xref: /qemu/hw/audio/fmopl.c (revision 4a796e97)
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31  */
32 
33 #include "qemu/osdep.h"
34 #include <math.h>
35 //#include "driver.h"		/* use M.A.M.E. */
36 #include "fmopl.h"
37 
38 #ifndef PI
39 #define PI 3.14159265358979323846
40 #endif
41 
42 #ifndef ARRAY_SIZE
43 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
44 #endif
45 
46 /* -------------------- for debug --------------------- */
47 /* #define OPL_OUTPUT_LOG */
48 #ifdef OPL_OUTPUT_LOG
49 static FILE *opl_dbg_fp = NULL;
50 static FM_OPL *opl_dbg_opl[16];
51 static int opl_dbg_maxchip,opl_dbg_chip;
52 #endif
53 
54 /* -------------------- preliminary define section --------------------- */
55 /* attack/decay rate time rate */
56 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
57 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
58 
59 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
60 
61 #define FREQ_BITS 24			/* frequency turn          */
62 
63 /* counter bits = 20 , octerve 7 */
64 #define FREQ_RATE   (1<<(FREQ_BITS-20))
65 #define TL_BITS    (FREQ_BITS+2)
66 
67 /* final output shift , limit minimum and maximum */
68 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
69 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
70 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
71 
72 /* -------------------- quality selection --------------------- */
73 
74 /* sinwave entries */
75 /* used static memory = SIN_ENT * 4 (byte) */
76 #define SIN_ENT 2048
77 
78 /* output level entries (envelope,sinwave) */
79 /* envelope counter lower bits */
80 #define ENV_BITS 16
81 /* envelope output entries */
82 #define EG_ENT   4096
83 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
84 /* used static  memory = EG_ENT*4 (byte)                     */
85 
86 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
87 #define EG_DED   EG_OFF
88 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
89 #define EG_AED   EG_DST
90 #define EG_AST   0                       /* ATTACK START */
91 
92 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
93 
94 /* LFO table entries */
95 #define VIB_ENT 512
96 #define VIB_SHIFT (32-9)
97 #define AMS_ENT 512
98 #define AMS_SHIFT (32-9)
99 
100 #define VIB_RATE 256
101 
102 /* -------------------- local defines , macros --------------------- */
103 
104 /* register number to channel number , slot offset */
105 #define SLOT1 0
106 #define SLOT2 1
107 
108 /* envelope phase */
109 #define ENV_MOD_RR  0x00
110 #define ENV_MOD_DR  0x01
111 #define ENV_MOD_AR  0x02
112 
113 /* -------------------- tables --------------------- */
114 static const int slot_array[32]=
115 {
116 	 0, 2, 4, 1, 3, 5,-1,-1,
117 	 6, 8,10, 7, 9,11,-1,-1,
118 	12,14,16,13,15,17,-1,-1,
119 	-1,-1,-1,-1,-1,-1,-1,-1
120 };
121 
122 /* key scale level */
123 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
124 #define DV (EG_STEP/2)
125 static const UINT32 KSL_TABLE[8*16]=
126 {
127 	/* OCT 0 */
128 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
129 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
130 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132 	/* OCT 1 */
133 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 	 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
136 	 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
137 	/* OCT 2 */
138 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
139 	 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
140 	 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
141 	 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
142 	/* OCT 3 */
143 	 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
144 	 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
145 	 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
146 	 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
147 	/* OCT 4 */
148 	 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
149 	 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
150 	 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
151 	10.875/DV,11.250/DV,11.625/DV,12.000/DV,
152 	/* OCT 5 */
153 	 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
154 	 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
155 	12.000/DV,12.750/DV,13.125/DV,13.500/DV,
156 	13.875/DV,14.250/DV,14.625/DV,15.000/DV,
157 	/* OCT 6 */
158 	 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
159 	12.000/DV,13.125/DV,13.875/DV,14.625/DV,
160 	15.000/DV,15.750/DV,16.125/DV,16.500/DV,
