xref: /qemu/hw/audio/fmopl.c (revision 67cc32eb)
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31  */
32 
33 #define HAS_YM3812	1
34 
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdarg.h>
39 #include <math.h>
40 //#include "driver.h"		/* use M.A.M.E. */
41 #include "fmopl.h"
42 
43 #ifndef PI
44 #define PI 3.14159265358979323846
45 #endif
46 
47 #ifndef ARRAY_SIZE
48 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
49 #endif
50 
51 /* -------------------- for debug --------------------- */
52 /* #define OPL_OUTPUT_LOG */
53 #ifdef OPL_OUTPUT_LOG
54 static FILE *opl_dbg_fp = NULL;
55 static FM_OPL *opl_dbg_opl[16];
56 static int opl_dbg_maxchip,opl_dbg_chip;
57 #endif
58 
59 /* -------------------- preliminary define section --------------------- */
60 /* attack/decay rate time rate */
61 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
62 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
63 
64 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
65 
66 #define FREQ_BITS 24			/* frequency turn          */
67 
68 /* counter bits = 20 , octerve 7 */
69 #define FREQ_RATE   (1<<(FREQ_BITS-20))
70 #define TL_BITS    (FREQ_BITS+2)
71 
72 /* final output shift , limit minimum and maximum */
73 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
74 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
75 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
76 
77 /* -------------------- quality selection --------------------- */
78 
79 /* sinwave entries */
80 /* used static memory = SIN_ENT * 4 (byte) */
81 #define SIN_ENT 2048
82 
83 /* output level entries (envelope,sinwave) */
84 /* envelope counter lower bits */
85 #define ENV_BITS 16
86 /* envelope output entries */
87 #define EG_ENT   4096
88 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
89 /* used static  memory = EG_ENT*4 (byte)                     */
90 
91 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
92 #define EG_DED   EG_OFF
93 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
94 #define EG_AED   EG_DST
95 #define EG_AST   0                       /* ATTACK START */
96 
97 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
98 
99 /* LFO table entries */
100 #define VIB_ENT 512
101 #define VIB_SHIFT (32-9)
102 #define AMS_ENT 512
103 #define AMS_SHIFT (32-9)
104 
105 #define VIB_RATE 256
106 
107 /* -------------------- local defines , macros --------------------- */
108 
109 /* register number to channel number , slot offset */
110 #define SLOT1 0
111 #define SLOT2 1
112 
113 /* envelope phase */
114 #define ENV_MOD_RR  0x00
115 #define ENV_MOD_DR  0x01
116 #define ENV_MOD_AR  0x02
117 
118 /* -------------------- tables --------------------- */
119 static const int slot_array[32]=
120 {
121 	 0, 2, 4, 1, 3, 5,-1,-1,
122 	 6, 8,10, 7, 9,11,-1,-1,
123 	12,14,16,13,15,17,-1,-1,
124 	-1,-1,-1,-1,-1,-1,-1,-1
125 };
126 
127 /* key scale level */
128 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
129 #define DV (EG_STEP/2)
130 static const UINT32 KSL_TABLE[8*16]=
131 {
132 	/* OCT 0 */
133 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137 	/* OCT 1 */
138 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
139 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
140 	 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
141 	 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
142 	/* OCT 2 */
143 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
144 	 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
145 	 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
146 	 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
147 	/* OCT 3 */
148 	 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
149 	 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
150 	 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
151 	 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
152 	/* OCT 4 */
153 	 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
154 	 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
155 	 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
156 	10.875/DV,11.250/DV,11.625/DV,12.000/DV,
157 	/* OCT 5 */
158 	 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
159 	 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
160 	12.000/DV,12.750/DV,13.125/DV,13.500/DV,
161 	13.875/DV,14.250/DV,14.625/DV,15.000/DV,
162 	/* OCT 6 */
163 	 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
164 	12.000/DV,13.125/DV,13.875/DV,14.625/DV,
165 	15.000/DV,15.750/DV,16.125/DV,16.500/DV,
166 	16.875/DV,17.250/DV,17.625/DV,18.000/DV,
167 	/* OCT 7 */
168 	 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
169 	15.000/DV,16.125/DV,16.875/DV,17.625/DV,
170 	18.000/DV,18.750/DV,19.125/DV,19.500/DV,
171 	19.875/DV,20.250/DV,20.625/DV,21.000/DV
172 };
173 #undef DV
174 
175 /* sustain lebel table (3db per step) */
176 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
177 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
178 static const INT32 SL_TABLE[16]={
179  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
