xref: /qemu/hw/block/fdc.c (revision 4b4629d9)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/blockdev.h"
40 #include "sysemu/sysemu.h"
41 #include "qemu/log.h"
42 
43 /********************************************************/
44 /* debug Floppy devices */
45 
46 #define DEBUG_FLOPPY 0
47 
48 #define FLOPPY_DPRINTF(fmt, ...)                                \
49     do {                                                        \
50         if (DEBUG_FLOPPY) {                                     \
51             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
52         }                                                       \
53     } while (0)
54 
55 /********************************************************/
56 /* Floppy drive emulation                               */
57 
58 typedef enum FDriveRate {
59     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
60     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
61     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
62     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
63 } FDriveRate;
64 
65 typedef enum FDriveSize {
66     FDRIVE_SIZE_UNKNOWN,
67     FDRIVE_SIZE_350,
68     FDRIVE_SIZE_525,
69 } FDriveSize;
70 
71 typedef struct FDFormat {
72     FloppyDriveType drive;
73     uint8_t last_sect;
74     uint8_t max_track;
75     uint8_t max_head;
76     FDriveRate rate;
77 } FDFormat;
78 
79 /* In many cases, the total sector size of a format is enough to uniquely
80  * identify it. However, there are some total sector collisions between
81  * formats of different physical size, and these are noted below by
82  * highlighting the total sector size for entries with collisions. */
83 static const FDFormat fd_formats[] = {
84     /* First entry is default format */
85     /* 1.44 MB 3"1/2 floppy disks */
86     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
87     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
88     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
89     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
90     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
91     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
92     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
93     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
94     /* 2.88 MB 3"1/2 floppy disks */
95     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
96     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
97     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
98     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
99     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
100     /* 720 kB 3"1/2 floppy disks */
101     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
102     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
103     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
104     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
105     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
106     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
107     /* 1.2 MB 5"1/4 floppy disks */
108     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
109     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
110     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
111     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
112     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
113     /* 720 kB 5"1/4 floppy disks */
114     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
115     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
116     /* 360 kB 5"1/4 floppy disks */
117     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
118     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
119     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
120     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
121     /* 320 kB 5"1/4 floppy disks */
122     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
123     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
124     /* 360 kB must match 5"1/4 better than 3"1/2... */
125     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
126     /* end */
127     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
128 };
129 
130 static FDriveSize drive_size(FloppyDriveType drive)
131 {
132     switch (drive) {
133     case FLOPPY_DRIVE_TYPE_120:
134         return FDRIVE_SIZE_525;
135     case FLOPPY_DRIVE_TYPE_144:
136     case FLOPPY_DRIVE_TYPE_288:
137         return FDRIVE_SIZE_350;
138     default:
139         return FDRIVE_SIZE_UNKNOWN;
140     }
141 }
142 
143 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
144 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
145 
146 /* Will always be a fixed parameter for us */
147 #define FD_SECTOR_LEN          512
148 #define FD_SECTOR_SC           2   /* Sector size code */
149 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
150 
151 typedef struct FDCtrl FDCtrl;
152 
153 /* Floppy disk drive emulation */
154 typedef enum FDiskFlags {
155     FDISK_DBL_SIDES  = 0x01,
156 } FDiskFlags;
157 
158 typedef struct FDrive {
159     FDCtrl *fdctrl;
160     BlockBackend *blk;
161     /* Drive status */
162     FloppyDriveType drive;    /* CMOS drive type        */
163     uint8_t perpendicular;    /* 2.88 MB access mode    */
164     /* Position */
165     uint8_t head;
166     uint8_t track;
167     uint8_t sect;
168     /* Media */
169     FloppyDriveType disk;     /* Current disk type      */
170     FDiskFlags flags;
171     uint8_t last_sect;        /* Nb sector per track    */
172     uint8_t max_track;        /* Nb of tracks           */
173     uint16_t bps;             /* Bytes per sector       */
174     uint8_t ro;               /* Is read-only           */
175     uint8_t media_changed;    /* Is media changed       */
176     uint8_t media_rate;       /* Data rate of medium    */
177 
178     bool media_validated;     /* Have we validated the media? */
179 } FDrive;
180 
181 
182 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
183 
184 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
185  * currently goes through some pains to keep seeks within the bounds
186  * established by last_sect and max_track. Correcting this is difficult,
187  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
188  *
189  * For now: allow empty drives to have large bounds so we can seek around,
190  * with the understanding that when a diskette is inserted, the bounds will
191  * properly tighten to match the geometry of that inserted medium.
