xref: /qemu/hw/audio/fmopl.c (revision 2004429e)
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31  */
32 
33 #define HAS_YM3812	1
34 
35 #include "qemu/osdep.h"
36 #include <math.h>
37 //#include "driver.h"		/* use M.A.M.E. */
38 #include "fmopl.h"
39 
40 #ifndef PI
41 #define PI 3.14159265358979323846
42 #endif
43 
44 #ifndef ARRAY_SIZE
45 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
46 #endif
47 
48 /* -------------------- for debug --------------------- */
49 /* #define OPL_OUTPUT_LOG */
50 #ifdef OPL_OUTPUT_LOG
51 static FILE *opl_dbg_fp = NULL;
52 static FM_OPL *opl_dbg_opl[16];
53 static int opl_dbg_maxchip,opl_dbg_chip;
54 #endif
55 
56 /* -------------------- preliminary define section --------------------- */
57 /* attack/decay rate time rate */
58 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
59 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
60 
61 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
62 
63 #define FREQ_BITS 24			/* frequency turn          */
64 
65 /* counter bits = 20 , octerve 7 */
66 #define FREQ_RATE   (1<<(FREQ_BITS-20))
67 #define TL_BITS    (FREQ_BITS+2)
68 
69 /* final output shift , limit minimum and maximum */
70 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
71 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
72 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
73 
74 /* -------------------- quality selection --------------------- */
75 
76 /* sinwave entries */
77 /* used static memory = SIN_ENT * 4 (byte) */
78 #define SIN_ENT 2048
79 
80 /* output level entries (envelope,sinwave) */
81 /* envelope counter lower bits */
82 #define ENV_BITS 16
83 /* envelope output entries */
84 #define EG_ENT   4096
85 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
86 /* used static  memory = EG_ENT*4 (byte)                     */
87 
88 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
89 #define EG_DED   EG_OFF
90 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
91 #define EG_AED   EG_DST
92 #define EG_AST   0                       /* ATTACK START */
93 
94 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
95 
96 /* LFO table entries */
97 #define VIB_ENT 512
98 #define VIB_SHIFT (32-9)
99 #define AMS_ENT 512
100 #define AMS_SHIFT (32-9)
101 
102 #define VIB_RATE 256
103 
104 /* -------------------- local defines , macros --------------------- */
105 
106 /* register number to channel number , slot offset */
107 #define SLOT1 0
108 #define SLOT2 1
109 
110 /* envelope phase */
111 #define ENV_MOD_RR  0x00
112 #define ENV_MOD_DR  0x01
113 #define ENV_MOD_AR  0x02
114 
115 /* -------------------- tables --------------------- */
116 static const int slot_array[32]=
117 {
118 	 0, 2, 4, 1, 3, 5,-1,-1,
119 	 6, 8,10, 7, 9,11,-1,-1,
120 	12,14,16,13,15,17,-1,-1,
121 	-1,-1,-1,-1,-1,-1,-1,-1
122 };
123 
124 /* key scale level */
125 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
126 #define DV (EG_STEP/2)
127 static const UINT32 KSL_TABLE[8*16]=
128 {
129 	/* OCT 0 */
130 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
133 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 	/* OCT 1 */
135 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137 	 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
138 	 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
139 	/* OCT 2 */
140 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
141 	 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
142 	 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
143 	 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
144 	/* OCT 3 */
145 	 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
146 	 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
147 	 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
148 	 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
149 	/* OCT 4 */
150 	 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
151 	 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
152 	 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
153 	10.875/DV,11.250/DV,11.625/DV,12.000/DV,
154 	/* OCT 5 */
155 	 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
156 	 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
157 	12.000/DV,12.750/DV,13.125/DV,13.500/DV,
158 	13.875/DV,14.250/DV,14.625/DV,15.000/DV,
159 	/* OCT 6 */
160 	 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
161 	12.000/DV,13.125/DV,13.875/DV,14.625/DV,
162 	15.000/DV,15.750/DV,16.125/DV,16.500/DV,
163 	16.875/DV,17.250/DV,17.625/DV,18.000/DV,