180  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
181 };
182 #undef SC
183 
184 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
185 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
186 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
187 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
188 static INT32 *TL_TABLE;
189 
190 /* pointers to TL_TABLE with sinwave output offset */
191 static INT32 **SIN_TABLE;
192 
193 /* LFO table */
194 static INT32 *AMS_TABLE;
195 static INT32 *VIB_TABLE;
196 
197 /* envelope output curve table */
198 /* attack + decay + OFF */
199 static INT32 ENV_CURVE[2*EG_ENT+1];
200 
201 /* multiple table */
202 #define ML 2
203 static const UINT32 MUL_TABLE[16]= {
204 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
205    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
206    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
207 };
208 #undef ML
209 
210 /* dummy attack / decay rate ( when rate == 0 ) */
211 static INT32 RATE_0[16]=
212 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
213 
214 /* -------------------- static state --------------------- */
215 
216 /* lock level of common table */
217 static int num_lock = 0;
218 
219 /* work table */
220 static void *cur_chip = NULL;	/* current chip point */
221 /* currenct chip state */
222 /* static OPLSAMPLE  *bufL,*bufR; */
223 static OPL_CH *S_CH;
224 static OPL_CH *E_CH;
225 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
226 
227 static INT32 outd[1];
228 static INT32 ams;
229 static INT32 vib;
230 static INT32 *ams_table;
231 static INT32 *vib_table;
232 static INT32 amsIncr;
233 static INT32 vibIncr;
234 static INT32 feedback2;		/* connect for SLOT 2 */
235 
236 /* log output level */
237 #define LOG_ERR  3      /* ERROR       */
238 #define LOG_WAR  2      /* WARNING     */
239 #define LOG_INF  1      /* INFORMATION */
240 
241 //#define LOG_LEVEL LOG_INF
242 #define LOG_LEVEL	LOG_ERR
243 
244 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
245 #define LOG(n,x)
246 
247 /* --------------------- subroutines  --------------------- */
248 
249 static inline int Limit( int val, int max, int min ) {
250 	if ( val > max )
251 		val = max;
252 	else if ( val < min )
253 		val = min;
254 
255 	return val;
256 }
257 
258 /* status set and IRQ handling */
259 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
260 {
261 	/* set status flag */
262 	OPL->status |= flag;
263 	if(!(OPL->status & 0x80))
264 	{
265 		if(OPL->status & OPL->statusmask)
266 		{	/* IRQ on */
267 			OPL->status |= 0x80;
268 			/* callback user interrupt handler (IRQ is OFF to ON) */
269 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
270 		}
271 	}
272 }
273 
274 /* status reset and IRQ handling */
275 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
276 {
277 	/* reset status flag */
278 	OPL->status &=~flag;
279 	if((OPL->status & 0x80))
280 	{
281 		if (!(OPL->status & OPL->statusmask) )
282 		{
283 			OPL->status &= 0x7f;
284 			/* callback user interrupt handler (IRQ is ON to OFF) */
285 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
286 		}
287 	}
288 }
289 
290 /* IRQ mask set */
291 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
292 {
293 	OPL->statusmask = flag;
294 	/* IRQ handling check */
295 	OPL_STATUS_SET(OPL,0);
296 	OPL_STATUS_RESET(OPL,0);
297 }
298 
299 /* ----- key on  ----- */
300 static inline void OPL_KEYON(OPL_SLOT *SLOT)
301 {
302 	/* sin wave restart */
303 	SLOT->Cnt = 0;
304 	/* set attack */
305 	SLOT->evm = ENV_MOD_AR;
306 	SLOT->evs = SLOT->evsa;
307 	SLOT->evc = EG_AST;
308 	SLOT->eve = EG_AED;
309 }
310 /* ----- key off ----- */
311 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
312 {
313 	if( SLOT->evm > ENV_MOD_RR)
314 	{
315 		/* set envelope counter from envleope output */
316 		SLOT->evm = ENV_MOD_RR;
317 		if( !(SLOT->evc&EG_DST) )
318 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
319 			SLOT->evc = EG_DST;
320 		SLOT->eve = EG_DED;
321 		SLOT->evs = SLOT->evsr;
322 	}
323 }
324 
325 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
326 /* return : envelope output */
327 static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
328 {
329 	/* calcrate envelope generator */
330 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
331 	{
332 		switch( SLOT->evm ){
333 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
334 			/* next DR */
335 			SLOT->evm = ENV_MOD_DR;
336 			SLOT->evc = EG_DST;
337 			SLOT->eve = SLOT->SL;
338 			SLOT->evs = SLOT->evsd;
339 			break;
340 		case ENV_MOD_DR: /* DECAY -> SL or RR */
341 			SLOT->evc = SLOT->SL;
342 			SLOT->eve = EG_DED;
343 			if(SLOT->eg_typ)
344 			{
345 				SLOT->evs = 0;
346 			}
347 			else
348 			{
349 				SLOT->evm = ENV_MOD_RR;
350 				SLOT->evs = SLOT->evsr;
351 			}
352 			break;
353 		case ENV_MOD_RR: /* RR -> OFF */
354 			SLOT->evc = EG_OFF;
355 			SLOT->eve = EG_OFF+1;
356 			SLOT->evs = 0;
357 			break;
358 		}
359 	}
360 	/* calcrate envelope */
361 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
362 }
363 
364 /* set algorithm connection */
