a dtb, we assume the dynamic sysbus nodes
1626      * already are integrated there. This corresponds to a use case where
1627      * the dynamic sysbus nodes are complex and their generation is not yet
1628      * supported. In that case the user can take charge of the guest dt
1629      * while qemu takes charge of the qom stuff.
1630      */
1631     if (info->dtb_filename == NULL) {
1632         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1633                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1634                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1635                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1636     }
1637     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1638         exit(1);
1639     }
1640 
1641     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1642 
1643     virt_acpi_setup(vms);
1644     virt_build_smbios(vms);
1645 }
1646 
1647 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1648 {
1649     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1650     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1651 
1652     if (!vmc->disallow_affinity_adjustment) {
1653         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1654          * GIC's target-list limitations. 32-bit KVM hosts currently
1655          * always create clusters of 4 CPUs, but that is expected to
1656          * change when they gain support for gicv3. When KVM is enabled
1657          * it will override the changes we make here, therefore our
1658          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1659          * and to improve SGI efficiency.
1660          */
1661         if (vms->gic_version == VIRT_GIC_VERSION_3) {
1662             clustersz = GICV3_TARGETLIST_BITS;
1663         } else {
1664             clustersz = GIC_TARGETLIST_BITS;
1665         }
1666     }
1667     return arm_cpu_mp_affinity(idx, clustersz);
1668 }
1669 
1670 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1671 {
1672     MachineState *ms = MACHINE(vms);
1673     hwaddr base, device_memory_base, device_memory_size, memtop;
1674     int i;
1675 
1676     vms->memmap = extended_memmap;
1677 
1678     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1679         vms->memmap[i] = base_memmap[i];
1680     }
1681 
1682     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1683         error_report("unsupported number of memory slots: %"PRIu64,
1684                      ms->ram_slots);
1685         exit(EXIT_FAILURE);
1686     }
1687 
1688     /*
1689      * !highmem is exactly the same as limiting the PA space to 32bit,
1690      * irrespective of the underlying capabilities of the HW.
1691      */
1692     if (!vms->highmem) {
1693         pa_bits = 32;
1694     }
1695 
1696     /*
1697      * We compute the base of the high IO region depending on the
1698      * amount of initial and device memory. The device memory start/size
1699      * is aligned on 1GiB. We never put the high IO region below 256GiB
1700      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1701      * The device region size assumes 1GiB page max alignment per slot.
1702      */
1703     device_memory_base =
1704         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1705     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1706 
1707     /* Base address of the high IO region */
1708     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1709     if (memtop > BIT_ULL(pa_bits)) {
1710 	    error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1711 			 pa_bits, memtop - BIT_ULL(pa_bits));
1712         exit(EXIT_FAILURE);
1713     }
1714     if (base < device_memory_base) {
1715         error_report("maxmem/slots too huge");
1716         exit(EXIT_FAILURE);
1717     }
1718     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1719         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1720     }
1721 
1722     /* We know for sure that at least the memory fits in the PA space */
1723     vms->highest_gpa = memtop - 1;
1724 
1725     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1726         hwaddr size = extended_memmap[i].size;
1727         bool fits;
1728 
1729         base = ROUND_UP(base, size);
1730         vms->memmap[i].base = base;
1731         vms->memmap[i].size = size;
1732 
1733         /*
1734          * Check each device to see if they fit in the PA space,
1735          * moving highest_gpa as we go.
1736          *
1737          * For each device that doesn't fit, disable it.
1738          */
1739         fits = (base + size) <= BIT_ULL(pa_bits);
1740         if (fits) {
1741             vms->highest_gpa = base + size - 1;
1742         }
1743 
1744         switch (i) {
1745         case VIRT_HIGH_GIC_REDIST2:
1746             vms->highmem_redists &= fits;
1747             break;
1748         case VIRT_HIGH_PCIE_ECAM:
1749             vms->highmem_ecam &= fits;
1750             break;
1751         case VIRT_HIGH_PCIE_MMIO:
1752             vms->highmem_mmio &= fits;
1753             break;
1754         }
1755 
1756         base += size;
1757     }
1758 
1759     if (device_memory_size > 0) {
1760         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1761         ms->device_memory->base = device_memory_base;
1762         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1763                            "device-memory", device_memory_size);
1764     }
1765 }
1766 
1767 /*
1768  * finalize_gic_version - Determines the final gic_version
1769  * according to the gic-version property
1770  *
1771  * Default GIC type is v2
1772  */
1773 static void finalize_gic_version(VirtMachineState *vms)
1774 {
1775     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1776 
1777     if (kvm_enabled()) {
1778         int probe_bitmap;
1779 
1780         if (!kvm_irqchip_in_kernel()) {
1781             switch (vms->gic_version) {
1782             case VIRT_GIC_VERSION_HOST:
1783                 warn_report(
1784                     "gic-version=host not relevant with kernel-irqchip=off "
1785                      "as only userspace GICv2 is supported. Using v2 ...");
1786                 return;
1787             case VIRT_GIC_VERSION_MAX:
1788             case VIRT_GIC_VERSION_NOSEL:
1789                 vms->gic_version = VIRT_GIC_VERSION_2;
1790                 return;
1791             case VIRT_GIC_VERSION_2:
1792                 return;
1793             case VIRT_GIC_VERSION_3:
1794                 error_report(
1795                     "gic-version=3 is not supported with kernel-irqchip=off");
1796                 exit(1);
1797             }
1798         }
1799 
1800         probe_bitmap = kvm_arm_vgic_probe();
1801         if (!probe_bitmap) {
1802             error_report("Unable to determine GIC version supported by host");
1803             exit(1);
1804         }
1805 
1806         switch (vms->gic_version) {
1807         case VIRT_GIC_VERSION_HOST:
1808         case VIRT_GIC_VERSION_MAX:
1809             if (probe_bitmap & KVM_ARM_VGIC_V3) {
1810                 vms->gic_version = VIRT_GIC_VERSION_3;
1811             } else {
1812                 vms->gic_version = VIRT_GIC_VERSION_2;
1813             }
1814             return;
1815         case VIRT_GIC_VERSION_NOSEL:
1816             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1817                 vms->gic_version = VIRT_GIC_VERSION_2;
1818             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1819                 /*
1820                  * in case the host does not support v2 in-kernel emulation or
1821                  * the end-user requested more than 8 VCPUs we now default
1822                  * to v3. In any case defaulting to v2 would be broken.
