xref: /qemu/hw/audio/fmopl.c (revision b3b40917)
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31  */
32 
33 #include "qemu/osdep.h"
34 #include <math.h>
35 //#include "driver.h"		/* use M.A.M.E. */
36 #include "fmopl.h"
37 
38 #ifndef PI
39 #define PI 3.14159265358979323846
40 #endif
41 
42 #ifndef ARRAY_SIZE
43 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
44 #endif
45 
46 /* -------------------- for debug --------------------- */
47 /* #define OPL_OUTPUT_LOG */
48 #ifdef OPL_OUTPUT_LOG
49 static FILE *opl_dbg_fp = NULL;
50 static FM_OPL *opl_dbg_opl[16];
51 static int opl_dbg_maxchip,opl_dbg_chip;
52 #endif
53 
54 /* -------------------- preliminary define section --------------------- */
55 /* attack/decay rate time rate */
56 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
57 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
58 
59 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
60 
61 #define FREQ_BITS 24			/* frequency turn          */
62 
63 /* counter bits = 20 , octerve 7 */
64 #define FREQ_RATE   (1<<(FREQ_BITS-20))
65 #define TL_BITS    (FREQ_BITS+2)
66 
67 /* final output shift , limit minimum and maximum */
68 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
69 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
70 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
71 
72 /* -------------------- quality selection --------------------- */
73 
74 /* sinwave entries */
75 /* used static memory = SIN_ENT * 4 (byte) */
76 #define SIN_ENT 2048
77 
78 /* output level entries (envelope,sinwave) */
79 /* envelope counter lower bits */
80 #define ENV_BITS 16
81 /* envelope output entries */
82 #define EG_ENT   4096
83 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
84 /* used static  memory = EG_ENT*4 (byte)                     */
85 
86 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
87 #define EG_DED   EG_OFF
88 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
89 #define EG_AED   EG_DST
90 #define EG_AST   0                       /* ATTACK START */
91 
92 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
93 
94 /* LFO table entries */
95 #define VIB_ENT 512
96 #define VIB_SHIFT (32-9)
97 #define AMS_ENT 512
98 #define AMS_SHIFT (32-9)
99 
100 #define VIB_RATE 256
101 
102 /* -------------------- local defines , macros --------------------- */
103 
104 /* register number to channel number , slot offset */
105 #define SLOT1 0
106 #define SLOT2 1
107 
108 /* envelope phase */
109 #define ENV_MOD_RR  0x00
110 #define ENV_MOD_DR  0x01
111 #define ENV_MOD_AR  0x02
112 
113 /* -------------------- tables --------------------- */
114 static const int slot_array[32]=
115 {
116 	 0, 2, 4, 1, 3, 5,-1,-1,
117 	 6, 8,10, 7, 9,11,-1,-1,
118 	12,14,16,13,15,17,-1,-1,
119 	-1,-1,-1,-1,-1,-1,-1,-1
120 };
121 
122 /* key scale level */
123 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
124 #define DV (EG_STEP/2)
125 static const uint32_t KSL_TABLE[8*16]=
126 {
127 	/* OCT 0 */
128 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
129 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
130 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132 	/* OCT 1 */
133 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 	 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
136 	 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
137 	/* OCT 2 */
138 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
139 	 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
140 	 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
141 	 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
142 	/* OCT 3 */
143 	 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
144 	 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
145 	 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
146 	 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
147 	/* OCT 4 */
148 	 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
149 	 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
150 	 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
151 	10.875/DV,11.250/DV,11.625/DV,12.000/DV,
152 	/* OCT 5 */
153 	 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
154 	 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
155 	12.000/DV,12.750/DV,13.125/DV,13.500/DV,
156 	13.875/DV,14.250/DV,14.625/DV,15.000/DV,
157 	/* OCT 6 */