365 static void set_algorithm( OPL_CH *CH)
366 {
367 	INT32 *carrier = &outd[0];
368 	CH->connect1 = CH->CON ? carrier : &feedback2;
369 	CH->connect2 = carrier;
370 }
371 
372 /* ---------- frequency counter for operater update ---------- */
373 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
374 {
375 	int ksr;
376 
377 	/* frequency step counter */
378 	SLOT->Incr = CH->fc * SLOT->mul;
379 	ksr = CH->kcode >> SLOT->KSR;
380 
381 	if( SLOT->ksr != ksr )
382 	{
383 		SLOT->ksr = ksr;
384 		/* attack , decay rate recalcration */
385 		SLOT->evsa = SLOT->AR[ksr];
386 		SLOT->evsd = SLOT->DR[ksr];
387 		SLOT->evsr = SLOT->RR[ksr];
388 	}
389 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
390 }
391 
392 /* set multi,am,vib,EG-TYP,KSR,mul */
393 static inline void set_mul(FM_OPL *OPL,int slot,int v)
394 {
395 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
396 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
397 
398 	SLOT->mul    = MUL_TABLE[v&0x0f];
399 	SLOT->KSR    = (v&0x10) ? 0 : 2;
400 	SLOT->eg_typ = (v&0x20)>>5;
401 	SLOT->vib    = (v&0x40);
402 	SLOT->ams    = (v&0x80);
403 	CALC_FCSLOT(CH,SLOT);
404 }
405 
406 /* set ksl & tl */
407 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
408 {
409 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
410 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
411 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
412 
413 	SLOT->ksl = ksl ? 3-ksl : 31;
414 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
415 
416 	if( !(OPL->mode&0x80) )
417 	{	/* not CSM latch total level */
418 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
419 	}
420 }
421 
422 /* set attack rate & decay rate  */
423 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
424 {
425 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
426 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
427 	int ar = v>>4;
428 	int dr = v&0x0f;
429 
430 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
431 	SLOT->evsa = SLOT->AR[SLOT->ksr];
432 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
433 
434 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
435 	SLOT->evsd = SLOT->DR[SLOT->ksr];
436 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
437 }
438 
439 /* set sustain level & release rate */
440 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
441 {
442 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
443 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
444 	int sl = v>>4;
445 	int rr = v & 0x0f;
446 
447 	SLOT->SL = SL_TABLE[sl];
448 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
449 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
450 	SLOT->evsr = SLOT->RR[SLOT->ksr];
451 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
452 }
453 
454 /* operator output calcrator */
455 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
456 /* ---------- calcrate one of channel ---------- */
457 static inline void OPL_CALC_CH( OPL_CH *CH )
458 {
459 	UINT32 env_out;
460 	OPL_SLOT *SLOT;
461 
462 	feedback2 = 0;
463 	/* SLOT 1 */
464 	SLOT = &CH->SLOT[SLOT1];
465 	env_out=OPL_CALC_SLOT(SLOT);
466 	if( env_out < EG_ENT-1 )
467 	{
468 		/* PG */
469 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
470 		else          SLOT->Cnt += SLOT->Incr;
471 		/* connectoion */
472 		if(CH->FB)
473 		{
474 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
475 			CH->op1_out[1] = CH->op1_out[0];
476 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
477 		}
478 		else
479 		{
480 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
481 		}
482 	}else
483 	{
484 		CH->op1_out[1] = CH->op1_out[0];
485 		CH->op1_out[0] = 0;
486 	}
487 	/* SLOT 2 */
488 	SLOT = &CH->SLOT[SLOT2];
489 	env_out=OPL_CALC_SLOT(SLOT);
490 	if( env_out < EG_ENT-1 )
491 	{
492 		/* PG */
493 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
494 		else          SLOT->Cnt += SLOT->Incr;
495 		/* connectoion */
496 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
497 	}
498 }
499 
500 /* ---------- calcrate rhythm block ---------- */
501 #define WHITE_NOISE_db 6.0
502 static inline void OPL_CALC_RH( OPL_CH *CH )
503 {
504 	UINT32 env_tam,env_sd,env_top,env_hh;
505 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
506 	INT32 tone8;
507 
508 	OPL_SLOT *SLOT;
509 	int env_out;
510 
511 	/* BD : same as FM serial mode and output level is large */
512 	feedback2 = 0;
513 	/* SLOT 1 */
514 	SLOT = &CH[6].SLOT[SLOT1];
515 	env_out=OPL_CALC_SLOT(SLOT);
516 	if( env_out < EG_ENT-1 )
517 	{
518 		/* PG */
519 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
520 		else          SLOT->Cnt += SLOT->Incr;
521 		/* connectoion */
522 		if(CH[6].FB)
523 		{
524 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
525 			CH[6].op1_out[1] = CH[6].op1_out[0];
526 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
527 		}
528 		else
529 		{
530 			feedback2 = OP_OUT(SLOT,env_out,0);
531 		}
532 	}else
533 	{
534 		feedback2 = 0;
535 		CH[6].op1_out[1] = CH[6].op1_out[0];
536 		CH[6].op1_out[0] = 0;
537 	}
538 	/* SLOT 2 */