1823                  */
1824                 vms->gic_version = VIRT_GIC_VERSION_3;
1825             } else if (max_cpus > GIC_NCPU) {
1826                 error_report("host only supports in-kernel GICv2 emulation "
1827                              "but more than 8 vcpus are requested");
1828                 exit(1);
1829             }
1830             break;
1831         case VIRT_GIC_VERSION_2:
1832         case VIRT_GIC_VERSION_3:
1833             break;
1834         }
1835 
1836         /* Check chosen version is effectively supported by the host */
1837         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1838             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1839             error_report("host does not support in-kernel GICv2 emulation");
1840             exit(1);
1841         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1842                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1843             error_report("host does not support in-kernel GICv3 emulation");
1844             exit(1);
1845         }
1846         return;
1847     }
1848 
1849     /* TCG mode */
1850     switch (vms->gic_version) {
1851     case VIRT_GIC_VERSION_NOSEL:
1852         vms->gic_version = VIRT_GIC_VERSION_2;
1853         break;
1854     case VIRT_GIC_VERSION_MAX:
1855         vms->gic_version = VIRT_GIC_VERSION_3;
1856         break;
1857     case VIRT_GIC_VERSION_HOST:
1858         error_report("gic-version=host requires KVM");
1859         exit(1);
1860     case VIRT_GIC_VERSION_2:
1861     case VIRT_GIC_VERSION_3:
1862         break;
1863     }
1864 }
1865 
1866 /*
1867  * virt_cpu_post_init() must be called after the CPUs have
1868  * been realized and the GIC has been created.
1869  */
1870 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1871 {
1872     int max_cpus = MACHINE(vms)->smp.max_cpus;
1873     bool aarch64, pmu, steal_time;
1874     CPUState *cpu;
1875 
1876     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1877     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1878     steal_time = object_property_get_bool(OBJECT(first_cpu),
1879                                           "kvm-steal-time", NULL);
1880 
1881     if (kvm_enabled()) {
1882         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1883         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1884 
1885         if (steal_time) {
1886             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1887             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1888 
1889             /* The memory region size must be a multiple of host page size. */
1890             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1891 
1892             if (pvtime_size > pvtime_reg_size) {
1893                 error_report("pvtime requires a %" HWADDR_PRId
1894                              " byte memory region for %d CPUs,"
1895                              " but only %" HWADDR_PRId " has been reserved",
1896                              pvtime_size, max_cpus, pvtime_reg_size);
1897                 exit(1);
1898             }
1899 
1900             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1901             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1902         }
1903 
1904         CPU_FOREACH(cpu) {
1905             if (pmu) {
1906                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1907                 if (kvm_irqchip_in_kernel()) {
1908                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1909                 }
1910                 kvm_arm_pmu_init(cpu);
1911             }
1912             if (steal_time) {
1913                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1914                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1915             }
1916         }
1917     } else {
1918         if (aarch64 && vms->highmem) {
1919             int requested_pa_size = 64 - clz64(vms->highest_gpa);
1920             int pamax = arm_pamax(ARM_CPU(first_cpu));
1921 
1922             if (pamax < requested_pa_size) {
1923                 error_report("VCPU supports less PA bits (%d) than "
1924                              "requested by the memory map (%d)",
1925                              pamax, requested_pa_size);
1926                 exit(1);
1927             }
1928         }
1929     }
1930 }
1931 
1932 static void machvirt_init(MachineState *machine)
1933 {
1934     VirtMachineState *vms = VIRT_MACHINE(machine);
1935     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1936     MachineClass *mc = MACHINE_GET_CLASS(machine);
1937     const CPUArchIdList *possible_cpus;
1938     MemoryRegion *sysmem = get_system_memory();
1939     MemoryRegion *secure_sysmem = NULL;
1940     MemoryRegion *tag_sysmem = NULL;
1941     MemoryRegion *secure_tag_sysmem = NULL;
1942     int n, virt_max_cpus;
1943     bool firmware_loaded;
1944     bool aarch64 = true;
1945     bool has_ged = !vmc->no_ged;
1946     unsigned int smp_cpus = machine->smp.cpus;
1947     unsigned int max_cpus = machine->smp.max_cpus;
1948 
1949     if (!cpu_type_valid(machine->cpu_type)) {
1950         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1951         exit(1);
1952     }
1953 
1954     possible_cpus = mc->possible_cpu_arch_ids(machine);
1955 
1956     /*
1957      * In accelerated mode, the memory map is computed earlier in kvm_type()
1958      * to create a VM with the right number of IPA bits.
1959      */
1960     if (!vms->memmap) {
1961         Object *cpuobj;
1962         ARMCPU *armcpu;
1963         int pa_bits;
1964 
1965         /*
1966          * Instanciate a temporary CPU object to find out about what
1967          * we are about to deal with. Once this is done, get rid of
1968          * the object.
1969          */
1970         cpuobj = object_new(possible_cpus->cpus[0].type);
1971         armcpu = ARM_CPU(cpuobj);
1972 
1973         if (object_property_get_bool(cpuobj, "aarch64", NULL)) {
1974             pa_bits = arm_pamax(armcpu);
1975         } else if (arm_feature(&armcpu->env, ARM_FEATURE_LPAE)) {
1976             /* v7 with LPAE */
1977             pa_bits = 40;
1978         } else {
1979             /* Anything else */
1980             pa_bits = 32;
1981         }
1982 
1983         object_unref(cpuobj);
1984 
1985         virt_set_memmap(vms, pa_bits);
1986     }
1987 
1988     /* We can probe only here because during property set
1989      * KVM is not available yet
1990      */
1991     finalize_gic_version(vms);
1992 
1993     if (vms->secure) {
1994         /*
1995          * The Secure view of the world is the same as the NonSecure,
1996          * but with a few extra devices. Create it as a container region
1997          * containing the system memory at low priority; any secure-only
1998          * devices go in at higher priority and take precedence.