158 	 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
159 	12.000/DV,13.125/DV,13.875/DV,14.625/DV,
160 	15.000/DV,15.750/DV,16.125/DV,16.500/DV,
161 	16.875/DV,17.250/DV,17.625/DV,18.000/DV,
162 	/* OCT 7 */
163 	 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
164 	15.000/DV,16.125/DV,16.875/DV,17.625/DV,
165 	18.000/DV,18.750/DV,19.125/DV,19.500/DV,
166 	19.875/DV,20.250/DV,20.625/DV,21.000/DV
167 };
168 #undef DV
169 
170 /* sustain lebel table (3db per step) */
171 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
172 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
173 static const int32_t SL_TABLE[16]={
174  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
175  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
176 };
177 #undef SC
178 
179 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
180 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
181 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
182 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
183 static int32_t *TL_TABLE;
184 
185 /* pointers to TL_TABLE with sinwave output offset */
186 static int32_t **SIN_TABLE;
187 
188 /* LFO table */
189 static int32_t *AMS_TABLE;
190 static int32_t *VIB_TABLE;
191 
192 /* envelope output curve table */
193 /* attack + decay + OFF */
194 static int32_t ENV_CURVE[2*EG_ENT+1];
195 
196 /* multiple table */
197 #define ML 2
198 static const uint32_t MUL_TABLE[16]= {
199 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
200    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
201    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
202 };
203 #undef ML
204 
205 /* dummy attack / decay rate ( when rate == 0 ) */
206 static int32_t RATE_0[16]=
207 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
208 
209 /* -------------------- static state --------------------- */
210 
211 /* lock level of common table */
212 static int num_lock = 0;
213 
214 /* work table */
215 static void *cur_chip = NULL;	/* current chip point */
216 /* currenct chip state */
217 /* static OPLSAMPLE  *bufL,*bufR; */
218 static OPL_CH *S_CH;
219 static OPL_CH *E_CH;
220 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
221 
222 static int32_t outd[1];
223 static int32_t ams;
224 static int32_t vib;
225 static int32_t *ams_table;
226 static int32_t *vib_table;
227 static int32_t amsIncr;
228 static int32_t vibIncr;
229 static int32_t feedback2;		/* connect for SLOT 2 */
230 
231 /* log output level */
232 #define LOG_ERR  3      /* ERROR       */
233 #define LOG_WAR  2      /* WARNING     */
234 #define LOG_INF  1      /* INFORMATION */
235 
236 //#define LOG_LEVEL LOG_INF
237 #define LOG_LEVEL	LOG_ERR
238 
239 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
240 #define LOG(n,x)
241 
242 /* --------------------- subroutines  --------------------- */
243 
244 static inline int Limit( int val, int max, int min ) {
245 	if ( val > max )
246 		val = max;
247 	else if ( val < min )
248 		val = min;
249 
250 	return val;
251 }
252 
253 /* status set and IRQ handling */
254 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
255 {
256 	/* set status flag */
257 	OPL->status |= flag;
258 	if(!(OPL->status & 0x80))
259 	{
260 		if(OPL->status & OPL->statusmask)
261 		{	/* IRQ on */
262 			OPL->status |= 0x80;
263 		}
264 	}
265 }
266 
267 /* status reset and IRQ handling */
268 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
269 {
270 	/* reset status flag */
271 	OPL->status &=~flag;
272 	if((OPL->status & 0x80))
273 	{
274 		if (!(OPL->status & OPL->statusmask) )
275 		{
276 			OPL->status &= 0x7f;
277 		}
278 	}
279 }
280 
281 /* IRQ mask set */
282 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
283 {
284 	OPL->statusmask = flag;
285 	/* IRQ handling check */
286 	OPL_STATUS_SET(OPL,0);
287 	OPL_STATUS_RESET(OPL,0);
288 }
289 
290 /* ----- key on  ----- */
291 static inline void OPL_KEYON(OPL_SLOT *SLOT)
292 {
293 	/* sin wave restart */
294 	SLOT->Cnt = 0;
295 	/* set attack */
296 	SLOT->evm = ENV_MOD_AR;
297 	SLOT->evs = SLOT->evsa;
298 	SLOT->evc = EG_AST;
299 	SLOT->eve = EG_AED;
300 }
301 /* ----- key off ----- */
302 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
303 {
304 	if( SLOT->evm > ENV_MOD_RR)
305 	{
306 		/* set envelope counter from envleope output */
307 		SLOT->evm = ENV_MOD_RR;
308 		if( !(SLOT->evc&EG_DST) )