164 	/* OCT 7 */
165 	 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
166 	15.000/DV,16.125/DV,16.875/DV,17.625/DV,
167 	18.000/DV,18.750/DV,19.125/DV,19.500/DV,
168 	19.875/DV,20.250/DV,20.625/DV,21.000/DV
169 };
170 #undef DV
171 
172 /* sustain lebel table (3db per step) */
173 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
174 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
175 static const INT32 SL_TABLE[16]={
176  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
177  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
178 };
179 #undef SC
180 
181 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
182 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
183 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
184 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
185 static INT32 *TL_TABLE;
186 
187 /* pointers to TL_TABLE with sinwave output offset */
188 static INT32 **SIN_TABLE;
189 
190 /* LFO table */
191 static INT32 *AMS_TABLE;
192 static INT32 *VIB_TABLE;
193 
194 /* envelope output curve table */
195 /* attack + decay + OFF */
196 static INT32 ENV_CURVE[2*EG_ENT+1];
197 
198 /* multiple table */
199 #define ML 2
200 static const UINT32 MUL_TABLE[16]= {
201 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
202    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
203    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
204 };
205 #undef ML
206 
207 /* dummy attack / decay rate ( when rate == 0 ) */
208 static INT32 RATE_0[16]=
209 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
210 
211 /* -------------------- static state --------------------- */
212 
213 /* lock level of common table */
214 static int num_lock = 0;
215 
216 /* work table */
217 static void *cur_chip = NULL;	/* current chip point */
218 /* currenct chip state */
219 /* static OPLSAMPLE  *bufL,*bufR; */
220 static OPL_CH *S_CH;
221 static OPL_CH *E_CH;
222 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
223 
224 static INT32 outd[1];
225 static INT32 ams;
226 static INT32 vib;
227 static INT32 *ams_table;
228 static INT32 *vib_table;
229 static INT32 amsIncr;
230 static INT32 vibIncr;
231 static INT32 feedback2;		/* connect for SLOT 2 */
232 
233 /* log output level */
234 #define LOG_ERR  3      /* ERROR       */
235 #define LOG_WAR  2      /* WARNING     */
236 #define LOG_INF  1      /* INFORMATION */
237 
238 //#define LOG_LEVEL LOG_INF
239 #define LOG_LEVEL	LOG_ERR
240 
241 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
242 #define LOG(n,x)
243 
244 /* --------------------- subroutines  --------------------- */
245 
246 static inline int Limit( int val, int max, int min ) {
247 	if ( val > max )
248 		val = max;
249 	else if ( val < min )
250 		val = min;
251 
252 	return val;
253 }
254 
255 /* status set and IRQ handling */
256 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
257 {
258 	/* set status flag */
259 	OPL->status |= flag;
260 	if(!(OPL->status & 0x80))
261 	{
262 		if(OPL->status & OPL->statusmask)
263 		{	/* IRQ on */
264 			OPL->status |= 0x80;
265 			/* callback user interrupt handler (IRQ is OFF to ON) */
266 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
267 		}
268 	}
269 }
270 
271 /* status reset and IRQ handling */
272 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
273 {
274 	/* reset status flag */
275 	OPL->status &=~flag;
276 	if((OPL->status & 0x80))
277 	{
278 		if (!(OPL->status & OPL->statusmask) )
279 		{
280 			OPL->status &= 0x7f;
281 			/* callback user interrupt handler (IRQ is ON to OFF) */
282 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
283 		}
284 	}
285 }
286 
287 /* IRQ mask set */
288 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
289 {
290 	OPL->statusmask = flag;
291 	/* IRQ handling check */
292 	OPL_STATUS_SET(OPL,0);
293 	OPL_STATUS_RESET(OPL,0);
294 }
295 
296 /* ----- key on  ----- */
297 static inline void OPL_KEYON(OPL_SLOT *SLOT)
298 {
299 	/* sin wave restart */
300 	SLOT->Cnt = 0;
301 	/* set attack */
302 	SLOT->evm = ENV_MOD_AR;
303 	SLOT->evs = SLOT->evsa;
304 	SLOT->evc = EG_AST;
305 	SLOT->eve = EG_AED;
306 }
307 /* ----- key off ----- */
308 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
309 {
310 	if( SLOT->evm > ENV_MOD_RR)
311 	{
312 		/* set envelope counter from envleope output */
313 		SLOT->evm = ENV_MOD_RR;
314 		if( !(SLOT->evc&EG_DST) )
315 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
316 			SLOT->evc = EG_DST;
317 		SLOT->eve = EG_DED;
318 		SLOT->evs = SLOT->evsr;