539 	SLOT = &CH[6].SLOT[SLOT2];
540 	env_out=OPL_CALC_SLOT(SLOT);
541 	if( env_out < EG_ENT-1 )
542 	{
543 		/* PG */
544 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
545 		else          SLOT->Cnt += SLOT->Incr;
546 		/* connectoion */
547 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
548 	}
549 
550 	// SD  (17) = mul14[fnum7] + white noise
551 	// TAM (15) = mul15[fnum8]
552 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
553 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
554 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
555 	env_tam=OPL_CALC_SLOT(SLOT8_1);
556 	env_top=OPL_CALC_SLOT(SLOT8_2);
557 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
558 
559 	/* PG */
560 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
561 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
562 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
563 	else             SLOT7_2->Cnt += (CH[7].fc*8);
564 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
565 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
566 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
567 	else             SLOT8_2->Cnt += (CH[8].fc*48);
568 
569 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
570 
571 	/* SD */
572 	if( env_sd < EG_ENT-1 )
573 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
574 	/* TAM */
575 	if( env_tam < EG_ENT-1 )
576 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
577 	/* TOP-CY */
578 	if( env_top < EG_ENT-1 )
579 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
580 	/* HH */
581 	if( env_hh  < EG_ENT-1 )
582 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
583 }
584 
585 /* ----------- initialize time tabls ----------- */
586 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
587 {
588 	int i;
589 	double rate;
590 
591 	/* make attack rate & decay rate tables */
592 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
593 	for (i = 4;i <= 60;i++){
594 		rate  = OPL->freqbase;						/* frequency rate */
595 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
596 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
597 		rate *= (double)(EG_ENT<<ENV_BITS);
598 		OPL->AR_TABLE[i] = rate / ARRATE;
599 		OPL->DR_TABLE[i] = rate / DRRATE;
600 	}
601 	for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
602 	{
603 		OPL->AR_TABLE[i] = EG_AED-1;
604 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
605 	}
606 #if 0
607 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
608 		LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
609 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
610 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
611 	}
612 #endif
613 }
614 
615 /* ---------- generic table initialize ---------- */
616 static int OPLOpenTable( void )
617 {
618 	int s,t;
619 	double rate;
620 	int i,j;
621 	double pom;
622 
623 	/* allocate dynamic tables */
624 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
625 		return 0;
626 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
627 	{
628 		free(TL_TABLE);
629 		return 0;
630 	}
631 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
632 	{
633 		free(TL_TABLE);
634 		free(SIN_TABLE);
635 		return 0;
636 	}
637 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
638 	{
639 		free(TL_TABLE);
640 		free(SIN_TABLE);
641 		free(AMS_TABLE);
642 		return 0;
643 	}
644 	/* make total level table */
645 	for (t = 0;t < EG_ENT-1 ;t++){
646 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
647 		TL_TABLE[       t] =  (int)rate;
648 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
649 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
650 	}
651 	/* fill volume off area */
652 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
653 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
654 	}
655 
656 	/* make sinwave table (total level offet) */
657 	/* degree 0 = degree 180                   = off */
658 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
659 	for (s = 1;s <= SIN_ENT/4;s++){
660 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
661 		pom = 20*log10(1/pom);	   /* decibel */
662 		j = pom / EG_STEP;         /* TL_TABLE steps */
663 
664         /* degree 0   -  90    , degree 180 -  90 : plus section */
665 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
666         /* degree 180 - 270    , degree 360 - 270 : minus section */
667 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
668 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
669 	}
670 	for (s = 0;s < SIN_ENT;s++)
671 	{
672 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
673 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
674 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
675 	}
676 
677 	/* envelope counter -> envelope output table */
678 	for (i=0; i<EG_ENT; i++)
679 	{
680 		/* ATTACK curve */
681 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
682 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
683 		ENV_CURVE[i] = (int)pom;
684 		/* DECAY ,RELEASE curve */
685 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