1999          */
2000         secure_sysmem = g_new(MemoryRegion, 1);
2001         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2002                            UINT64_MAX);
2003         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2004     }
2005 
2006     firmware_loaded = virt_firmware_init(vms, sysmem,
2007                                          secure_sysmem ?: sysmem);
2008 
2009     /* If we have an EL3 boot ROM then the assumption is that it will
2010      * implement PSCI itself, so disable QEMU's internal implementation
2011      * so it doesn't get in the way. Instead of starting secondary
2012      * CPUs in PSCI powerdown state we will start them all running and
2013      * let the boot ROM sort them out.
2014      * The usual case is that we do use QEMU's PSCI implementation;
2015      * if the guest has EL2 then we will use SMC as the conduit,
2016      * and otherwise we will use HVC (for backwards compatibility and
2017      * because if we're using KVM then we must use HVC).
2018      */
2019     if (vms->secure && firmware_loaded) {
2020         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2021     } else if (vms->virt) {
2022         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2023     } else {
2024         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2025     }
2026 
2027     /* The maximum number of CPUs depends on the GIC version, or on how
2028      * many redistributors we can fit into the memory map.
2029      */
2030     if (vms->gic_version == VIRT_GIC_VERSION_3) {
2031         virt_max_cpus =
2032             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
2033         virt_max_cpus +=
2034             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
2035     } else {
2036         virt_max_cpus = GIC_NCPU;
2037     }
2038 
2039     if (max_cpus > virt_max_cpus) {
2040         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2041                      "supported by machine 'mach-virt' (%d)",
2042                      max_cpus, virt_max_cpus);
2043         exit(1);
2044     }
2045 
2046     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2047         error_report("mach-virt: %s does not support providing "
2048                      "Virtualization extensions to the guest CPU",
2049                      kvm_enabled() ? "KVM" : "HVF");
2050         exit(1);
2051     }
2052 
2053     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2054         error_report("mach-virt: %s does not support providing "
2055                      "MTE to the guest CPU",
2056                      kvm_enabled() ? "KVM" : "HVF");
2057         exit(1);
2058     }
2059 
2060     create_fdt(vms);
2061 
2062     assert(possible_cpus->len == max_cpus);
2063     for (n = 0; n < possible_cpus->len; n++) {
2064         Object *cpuobj;
2065         CPUState *cs;
2066 
2067         if (n >= smp_cpus) {
2068             break;
2069         }
2070 
2071         cpuobj = object_new(possible_cpus->cpus[n].type);
2072         object_property_set_int(cpuobj, "mp-affinity",
2073                                 possible_cpus->cpus[n].arch_id, NULL);
2074 
2075         cs = CPU(cpuobj);
2076         cs->cpu_index = n;
2077 
2078         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2079                           &error_fatal);
2080 
2081         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2082 
2083         if (!vms->secure) {
2084             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2085         }
2086 
2087         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2088             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2089         }
2090 
2091         if (vmc->kvm_no_adjvtime &&
2092             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2093             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2094         }
2095 
2096         if (vmc->no_kvm_steal_time &&
2097             object_property_find(cpuobj, "kvm-steal-time")) {
2098             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2099         }
2100 
2101         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2102             object_property_set_bool(cpuobj, "pmu", false, NULL);
2103         }
2104 
2105         if (object_property_find(cpuobj, "reset-cbar")) {
2106             object_property_set_int(cpuobj, "reset-cbar",
2107                                     vms->memmap[VIRT_CPUPERIPHS].base,
2108                                     &error_abort);
2109         }
2110 
2111         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2112                                  &error_abort);
2113         if (vms->secure) {
2114             object_property_set_link(cpuobj, "secure-memory",
2115                                      OBJECT(secure_sysmem), &error_abort);
2116         }
2117 
2118         if (vms->mte) {
2119             /* Create the memory region only once, but link to all cpus. */
2120             if (!tag_sysmem) {
2121                 /*
2122                  * The property exists only if MemTag is supported.
2123                  * If it is, we must allocate the ram to back that up.
2124                  */
2125                 if (!object_property_find(cpuobj, "tag-memory")) {
2126                     error_report("MTE requested, but not supported "
2127                                  "by the guest CPU");
2128                     exit(1);
2129                 }
2130 
2131                 tag_sysmem = g_new(MemoryRegion, 1);
2132                 memory_region_init(tag_sysmem, OBJECT(machine),
2133                                    "tag-memory", UINT64_MAX / 32);
2134 
2135                 if (vms->secure) {
2136                     secure_tag_sysmem = g_new(MemoryRegion, 1);
2137                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
2138                                        "secure-tag-memory", UINT64_MAX / 32);
2139 
2140                     /* As with ram, secure-tag takes precedence over tag.  */
2141                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2142                                                         tag_sysmem, -1);
2143                 }
2144             }
2145 
2146             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2147                                      &error_abort);
2148             if (vms->secure) {
2149                 object_property_set_link(cpuobj, "secure-tag-memory",
2150                                          OBJECT(secure_tag_sysmem),
2151                                          &error_abort);
2152             }
2153         }
2154 
2155         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2156         object_unref(cpuobj);
2157     }
2158     fdt_add_timer_nodes(vms);
2159     fdt_add_cpu_nodes(vms);
2160 
2161     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2162                                 machine->ram);
2163     if (machine->device_memory) {
2164         memory_region_add_subregion(sysmem, machine->device_memory->base,
2165                                     &machine->device_memory->mr);
2166     }
2167 
2168     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2169 
2170     create_gic(vms, sysmem);
2171 
2172     virt_cpu_post_init(vms, sysmem);
2173 
2174     fdt_add_pmu_nodes(vms);
2175 
2176     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2177 
2178     if (vms->secure) {
2179         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2180         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2181     }
2182 
2183     if (tag_sysmem) {
2184         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2185                        machine->ram_size, "mach-virt.tag");
2186     }
2187 
2188     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2189 
2190     create_rtc(vms);
2191 
2192     create_pcie(vms);
2193 
2194     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2195         vms->acpi_dev = create_acpi_ged(vms);
2196     } else {
2197         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2198     }
2199 
2200     if (vms->secure && !vmc->no_secure_gpio) {
2201         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2202     }
2203 
2204      /* connect powerdown request */
2205      vms->powerdown_notifier.notify = virt_powerdown_req;
2206      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2207 
2208     /* Create mmio transports, so the user can create virtio backends
2209      * (which will be automatically plugged in to the transports). If
2210      * no backend is created the transport will just sit harmlessly idle.