161 	16.875/DV,17.250/DV,17.625/DV,18.000/DV,
162 	/* OCT 7 */
163 	 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
164 	15.000/DV,16.125/DV,16.875/DV,17.625/DV,
165 	18.000/DV,18.750/DV,19.125/DV,19.500/DV,
166 	19.875/DV,20.250/DV,20.625/DV,21.000/DV
167 };
168 #undef DV
169 
170 /* sustain lebel table (3db per step) */
171 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
172 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
173 static const INT32 SL_TABLE[16]={
174  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
175  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
176 };
177 #undef SC
178 
179 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
180 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
181 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
182 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
183 static INT32 *TL_TABLE;
184 
185 /* pointers to TL_TABLE with sinwave output offset */
186 static INT32 **SIN_TABLE;
187 
188 /* LFO table */
189 static INT32 *AMS_TABLE;
190 static INT32 *VIB_TABLE;
191 
192 /* envelope output curve table */
193 /* attack + decay + OFF */
194 static INT32 ENV_CURVE[2*EG_ENT+1];
195 
196 /* multiple table */
197 #define ML 2
198 static const UINT32 MUL_TABLE[16]= {
199 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
200    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
201    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
202 };
203 #undef ML
204 
205 /* dummy attack / decay rate ( when rate == 0 ) */
206 static INT32 RATE_0[16]=
207 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
208 
209 /* -------------------- static state --------------------- */
210 
211 /* lock level of common table */
212 static int num_lock = 0;
213 
214 /* work table */
215 static void *cur_chip = NULL;	/* current chip point */
216 /* currenct chip state */
217 /* static OPLSAMPLE  *bufL,*bufR; */
218 static OPL_CH *S_CH;
219 static OPL_CH *E_CH;
220 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
221 
222 static INT32 outd[1];
223 static INT32 ams;
224 static INT32 vib;
225 static INT32 *ams_table;
226 static INT32 *vib_table;
227 static INT32 amsIncr;
228 static INT32 vibIncr;
229 static INT32 feedback2;		/* connect for SLOT 2 */
230 
231 /* log output level */
232 #define LOG_ERR  3      /* ERROR       */
233 #define LOG_WAR  2      /* WARNING     */
234 #define LOG_INF  1      /* INFORMATION */
235 
236 //#define LOG_LEVEL LOG_INF
237 #define LOG_LEVEL	LOG_ERR
238 
239 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
240 #define LOG(n,x)
241 
242 /* --------------------- subroutines  --------------------- */
243 
244 static inline int Limit( int val, int max, int min ) {
245 	if ( val > max )
246 		val = max;
247 	else if ( val < min )
248 		val = min;
249 
250 	return val;
251 }
252 
253 /* status set and IRQ handling */
254 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
255 {
256 	/* set status flag */
257 	OPL->status |= flag;
258 	if(!(OPL->status & 0x80))
259 	{
260 		if(OPL->status & OPL->statusmask)
261 		{	/* IRQ on */
262 			OPL->status |= 0x80;
263 			/* callback user interrupt handler (IRQ is OFF to ON) */
264 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
265 		}
266 	}
267 }
268 
269 /* status reset and IRQ handling */
270 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
271 {
272 	/* reset status flag */
273 	OPL->status &=~flag;
274 	if((OPL->status & 0x80))
275 	{
276 		if (!(OPL->status & OPL->statusmask) )
277 		{
278 			OPL->status &= 0x7f;
279 			/* callback user interrupt handler (IRQ is ON to OFF) */
280 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
281 		}
282 	}
283 }
284 
285 /* IRQ mask set */
286 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
287 {
288 	OPL->statusmask = flag;
289 	/* IRQ handling check */
290 	OPL_STATUS_SET(OPL,0);
291 	OPL_STATUS_RESET(OPL,0);
292 }
293 
294 /* ----- key on  ----- */
295 static inline void OPL_KEYON(OPL_SLOT *SLOT)
296 {
297 	/* sin wave restart */
298 	SLOT->Cnt = 0;
299 	/* set attack */
300 	SLOT->evm = ENV_MOD_AR;
301 	SLOT->evs = SLOT->evsa;
302 	SLOT->evc = EG_AST;
303 	SLOT->eve = EG_AED;
304 }
305 /* ----- key off ----- */
306 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
307 {
308 	if( SLOT->evm > ENV_MOD_RR)
309 	{
310 		/* set envelope counter from envleope output */
311 		SLOT->evm = ENV_MOD_RR;
312 		if( !(SLOT->evc&EG_DST) )
313 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
314 			SLOT->evc = EG_DST;
315 		SLOT->eve = EG_DED;