686 	}
687 	/* off */
688 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
689 	/* make LFO ams table */
690 	for (i=0; i<AMS_ENT; i++)
691 	{
692 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
693 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
694 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
695 	}
696 	/* make LFO vibrate table */
697 	for (i=0; i<VIB_ENT; i++)
698 	{
699 		/* 100cent = 1seminote = 6% ?? */
700 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
701 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
702 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
703 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
704 	}
705 	return 1;
706 }
707 
708 
709 static void OPLCloseTable( void )
710 {
711 	free(TL_TABLE);
712 	free(SIN_TABLE);
713 	free(AMS_TABLE);
714 	free(VIB_TABLE);
715 }
716 
717 /* CSM Key Control */
718 static inline void CSMKeyControll(OPL_CH *CH)
719 {
720 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
721 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
722 	/* all key off */
723 	OPL_KEYOFF(slot1);
724 	OPL_KEYOFF(slot2);
725 	/* total level latch */
726 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
727 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
728 	/* key on */
729 	CH->op1_out[0] = CH->op1_out[1] = 0;
730 	OPL_KEYON(slot1);
731 	OPL_KEYON(slot2);
732 }
733 
734 /* ---------- opl initialize ---------- */
735 static void OPL_initialize(FM_OPL *OPL)
736 {
737 	int fn;
738 
739 	/* frequency base */
740 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
741 	/* Timer base time */
742 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
743 	/* make time tables */
744 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
745 	/* make fnumber -> increment counter table */
746 	for( fn=0 ; fn < 1024 ; fn++ )
747 	{
748 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
749 	}
750 	/* LFO freq.table */
751 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
752 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
753 }
754 
755 /* ---------- write a OPL registers ---------- */
756 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
757 {
758 	OPL_CH *CH;
759 	int slot;
760 	int block_fnum;
761 
762 	switch(r&0xe0)
763 	{
764 	case 0x00: /* 00-1f:control */
765 		switch(r&0x1f)
766 		{
767 		case 0x01:
768 			/* wave selector enable */
769 			if(OPL->type&OPL_TYPE_WAVESEL)
770 			{
771 				OPL->wavesel = v&0x20;
772 				if(!OPL->wavesel)
773 				{
774 					/* preset compatible mode */
775 					int c;
776 					for(c=0;c<OPL->max_ch;c++)
777 					{
778 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
779 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
780 					}
781 				}
782 			}
783 			return;
784 		case 0x02:	/* Timer 1 */
785 			OPL->T[0] = (256-v)*4;
786 			break;
787 		case 0x03:	/* Timer 2 */
788 			OPL->T[1] = (256-v)*16;
789 			return;
790 		case 0x04:	/* IRQ clear / mask and Timer enable */
791 			if(v&0x80)
792 			{	/* IRQ flag clear */
793 				OPL_STATUS_RESET(OPL,0x7f);
794 			}
795 			else
796 			{	/* set IRQ mask ,timer enable*/
797 				UINT8 st1 = v&1;
798 				UINT8 st2 = (v>>1)&1;
799 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
800 				OPL_STATUS_RESET(OPL,v&0x78);
801 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
802 				/* timer 2 */
803 				if(OPL->st[1] != st2)
804 				{
805 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
806 					OPL->st[1] = st2;
807 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
808 				}
809 				/* timer 1 */
810 				if(OPL->st[0] != st1)
811 				{
812 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
813 					OPL->st[0] = st1;
814 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
815 				}
816 			}
817 			return;
818 #if BUILD_Y8950
819 		case 0x06:		/* Key Board OUT */
820 			if(OPL->type&OPL_TYPE_KEYBOARD)
821 			{
822 				if(OPL->keyboardhandler_w)
823 					OPL->keyboardhandler_w(OPL->keyboard_param,v);
824 				else
825 					LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
826 			}
827 			return;
828 		case 0x07:	/* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
829 			if(OPL->type&OPL_TYPE_ADPCM)
830 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
831 			return;
832 		case 0x08:	/* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
833 			OPL->mode = v;
834 			v&=0x1f;	/* for DELTA-T unit */
835 		case 0x09:		/* START ADD */
836 		case 0x0a:
837 		case 0x0b:		/* STOP ADD  */
838 		case 0x0c:
839 		case 0x0d:		/* PRESCALE   */
840 		case 0x0e:
841 		case 0x0f:		/* ADPCM data */
842 		case 0x10: 		/* DELTA-N    */
843 		case 0x11: 		/* DELTA-N    */
844 		case 0x12: 		/* EG-CTRL    */
845 			if(OPL->type&OPL_TYPE_ADPCM)
846 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
847 			return;
848 #if 0
849 		case 0x15:		/* DAC data    */
850 		case 0x16:
851 		case 0x17:		/* SHIFT    */
852 			return;
853 		case 0x18:		/* I/O CTRL (Direction) */
854 			if(OPL->type&OPL_TYPE_IO)
855 				OPL->portDirection = v&0x0f;
856 			return;
857 		case 0x19:		/* I/O DATA */