309 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
310 			SLOT->evc = EG_DST;
311 		SLOT->eve = EG_DED;
312 		SLOT->evs = SLOT->evsr;
313 	}
314 }
315 
316 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
317 /* return : envelope output */
318 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
319 {
320 	/* calcrate envelope generator */
321 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
322 	{
323 		switch( SLOT->evm ){
324 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
325 			/* next DR */
326 			SLOT->evm = ENV_MOD_DR;
327 			SLOT->evc = EG_DST;
328 			SLOT->eve = SLOT->SL;
329 			SLOT->evs = SLOT->evsd;
330 			break;
331 		case ENV_MOD_DR: /* DECAY -> SL or RR */
332 			SLOT->evc = SLOT->SL;
333 			SLOT->eve = EG_DED;
334 			if(SLOT->eg_typ)
335 			{
336 				SLOT->evs = 0;
337 			}
338 			else
339 			{
340 				SLOT->evm = ENV_MOD_RR;
341 				SLOT->evs = SLOT->evsr;
342 			}
343 			break;
344 		case ENV_MOD_RR: /* RR -> OFF */
345 			SLOT->evc = EG_OFF;
346 			SLOT->eve = EG_OFF+1;
347 			SLOT->evs = 0;
348 			break;
349 		}
350 	}
351 	/* calcrate envelope */
352 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
353 }
354 
355 /* set algorithm connection */
356 static void set_algorithm( OPL_CH *CH)
357 {
358 	int32_t *carrier = &outd[0];
359 	CH->connect1 = CH->CON ? carrier : &feedback2;
360 	CH->connect2 = carrier;
361 }
362 
363 /* ---------- frequency counter for operater update ---------- */
364 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
365 {
366 	int ksr;
367 
368 	/* frequency step counter */
369 	SLOT->Incr = CH->fc * SLOT->mul;
370 	ksr = CH->kcode >> SLOT->KSR;
371 
372 	if( SLOT->ksr != ksr )
373 	{
374 		SLOT->ksr = ksr;
375 		/* attack , decay rate recalcration */
376 		SLOT->evsa = SLOT->AR[ksr];
377 		SLOT->evsd = SLOT->DR[ksr];
378 		SLOT->evsr = SLOT->RR[ksr];
379 	}
380 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
381 }
382 
383 /* set multi,am,vib,EG-TYP,KSR,mul */
384 static inline void set_mul(FM_OPL *OPL,int slot,int v)
385 {
386 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
387 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
388 
389 	SLOT->mul    = MUL_TABLE[v&0x0f];
390 	SLOT->KSR    = (v&0x10) ? 0 : 2;
391 	SLOT->eg_typ = (v&0x20)>>5;
392 	SLOT->vib    = (v&0x40);
393 	SLOT->ams    = (v&0x80);
394 	CALC_FCSLOT(CH,SLOT);
395 }
396 
397 /* set ksl & tl */
398 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
399 {
400 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
401 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
402 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
403 
404 	SLOT->ksl = ksl ? 3-ksl : 31;
405 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
406 
407 	if( !(OPL->mode&0x80) )
408 	{	/* not CSM latch total level */
409 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
410 	}
411 }
412 
413 /* set attack rate & decay rate  */
414 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
415 {
416 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
417 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
418 	int ar = v>>4;
419 	int dr = v&0x0f;
420 
421 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
422 	SLOT->evsa = SLOT->AR[SLOT->ksr];
423 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
424 
425 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
426 	SLOT->evsd = SLOT->DR[SLOT->ksr];
427 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
428 }
429 
430 /* set sustain level & release rate */
431 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
432 {
433 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
434 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
435 	int sl = v>>4;
436 	int rr = v & 0x0f;
437 
438 	SLOT->SL = SL_TABLE[sl];
439 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
440 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
441 	SLOT->evsr = SLOT->RR[SLOT->ksr];
442 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
443 }
444 
445 /* operator output calcrator */
446 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
447 /* ---------- calcrate one of channel ---------- */
448 static inline void OPL_CALC_CH( OPL_CH *CH )
449 {
450 	uint32_t env_out;
451 	OPL_SLOT *SLOT;
452 
453 	feedback2 = 0;
454 	/* SLOT 1 */
455 	SLOT = &CH->SLOT[SLOT1];
456 	env_out=OPL_CALC_SLOT(SLOT);
457 	if( env_out < EG_ENT-1 )
458 	{
459 		/* PG */