2211      */
2212     create_virtio_devices(vms);
2213 
2214     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2215     rom_set_fw(vms->fw_cfg);
2216 
2217     create_platform_bus(vms);
2218 
2219     if (machine->nvdimms_state->is_enabled) {
2220         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2221             .space_id = AML_AS_SYSTEM_MEMORY,
2222             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2223             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2224         };
2225 
2226         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2227                                arm_virt_nvdimm_acpi_dsmio,
2228                                vms->fw_cfg, OBJECT(vms));
2229     }
2230 
2231     vms->bootinfo.ram_size = machine->ram_size;
2232     vms->bootinfo.board_id = -1;
2233     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2234     vms->bootinfo.get_dtb = machvirt_dtb;
2235     vms->bootinfo.skip_dtb_autoload = true;
2236     vms->bootinfo.firmware_loaded = firmware_loaded;
2237     vms->bootinfo.psci_conduit = vms->psci_conduit;
2238     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2239 
2240     vms->machine_done.notify = virt_machine_done;
2241     qemu_add_machine_init_done_notifier(&vms->machine_done);
2242 }
2243 
2244 static bool virt_get_secure(Object *obj, Error **errp)
2245 {
2246     VirtMachineState *vms = VIRT_MACHINE(obj);
2247 
2248     return vms->secure;
2249 }
2250 
2251 static void virt_set_secure(Object *obj, bool value, Error **errp)
2252 {
2253     VirtMachineState *vms = VIRT_MACHINE(obj);
2254 
2255     vms->secure = value;
2256 }
2257 
2258 static bool virt_get_virt(Object *obj, Error **errp)
2259 {
2260     VirtMachineState *vms = VIRT_MACHINE(obj);
2261 
2262     return vms->virt;
2263 }
2264 
2265 static void virt_set_virt(Object *obj, bool value, Error **errp)
2266 {
2267     VirtMachineState *vms = VIRT_MACHINE(obj);
2268 
2269     vms->virt = value;
2270 }
2271 
2272 static bool virt_get_highmem(Object *obj, Error **errp)
2273 {
2274     VirtMachineState *vms = VIRT_MACHINE(obj);
2275 
2276     return vms->highmem;
2277 }
2278 
2279 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2280 {
2281     VirtMachineState *vms = VIRT_MACHINE(obj);
2282 
2283     vms->highmem = value;
2284 }
2285 
2286 static bool virt_get_its(Object *obj, Error **errp)
2287 {
2288     VirtMachineState *vms = VIRT_MACHINE(obj);
2289 
2290     return vms->its;
2291 }
2292 
2293 static void virt_set_its(Object *obj, bool value, Error **errp)
2294 {
2295     VirtMachineState *vms = VIRT_MACHINE(obj);
2296 
2297     vms->its = value;
2298 }
2299 
2300 static bool virt_get_dtb_kaslr_seed(Object *obj, Error **errp)
2301 {
2302     VirtMachineState *vms = VIRT_MACHINE(obj);
2303 
2304     return vms->dtb_kaslr_seed;
2305 }
2306 
2307 static void virt_set_dtb_kaslr_seed(Object *obj, bool value, Error **errp)
2308 {
2309     VirtMachineState *vms = VIRT_MACHINE(obj);
2310 
2311     vms->dtb_kaslr_seed = value;
2312 }
2313 
2314 static char *virt_get_oem_id(Object *obj, Error **errp)
2315 {
2316     VirtMachineState *vms = VIRT_MACHINE(obj);
2317 
2318     return g_strdup(vms->oem_id);
2319 }
2320 
2321 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2322 {
2323     VirtMachineState *vms = VIRT_MACHINE(obj);
2324     size_t len = strlen(value);
2325 
2326     if (len > 6) {
2327         error_setg(errp,
2328                    "User specified oem-id value is bigger than 6 bytes in size");
2329         return;
2330     }
2331 
2332     strncpy(vms->oem_id, value, 6);
2333 }
2334 
2335 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2336 {
2337     VirtMachineState *vms = VIRT_MACHINE(obj);
2338 
2339     return g_strdup(vms->oem_table_id);
2340 }
2341 
2342 static void virt_set_oem_table_id(Object *obj, const char *value,
2343                                   Error **errp)
2344 {
2345     VirtMachineState *vms = VIRT_MACHINE(obj);
2346     size_t len = strlen(value);
2347 
2348     if (len > 8) {
2349         error_setg(errp,
2350                    "User specified oem-table-id value is bigger than 8 bytes in size");
2351         return;
2352     }
2353     strncpy(vms->oem_table_id, value, 8);
2354 }
2355 
2356 
2357 bool virt_is_acpi_enabled(VirtMachineState *vms)
2358 {
2359     if (vms->acpi == ON_OFF_AUTO_OFF) {
2360         return false;
2361     }
2362     return true;
2363 }
2364 
2365 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2366                           void *opaque, Error **errp)
2367 {
2368     VirtMachineState *vms = VIRT_MACHINE(obj);
2369     OnOffAuto acpi = vms->acpi;
2370 
2371     visit_type_OnOffAuto(v, name, &acpi, errp);
2372 }
2373 
2374 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2375                           void *opaque, Error **errp)
2376 {
2377     VirtMachineState *vms = VIRT_MACHINE(obj);
2378 
2379     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2380 }
2381 
2382 static bool virt_get_ras(Object *obj, Error **errp)
2383 {
2384     VirtMachineState *vms = VIRT_MACHINE(obj);
2385 
2386     return vms->ras;
2387 }
2388 
2389 static void virt_set_ras(Object *obj, bool value, Error **errp)
2390 {
2391     VirtMachineState *vms = VIRT_MACHINE(obj);
2392 
2393     vms->ras = value;
2394 }
2395 
2396 static bool virt_get_mte(Object *obj, Error **errp)
2397 {
2398     VirtMachineState *vms = VIRT_MACHINE(obj);
2399 
2400     return vms->mte;
2401 }
2402 
2403 static void virt_set_mte(Object *obj, bool value, Error **errp)
2404 {
2405     VirtMachineState *vms = VIRT_MACHINE(obj);
2406 
2407     vms->mte = value;
2408 }
2409 
2410 static char *virt_get_gic_version(Object *obj, Error **errp)
2411 {
2412     VirtMachineState *vms = VIRT_MACHINE(obj);
2413     const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2414 
2415     return g_strdup(val);
2416 }
2417 
2418 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2419 {
2420     VirtMachineState *vms = VIRT_MACHINE(obj);
2421 
2422     if (!strcmp(value, "3")) {
2423         vms->gic_version = VIRT_GIC_VERSION_3;
2424     } else if (!strcmp(value, "2")) {