316 		SLOT->evs = SLOT->evsr;
317 	}
318 }
319 
320 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
321 /* return : envelope output */
322 static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
323 {
324 	/* calcrate envelope generator */
325 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
326 	{
327 		switch( SLOT->evm ){
328 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
329 			/* next DR */
330 			SLOT->evm = ENV_MOD_DR;
331 			SLOT->evc = EG_DST;
332 			SLOT->eve = SLOT->SL;
333 			SLOT->evs = SLOT->evsd;
334 			break;
335 		case ENV_MOD_DR: /* DECAY -> SL or RR */
336 			SLOT->evc = SLOT->SL;
337 			SLOT->eve = EG_DED;
338 			if(SLOT->eg_typ)
339 			{
340 				SLOT->evs = 0;
341 			}
342 			else
343 			{
344 				SLOT->evm = ENV_MOD_RR;
345 				SLOT->evs = SLOT->evsr;
346 			}
347 			break;
348 		case ENV_MOD_RR: /* RR -> OFF */
349 			SLOT->evc = EG_OFF;
350 			SLOT->eve = EG_OFF+1;
351 			SLOT->evs = 0;
352 			break;
353 		}
354 	}
355 	/* calcrate envelope */
356 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
357 }
358 
359 /* set algorithm connection */
360 static void set_algorithm( OPL_CH *CH)
361 {
362 	INT32 *carrier = &outd[0];
363 	CH->connect1 = CH->CON ? carrier : &feedback2;
364 	CH->connect2 = carrier;
365 }
366 
367 /* ---------- frequency counter for operater update ---------- */
368 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
369 {
370 	int ksr;
371 
372 	/* frequency step counter */
373 	SLOT->Incr = CH->fc * SLOT->mul;
374 	ksr = CH->kcode >> SLOT->KSR;
375 
376 	if( SLOT->ksr != ksr )
377 	{
378 		SLOT->ksr = ksr;
379 		/* attack , decay rate recalcration */
380 		SLOT->evsa = SLOT->AR[ksr];
381 		SLOT->evsd = SLOT->DR[ksr];
382 		SLOT->evsr = SLOT->RR[ksr];
383 	}
384 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
385 }
386 
387 /* set multi,am,vib,EG-TYP,KSR,mul */
388 static inline void set_mul(FM_OPL *OPL,int slot,int v)
389 {
390 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
391 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
392 
393 	SLOT->mul    = MUL_TABLE[v&0x0f];
394 	SLOT->KSR    = (v&0x10) ? 0 : 2;
395 	SLOT->eg_typ = (v&0x20)>>5;
396 	SLOT->vib    = (v&0x40);
397 	SLOT->ams    = (v&0x80);
398 	CALC_FCSLOT(CH,SLOT);
399 }
400 
401 /* set ksl & tl */
402 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
403 {
404 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
405 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
406 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
407 
408 	SLOT->ksl = ksl ? 3-ksl : 31;
409 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
410 
411 	if( !(OPL->mode&0x80) )
412 	{	/* not CSM latch total level */
413 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
414 	}
415 }
416 
417 /* set attack rate & decay rate  */
418 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
419 {
420 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
421 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
422 	int ar = v>>4;
423 	int dr = v&0x0f;
424 
425 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
426 	SLOT->evsa = SLOT->AR[SLOT->ksr];
427 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
428 
429 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
430 	SLOT->evsd = SLOT->DR[SLOT->ksr];
431 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
432 }
433 
434 /* set sustain level & release rate */
435 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
436 {
437 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
438 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
439 	int sl = v>>4;
440 	int rr = v & 0x0f;
441 
442 	SLOT->SL = SL_TABLE[sl];
443 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
444 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
445 	SLOT->evsr = SLOT->RR[SLOT->ksr];
446 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
447 }
448 
449 /* operator output calcrator */
450 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
451 /* ---------- calcrate one of channel ---------- */
452 static inline void OPL_CALC_CH( OPL_CH *CH )
453 {
454 	UINT32 env_out;
455 	OPL_SLOT *SLOT;
456 
457 	feedback2 = 0;
458 	/* SLOT 1 */
459 	SLOT = &CH->SLOT[SLOT1];
460 	env_out=OPL_CALC_SLOT(SLOT);
461 	if( env_out < EG_ENT-1 )
462 	{
463 		/* PG */
464 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
465 		else          SLOT->Cnt += SLOT->Incr;
466 		/* connectoion */
467 		if(CH->FB)
468 		{
469 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