319 	}
320 }
321 
322 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
323 /* return : envelope output */
324 static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
325 {
326 	/* calcrate envelope generator */
327 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
328 	{
329 		switch( SLOT->evm ){
330 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
331 			/* next DR */
332 			SLOT->evm = ENV_MOD_DR;
333 			SLOT->evc = EG_DST;
334 			SLOT->eve = SLOT->SL;
335 			SLOT->evs = SLOT->evsd;
336 			break;
337 		case ENV_MOD_DR: /* DECAY -> SL or RR */
338 			SLOT->evc = SLOT->SL;
339 			SLOT->eve = EG_DED;
340 			if(SLOT->eg_typ)
341 			{
342 				SLOT->evs = 0;
343 			}
344 			else
345 			{
346 				SLOT->evm = ENV_MOD_RR;
347 				SLOT->evs = SLOT->evsr;
348 			}
349 			break;
350 		case ENV_MOD_RR: /* RR -> OFF */
351 			SLOT->evc = EG_OFF;
352 			SLOT->eve = EG_OFF+1;
353 			SLOT->evs = 0;
354 			break;
355 		}
356 	}
357 	/* calcrate envelope */
358 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
359 }
360 
361 /* set algorithm connection */
362 static void set_algorithm( OPL_CH *CH)
363 {
364 	INT32 *carrier = &outd[0];
365 	CH->connect1 = CH->CON ? carrier : &feedback2;
366 	CH->connect2 = carrier;
367 }
368 
369 /* ---------- frequency counter for operater update ---------- */
370 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
371 {
372 	int ksr;
373 
374 	/* frequency step counter */
375 	SLOT->Incr = CH->fc * SLOT->mul;
376 	ksr = CH->kcode >> SLOT->KSR;
377 
378 	if( SLOT->ksr != ksr )
379 	{
380 		SLOT->ksr = ksr;
381 		/* attack , decay rate recalcration */
382 		SLOT->evsa = SLOT->AR[ksr];
383 		SLOT->evsd = SLOT->DR[ksr];
384 		SLOT->evsr = SLOT->RR[ksr];
385 	}
386 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
387 }
388 
389 /* set multi,am,vib,EG-TYP,KSR,mul */
390 static inline void set_mul(FM_OPL *OPL,int slot,int v)
391 {
392 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
393 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
394 
395 	SLOT->mul    = MUL_TABLE[v&0x0f];
396 	SLOT->KSR    = (v&0x10) ? 0 : 2;
397 	SLOT->eg_typ = (v&0x20)>>5;
398 	SLOT->vib    = (v&0x40);
399 	SLOT->ams    = (v&0x80);
400 	CALC_FCSLOT(CH,SLOT);
401 }
402 
403 /* set ksl & tl */
404 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
405 {
406 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
407 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
408 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
409 
410 	SLOT->ksl = ksl ? 3-ksl : 31;
411 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
412 
413 	if( !(OPL->mode&0x80) )
414 	{	/* not CSM latch total level */
415 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
416 	}
417 }
418 
419 /* set attack rate & decay rate  */
420 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
421 {
422 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
423 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
424 	int ar = v>>4;
425 	int dr = v&0x0f;
426 
427 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
428 	SLOT->evsa = SLOT->AR[SLOT->ksr];
429 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
430 
431 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
432 	SLOT->evsd = SLOT->DR[SLOT->ksr];
433 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
434 }
435 
436 /* set sustain level & release rate */
437 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
438 {
439 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
440 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
441 	int sl = v>>4;
442 	int rr = v & 0x0f;
443 
444 	SLOT->SL = SL_TABLE[sl];
445 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
446 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
447 	SLOT->evsr = SLOT->RR[SLOT->ksr];
448 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
449 }
450 
451 /* operator output calcrator */
452 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
453 /* ---------- calcrate one of channel ---------- */
454 static inline void OPL_CALC_CH( OPL_CH *CH )
455 {
456 	UINT32 env_out;
457 	OPL_SLOT *SLOT;
458 
459 	feedback2 = 0;
460 	/* SLOT 1 */
461 	SLOT = &CH->SLOT[SLOT1];
462 	env_out=OPL_CALC_SLOT(SLOT);
463 	if( env_out < EG_ENT-1 )
464 	{
465 		/* PG */
466 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
467 		else          SLOT->Cnt += SLOT->Incr;
468 		/* connectoion */
469 		if(CH->FB)
470 		{
471 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
472 			CH->op1_out[1] = CH->op1_out[0];