2425         vms->gic_version = VIRT_GIC_VERSION_2;
2426     } else if (!strcmp(value, "host")) {
2427         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2428     } else if (!strcmp(value, "max")) {
2429         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2430     } else {
2431         error_setg(errp, "Invalid gic-version value");
2432         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2433     }
2434 }
2435 
2436 static char *virt_get_iommu(Object *obj, Error **errp)
2437 {
2438     VirtMachineState *vms = VIRT_MACHINE(obj);
2439 
2440     switch (vms->iommu) {
2441     case VIRT_IOMMU_NONE:
2442         return g_strdup("none");
2443     case VIRT_IOMMU_SMMUV3:
2444         return g_strdup("smmuv3");
2445     default:
2446         g_assert_not_reached();
2447     }
2448 }
2449 
2450 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2451 {
2452     VirtMachineState *vms = VIRT_MACHINE(obj);
2453 
2454     if (!strcmp(value, "smmuv3")) {
2455         vms->iommu = VIRT_IOMMU_SMMUV3;
2456     } else if (!strcmp(value, "none")) {
2457         vms->iommu = VIRT_IOMMU_NONE;
2458     } else {
2459         error_setg(errp, "Invalid iommu value");
2460         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2461     }
2462 }
2463 
2464 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2465 {
2466     VirtMachineState *vms = VIRT_MACHINE(obj);
2467 
2468     return vms->default_bus_bypass_iommu;
2469 }
2470 
2471 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2472                                               Error **errp)
2473 {
2474     VirtMachineState *vms = VIRT_MACHINE(obj);
2475 
2476     vms->default_bus_bypass_iommu = value;
2477 }
2478 
2479 static CpuInstanceProperties
2480 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2481 {
2482     MachineClass *mc = MACHINE_GET_CLASS(ms);
2483     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2484 
2485     assert(cpu_index < possible_cpus->len);
2486     return possible_cpus->cpus[cpu_index].props;
2487 }
2488 
2489 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2490 {
2491     return idx % ms->numa_state->num_nodes;
2492 }
2493 
2494 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2495 {
2496     int n;
2497     unsigned int max_cpus = ms->smp.max_cpus;
2498     VirtMachineState *vms = VIRT_MACHINE(ms);
2499 
2500     if (ms->possible_cpus) {
2501         assert(ms->possible_cpus->len == max_cpus);
2502         return ms->possible_cpus;
2503     }
2504 
2505     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2506                                   sizeof(CPUArchId) * max_cpus);
2507     ms->possible_cpus->len = max_cpus;
2508     for (n = 0; n < ms->possible_cpus->len; n++) {
2509         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2510         ms->possible_cpus->cpus[n].arch_id =
2511             virt_cpu_mp_affinity(vms, n);
2512         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2513         ms->possible_cpus->cpus[n].props.thread_id = n;
2514     }
2515     return ms->possible_cpus;
2516 }
2517 
2518 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2519                                  Error **errp)
2520 {
2521     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2522     const MachineState *ms = MACHINE(hotplug_dev);
2523     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2524 
2525     if (!vms->acpi_dev) {
2526         error_setg(errp,
2527                    "memory hotplug is not enabled: missing acpi-ged device");
2528         return;
2529     }
2530 
2531     if (vms->mte) {
2532         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2533         return;
2534     }
2535 
2536     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2537         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2538         return;
2539     }
2540 
2541     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2542 }
2543 
2544 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2545                              DeviceState *dev, Error **errp)
2546 {
2547     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2548     MachineState *ms = MACHINE(hotplug_dev);
2549     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2550 
2551     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2552 
2553     if (is_nvdimm) {
2554         nvdimm_plug(ms->nvdimms_state);
2555     }
2556 
2557     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2558                          dev, &error_abort);
2559 }
2560 
2561 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2562                                         DeviceState *dev, Error **errp)
2563 {
2564     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2565     Error *local_err = NULL;
2566 
2567     if (!hotplug_dev2 && dev->hotplugged) {
2568         /*
2569          * Without a bus hotplug handler, we cannot control the plug/unplug
2570          * order. We should never reach this point when hotplugging on ARM.
2571          * However, it's nice to add a safety net, similar to what we have
2572          * on x86.
2573          */
2574         error_setg(errp, "hotplug of virtio based memory devices not supported"
2575                    " on this bus.");
2576         return;
2577     }
2578     /*
2579      * First, see if we can plug this memory device at all. If that
2580      * succeeds, branch of to the actual hotplug handler.
2581      */
2582     memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2583                            &local_err);
2584     if (!local_err && hotplug_dev2) {
2585         hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2586     }
2587     error_propagate(errp, local_err);
2588 }
2589 
2590 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2591                                     DeviceState *dev, Error **errp)
2592 {
2593     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2594     Error *local_err = NULL;
2595 
2596     /*
2597      * Plug the memory device first and then branch off to the actual
2598      * hotplug handler. If that one fails, we can easily undo the memory
2599      * device bits.