858 			if(OPL->type&OPL_TYPE_IO)
859 			{
860 				OPL->portLatch = v;
861 				if(OPL->porthandler_w)
862 					OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
863 			}
864 			return;
865 		case 0x1a:		/* PCM data */
866 			return;
867 #endif
868 #endif
869 		}
870 		break;
871 	case 0x20:	/* am,vib,ksr,eg type,mul */
872 		slot = slot_array[r&0x1f];
873 		if(slot == -1) return;
874 		set_mul(OPL,slot,v);
875 		return;
876 	case 0x40:
877 		slot = slot_array[r&0x1f];
878 		if(slot == -1) return;
879 		set_ksl_tl(OPL,slot,v);
880 		return;
881 	case 0x60:
882 		slot = slot_array[r&0x1f];
883 		if(slot == -1) return;
884 		set_ar_dr(OPL,slot,v);
885 		return;
886 	case 0x80:
887 		slot = slot_array[r&0x1f];
888 		if(slot == -1) return;
889 		set_sl_rr(OPL,slot,v);
890 		return;
891 	case 0xa0:
892 		switch(r)
893 		{
894 		case 0xbd:
895 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
896 			{
897 			UINT8 rkey = OPL->rhythm^v;
898 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
899 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
900 			OPL->rhythm  = v&0x3f;
901 			if(OPL->rhythm&0x20)
902 			{
903 #if 0
904 				usrintf_showmessage("OPL Rhythm mode select");
905 #endif
906 				/* BD key on/off */
907 				if(rkey&0x10)
908 				{
909 					if(v&0x10)
910 					{
911 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
912 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
913 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
914 					}
915 					else
916 					{
917 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
918 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
919 					}
920 				}
921 				/* SD key on/off */
922 				if(rkey&0x08)
923 				{
924 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
925 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
926 				}/* TAM key on/off */
927 				if(rkey&0x04)
928 				{
929 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
930 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
931 				}
932 				/* TOP-CY key on/off */
933 				if(rkey&0x02)
934 				{
935 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
936 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
937 				}
938 				/* HH key on/off */
939 				if(rkey&0x01)
940 				{
941 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
942 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
943 				}
944 			}
945 			}
946 			return;
947 		}
948 		/* keyon,block,fnum */
949 		if( (r&0x0f) > 8) return;
950 		CH = &OPL->P_CH[r&0x0f];
951 		if(!(r&0x10))
952 		{	/* a0-a8 */
953 			block_fnum  = (CH->block_fnum&0x1f00) | v;
954 		}
955 		else
956 		{	/* b0-b8 */
957 			int keyon = (v>>5)&1;
958 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
959 			if(CH->keyon != keyon)
960 			{
961 				if( (CH->keyon=keyon) )
962 				{
963 					CH->op1_out[0] = CH->op1_out[1] = 0;
964 					OPL_KEYON(&CH->SLOT[SLOT1]);
965 					OPL_KEYON(&CH->SLOT[SLOT2]);
966 				}
967 				else
968 				{
969 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
970 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
971 				}
972 			}
973 		}
974 		/* update */
975 		if(CH->block_fnum != block_fnum)
976 		{
977 			int blockRv = 7-(block_fnum>>10);
978 			int fnum   = block_fnum&0x3ff;
979 			CH->block_fnum = block_fnum;
980 
981 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
982 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
983 			CH->kcode = CH->block_fnum>>9;
984 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
985 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
986 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
987 		}
988 		return;
989 	case 0xc0:
990 		/* FB,C */
991 		if( (r&0x0f) > 8) return;
992 		CH = &OPL->P_CH[r&0x0f];
993 		{
994 		int feedback = (v>>1)&7;
995 		CH->FB   = feedback ? (8+1) - feedback : 0;
996 		CH->CON = v&1;
997 		set_algorithm(CH);
998 		}
999 		return;
1000 	case 0xe0: /* wave type */
1001 		slot = slot_array[r&0x1f];
1002 		if(slot == -1) return;
1003 		CH = &OPL->P_CH[slot/2];
1004 		if(OPL->wavesel)
1005 		{
1006 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1007 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1008 		}
1009 		return;
1010 	}
1011 }
1012 
1013 /* lock/unlock for common table */
1014 static int OPL_LockTable(void)
1015 {
1016 	num_lock++;
1017 	if(num_lock>1) return 0;
1018 	/* first time */
1019 	cur_chip = NULL;
1020 	/* allocate total level table (128kb space) */
1021 	if( !OPLOpenTable() )
1022 	{
1023 		num_lock--;
1024 		return -1;
1025 	}
1026 	return 0;
1027 }
1028 
1029 static void OPL_UnLockTable(void)
1030 {
1031 	if(num_lock) num_lock--;
1032 	if(num_lock) return;
1033 	/* last time */
1034 	cur_chip = NULL;
1035 	OPLCloseTable();
1036 }
1037 
1038 #if (BUILD_YM3812 || BUILD_YM3526)
1039 /*******************************************************************************/
1040 /*		YM3812 local section                                                   */
1041 /*******************************************************************************/
1042 