473 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
474 		}
475 		else
476 		{
477 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
478 		}
479 	}else
480 	{
481 		CH->op1_out[1] = CH->op1_out[0];
482 		CH->op1_out[0] = 0;
483 	}
484 	/* SLOT 2 */
485 	SLOT = &CH->SLOT[SLOT2];
486 	env_out=OPL_CALC_SLOT(SLOT);
487 	if( env_out < EG_ENT-1 )
488 	{
489 		/* PG */
490 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
491 		else          SLOT->Cnt += SLOT->Incr;
492 		/* connectoion */
493 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
494 	}
495 }
496 
497 /* ---------- calcrate rhythm block ---------- */
498 #define WHITE_NOISE_db 6.0
499 static inline void OPL_CALC_RH( OPL_CH *CH )
500 {
501 	UINT32 env_tam,env_sd,env_top,env_hh;
502 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
503 	INT32 tone8;
504 
505 	OPL_SLOT *SLOT;
506 	int env_out;
507 
508 	/* BD : same as FM serial mode and output level is large */
509 	feedback2 = 0;
510 	/* SLOT 1 */
511 	SLOT = &CH[6].SLOT[SLOT1];
512 	env_out=OPL_CALC_SLOT(SLOT);
513 	if( env_out < EG_ENT-1 )
514 	{
515 		/* PG */
516 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
517 		else          SLOT->Cnt += SLOT->Incr;
518 		/* connectoion */
519 		if(CH[6].FB)
520 		{
521 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
522 			CH[6].op1_out[1] = CH[6].op1_out[0];
523 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
524 		}
525 		else
526 		{
527 			feedback2 = OP_OUT(SLOT,env_out,0);
528 		}
529 	}else
530 	{
531 		feedback2 = 0;
532 		CH[6].op1_out[1] = CH[6].op1_out[0];
533 		CH[6].op1_out[0] = 0;
534 	}
535 	/* SLOT 2 */
536 	SLOT = &CH[6].SLOT[SLOT2];
537 	env_out=OPL_CALC_SLOT(SLOT);
538 	if( env_out < EG_ENT-1 )
539 	{
540 		/* PG */
541 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
542 		else          SLOT->Cnt += SLOT->Incr;
543 		/* connectoion */
544 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
545 	}
546 
547 	// SD  (17) = mul14[fnum7] + white noise
548 	// TAM (15) = mul15[fnum8]
549 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
550 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
551 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
552 	env_tam=OPL_CALC_SLOT(SLOT8_1);
553 	env_top=OPL_CALC_SLOT(SLOT8_2);
554 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
555 
556 	/* PG */
557 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
558 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
559 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
560 	else             SLOT7_2->Cnt += (CH[7].fc*8);
561 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
562 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
563 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
564 	else             SLOT8_2->Cnt += (CH[8].fc*48);
565 
566 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
567 
568 	/* SD */
569 	if( env_sd < EG_ENT-1 )
570 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
571 	/* TAM */
572 	if( env_tam < EG_ENT-1 )
573 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
574 	/* TOP-CY */
575 	if( env_top < EG_ENT-1 )
576 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
577 	/* HH */
578 	if( env_hh  < EG_ENT-1 )
579 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
580 }
581 
582 /* ----------- initialize time tabls ----------- */
583 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
584 {
585 	int i;
586 	double rate;
587 
588 	/* make attack rate & decay rate tables */
589 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
590 	for (i = 4;i <= 60;i++){
591 		rate  = OPL->freqbase;						/* frequency rate */
592 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
593 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
594 		rate *= (double)(EG_ENT<<ENV_BITS);
595 		OPL->AR_TABLE[i] = rate / ARRATE;
596 		OPL->DR_TABLE[i] = rate / DRRATE;
597 	}
598 	for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
599 	{
600 		OPL->AR_TABLE[i] = EG_AED-1;
601 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
602 	}
603 #if 0
604 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
605 		LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
606 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
607 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
608 	}
609 #endif
610 }
611 
612 /* ---------- generic table initialize ---------- */
613 static int OPLOpenTable( void )
614 {
615 	int s,t;
616 	double rate;
617 	int i,j;
618 	double pom;
619 