470 			CH->op1_out[1] = CH->op1_out[0];
471 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
472 		}
473 		else
474 		{
475 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
476 		}
477 	}else
478 	{
479 		CH->op1_out[1] = CH->op1_out[0];
480 		CH->op1_out[0] = 0;
481 	}
482 	/* SLOT 2 */
483 	SLOT = &CH->SLOT[SLOT2];
484 	env_out=OPL_CALC_SLOT(SLOT);
485 	if( env_out < EG_ENT-1 )
486 	{
487 		/* PG */
488 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
489 		else          SLOT->Cnt += SLOT->Incr;
490 		/* connectoion */
491 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
492 	}
493 }
494 
495 /* ---------- calcrate rhythm block ---------- */
496 #define WHITE_NOISE_db 6.0
497 static inline void OPL_CALC_RH( OPL_CH *CH )
498 {
499 	UINT32 env_tam,env_sd,env_top,env_hh;
500 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
501 	INT32 tone8;
502 
503 	OPL_SLOT *SLOT;
504 	int env_out;
505 
506 	/* BD : same as FM serial mode and output level is large */
507 	feedback2 = 0;
508 	/* SLOT 1 */
509 	SLOT = &CH[6].SLOT[SLOT1];
510 	env_out=OPL_CALC_SLOT(SLOT);
511 	if( env_out < EG_ENT-1 )
512 	{
513 		/* PG */
514 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
515 		else          SLOT->Cnt += SLOT->Incr;
516 		/* connectoion */
517 		if(CH[6].FB)
518 		{
519 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
520 			CH[6].op1_out[1] = CH[6].op1_out[0];
521 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
522 		}
523 		else
524 		{
525 			feedback2 = OP_OUT(SLOT,env_out,0);
526 		}
527 	}else
528 	{
529 		feedback2 = 0;
530 		CH[6].op1_out[1] = CH[6].op1_out[0];
531 		CH[6].op1_out[0] = 0;
532 	}
533 	/* SLOT 2 */
534 	SLOT = &CH[6].SLOT[SLOT2];
535 	env_out=OPL_CALC_SLOT(SLOT);
536 	if( env_out < EG_ENT-1 )
537 	{
538 		/* PG */
539 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
540 		else          SLOT->Cnt += SLOT->Incr;
541 		/* connectoion */
542 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
543 	}
544 
545 	// SD  (17) = mul14[fnum7] + white noise
546 	// TAM (15) = mul15[fnum8]
547 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
548 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
549 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
550 	env_tam=OPL_CALC_SLOT(SLOT8_1);
551 	env_top=OPL_CALC_SLOT(SLOT8_2);
552 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
553 
554 	/* PG */
555 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
556 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
557 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
558 	else             SLOT7_2->Cnt += (CH[7].fc*8);
559 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
560 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
561 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
562 	else             SLOT8_2->Cnt += (CH[8].fc*48);
563 
564 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
565 
566 	/* SD */
567 	if( env_sd < EG_ENT-1 )
568 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
569 	/* TAM */
570 	if( env_tam < EG_ENT-1 )
571 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
572 	/* TOP-CY */
573 	if( env_top < EG_ENT-1 )
574 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
575 	/* HH */
576 	if( env_hh  < EG_ENT-1 )
577 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
578 }
579 
580 /* ----------- initialize time tabls ----------- */
581 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
582 {
583 	int i;
584 	double rate;
585 
586 	/* make attack rate & decay rate tables */
587 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
588 	for (i = 4;i <= 60;i++){
589 		rate  = OPL->freqbase;						/* frequency rate */
590 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
591 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
592 		rate *= (double)(EG_ENT<<ENV_BITS);
593 		OPL->AR_TABLE[i] = rate / ARRATE;
594 		OPL->DR_TABLE[i] = rate / DRRATE;
595 	}
596 	for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
597 	{
598 		OPL->AR_TABLE[i] = EG_AED-1;
599 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
600 	}
601 #if 0
602 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
603 		LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
604 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
605 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
606 	}
607 #endif
608 }
609 
610 /* ---------- generic table initialize ---------- */
611 static int OPLOpenTable( void )
612 {
613 	int s,t;
614 	double rate;