1043 /* ---------- update one of chip ----------- */
1044 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1045 {
1046     int i;
1047 	int data;
1048 	OPLSAMPLE *buf = buffer;
1049 	UINT32 amsCnt  = OPL->amsCnt;
1050 	UINT32 vibCnt  = OPL->vibCnt;
1051 	UINT8 rhythm = OPL->rhythm&0x20;
1052 	OPL_CH *CH,*R_CH;
1053 
1054 	if( (void *)OPL != cur_chip ){
1055 		cur_chip = (void *)OPL;
1056 		/* channel pointers */
1057 		S_CH = OPL->P_CH;
1058 		E_CH = &S_CH[9];
1059 		/* rhythm slot */
1060 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1061 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1062 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1063 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1064 		/* LFO state */
1065 		amsIncr = OPL->amsIncr;
1066 		vibIncr = OPL->vibIncr;
1067 		ams_table = OPL->ams_table;
1068 		vib_table = OPL->vib_table;
1069 	}
1070 	R_CH = rhythm ? &S_CH[6] : E_CH;
1071     for( i=0; i < length ; i++ )
1072 	{
1073 		/*            channel A         channel B         channel C      */
1074 		/* LFO */
1075 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1076 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1077 		outd[0] = 0;
1078 		/* FM part */
1079 		for(CH=S_CH ; CH < R_CH ; CH++)
1080 			OPL_CALC_CH(CH);
1081 		/* Rythn part */
1082 		if(rhythm)
1083 			OPL_CALC_RH(S_CH);
1084 		/* limit check */
1085 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1086 		/* store to sound buffer */
1087 		buf[i] = data >> OPL_OUTSB;
1088 	}
1089 
1090 	OPL->amsCnt = amsCnt;
1091 	OPL->vibCnt = vibCnt;
1092 #ifdef OPL_OUTPUT_LOG
1093 	if(opl_dbg_fp)
1094 	{
1095 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1096 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1097 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1098 	}
1099 #endif
1100 }
1101 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1102 
1103 #if BUILD_Y8950
1104 
1105 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1106 {
1107     int i;
1108 	int data;
1109 	OPLSAMPLE *buf = buffer;
1110 	UINT32 amsCnt  = OPL->amsCnt;
1111 	UINT32 vibCnt  = OPL->vibCnt;
1112 	UINT8 rhythm = OPL->rhythm&0x20;
1113 	OPL_CH *CH,*R_CH;
1114 	YM_DELTAT *DELTAT = OPL->deltat;
1115 
1116 	/* setup DELTA-T unit */
1117 	YM_DELTAT_DECODE_PRESET(DELTAT);
1118 
1119 	if( (void *)OPL != cur_chip ){
1120 		cur_chip = (void *)OPL;
1121 		/* channel pointers */
1122 		S_CH = OPL->P_CH;
1123 		E_CH = &S_CH[9];
1124 		/* rhythm slot */
1125 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1126 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1127 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1128 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1129 		/* LFO state */
1130 		amsIncr = OPL->amsIncr;
1131 		vibIncr = OPL->vibIncr;
1132 		ams_table = OPL->ams_table;
1133 		vib_table = OPL->vib_table;
1134 	}
1135 	R_CH = rhythm ? &S_CH[6] : E_CH;
1136     for( i=0; i < length ; i++ )
1137 	{
1138 		/*            channel A         channel B         channel C      */
1139 		/* LFO */
1140 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1141 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1142 		outd[0] = 0;
1143 		/* deltaT ADPCM */
1144 		if( DELTAT->portstate )
1145 			YM_DELTAT_ADPCM_CALC(DELTAT);
1146 		/* FM part */
1147 		for(CH=S_CH ; CH < R_CH ; CH++)
1148 			OPL_CALC_CH(CH);
1149 		/* Rythn part */
1150 		if(rhythm)
1151 			OPL_CALC_RH(S_CH);
1152 		/* limit check */
1153 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1154 		/* store to sound buffer */
1155 		buf[i] = data >> OPL_OUTSB;
1156 	}
1157 	OPL->amsCnt = amsCnt;
1158 	OPL->vibCnt = vibCnt;
1159 	/* deltaT START flag */
1160 	if( !DELTAT->portstate )
1161 		OPL->status &= 0xfe;
1162 }
1163 #endif
1164 
1165 /* ---------- reset one of chip ---------- */
1166 void OPLResetChip(FM_OPL *OPL)
1167 {
1168 	int c,s;
1169 	int i;
1170 
1171 	/* reset chip */
1172 	OPL->mode   = 0;	/* normal mode */
1173 	OPL_STATUS_RESET(OPL,0x7f);
1174 	/* reset with register write */
1175 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1176 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1177 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1178 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1179 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1180 	/* reset operator parameter */
1181 	for( c = 0 ; c < OPL->max_ch ; c++ )
1182 	{
1183 		OPL_CH *CH = &OPL->P_CH[c];
1184 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1185 		for(s = 0 ; s < 2 ; s++ )
1186 		{
1187 			/* wave table */
1188 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1189 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1190 			CH->SLOT[s].evc = EG_OFF;
1191 			CH->SLOT[s].eve = EG_OFF+1;
1192 			CH->SLOT[s].evs = 0;
1193 		}
1194 	}
1195 #if BUILD_Y8950
1196 	if(OPL->type&OPL_TYPE_ADPCM)
1197 	{
1198 		YM_DELTAT *DELTAT = OPL->deltat;
1199 
1200 		DELTAT->freqbase = OPL->freqbase;
1201 		DELTAT->output_pointer = outd;
1202 		DELTAT->portshift = 5;
1203 		DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1204 		YM_DELTAT_ADPCM_Reset(DELTAT,0);