620 	/* allocate dynamic tables */
621 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
622 		return 0;
623 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
624 	{
625 		free(TL_TABLE);
626 		return 0;
627 	}
628 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
629 	{
630 		free(TL_TABLE);
631 		free(SIN_TABLE);
632 		return 0;
633 	}
634 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
635 	{
636 		free(TL_TABLE);
637 		free(SIN_TABLE);
638 		free(AMS_TABLE);
639 		return 0;
640 	}
641 	/* make total level table */
642 	for (t = 0;t < EG_ENT-1 ;t++){
643 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
644 		TL_TABLE[       t] =  (int)rate;
645 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
646 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
647 	}
648 	/* fill volume off area */
649 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
650 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
651 	}
652 
653 	/* make sinwave table (total level offet) */
654 	/* degree 0 = degree 180                   = off */
655 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
656 	for (s = 1;s <= SIN_ENT/4;s++){
657 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
658 		pom = 20*log10(1/pom);	   /* decibel */
659 		j = pom / EG_STEP;         /* TL_TABLE steps */
660 
661         /* degree 0   -  90    , degree 180 -  90 : plus section */
662 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
663         /* degree 180 - 270    , degree 360 - 270 : minus section */
664 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
665 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
666 	}
667 	for (s = 0;s < SIN_ENT;s++)
668 	{
669 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
670 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
671 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
672 	}
673 
674 	/* envelope counter -> envelope output table */
675 	for (i=0; i<EG_ENT; i++)
676 	{
677 		/* ATTACK curve */
678 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
679 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
680 		ENV_CURVE[i] = (int)pom;
681 		/* DECAY ,RELEASE curve */
682 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
683 	}
684 	/* off */
685 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
686 	/* make LFO ams table */
687 	for (i=0; i<AMS_ENT; i++)
688 	{
689 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
690 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
691 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
692 	}
693 	/* make LFO vibrate table */
694 	for (i=0; i<VIB_ENT; i++)
695 	{
696 		/* 100cent = 1seminote = 6% ?? */
697 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
698 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
699 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
700 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
701 	}
702 	return 1;
703 }
704 
705 
706 static void OPLCloseTable( void )
707 {
708 	free(TL_TABLE);
709 	free(SIN_TABLE);
710 	free(AMS_TABLE);
711 	free(VIB_TABLE);
712 }
713 
714 /* CSM Key Control */
715 static inline void CSMKeyControll(OPL_CH *CH)
716 {
717 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
718 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
719 	/* all key off */
720 	OPL_KEYOFF(slot1);
721 	OPL_KEYOFF(slot2);
722 	/* total level latch */
723 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
724 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
725 	/* key on */
726 	CH->op1_out[0] = CH->op1_out[1] = 0;
727 	OPL_KEYON(slot1);
728 	OPL_KEYON(slot2);
729 }
730 
731 /* ---------- opl initialize ---------- */
732 static void OPL_initialize(FM_OPL *OPL)
733 {
734 	int fn;
735 
736 	/* frequency base */
737 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
738 	/* Timer base time */
739 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
740 	/* make time tables */
741 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
742 	/* make fnumber -> increment counter table */
743 	for( fn=0 ; fn < 1024 ; fn++ )
744 	{
745 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
746 	}
747 	/* LFO freq.table */
748 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
749 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
750 }
751 
752 /* ---------- write a OPL registers ---------- */
753 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
754 {
755 	OPL_CH *CH;
756 	int slot;
757 	int block_fnum;
758 
759 	switch(r&0xe0)
760 	{
761 	case 0x00: /* 00-1f:control */