460 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
461 		else          SLOT->Cnt += SLOT->Incr;
462 		/* connectoion */
463 		if(CH->FB)
464 		{
465 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
466 			CH->op1_out[1] = CH->op1_out[0];
467 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
468 		}
469 		else
470 		{
471 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
472 		}
473 	}else
474 	{
475 		CH->op1_out[1] = CH->op1_out[0];
476 		CH->op1_out[0] = 0;
477 	}
478 	/* SLOT 2 */
479 	SLOT = &CH->SLOT[SLOT2];
480 	env_out=OPL_CALC_SLOT(SLOT);
481 	if( env_out < EG_ENT-1 )
482 	{
483 		/* PG */
484 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
485 		else          SLOT->Cnt += SLOT->Incr;
486 		/* connectoion */
487 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
488 	}
489 }
490 
491 /* ---------- calcrate rhythm block ---------- */
492 #define WHITE_NOISE_db 6.0
493 static inline void OPL_CALC_RH( OPL_CH *CH )
494 {
495 	uint32_t env_tam,env_sd,env_top,env_hh;
496 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
497 	int32_t tone8;
498 
499 	OPL_SLOT *SLOT;
500 	int env_out;
501 
502 	/* BD : same as FM serial mode and output level is large */
503 	feedback2 = 0;
504 	/* SLOT 1 */
505 	SLOT = &CH[6].SLOT[SLOT1];
506 	env_out=OPL_CALC_SLOT(SLOT);
507 	if( env_out < EG_ENT-1 )
508 	{
509 		/* PG */
510 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
511 		else          SLOT->Cnt += SLOT->Incr;
512 		/* connectoion */
513 		if(CH[6].FB)
514 		{
515 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
516 			CH[6].op1_out[1] = CH[6].op1_out[0];
517 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
518 		}
519 		else
520 		{
521 			feedback2 = OP_OUT(SLOT,env_out,0);
522 		}
523 	}else
524 	{
525 		feedback2 = 0;
526 		CH[6].op1_out[1] = CH[6].op1_out[0];
527 		CH[6].op1_out[0] = 0;
528 	}
529 	/* SLOT 2 */
530 	SLOT = &CH[6].SLOT[SLOT2];
531 	env_out=OPL_CALC_SLOT(SLOT);
532 	if( env_out < EG_ENT-1 )
533 	{
534 		/* PG */
535 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
536 		else          SLOT->Cnt += SLOT->Incr;
537 		/* connectoion */
538 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
539 	}
540 
541 	// SD  (17) = mul14[fnum7] + white noise
542 	// TAM (15) = mul15[fnum8]
543 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
544 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
545 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
546 	env_tam=OPL_CALC_SLOT(SLOT8_1);
547 	env_top=OPL_CALC_SLOT(SLOT8_2);
548 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
549 
550 	/* PG */
551 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
552 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
553 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
554 	else             SLOT7_2->Cnt += (CH[7].fc*8);
555 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
556 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
557 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
558 	else             SLOT8_2->Cnt += (CH[8].fc*48);
559 
560 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
561 
562 	/* SD */
563 	if( env_sd < EG_ENT-1 )
564 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
565 	/* TAM */
566 	if( env_tam < EG_ENT-1 )
567 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
568 	/* TOP-CY */
569 	if( env_top < EG_ENT-1 )
570 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
571 	/* HH */
572 	if( env_hh  < EG_ENT-1 )
573 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
574 }
575 
576 /* ----------- initialize time tabls ----------- */
577 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
578 {
579 	int i;
580 	double rate;
581 
582 	/* make attack rate & decay rate tables */
583 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
584 	for (i = 4;i <= 60;i++){
585 		rate  = OPL->freqbase;						/* frequency rate */
586 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
587 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
588 		rate *= (double)(EG_ENT<<ENV_BITS);
589 		OPL->AR_TABLE[i] = rate / ARRATE;
590 		OPL->DR_TABLE[i] = rate / DRRATE;
591 	}
592 	for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
593 	{
594 		OPL->AR_TABLE[i] = EG_AED-1;
595 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
596 	}
597 #if 0
598 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