1205 	}
1206 #endif
1207 }
1208 
1209 /* ----------  Create one of vietual YM3812 ----------       */
1210 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1211 FM_OPL *OPLCreate(int type, int clock, int rate)
1212 {
1213 	char *ptr;
1214 	FM_OPL *OPL;
1215 	int state_size;
1216 	int max_ch = 9; /* normaly 9 channels */
1217 
1218 	if( OPL_LockTable() ==-1) return NULL;
1219 	/* allocate OPL state space */
1220 	state_size  = sizeof(FM_OPL);
1221 	state_size += sizeof(OPL_CH)*max_ch;
1222 #if BUILD_Y8950
1223 	if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1224 #endif
1225 	/* allocate memory block */
1226 	ptr = malloc(state_size);
1227 	if(ptr==NULL) return NULL;
1228 	/* clear */
1229 	memset(ptr,0,state_size);
1230 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1231 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1232 #if BUILD_Y8950
1233 	if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1234 #endif
1235 	/* set channel state pointer */
1236 	OPL->type  = type;
1237 	OPL->clock = clock;
1238 	OPL->rate  = rate;
1239 	OPL->max_ch = max_ch;
1240 	/* init grobal tables */
1241 	OPL_initialize(OPL);
1242 	/* reset chip */
1243 	OPLResetChip(OPL);
1244 #ifdef OPL_OUTPUT_LOG
1245 	if(!opl_dbg_fp)
1246 	{
1247 		opl_dbg_fp = fopen("opllog.opl","wb");
1248 		opl_dbg_maxchip = 0;
1249 	}
1250 	if(opl_dbg_fp)
1251 	{
1252 		opl_dbg_opl[opl_dbg_maxchip] = OPL;
1253 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1254 			type,
1255 			clock&0xff,
1256 			(clock/0x100)&0xff,
1257 			(clock/0x10000)&0xff,
1258 			(clock/0x1000000)&0xff);
1259 		opl_dbg_maxchip++;
1260 	}
1261 #endif
1262 	return OPL;
1263 }
1264 
1265 /* ----------  Destroy one of vietual YM3812 ----------       */
1266 void OPLDestroy(FM_OPL *OPL)
1267 {
1268 #ifdef OPL_OUTPUT_LOG
1269 	if(opl_dbg_fp)
1270 	{
1271 		fclose(opl_dbg_fp);
1272 		opl_dbg_fp = NULL;
1273 	}
1274 #endif
1275 	OPL_UnLockTable();
1276 	free(OPL);
1277 }
1278 
1279 /* ----------  Option handlers ----------       */
1280 
1281 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1282 {
1283 	OPL->TimerHandler   = TimerHandler;
1284 	OPL->TimerParam = channelOffset;
1285 }
1286 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1287 {
1288 	OPL->IRQHandler     = IRQHandler;
1289 	OPL->IRQParam = param;
1290 }
1291 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1292 {
1293 	OPL->UpdateHandler = UpdateHandler;
1294 	OPL->UpdateParam = param;
1295 }
1296 #if BUILD_Y8950
1297 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1298 {
1299 	OPL->porthandler_w = PortHandler_w;
1300 	OPL->porthandler_r = PortHandler_r;
1301 	OPL->port_param = param;
1302 }
1303 
1304 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1305 {
1306 	OPL->keyboardhandler_w = KeyboardHandler_w;
1307 	OPL->keyboardhandler_r = KeyboardHandler_r;
1308 	OPL->keyboard_param = param;
1309 }
1310 #endif
1311 /* ---------- YM3812 I/O interface ---------- */
1312 int OPLWrite(FM_OPL *OPL,int a,int v)
1313 {
1314 	if( !(a&1) )
1315 	{	/* address port */
1316 		OPL->address = v & 0xff;
1317 	}
1318 	else
1319 	{	/* data port */
1320 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1321 #ifdef OPL_OUTPUT_LOG
1322 	if(opl_dbg_fp)
1323 	{
1324 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1325 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1326 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1327 	}
1328 #endif
1329 		OPLWriteReg(OPL,OPL->address,v);
1330 	}
1331 	return OPL->status>>7;
1332 }
1333 
1334 unsigned char OPLRead(FM_OPL *OPL,int a)
1335 {
1336 	if( !(a&1) )
1337 	{	/* status port */
1338 		return OPL->status & (OPL->statusmask|0x80);
1339 	}
1340 	/* data port */
1341 	switch(OPL->address)
1342 	{
1343 	case 0x05: /* KeyBoard IN */
1344 		if(OPL->type&OPL_TYPE_KEYBOARD)
1345 		{
1346 			if(OPL->keyboardhandler_r)
1347 				return OPL->keyboardhandler_r(OPL->keyboard_param);
1348 			else {
1349 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1350 			}
1351 		}
1352 		return 0;
1353 #if 0
1354 	case 0x0f: /* ADPCM-DATA  */
1355 		return 0;
1356 #endif
1357 	case 0x19: /* I/O DATA    */
1358 		if(OPL->type&OPL_TYPE_IO)
1359 		{
1360 			if(OPL->porthandler_r)
1361 				return OPL->porthandler_r(OPL->port_param);
1362 			else {
1363 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1364 			}
1365 		}
1366 		return 0;
1367 	case 0x1a: /* PCM-DATA    */
1368 		return 0;
1369 	}
1370 	return 0;
1371 }
1372 
1373 int OPLTimerOver(FM_OPL *OPL,int c)
1374 {
1375 	if( c )
1376 	{	/* Timer B */
1377 		OPL_STATUS_SET(OPL,0x20);
1378 	}
1379 	else
1380 	{	/* Timer A */
1381 		OPL_STATUS_SET(OPL,0x40);
1382 		/* CSM mode key,TL control */
1383 		if( OPL->mode & 0x80 )
1384 		{	/* CSM mode total level latch and auto key on */
1385 			int ch;
1386 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1387 			for(ch=0;ch<9;ch++)
1388 				CSMKeyControll( &OPL->P_CH[ch] );
1389 		}
1390 	}
1391 	/* reload timer */
1392 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1393 	return OPL->status>>7;
1394 }
1395