762 		switch(r&0x1f)
763 		{
764 		case 0x01:
765 			/* wave selector enable */
766 			if(OPL->type&OPL_TYPE_WAVESEL)
767 			{
768 				OPL->wavesel = v&0x20;
769 				if(!OPL->wavesel)
770 				{
771 					/* preset compatible mode */
772 					int c;
773 					for(c=0;c<OPL->max_ch;c++)
774 					{
775 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
776 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
777 					}
778 				}
779 			}
780 			return;
781 		case 0x02:	/* Timer 1 */
782 			OPL->T[0] = (256-v)*4;
783 			break;
784 		case 0x03:	/* Timer 2 */
785 			OPL->T[1] = (256-v)*16;
786 			return;
787 		case 0x04:	/* IRQ clear / mask and Timer enable */
788 			if(v&0x80)
789 			{	/* IRQ flag clear */
790 				OPL_STATUS_RESET(OPL,0x7f);
791 			}
792 			else
793 			{	/* set IRQ mask ,timer enable*/
794 				UINT8 st1 = v&1;
795 				UINT8 st2 = (v>>1)&1;
796 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
797 				OPL_STATUS_RESET(OPL,v&0x78);
798 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
799 				/* timer 2 */
800 				if(OPL->st[1] != st2)
801 				{
802 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
803 					OPL->st[1] = st2;
804 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
805 				}
806 				/* timer 1 */
807 				if(OPL->st[0] != st1)
808 				{
809 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
810 					OPL->st[0] = st1;
811 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
812 				}
813 			}
814 			return;
815 		}
816 		break;
817 	case 0x20:	/* am,vib,ksr,eg type,mul */
818 		slot = slot_array[r&0x1f];
819 		if(slot == -1) return;
820 		set_mul(OPL,slot,v);
821 		return;
822 	case 0x40:
823 		slot = slot_array[r&0x1f];
824 		if(slot == -1) return;
825 		set_ksl_tl(OPL,slot,v);
826 		return;
827 	case 0x60:
828 		slot = slot_array[r&0x1f];
829 		if(slot == -1) return;
830 		set_ar_dr(OPL,slot,v);
831 		return;
832 	case 0x80:
833 		slot = slot_array[r&0x1f];
834 		if(slot == -1) return;
835 		set_sl_rr(OPL,slot,v);
836 		return;
837 	case 0xa0:
838 		switch(r)
839 		{
840 		case 0xbd:
841 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
842 			{
843 			UINT8 rkey = OPL->rhythm^v;
844 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
845 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
846 			OPL->rhythm  = v&0x3f;
847 			if(OPL->rhythm&0x20)
848 			{
849 #if 0
850 				usrintf_showmessage("OPL Rhythm mode select");
851 #endif
852 				/* BD key on/off */
853 				if(rkey&0x10)
854 				{
855 					if(v&0x10)
856 					{
857 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
858 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
859 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
860 					}
861 					else
862 					{
863 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
864 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
865 					}
866 				}
867 				/* SD key on/off */
868 				if(rkey&0x08)
869 				{
870 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
871 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
872 				}/* TAM key on/off */
873 				if(rkey&0x04)
874 				{
875 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
876 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
877 				}
878 				/* TOP-CY key on/off */
879 				if(rkey&0x02)
880 				{
881 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
882 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
883 				}
884 				/* HH key on/off */
885 				if(rkey&0x01)
886 				{
887 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
888 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
889 				}
890 			}
891 			}
892 			return;
893 		}
894 		/* keyon,block,fnum */
895 		if( (r&0x0f) > 8) return;
896 		CH = &OPL->P_CH[r&0x0f];
897 		if(!(r&0x10))
898 		{	/* a0-a8 */
899 			block_fnum  = (CH->block_fnum&0x1f00) | v;
900 		}
901 		else
902 		{	/* b0-b8 */
903 			int keyon = (v>>5)&1;
904 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
905 			if(CH->keyon != keyon)
906 			{
907 				if( (CH->keyon=keyon) )
908 				{
909 					CH->op1_out[0] = CH->op1_out[1] = 0;
910 					OPL_KEYON(&CH->SLOT[SLOT1]);
911 					OPL_KEYON(&CH->SLOT[SLOT2]);
912 				}
913 				else
914 				{
915 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
916 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
917 				}
918 			}
919 		}
920 		/* update */
921 		if(CH->block_fnum != block_fnum)
922 		{
923 			int blockRv = 7-(block_fnum>>10);
924 			int fnum   = block_fnum&0x3ff;
925 			CH->block_fnum = block_fnum;