615 	int i,j;
616 	double pom;
617 
618 	/* allocate dynamic tables */
619 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
620 		return 0;
621 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
622 	{
623 		free(TL_TABLE);
624 		return 0;
625 	}
626 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
627 	{
628 		free(TL_TABLE);
629 		free(SIN_TABLE);
630 		return 0;
631 	}
632 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
633 	{
634 		free(TL_TABLE);
635 		free(SIN_TABLE);
636 		free(AMS_TABLE);
637 		return 0;
638 	}
639 	/* make total level table */
640 	for (t = 0;t < EG_ENT-1 ;t++){
641 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
642 		TL_TABLE[       t] =  (int)rate;
643 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
644 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
645 	}
646 	/* fill volume off area */
647 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
648 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
649 	}
650 
651 	/* make sinwave table (total level offet) */
652 	/* degree 0 = degree 180                   = off */
653 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
654 	for (s = 1;s <= SIN_ENT/4;s++){
655 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
656 		pom = 20*log10(1/pom);	   /* decibel */
657 		j = pom / EG_STEP;         /* TL_TABLE steps */
658 
659         /* degree 0   -  90    , degree 180 -  90 : plus section */
660 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
661         /* degree 180 - 270    , degree 360 - 270 : minus section */
662 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
663 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
664 	}
665 	for (s = 0;s < SIN_ENT;s++)
666 	{
667 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
668 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
669 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
670 	}
671 
672 	/* envelope counter -> envelope output table */
673 	for (i=0; i<EG_ENT; i++)
674 	{
675 		/* ATTACK curve */
676 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
677 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
678 		ENV_CURVE[i] = (int)pom;
679 		/* DECAY ,RELEASE curve */
680 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
681 	}
682 	/* off */
683 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
684 	/* make LFO ams table */
685 	for (i=0; i<AMS_ENT; i++)
686 	{
687 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
688 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
689 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
690 	}
691 	/* make LFO vibrate table */
692 	for (i=0; i<VIB_ENT; i++)
693 	{
694 		/* 100cent = 1seminote = 6% ?? */
695 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
696 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
697 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
698 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
699 	}
700 	return 1;
701 }
702 
703 
704 static void OPLCloseTable( void )
705 {
706 	free(TL_TABLE);
707 	free(SIN_TABLE);
708 	free(AMS_TABLE);
709 	free(VIB_TABLE);
710 }
711 
712 /* CSM Key Control */
713 static inline void CSMKeyControll(OPL_CH *CH)
714 {
715 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
716 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
717 	/* all key off */
718 	OPL_KEYOFF(slot1);
719 	OPL_KEYOFF(slot2);
720 	/* total level latch */
721 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
722 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
723 	/* key on */
724 	CH->op1_out[0] = CH->op1_out[1] = 0;
725 	OPL_KEYON(slot1);
726 	OPL_KEYON(slot2);
727 }
728 
729 /* ---------- opl initialize ---------- */
730 static void OPL_initialize(FM_OPL *OPL)
731 {
732 	int fn;
733 
734 	/* frequency base */
735 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
736 	/* Timer base time */
737 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
738 	/* make time tables */
739 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
740 	/* make fnumber -> increment counter table */
741 	for( fn=0 ; fn < 1024 ; fn++ )
742 	{
743 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
744 	}
745 	/* LFO freq.table */
746 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
747 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
748 }
749 
750 /* ---------- write a OPL registers ---------- */
751 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
752 {
753 	OPL_CH *CH;
754 	int slot;
755 	int block_fnum;
756 