2600      */
2601     memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2602     if (hotplug_dev2) {
2603         hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2604         if (local_err) {
2605             memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2606         }
2607     }
2608     error_propagate(errp, local_err);
2609 }
2610 
2611 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2612                                               DeviceState *dev, Error **errp)
2613 {
2614     /* We don't support hot unplug of virtio based memory devices */
2615     error_setg(errp, "virtio based memory devices cannot be unplugged.");
2616 }
2617 
2618 
2619 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2620                                             DeviceState *dev, Error **errp)
2621 {
2622     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2623 
2624     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2625         virt_memory_pre_plug(hotplug_dev, dev, errp);
2626     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2627         virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2628     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2629         hwaddr db_start = 0, db_end = 0;
2630         char *resv_prop_str;
2631 
2632         if (vms->iommu != VIRT_IOMMU_NONE) {
2633             error_setg(errp, "virt machine does not support multiple IOMMUs");
2634             return;
2635         }
2636 
2637         switch (vms->msi_controller) {
2638         case VIRT_MSI_CTRL_NONE:
2639             return;
2640         case VIRT_MSI_CTRL_ITS:
2641             /* GITS_TRANSLATER page */
2642             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2643             db_end = base_memmap[VIRT_GIC_ITS].base +
2644                      base_memmap[VIRT_GIC_ITS].size - 1;
2645             break;
2646         case VIRT_MSI_CTRL_GICV2M:
2647             /* MSI_SETSPI_NS page */
2648             db_start = base_memmap[VIRT_GIC_V2M].base;
2649             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2650             break;
2651         }
2652         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2653                                         db_start, db_end,
2654                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2655 
2656         object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2657         object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2658                                 resv_prop_str, errp);
2659         g_free(resv_prop_str);
2660     }
2661 }
2662 
2663 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2664                                         DeviceState *dev, Error **errp)
2665 {
2666     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2667 
2668     if (vms->platform_bus_dev) {
2669         MachineClass *mc = MACHINE_GET_CLASS(vms);
2670 
2671         if (device_is_dynamic_sysbus(mc, dev)) {
2672             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2673                                      SYS_BUS_DEVICE(dev));
2674         }
2675     }
2676     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2677         virt_memory_plug(hotplug_dev, dev, errp);
2678     }
2679 
2680     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2681         virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2682     }
2683 
2684     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2685         PCIDevice *pdev = PCI_DEVICE(dev);
2686 
2687         vms->iommu = VIRT_IOMMU_VIRTIO;
2688         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2689         create_virtio_iommu_dt_bindings(vms);
2690     }
2691 }
2692 
2693 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2694                                      DeviceState *dev, Error **errp)
2695 {
2696     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2697     Error *local_err = NULL;
2698 
2699     if (!vms->acpi_dev) {
2700         error_setg(&local_err,
2701                    "memory hotplug is not enabled: missing acpi-ged device");
2702         goto out;
2703     }
2704 
2705     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2706         error_setg(&local_err,
2707                    "nvdimm device hot unplug is not supported yet.");
2708         goto out;
2709     }
2710 
2711     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2712                                    &local_err);
2713 out:
2714     error_propagate(errp, local_err);
2715 }
2716 
2717 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2718                              DeviceState *dev, Error **errp)
2719 {
2720     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2721     Error *local_err = NULL;
2722 
2723     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2724     if (local_err) {
2725         goto out;
2726     }
2727 
2728     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2729     qdev_unrealize(dev);
2730 
2731 out:
2732     error_propagate(errp, local_err);
2733 }
2734 
2735 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2736                                           DeviceState *dev, Error **errp)
2737 {
2738     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2739         virt_dimm_unplug_request(hotplug_dev, dev, errp);
2740     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2741         virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2742     } else {
2743         error_setg(errp, "device unplug request for unsupported device"
2744                    " type: %s", object_get_typename(OBJECT(dev)));
2745     }
2746 }
2747 
2748 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2749                                           DeviceState *dev, Error **errp)
2750 {
2751     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2752         virt_dimm_unplug(hotplug_dev, dev, errp);
2753     } else {
2754         error_setg(errp, "virt: device unplug for unsupported device"
2755                    " type: %s", object_get_typename(OBJECT(dev)));
2756     }
2757 }
2758 
2759 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2760                                                         DeviceState *dev)
2761 {
2762     MachineClass *mc = MACHINE_GET_CLASS(machine);
2763 
2764     if (device_is_dynamic_sysbus(mc, dev) ||
2765         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2766         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2767         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2768         return HOTPLUG_HANDLER(machine);
2769     }
2770     return NULL;
2771 }
2772 
2773 /*
2774  * for arm64 kvm_type [7-0] encodes the requested number of bits
2775  * in the IPA address space
2776  */
2777 static int virt_kvm_type(MachineState *ms, const char *type_str)
2778 {
2779     VirtMachineState *vms = VIRT_MACHINE(ms);
2780     int max_vm_pa_size, requested_pa_size;
2781     bool fixed_ipa;
2782 
2783     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2784 
2785     /* we freeze the memory map to compute the highest gpa */
2786     virt_set_memmap(vms, max_vm_pa_size);
2787 
2788     requested_pa_size = 64 - clz64(vms->highest_gpa);
2789 
2790     /*
2791      * KVM requires the IPA size to be at least 32 bits.
2792      */
2793     if (requested_pa_size < 32) {
2794         requested_pa_size = 32;
2795     }
2796 
2797     if (requested_pa_size > max_vm_pa_size) {
2798         error_report("-m and ,maxmem option values "
2799                      "require an IPA range (%d bits) larger than "
2800                      "the one supported by the host (%d bits)",
2801                      requested_pa_size, max_vm_pa_size);
2802         exit(1);
2803     }
2804     /*
2805      * We return the requested PA log size, unless KVM only supports
2806      * the implicit legacy 40b IPA setting, in which case the kvm_type
2807      * must be 0.
2808      */
2809     return fixed_ipa ? 0 : requested_pa_size;
2810 }
2811 
2812 static void virt_machine_class_init(ObjectClass *oc, void *data)
2813 {
2814     MachineClass *mc = MACHINE_CLASS(oc);
2815     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2816 
2817     mc->init = machvirt_init;
2818     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2819      * The value may be reduced later when we have more information about the
2820      * configuration of the particular instance.