926 
927 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
928 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
929 			CH->kcode = CH->block_fnum>>9;
930 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
931 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
932 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
933 		}
934 		return;
935 	case 0xc0:
936 		/* FB,C */
937 		if( (r&0x0f) > 8) return;
938 		CH = &OPL->P_CH[r&0x0f];
939 		{
940 		int feedback = (v>>1)&7;
941 		CH->FB   = feedback ? (8+1) - feedback : 0;
942 		CH->CON = v&1;
943 		set_algorithm(CH);
944 		}
945 		return;
946 	case 0xe0: /* wave type */
947 		slot = slot_array[r&0x1f];
948 		if(slot == -1) return;
949 		CH = &OPL->P_CH[slot/2];
950 		if(OPL->wavesel)
951 		{
952 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
953 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
954 		}
955 		return;
956 	}
957 }
958 
959 /* lock/unlock for common table */
960 static int OPL_LockTable(void)
961 {
962 	num_lock++;
963 	if(num_lock>1) return 0;
964 	/* first time */
965 	cur_chip = NULL;
966 	/* allocate total level table (128kb space) */
967 	if( !OPLOpenTable() )
968 	{
969 		num_lock--;
970 		return -1;
971 	}
972 	return 0;
973 }
974 
975 static void OPL_UnLockTable(void)
976 {
977 	if(num_lock) num_lock--;
978 	if(num_lock) return;
979 	/* last time */
980 	cur_chip = NULL;
981 	OPLCloseTable();
982 }
983 
984 #if BUILD_YM3812
985 /*******************************************************************************/
986 /*		YM3812 local section                                                   */
987 /*******************************************************************************/
988 
989 /* ---------- update one of chip ----------- */
990 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
991 {
992     int i;
993 	int data;
994 	OPLSAMPLE *buf = buffer;
995 	UINT32 amsCnt  = OPL->amsCnt;
996 	UINT32 vibCnt  = OPL->vibCnt;
997 	UINT8 rhythm = OPL->rhythm&0x20;
998 	OPL_CH *CH,*R_CH;
999 
1000 	if( (void *)OPL != cur_chip ){
1001 		cur_chip = (void *)OPL;
1002 		/* channel pointers */
1003 		S_CH = OPL->P_CH;
1004 		E_CH = &S_CH[9];
1005 		/* rhythm slot */
1006 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1007 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1008 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1009 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1010 		/* LFO state */
1011 		amsIncr = OPL->amsIncr;
1012 		vibIncr = OPL->vibIncr;
1013 		ams_table = OPL->ams_table;
1014 		vib_table = OPL->vib_table;
1015 	}
1016 	R_CH = rhythm ? &S_CH[6] : E_CH;
1017     for( i=0; i < length ; i++ )
1018 	{
1019 		/*            channel A         channel B         channel C      */
1020 		/* LFO */
1021 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1022 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1023 		outd[0] = 0;
1024 		/* FM part */
1025 		for(CH=S_CH ; CH < R_CH ; CH++)
1026 			OPL_CALC_CH(CH);
1027 		/* Rythn part */
1028 		if(rhythm)
1029 			OPL_CALC_RH(S_CH);
1030 		/* limit check */
1031 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1032 		/* store to sound buffer */
1033 		buf[i] = data >> OPL_OUTSB;
1034 	}
1035 
1036 	OPL->amsCnt = amsCnt;
1037 	OPL->vibCnt = vibCnt;
1038 #ifdef OPL_OUTPUT_LOG
1039 	if(opl_dbg_fp)
1040 	{
1041 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1042 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1043 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1044 	}
1045 #endif
1046 }
1047 #endif /* BUILD_YM3812 */
1048 
1049 /* ---------- reset one of chip ---------- */
1050 void OPLResetChip(FM_OPL *OPL)
1051 {
1052 	int c,s;
1053 	int i;
1054 
1055 	/* reset chip */
1056 	OPL->mode   = 0;	/* normal mode */
1057 	OPL_STATUS_RESET(OPL,0x7f);
1058 	/* reset with register write */
1059 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1060 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1061 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1062 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1063 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1064 	/* reset operator parameter */
1065 	for( c = 0 ; c < OPL->max_ch ; c++ )
1066 	{
1067 		OPL_CH *CH = &OPL->P_CH[c];
1068 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1069 		for(s = 0 ; s < 2 ; s++ )
1070 		{
1071 			/* wave table */
1072 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1073 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1074 			CH->SLOT[s].evc = EG_OFF;