757 	switch(r&0xe0)
758 	{
759 	case 0x00: /* 00-1f:control */
760 		switch(r&0x1f)
761 		{
762 		case 0x01:
763 			/* wave selector enable */
764 			if(OPL->type&OPL_TYPE_WAVESEL)
765 			{
766 				OPL->wavesel = v&0x20;
767 				if(!OPL->wavesel)
768 				{
769 					/* preset compatible mode */
770 					int c;
771 					for(c=0;c<OPL->max_ch;c++)
772 					{
773 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
774 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
775 					}
776 				}
777 			}
778 			return;
779 		case 0x02:	/* Timer 1 */
780 			OPL->T[0] = (256-v)*4;
781 			break;
782 		case 0x03:	/* Timer 2 */
783 			OPL->T[1] = (256-v)*16;
784 			return;
785 		case 0x04:	/* IRQ clear / mask and Timer enable */
786 			if(v&0x80)
787 			{	/* IRQ flag clear */
788 				OPL_STATUS_RESET(OPL,0x7f);
789 			}
790 			else
791 			{	/* set IRQ mask ,timer enable*/
792 				uint8_t st1 = v&1;
793 				uint8_t st2 = (v>>1)&1;
794 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
795 				OPL_STATUS_RESET(OPL,v&0x78);
796 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
797 				/* timer 2 */
798 				if(OPL->st[1] != st2)
799 				{
800 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
801 					OPL->st[1] = st2;
802 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
803 				}
804 				/* timer 1 */
805 				if(OPL->st[0] != st1)
806 				{
807 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
808 					OPL->st[0] = st1;
809 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
810 				}
811 			}
812 			return;
813 		}
814 		break;
815 	case 0x20:	/* am,vib,ksr,eg type,mul */
816 		slot = slot_array[r&0x1f];
817 		if(slot == -1) return;
818 		set_mul(OPL,slot,v);
819 		return;
820 	case 0x40:
821 		slot = slot_array[r&0x1f];
822 		if(slot == -1) return;
823 		set_ksl_tl(OPL,slot,v);
824 		return;
825 	case 0x60:
826 		slot = slot_array[r&0x1f];
827 		if(slot == -1) return;
828 		set_ar_dr(OPL,slot,v);
829 		return;
830 	case 0x80:
831 		slot = slot_array[r&0x1f];
832 		if(slot == -1) return;
833 		set_sl_rr(OPL,slot,v);
834 		return;
835 	case 0xa0:
836 		switch(r)
837 		{
838 		case 0xbd:
839 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
840 			{
841 			uint8_t rkey = OPL->rhythm^v;
842 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
843 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
844 			OPL->rhythm  = v&0x3f;
845 			if(OPL->rhythm&0x20)
846 			{
847 #if 0
848 				usrintf_showmessage("OPL Rhythm mode select");
849 #endif
850 				/* BD key on/off */
851 				if(rkey&0x10)
852 				{
853 					if(v&0x10)
854 					{
855 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
856 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
857 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
858 					}
859 					else
860 					{
861 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
862 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
863 					}
864 				}
865 				/* SD key on/off */
866 				if(rkey&0x08)
867 				{
868 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
869 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
870 				}/* TAM key on/off */
871 				if(rkey&0x04)
872 				{
873 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
874 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
875 				}
876 				/* TOP-CY key on/off */
877 				if(rkey&0x02)
878 				{
879 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
880 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
881 				}
882 				/* HH key on/off */
883 				if(rkey&0x01)
884 				{
885 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
886 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
887 				}
888 			}
889 			}
890 			return;
891 		}
892 		/* keyon,block,fnum */
893 		if( (r&0x0f) > 8) return;
894 		CH = &OPL->P_CH[r&0x0f];
895 		if(!(r&0x10))
896 		{	/* a0-a8 */
897 			block_fnum  = (CH->block_fnum&0x1f00) | v;
898 		}
899 		else
900 		{	/* b0-b8 */
901 			int keyon = (v>>5)&1;
902 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
903 			if(CH->keyon != keyon)
904 			{
905 				if( (CH->keyon=keyon) )
906 				{
907 					CH->op1_out[0] = CH->op1_out[1] = 0;
908 					OPL_KEYON(&CH->SLOT[SLOT1]);
909 					OPL_KEYON(&CH->SLOT[SLOT2]);
910 				}
911 				else
912 				{
913 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
914 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
915 				}
916 			}
917 		}
918 		/* update */
919 		if(CH->block_fnum != block_fnum)
920 		{
921 			int blockRv = 7-(block_fnum>>10);