599 		LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
600 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
601 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
602 	}
603 #endif
604 }
605 
606 /* ---------- generic table initialize ---------- */
607 static int OPLOpenTable( void )
608 {
609 	int s,t;
610 	double rate;
611 	int i,j;
612 	double pom;
613 
614 	/* allocate dynamic tables */
615 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
616 		return 0;
617 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
618 	{
619 		free(TL_TABLE);
620 		return 0;
621 	}
622 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
623 	{
624 		free(TL_TABLE);
625 		free(SIN_TABLE);
626 		return 0;
627 	}
628 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
629 	{
630 		free(TL_TABLE);
631 		free(SIN_TABLE);
632 		free(AMS_TABLE);
633 		return 0;
634 	}
635 	/* make total level table */
636 	for (t = 0;t < EG_ENT-1 ;t++){
637 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
638 		TL_TABLE[       t] =  (int)rate;
639 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
640 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
641 	}
642 	/* fill volume off area */
643 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
644 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
645 	}
646 
647 	/* make sinwave table (total level offet) */
648 	/* degree 0 = degree 180                   = off */
649 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
650 	for (s = 1;s <= SIN_ENT/4;s++){
651 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
652 		pom = 20*log10(1/pom);	   /* decibel */
653 		j = pom / EG_STEP;         /* TL_TABLE steps */
654 
655         /* degree 0   -  90    , degree 180 -  90 : plus section */
656 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
657         /* degree 180 - 270    , degree 360 - 270 : minus section */
658 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
659 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
660 	}
661 	for (s = 0;s < SIN_ENT;s++)
662 	{
663 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
664 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
665 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
666 	}
667 
668 	/* envelope counter -> envelope output table */
669 	for (i=0; i<EG_ENT; i++)
670 	{
671 		/* ATTACK curve */
672 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
673 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
674 		ENV_CURVE[i] = (int)pom;
675 		/* DECAY ,RELEASE curve */
676 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
677 	}
678 	/* off */
679 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
680 	/* make LFO ams table */
681 	for (i=0; i<AMS_ENT; i++)
682 	{
683 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
684 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
685 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
686 	}
687 	/* make LFO vibrate table */
688 	for (i=0; i<VIB_ENT; i++)
689 	{
690 		/* 100cent = 1seminote = 6% ?? */
691 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
692 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
693 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
694 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
695 	}
696 	return 1;
697 }
698 
699 
700 static void OPLCloseTable( void )
701 {
702 	free(TL_TABLE);
703 	free(SIN_TABLE);
704 	free(AMS_TABLE);
705 	free(VIB_TABLE);
706 }
707 
708 /* CSM Key Control */
709 static inline void CSMKeyControll(OPL_CH *CH)
710 {
711 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
712 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
713 	/* all key off */
714 	OPL_KEYOFF(slot1);
715 	OPL_KEYOFF(slot2);
716 	/* total level latch */
717 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
718 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
719 	/* key on */
720 	CH->op1_out[0] = CH->op1_out[1] = 0;
721 	OPL_KEYON(slot1);
722 	OPL_KEYON(slot2);
723 }
724 
725 /* ---------- opl initialize ---------- */
726 static void OPL_initialize(FM_OPL *OPL)
727 {
728 	int fn;
729 
730 	/* frequency base */
731 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
732 	/* Timer base time */
733 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
734 	/* make time tables */
735 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