2821      */
2822     mc->max_cpus = 512;
2823     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2824     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2825     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2826     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2827 #ifdef CONFIG_TPM
2828     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2829 #endif
2830     mc->block_default_type = IF_VIRTIO;
2831     mc->no_cdrom = 1;
2832     mc->pci_allow_0_address = true;
2833     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2834     mc->minimum_page_bits = 12;
2835     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2836     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2837     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2838     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2839     mc->kvm_type = virt_kvm_type;
2840     assert(!mc->get_hotplug_handler);
2841     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2842     hc->pre_plug = virt_machine_device_pre_plug_cb;
2843     hc->plug = virt_machine_device_plug_cb;
2844     hc->unplug_request = virt_machine_device_unplug_request_cb;
2845     hc->unplug = virt_machine_device_unplug_cb;
2846     mc->nvdimm_supported = true;
2847     mc->smp_props.clusters_supported = true;
2848     mc->auto_enable_numa_with_memhp = true;
2849     mc->auto_enable_numa_with_memdev = true;
2850     mc->default_ram_id = "mach-virt.ram";
2851 
2852     object_class_property_add(oc, "acpi", "OnOffAuto",
2853         virt_get_acpi, virt_set_acpi,
2854         NULL, NULL);
2855     object_class_property_set_description(oc, "acpi",
2856         "Enable ACPI");
2857     object_class_property_add_bool(oc, "secure", virt_get_secure,
2858                                    virt_set_secure);
2859     object_class_property_set_description(oc, "secure",
2860                                                 "Set on/off to enable/disable the ARM "
2861                                                 "Security Extensions (TrustZone)");
2862 
2863     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2864                                    virt_set_virt);
2865     object_class_property_set_description(oc, "virtualization",
2866                                           "Set on/off to enable/disable emulating a "
2867                                           "guest CPU which implements the ARM "
2868                                           "Virtualization Extensions");
2869 
2870     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2871                                    virt_set_highmem);
2872     object_class_property_set_description(oc, "highmem",
2873                                           "Set on/off to enable/disable using "
2874                                           "physical address space above 32 bits");
2875 
2876     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2877                                   virt_set_gic_version);
2878     object_class_property_set_description(oc, "gic-version",
2879                                           "Set GIC version. "
2880                                           "Valid values are 2, 3, host and max");
2881 
2882     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2883     object_class_property_set_description(oc, "iommu",
2884                                           "Set the IOMMU type. "
2885                                           "Valid values are none and smmuv3");
2886 
2887     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
2888                                    virt_get_default_bus_bypass_iommu,
2889                                    virt_set_default_bus_bypass_iommu);
2890     object_class_property_set_description(oc, "default-bus-bypass-iommu",
2891                                           "Set on/off to enable/disable "
2892                                           "bypass_iommu for default root bus");
2893 
2894     object_class_property_add_bool(oc, "ras", virt_get_ras,
2895                                    virt_set_ras);
2896     object_class_property_set_description(oc, "ras",
2897                                           "Set on/off to enable/disable reporting host memory errors "
2898                                           "to a KVM guest using ACPI and guest external abort exceptions");
2899 
2900     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2901     object_class_property_set_description(oc, "mte",
2902                                           "Set on/off to enable/disable emulating a "
2903                                           "guest CPU which implements the ARM "
2904                                           "Memory Tagging Extension");
2905 
2906     object_class_property_add_bool(oc, "its", virt_get_its,
2907                                    virt_set_its);
2908     object_class_property_set_description(oc, "its",
2909                                           "Set on/off to enable/disable "
2910                                           "ITS instantiation");
2911 
2912     object_class_property_add_bool(oc, "dtb-kaslr-seed",
2913                                    virt_get_dtb_kaslr_seed,
2914                                    virt_set_dtb_kaslr_seed);
2915     object_class_property_set_description(oc, "dtb-kaslr-seed",
2916                                           "Set off to disable passing of kaslr-seed "
2917                                           "dtb node to guest");
2918 
2919     object_class_property_add_str(oc, "x-oem-id",
2920                                   virt_get_oem_id,
2921                                   virt_set_oem_id);
2922     object_class_property_set_description(oc, "x-oem-id",
2923                                           "Override the default value of field OEMID "
2924                                           "in ACPI table header."
2925                                           "The string may be up to 6 bytes in size");
2926 
2927 
2928     object_class_property_add_str(oc, "x-oem-table-id",
2929                                   virt_get_oem_table_id,
2930                                   virt_set_oem_table_id);
2931     object_class_property_set_description(oc, "x-oem-table-id",
2932                                           "Override the default value of field OEM Table ID "
2933                                           "in ACPI table header."
2934                                           "The string may be up to 8 bytes in size");
2935 
2936 }
2937 
2938 static void virt_instance_init(Object *obj)
2939 {
2940     VirtMachineState *vms = VIRT_MACHINE(obj);
2941     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2942 
2943     /* EL3 is disabled by default on virt: this makes us consistent
2944      * between KVM and TCG for this board, and it also allows us to
2945      * boot UEFI blobs which assume no TrustZone support.