1075 			CH->SLOT[s].eve = EG_OFF+1;
1076 			CH->SLOT[s].evs = 0;
1077 		}
1078 	}
1079 }
1080 
1081 /* ----------  Create one of vietual YM3812 ----------       */
1082 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1083 FM_OPL *OPLCreate(int type, int clock, int rate)
1084 {
1085 	char *ptr;
1086 	FM_OPL *OPL;
1087 	int state_size;
1088 	int max_ch = 9; /* normaly 9 channels */
1089 
1090 	if( OPL_LockTable() ==-1) return NULL;
1091 	/* allocate OPL state space */
1092 	state_size  = sizeof(FM_OPL);
1093 	state_size += sizeof(OPL_CH)*max_ch;
1094 	/* allocate memory block */
1095 	ptr = malloc(state_size);
1096 	if(ptr==NULL) return NULL;
1097 	/* clear */
1098 	memset(ptr,0,state_size);
1099 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1100 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1101 	/* set channel state pointer */
1102 	OPL->type  = type;
1103 	OPL->clock = clock;
1104 	OPL->rate  = rate;
1105 	OPL->max_ch = max_ch;
1106 	/* init grobal tables */
1107 	OPL_initialize(OPL);
1108 	/* reset chip */
1109 	OPLResetChip(OPL);
1110 #ifdef OPL_OUTPUT_LOG
1111 	if(!opl_dbg_fp)
1112 	{
1113 		opl_dbg_fp = fopen("opllog.opl","wb");
1114 		opl_dbg_maxchip = 0;
1115 	}
1116 	if(opl_dbg_fp)
1117 	{
1118 		opl_dbg_opl[opl_dbg_maxchip] = OPL;
1119 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1120 			type,
1121 			clock&0xff,
1122 			(clock/0x100)&0xff,
1123 			(clock/0x10000)&0xff,
1124 			(clock/0x1000000)&0xff);
1125 		opl_dbg_maxchip++;
1126 	}
1127 #endif
1128 	return OPL;
1129 }
1130 
1131 /* ----------  Destroy one of vietual YM3812 ----------       */
1132 void OPLDestroy(FM_OPL *OPL)
1133 {
1134 #ifdef OPL_OUTPUT_LOG
1135 	if(opl_dbg_fp)
1136 	{
1137 		fclose(opl_dbg_fp);
1138 		opl_dbg_fp = NULL;
1139 	}
1140 #endif
1141 	OPL_UnLockTable();
1142 	free(OPL);
1143 }
1144 
1145 /* ----------  Option handlers ----------       */
1146 
1147 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1148 {
1149 	OPL->TimerHandler   = TimerHandler;
1150 	OPL->TimerParam = channelOffset;
1151 }
1152 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1153 {
1154 	OPL->IRQHandler     = IRQHandler;
1155 	OPL->IRQParam = param;
1156 }
1157 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1158 {
1159 	OPL->UpdateHandler = UpdateHandler;
1160 	OPL->UpdateParam = param;
1161 }
1162 /* ---------- YM3812 I/O interface ---------- */
1163 int OPLWrite(FM_OPL *OPL,int a,int v)
1164 {
1165 	if( !(a&1) )
1166 	{	/* address port */
1167 		OPL->address = v & 0xff;
1168 	}
1169 	else
1170 	{	/* data port */
1171 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1172 #ifdef OPL_OUTPUT_LOG
1173 	if(opl_dbg_fp)
1174 	{
1175 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1176 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1177 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1178 	}
1179 #endif
1180 		OPLWriteReg(OPL,OPL->address,v);
1181 	}
1182 	return OPL->status>>7;
1183 }
1184 
1185 unsigned char OPLRead(FM_OPL *OPL,int a)
1186 {
1187 	if( !(a&1) )
1188 	{	/* status port */
1189 		return OPL->status & (OPL->statusmask|0x80);
1190 	}
1191 	/* data port */
1192 	switch(OPL->address)
1193 	{
1194 	case 0x05: /* KeyBoard IN */
1195 		if(OPL->type&OPL_TYPE_KEYBOARD)
1196 		{
1197 			if(OPL->keyboardhandler_r)
1198 				return OPL->keyboardhandler_r(OPL->keyboard_param);
1199 			else {
1200 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1201 			}
1202 		}
1203 		return 0;
1204 #if 0
1205 	case 0x0f: /* ADPCM-DATA  */
1206 		return 0;
1207 #endif
1208 	case 0x19: /* I/O DATA    */
1209 		if(OPL->type&OPL_TYPE_IO)
1210 		{
1211 			if(OPL->porthandler_r)
1212 				return OPL->porthandler_r(OPL->port_param);
1213 			else {
1214 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1215 			}
1216 		}
1217 		return 0;
1218 	case 0x1a: /* PCM-DATA    */
1219 		return 0;
1220 	}
1221 	return 0;
1222 }
1223 
1224 int OPLTimerOver(FM_OPL *OPL,int c)
1225 {
1226 	if( c )
1227 	{	/* Timer B */
1228 		OPL_STATUS_SET(OPL,0x20);
1229 	}
1230 	else
1231 	{	/* Timer A */
1232 		OPL_STATUS_SET(OPL,0x40);
1233 		/* CSM mode key,TL control */
1234 		if( OPL->mode & 0x80 )
1235 		{	/* CSM mode total level latch and auto key on */
1236 			int ch;
1237 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1238 			for(ch=0;ch<9;ch++)
1239 				CSMKeyControll( &OPL->P_CH[ch] );
1240 		}
1241 	}
1242 	/* reload timer */
1243 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1244 	return OPL->status>>7;
1245 }
1246