736 	/* make fnumber -> increment counter table */
737 	for( fn=0 ; fn < 1024 ; fn++ )
738 	{
739 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
740 	}
741 	/* LFO freq.table */
742 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
743 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
744 }
745 
746 /* ---------- write a OPL registers ---------- */
747 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
748 {
749 	OPL_CH *CH;
750 	int slot;
751 	int block_fnum;
752 
753 	switch(r&0xe0)
754 	{
755 	case 0x00: /* 00-1f:control */
756 		switch(r&0x1f)
757 		{
758 		case 0x01:
759 			/* wave selector enable */
760 			OPL->wavesel = v&0x20;
761                         if(!OPL->wavesel)
762 			{
763 				/* preset compatible mode */
764 				int c;
765 				for(c=0;c<OPL->max_ch;c++)
766 				{
767 					OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
768 					OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
769 				}
770 			}
771 			return;
772 		case 0x02:	/* Timer 1 */
773 			OPL->T[0] = (256-v)*4;
774 			break;
775 		case 0x03:	/* Timer 2 */
776 			OPL->T[1] = (256-v)*16;
777 			return;
778 		case 0x04:	/* IRQ clear / mask and Timer enable */
779 			if(v&0x80)
780 			{	/* IRQ flag clear */
781 				OPL_STATUS_RESET(OPL,0x7f);
782 			}
783 			else
784 			{	/* set IRQ mask ,timer enable*/
785 				uint8_t st1 = v&1;
786 				uint8_t st2 = (v>>1)&1;
787 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
788 				OPL_STATUS_RESET(OPL,v&0x78);
789 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
790 				/* timer 2 */
791 				if(OPL->st[1] != st2)
792 				{
793 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
794 					OPL->st[1] = st2;
795 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
796 				}
797 				/* timer 1 */
798 				if(OPL->st[0] != st1)
799 				{
800 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
801 					OPL->st[0] = st1;
802 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
803 				}
804 			}
805 			return;
806 		}
807 		break;
808 	case 0x20:	/* am,vib,ksr,eg type,mul */
809 		slot = slot_array[r&0x1f];
810 		if(slot == -1) return;
811 		set_mul(OPL,slot,v);
812 		return;
813 	case 0x40:
814 		slot = slot_array[r&0x1f];
815 		if(slot == -1) return;
816 		set_ksl_tl(OPL,slot,v);
817 		return;
818 	case 0x60:
819 		slot = slot_array[r&0x1f];
820 		if(slot == -1) return;
821 		set_ar_dr(OPL,slot,v);
822 		return;
823 	case 0x80:
824 		slot = slot_array[r&0x1f];
825 		if(slot == -1) return;
826 		set_sl_rr(OPL,slot,v);
827 		return;
828 	case 0xa0:
829 		switch(r)
830 		{
831 		case 0xbd:
832 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
833 			{
834 			uint8_t rkey = OPL->rhythm^v;
835 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
836 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
837 			OPL->rhythm  = v&0x3f;
838 			if(OPL->rhythm&0x20)
839 			{
840 #if 0
841 				usrintf_showmessage("OPL Rhythm mode select");
842 #endif
843 				/* BD key on/off */
844 				if(rkey&0x10)
845 				{
846 					if(v&0x10)
847 					{
848 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
849 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
850 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
851 					}
852 					else
853 					{
854 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
855 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
856 					}
857 				}
858 				/* SD key on/off */
859 				if(rkey&0x08)
860 				{
861 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
862 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
863 				}/* TAM key on/off */
864 				if(rkey&0x04)
865 				{
866 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
867 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
868 				}
869 				/* TOP-CY key on/off */
870 				if(rkey&0x02)
871 				{
872 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
873 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
874 				}
875 				/* HH key on/off */
876 				if(rkey&0x01)
877 				{
878 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
879 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
880 				}
881 			}
882 			}
883 			return;
884 		}
885 		/* keyon,block,fnum */
886 		if( (r&0x0f) > 8) return;
887 		CH = &OPL->P_CH[r&0x0f];
888 		if(!(r&0x10))
889 		{	/* a0-a8 */
890 			block_fnum  = (CH->block_fnum&0x1f00) | v;
891 		}
892 		else