922 			int fnum   = block_fnum&0x3ff;
923 			CH->block_fnum = block_fnum;
924 
925 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
926 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
927 			CH->kcode = CH->block_fnum>>9;
928 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
929 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
930 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
931 		}
932 		return;
933 	case 0xc0:
934 		/* FB,C */
935 		if( (r&0x0f) > 8) return;
936 		CH = &OPL->P_CH[r&0x0f];
937 		{
938 		int feedback = (v>>1)&7;
939 		CH->FB   = feedback ? (8+1) - feedback : 0;
940 		CH->CON = v&1;
941 		set_algorithm(CH);
942 		}
943 		return;
944 	case 0xe0: /* wave type */
945 		slot = slot_array[r&0x1f];
946 		if(slot == -1) return;
947 		CH = &OPL->P_CH[slot/2];
948 		if(OPL->wavesel)
949 		{
950 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
951 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
952 		}
953 		return;
954 	}
955 }
956 
957 /* lock/unlock for common table */
958 static int OPL_LockTable(void)
959 {
960 	num_lock++;
961 	if(num_lock>1) return 0;
962 	/* first time */
963 	cur_chip = NULL;
964 	/* allocate total level table (128kb space) */
965 	if( !OPLOpenTable() )
966 	{
967 		num_lock--;
968 		return -1;
969 	}
970 	return 0;
971 }
972 
973 static void OPL_UnLockTable(void)
974 {
975 	if(num_lock) num_lock--;
976 	if(num_lock) return;
977 	/* last time */
978 	cur_chip = NULL;
979 	OPLCloseTable();
980 }
981 
982 /*******************************************************************************/
983 /*		YM3812 local section                                                   */
984 /*******************************************************************************/
985 
986 /* ---------- update one of chip ----------- */
987 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
988 {
989     int i;
990 	int data;
991 	OPLSAMPLE *buf = buffer;
992 	UINT32 amsCnt  = OPL->amsCnt;
993 	UINT32 vibCnt  = OPL->vibCnt;
994 	uint8_t rhythm = OPL->rhythm&0x20;
995 	OPL_CH *CH,*R_CH;
996 
997 	if( (void *)OPL != cur_chip ){
998 		cur_chip = (void *)OPL;
999 		/* channel pointers */
1000 		S_CH = OPL->P_CH;
1001 		E_CH = &S_CH[9];
1002 		/* rhythm slot */
1003 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1004 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1005 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1006 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1007 		/* LFO state */
1008 		amsIncr = OPL->amsIncr;
1009 		vibIncr = OPL->vibIncr;
1010 		ams_table = OPL->ams_table;
1011 		vib_table = OPL->vib_table;
1012 	}
1013 	R_CH = rhythm ? &S_CH[6] : E_CH;
1014     for( i=0; i < length ; i++ )
1015 	{
1016 		/*            channel A         channel B         channel C      */
1017 		/* LFO */
1018 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1019 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1020 		outd[0] = 0;
1021 		/* FM part */
1022 		for(CH=S_CH ; CH < R_CH ; CH++)
1023 			OPL_CALC_CH(CH);
1024 		/* Rythn part */
1025 		if(rhythm)
1026 			OPL_CALC_RH(S_CH);
1027 		/* limit check */
1028 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1029 		/* store to sound buffer */
1030 		buf[i] = data >> OPL_OUTSB;
1031 	}
1032 
1033 	OPL->amsCnt = amsCnt;
1034 	OPL->vibCnt = vibCnt;
1035 #ifdef OPL_OUTPUT_LOG
1036 	if(opl_dbg_fp)
1037 	{
1038 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1039 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1040 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1041 	}
1042 #endif
1043 }
1044 
1045 /* ---------- reset one of chip ---------- */
1046 void OPLResetChip(FM_OPL *OPL)
1047 {
1048 	int c,s;
1049 	int i;
1050 
1051 	/* reset chip */
1052 	OPL->mode   = 0;	/* normal mode */
1053 	OPL_STATUS_RESET(OPL,0x7f);
1054 	/* reset with register write */
1055 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1056 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1057 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1058 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1059 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1060 	/* reset operator parameter */
1061 	for( c = 0 ; c < OPL->max_ch ; c++ )
1062 	{
1063 		OPL_CH *CH = &OPL->P_CH[c];
1064 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1065 		for(s = 0 ; s < 2 ; s++ )
1066 		{
1067 			/* wave table */
1068 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1069 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1070 			CH->SLOT[s].evc = EG_OFF;