2946      */
2947     vms->secure = false;
2948 
2949     /* EL2 is also disabled by default, for similar reasons */
2950     vms->virt = false;
2951 
2952     /* High memory is enabled by default */
2953     vms->highmem = true;
2954     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2955 
2956     vms->highmem_ecam = !vmc->no_highmem_ecam;
2957     vms->highmem_mmio = true;
2958     vms->highmem_redists = true;
2959 
2960     if (vmc->no_its) {
2961         vms->its = false;
2962     } else {
2963         /* Default allows ITS instantiation */
2964         vms->its = true;
2965 
2966         if (vmc->no_tcg_its) {
2967             vms->tcg_its = false;
2968         } else {
2969             vms->tcg_its = true;
2970         }
2971     }
2972 
2973     /* Default disallows iommu instantiation */
2974     vms->iommu = VIRT_IOMMU_NONE;
2975 
2976     /* The default root bus is attached to iommu by default */
2977     vms->default_bus_bypass_iommu = false;
2978 
2979     /* Default disallows RAS instantiation */
2980     vms->ras = false;
2981 
2982     /* MTE is disabled by default.  */
2983     vms->mte = false;
2984 
2985     /* Supply a kaslr-seed by default */
2986     vms->dtb_kaslr_seed = true;
2987 
2988     vms->irqmap = a15irqmap;
2989 
2990     virt_flash_create(vms);
2991 
2992     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2993     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2994 }
2995 
2996 static const TypeInfo virt_machine_info = {
2997     .name          = TYPE_VIRT_MACHINE,
2998     .parent        = TYPE_MACHINE,
2999     .abstract      = true,
3000     .instance_size = sizeof(VirtMachineState),
3001     .class_size    = sizeof(VirtMachineClass),
3002     .class_init    = virt_machine_class_init,
3003     .instance_init = virt_instance_init,
3004     .interfaces = (InterfaceInfo[]) {
3005          { TYPE_HOTPLUG_HANDLER },
3006          { }
3007     },
3008 };
3009 
3010 static void machvirt_machine_init(void)
3011 {
3012     type_register_static(&virt_machine_info);
3013 }
3014 type_init(machvirt_machine_init);
3015 
3016 static void virt_machine_7_0_options(MachineClass *mc)
3017 {
3018 }
3019 DEFINE_VIRT_MACHINE_AS_LATEST(7, 0)
3020 
3021 static void virt_machine_6_2_options(MachineClass *mc)
3022 {
3023     virt_machine_7_0_options(mc);
3024     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3025 }
3026 DEFINE_VIRT_MACHINE(6, 2)
3027 
3028 static void virt_machine_6_1_options(MachineClass *mc)
3029 {
3030     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3031 
3032     virt_machine_6_2_options(mc);
3033     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3034     mc->smp_props.prefer_sockets = true;
3035     vmc->no_cpu_topology = true;
3036 
3037     /* qemu ITS was introduced with 6.2 */
3038     vmc->no_tcg_its = true;
3039 }
3040 DEFINE_VIRT_MACHINE(6, 1)
3041 
3042 static void virt_machine_6_0_options(MachineClass *mc)
3043 {
3044     virt_machine_6_1_options(mc);
3045     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3046 }
3047 DEFINE_VIRT_MACHINE(6, 0)
3048 
3049 static void virt_machine_5_2_options(MachineClass *mc)
3050 {
3051     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3052 
3053     virt_machine_6_0_options(mc);
3054     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3055     vmc->no_secure_gpio = true;
3056 }
3057 DEFINE_VIRT_MACHINE(5, 2)
3058 
3059 static void virt_machine_5_1_options(MachineClass *mc)
3060 {
3061     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3062 
3063     virt_machine_5_2_options(mc);
3064     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3065     vmc->no_kvm_steal_time = true;
3066 }
3067 DEFINE_VIRT_MACHINE(5, 1)
3068 
3069 static void virt_machine_5_0_options(MachineClass *mc)
3070 {
3071     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3072 
3073     virt_machine_5_1_options(mc);
3074     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3075     mc->numa_mem_supported = true;
3076     vmc->acpi_expose_flash = true;
3077     mc->auto_enable_numa_with_memdev = false;
3078 }
3079 DEFINE_VIRT_MACHINE(5, 0)
3080 
3081 static void virt_machine_4_2_options(MachineClass *mc)
3082 {
3083     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3084 
3085     virt_machine_5_0_options(mc);
3086     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3087     vmc->kvm_no_adjvtime = true;
3088 }
3089 DEFINE_VIRT_MACHINE(4, 2)
3090 
3091 static void virt_machine_4_1_options(MachineClass *mc)
3092 {
3093     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3094 
3095     virt_machine_4_2_options(mc);
3096     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3097     vmc->no_ged = true;
3098     mc->auto_enable_numa_with_memhp = false;
3099 }
3100 DEFINE_VIRT_MACHINE(4, 1)
3101 
3102 static void virt_machine_4_0_options(MachineClass *mc)
3103 {
3104     virt_machine_4_1_options(mc);
3105     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3106 }
3107 DEFINE_VIRT_MACHINE(4, 0)
3108 
3109 static void virt_machine_3_1_options(MachineClass *mc)
3110 {
3111     virt_machine_4_0_options(mc);
3112     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3113 }
3114 DEFINE_VIRT_MACHINE(3, 1)
3115 
3116 static void virt_machine_3_0_options(MachineClass *mc)
3117 {
3118     virt_machine_3_1_options(mc);
3119     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3120 }
3121 DEFINE_VIRT_MACHINE(3, 0)
3122 
3123 static void virt_machine_2_12_options(MachineClass *mc)
3124 {
3125     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3126 
3127     virt_machine_3_0_options(mc);
3128     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3129     vmc->no_highmem_ecam = true;
3130     mc->max_cpus = 255;
3131 }
3132 DEFINE_VIRT_MACHINE(2, 12)
3133 
3134 static void virt_machine_2_11_options(MachineClass *mc)
3135 {
3136     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3137 
3138     virt_machine_2_12_options(mc);
3139     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3140     vmc->smbios_old_sys_ver = true;
3141 }
3142 DEFINE_VIRT_MACHINE(2, 11)
3143 
3144 static void virt_machine_2_10_options(MachineClass *mc)
3145 {
3146     virt_machine_2_11_options(mc);
3147     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3148     /* before 2.11 we never faulted accesses to bad addresses */
3149     mc->ignore_memory_transaction_failures = true;
3150 }
3151 DEFINE_VIRT_MACHINE(2, 10)
3152 
3153 static void virt_machine_2_9_options(MachineClass *mc)
3154 {
3155     virt_machine_2_10_options(mc);
3156     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3157 }
3158 DEFINE_VIRT_MACHINE(2, 9)
3159 
3160 static void virt_machine_2_8_options(MachineClass *mc)
3161 {
3162     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3163 
3164     virt_machine_2_9_options(mc);
3165     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3166     /* For 2.8 and earlier we falsely claimed in the DT that
3167      * our timers were edge-triggered, not level-triggered.
3168      */
3169     vmc->claim_edge_triggered_timers = true;
3170 }
3171 DEFINE_VIRT_MACHINE(2, 8)
3172 
3173 static void virt_machine_2_7_options(MachineClass *mc)
3174 {
3175     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3176 
3177     virt_machine_2_8_options(mc);
3178     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3179     /* ITS was introduced with 2.8 */
3180     vmc->no_its = true;
3181     /* Stick with 1K pages for migration compatibility */
3182     mc->minimum_page_bits = 0;
3183 }
3184 DEFINE_VIRT_MACHINE(2, 7)
3185 
3186 static void virt_machine_2_6_options(MachineClass *mc)
3187 {
3188     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3189 
3190     virt_machine_2_7_options(mc);
3191     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3192     vmc->disallow_affinity_adjustment = true;
3193     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3194     vmc->no_pmu = true;
3195 }
3196 DEFINE_VIRT_MACHINE(2, 6)
3197