893 		{	/* b0-b8 */
894 			int keyon = (v>>5)&1;
895 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
896 			if(CH->keyon != keyon)
897 			{
898 				if( (CH->keyon=keyon) )
899 				{
900 					CH->op1_out[0] = CH->op1_out[1] = 0;
901 					OPL_KEYON(&CH->SLOT[SLOT1]);
902 					OPL_KEYON(&CH->SLOT[SLOT2]);
903 				}
904 				else
905 				{
906 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
907 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
908 				}
909 			}
910 		}
911 		/* update */
912 		if(CH->block_fnum != block_fnum)
913 		{
914 			int blockRv = 7-(block_fnum>>10);
915 			int fnum   = block_fnum&0x3ff;
916 			CH->block_fnum = block_fnum;
917 
918 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
919 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
920 			CH->kcode = CH->block_fnum>>9;
921 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
922 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
923 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
924 		}
925 		return;
926 	case 0xc0:
927 		/* FB,C */
928 		if( (r&0x0f) > 8) return;
929 		CH = &OPL->P_CH[r&0x0f];
930 		{
931 		int feedback = (v>>1)&7;
932 		CH->FB   = feedback ? (8+1) - feedback : 0;
933 		CH->CON = v&1;
934 		set_algorithm(CH);
935 		}
936 		return;
937 	case 0xe0: /* wave type */
938 		slot = slot_array[r&0x1f];
939 		if(slot == -1) return;
940 		CH = &OPL->P_CH[slot/2];
941 		if(OPL->wavesel)
942 		{
943 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
944 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
945 		}
946 		return;
947 	}
948 }
949 
950 /* lock/unlock for common table */
951 static int OPL_LockTable(void)
952 {
953 	num_lock++;
954 	if(num_lock>1) return 0;
955 	/* first time */
956 	cur_chip = NULL;
957 	/* allocate total level table (128kb space) */
958 	if( !OPLOpenTable() )
959 	{
960 		num_lock--;
961 		return -1;
962 	}
963 	return 0;
964 }
965 
966 static void OPL_UnLockTable(void)
967 {
968 	if(num_lock) num_lock--;
969 	if(num_lock) return;
970 	/* last time */
971 	cur_chip = NULL;
972 	OPLCloseTable();
973 }
974 
975 /*******************************************************************************/
976 /*		YM3812 local section                                                   */
977 /*******************************************************************************/
978 
979 /* ---------- update one of chip ----------- */
980 void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
981 {
982     int i;
983 	int data;
984 	int16_t *buf = buffer;
985 	uint32_t amsCnt  = OPL->amsCnt;
986 	uint32_t  vibCnt  = OPL->vibCnt;
987 	uint8_t rhythm = OPL->rhythm&0x20;
988 	OPL_CH *CH,*R_CH;
989 
990 	if( (void *)OPL != cur_chip ){
991 		cur_chip = (void *)OPL;
992 		/* channel pointers */
993 		S_CH = OPL->P_CH;
994 		E_CH = &S_CH[9];
995 		/* rhythm slot */
996 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
997 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
998 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
999 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1000 		/* LFO state */
1001 		amsIncr = OPL->amsIncr;
1002 		vibIncr = OPL->vibIncr;
1003 		ams_table = OPL->ams_table;
1004 		vib_table = OPL->vib_table;
1005 	}
1006 	R_CH = rhythm ? &S_CH[6] : E_CH;
1007     for( i=0; i < length ; i++ )
1008 	{
1009 		/*            channel A         channel B         channel C      */
1010 		/* LFO */
1011 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1012 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1013 		outd[0] = 0;
1014 		/* FM part */
1015 		for(CH=S_CH ; CH < R_CH ; CH++)
1016 			OPL_CALC_CH(CH);
1017 		/* Rythn part */
1018 		if(rhythm)
1019 			OPL_CALC_RH(S_CH);
1020 		/* limit check */
1021 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1022 		/* store to sound buffer */
1023 		buf[i] = data >> OPL_OUTSB;
1024 	}
1025 
1026 	OPL->amsCnt = amsCnt;
1027 	OPL->vibCnt = vibCnt;
1028 #ifdef OPL_OUTPUT_LOG
1029 	if(opl_dbg_fp)
1030 	{
1031 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1032 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1033 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1034 	}
1035 #endif
1036 }
1037 
1038 /* ---------- reset one of chip ---------- */
1039 void OPLResetChip(FM_OPL *OPL)
1040 {
1041 	int c,s;
1042 	int i;
1043 
1044 	/* reset chip */
1045 	OPL->mode   = 0;	/* normal mode */