1071 			CH->SLOT[s].eve = EG_OFF+1;
1072 			CH->SLOT[s].evs = 0;
1073 		}
1074 	}
1075 }
1076 
1077 /* ----------  Create one of vietual YM3812 ----------       */
1078 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1079 FM_OPL *OPLCreate(int type, int clock, int rate)
1080 {
1081 	char *ptr;
1082 	FM_OPL *OPL;
1083 	int state_size;
1084 	int max_ch = 9; /* normaly 9 channels */
1085 
1086 	if( OPL_LockTable() ==-1) return NULL;
1087 	/* allocate OPL state space */
1088 	state_size  = sizeof(FM_OPL);
1089 	state_size += sizeof(OPL_CH)*max_ch;
1090 	/* allocate memory block */
1091 	ptr = malloc(state_size);
1092 	if(ptr==NULL) return NULL;
1093 	/* clear */
1094 	memset(ptr,0,state_size);
1095 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1096 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1097 	/* set channel state pointer */
1098 	OPL->type  = type;
1099 	OPL->clock = clock;
1100 	OPL->rate  = rate;
1101 	OPL->max_ch = max_ch;
1102 	/* init grobal tables */
1103 	OPL_initialize(OPL);
1104 	/* reset chip */
1105 	OPLResetChip(OPL);
1106 #ifdef OPL_OUTPUT_LOG
1107 	if(!opl_dbg_fp)
1108 	{
1109 		opl_dbg_fp = fopen("opllog.opl","wb");
1110 		opl_dbg_maxchip = 0;
1111 	}
1112 	if(opl_dbg_fp)
1113 	{
1114 		opl_dbg_opl[opl_dbg_maxchip] = OPL;
1115 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1116 			type,
1117 			clock&0xff,
1118 			(clock/0x100)&0xff,
1119 			(clock/0x10000)&0xff,
1120 			(clock/0x1000000)&0xff);
1121 		opl_dbg_maxchip++;
1122 	}
1123 #endif
1124 	return OPL;
1125 }
1126 
1127 /* ----------  Destroy one of vietual YM3812 ----------       */
1128 void OPLDestroy(FM_OPL *OPL)
1129 {
1130 #ifdef OPL_OUTPUT_LOG
1131 	if(opl_dbg_fp)
1132 	{
1133 		fclose(opl_dbg_fp);
1134 		opl_dbg_fp = NULL;
1135 	}
1136 #endif
1137 	OPL_UnLockTable();
1138 	free(OPL);
1139 }
1140 
1141 /* ----------  Option handlers ----------       */
1142 
1143 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1144 {
1145 	OPL->TimerHandler   = TimerHandler;
1146 	OPL->TimerParam = channelOffset;
1147 }
1148 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1149 {
1150 	OPL->IRQHandler     = IRQHandler;
1151 	OPL->IRQParam = param;
1152 }
1153 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1154 {
1155 	OPL->UpdateHandler = UpdateHandler;
1156 	OPL->UpdateParam = param;
1157 }
1158 /* ---------- YM3812 I/O interface ---------- */
1159 int OPLWrite(FM_OPL *OPL,int a,int v)
1160 {
1161 	if( !(a&1) )
1162 	{	/* address port */
1163 		OPL->address = v & 0xff;
1164 	}
1165 	else
1166 	{	/* data port */
1167 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1168 #ifdef OPL_OUTPUT_LOG
1169 	if(opl_dbg_fp)
1170 	{
1171 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1172 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1173 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1174 	}
1175 #endif
1176 		OPLWriteReg(OPL,OPL->address,v);
1177 	}
1178 	return OPL->status>>7;
1179 }
1180 
1181 unsigned char OPLRead(FM_OPL *OPL,int a)
1182 {
1183 	if( !(a&1) )
1184 	{	/* status port */
1185 		return OPL->status & (OPL->statusmask|0x80);
1186 	}
1187 	/* data port */
1188 	switch(OPL->address)
1189 	{
1190 	case 0x05: /* KeyBoard IN */
1191 		if(OPL->type&OPL_TYPE_KEYBOARD)
1192 		{
1193 			if(OPL->keyboardhandler_r)
1194 				return OPL->keyboardhandler_r(OPL->keyboard_param);
1195 			else {
1196 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1197 			}
1198 		}
1199 		return 0;
1200 #if 0
1201 	case 0x0f: /* ADPCM-DATA  */
1202 		return 0;
1203 #endif
1204 	case 0x19: /* I/O DATA    */
1205 		if(OPL->type&OPL_TYPE_IO)
1206 		{
1207 			if(OPL->porthandler_r)
1208 				return OPL->porthandler_r(OPL->port_param);
1209 			else {
1210 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1211 			}
1212 		}
1213 		return 0;
1214 	case 0x1a: /* PCM-DATA    */
1215 		return 0;
1216 	}
1217 	return 0;
1218 }
1219 
1220 int OPLTimerOver(FM_OPL *OPL,int c)
1221 {
1222 	if( c )
1223 	{	/* Timer B */
1224 		OPL_STATUS_SET(OPL,0x20);
1225 	}
1226 	else
1227 	{	/* Timer A */
1228 		OPL_STATUS_SET(OPL,0x40);
1229 		/* CSM mode key,TL control */
1230 		if( OPL->mode & 0x80 )
1231 		{	/* CSM mode total level latch and auto key on */
1232 			int ch;
1233 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1234 			for(ch=0;ch<9;ch++)
1235 				CSMKeyControll( &OPL->P_CH[ch] );
1236 		}
1237 	}
1238 	/* reload timer */
1239 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1240 	return OPL->status>>7;
1241 }
1242