1046 	OPL_STATUS_RESET(OPL,0x7f);
1047 	/* reset with register write */
1048 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1049 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1050 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1051 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1052 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1053 	/* reset operator parameter */
1054 	for( c = 0 ; c < OPL->max_ch ; c++ )
1055 	{
1056 		OPL_CH *CH = &OPL->P_CH[c];
1057 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1058 		for(s = 0 ; s < 2 ; s++ )
1059 		{
1060 			/* wave table */
1061 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1062 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1063 			CH->SLOT[s].evc = EG_OFF;
1064 			CH->SLOT[s].eve = EG_OFF+1;
1065 			CH->SLOT[s].evs = 0;
1066 		}
1067 	}
1068 }
1069 
1070 /* ----------  Create one of vietual YM3812 ----------       */
1071 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1072 FM_OPL *OPLCreate(int clock, int rate)
1073 {
1074 	char *ptr;
1075 	FM_OPL *OPL;
1076 	int state_size;
1077 	int max_ch = 9; /* normaly 9 channels */
1078 
1079 	if( OPL_LockTable() ==-1) return NULL;
1080 	/* allocate OPL state space */
1081 	state_size  = sizeof(FM_OPL);
1082 	state_size += sizeof(OPL_CH)*max_ch;
1083 	/* allocate memory block */
1084 	ptr = malloc(state_size);
1085 	if(ptr==NULL) return NULL;
1086 	/* clear */
1087 	memset(ptr,0,state_size);
1088 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1089 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1090 	/* set channel state pointer */
1091 	OPL->clock = clock;
1092 	OPL->rate  = rate;
1093 	OPL->max_ch = max_ch;
1094 	/* init grobal tables */
1095 	OPL_initialize(OPL);
1096 	/* reset chip */
1097 	OPLResetChip(OPL);
1098 #ifdef OPL_OUTPUT_LOG
1099 	if(!opl_dbg_fp)
1100 	{
1101 		opl_dbg_fp = fopen("opllog.opl","wb");
1102 		opl_dbg_maxchip = 0;
1103 	}
1104 	if(opl_dbg_fp)
1105 	{
1106 		opl_dbg_opl[opl_dbg_maxchip] = OPL;
1107 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1108 			type,
1109 			clock&0xff,
1110 			(clock/0x100)&0xff,
1111 			(clock/0x10000)&0xff,
1112 			(clock/0x1000000)&0xff);
1113 		opl_dbg_maxchip++;
1114 	}
1115 #endif
1116 	return OPL;
1117 }
1118 
1119 /* ----------  Destroy one of vietual YM3812 ----------       */
1120 void OPLDestroy(FM_OPL *OPL)
1121 {
1122 #ifdef OPL_OUTPUT_LOG
1123 	if(opl_dbg_fp)
1124 	{
1125 		fclose(opl_dbg_fp);
1126 		opl_dbg_fp = NULL;
1127 	}
1128 #endif
1129 	OPL_UnLockTable();
1130 	free(OPL);
1131 }
1132 
1133 /* ----------  Option handlers ----------       */
1134 
1135 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1136 {
1137 	OPL->TimerHandler   = TimerHandler;
1138 	OPL->TimerParam = channelOffset;
1139 }
1140 
1141 /* ---------- YM3812 I/O interface ---------- */
1142 int OPLWrite(FM_OPL *OPL,int a,int v)
1143 {
1144 	if( !(a&1) )
1145 	{	/* address port */
1146 		OPL->address = v & 0xff;
1147 	}
1148 	else
1149 	{	/* data port */
1150 #ifdef OPL_OUTPUT_LOG
1151 	if(opl_dbg_fp)
1152 	{
1153 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1154 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1155 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1156 	}
1157 #endif
1158 		OPLWriteReg(OPL,OPL->address,v);
1159 	}
1160 	return OPL->status>>7;
1161 }
1162 
1163 unsigned char OPLRead(FM_OPL *OPL,int a)
1164 {
1165 	if( !(a&1) )
1166 	{	/* status port */
1167 		return OPL->status & (OPL->statusmask|0x80);
1168 	}
1169 	/* data port */
1170 	switch(OPL->address)
1171 	{
1172 	case 0x05: /* KeyBoard IN */
1173 		return 0;
1174 #if 0
1175 	case 0x0f: /* ADPCM-DATA  */
1176 		return 0;
1177 #endif
1178 	case 0x19: /* I/O DATA    */
1179 		return 0;
1180 	case 0x1a: /* PCM-DATA    */
1181 		return 0;
1182 	}
1183 	return 0;
1184 }
1185 
1186 int OPLTimerOver(FM_OPL *OPL,int c)
1187 {
1188 	if( c )
1189 	{	/* Timer B */
1190 		OPL_STATUS_SET(OPL,0x20);
1191 	}
1192 	else
1193 	{	/* Timer A */
1194 		OPL_STATUS_SET(OPL,0x40);
1195 		/* CSM mode key,TL control */
1196 		if( OPL->mode & 0x80 )
1197 		{	/* CSM mode total level latch and auto key on */
1198 			int ch;
1199 			for(ch=0;ch<9;ch++)
1200 				CSMKeyControll( &OPL->P_CH[ch] );
1201 		}
1202 	}
1203 	/* reload timer */
1204 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1205 	return OPL->status>>7;
1206 }
1207