192  */
193 static void fd_empty_seek_hack(FDrive *drv)
194 {
195     drv->last_sect = 0xFF;
196     drv->max_track = 0xFF;
197 }
198 
199 static void fd_init(FDrive *drv)
200 {
201     /* Drive */
202     drv->perpendicular = 0;
203     /* Disk */
204     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
205     drv->last_sect = 0;
206     drv->max_track = 0;
207     drv->ro = true;
208     drv->media_changed = 1;
209 }
210 
211 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
212 
213 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
214                           uint8_t last_sect, uint8_t num_sides)
215 {
216     return (((track * num_sides) + head) * last_sect) + sect - 1;
217 }
218 
219 /* Returns current position, in sectors, for given drive */
220 static int fd_sector(FDrive *drv)
221 {
222     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
223                           NUM_SIDES(drv));
224 }
225 
226 /* Returns current position, in bytes, for given drive */
227 static int fd_offset(FDrive *drv)
228 {
229     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
230     return fd_sector(drv) << BDRV_SECTOR_BITS;
231 }
232 
233 /* Seek to a new position:
234  * returns 0 if already on right track
235  * returns 1 if track changed
236  * returns 2 if track is invalid
237  * returns 3 if sector is invalid
238  * returns 4 if seek is disabled
239  */
240 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
241                    int enable_seek)
242 {
243     uint32_t sector;
244     int ret;
245 
246     if (track > drv->max_track ||
247         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
248         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
249                        head, track, sect, 1,
250                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
251                        drv->max_track, drv->last_sect);
252         return 2;
253     }
254     if (sect > drv->last_sect) {
255         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
256                        head, track, sect, 1,
257                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
258                        drv->max_track, drv->last_sect);
259         return 3;
260     }
261     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
262     ret = 0;
263     if (sector != fd_sector(drv)) {
264 #if 0
265         if (!enable_seek) {
266             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
267                            " (max=%d %02x %02x)\n",
268                            head, track, sect, 1, drv->max_track,
269                            drv->last_sect);
270             return 4;
271         }
272 #endif
273         drv->head = head;
274         if (drv->track != track) {
275             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
276                 drv->media_changed = 0;
277             }
278             ret = 1;
279         }
280         drv->track = track;
281         drv->sect = sect;
282     }
283 
284     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
285         ret = 2;
286     }
287 
288     return ret;
289 }
290 
291 /* Set drive back to track 0 */
292 static void fd_recalibrate(FDrive *drv)
293 {
294     FLOPPY_DPRINTF("recalibrate\n");
295     fd_seek(drv, 0, 0, 1, 1);
296 }
297 
298 /**
299  * Determine geometry based on inserted diskette.
300  * Will not operate on an empty drive.
301  *
302  * @return: 0 on success, -1 if the drive is empty.
303  */
304 static int pick_geometry(FDrive *drv)
305 {
306     BlockBackend *blk = drv->blk;
307     const FDFormat *parse;
308     uint64_t nb_sectors, size;
309     int i;
310     int match, size_match, type_match;
311     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
312 
313     /* We can only pick a geometry if we have a diskette. */
314     if (!drv->blk || !blk_is_inserted(drv->blk) ||
315         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
316     {
317         return -1;
318     }
319 
320     /* We need to determine the likely geometry of the inserted medium.
321      * In order of preference, we look for:
322      * (1) The same drive type and number of sectors,
323      * (2) The same diskette size and number of sectors,
324      * (3) The same drive type.
325      *
326      * In all cases, matches that occur higher in the drive table will take
327      * precedence over matches that occur later in the table.
328      */
329     blk_get_geometry(blk, &nb_sectors);
330     match = size_match = type_match = -1;
331     for (i = 0; ; i++) {
332         parse = &fd_formats[i];
333         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
334             break;
335         }
336         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
337         if (nb_sectors == size) {
338             if (magic || parse->drive == drv->drive) {
339                 /* (1) perfect match -- nb_sectors and drive type */
340                 goto out;
341             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
342                 /* (2) size match -- nb_sectors and physical medium size */
343                 match = (match == -1) ? i : match;
344             } else {
345                 /* This is suspicious -- Did the user misconfigure? */
346                 size_match = (size_match == -1) ? i : size_match;
347             }
348         } else if (type_match == -1) {
349             if ((parse->drive == drv->drive) ||
350                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
351                 /* (3) type match -- nb_sectors mismatch, but matches the type
352                  *     specified explicitly by the user, or matches the fallback
353                  *     default type when using the drive autodetect mechanism */
354                 type_match = i;
355             }
356         }
357     }
358 
359     /* No exact match found */
360     if (match == -1) {
361         if (size_match != -1) {
362             parse = &fd_formats[size_match];
363             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
364                            "but inserted medium appears to be a "
365                            "%"PRId64" sector '%s' type\n",
366                            FloppyDriveType_lookup[drv->drive],
367                            nb_sectors,
368                            FloppyDriveType_lookup[parse->drive]);
369         }
370         match = type_match;
371     }
372 
373     /* No match of any kind found -- fd_format is misconfigured, abort. */
374     if (match == -1) {
375         error_setg(&error_abort, "No candidate geometries present in table "
376                    " for floppy drive type '%s'",
377                    FloppyDriveType_lookup[drv->drive]);
378     }
379 
380     parse = &(fd_formats[match]);
381 
382  out:
383     if (parse->max_head == 0) {
384         drv->flags &= ~FDISK_DBL_SIDES;
385     } else {
386         drv->flags |= FDISK_DBL_SIDES;
387     }
388     drv->max_track = parse->max_track;
389     drv->last_sect = parse->last_sect;
390     drv->disk = parse->drive;
391     drv->media_rate = parse->rate;
392     return 0;
393 }
394 
395 static void pick_drive_type(FDrive *drv)
396 {
397     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
398         return;
399     }
400 
401     if (pick_geometry(drv) == 0) {
402         drv->drive = drv->disk;
403     } else {
404         drv->drive = get_fallback_drive_type(drv);
405     }
406 
407     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
408 }
409 
410 /* Revalidate a disk drive after a disk change */
411 static void fd_revalidate(FDrive *drv)
412 {
413     int rc;
414 
415     FLOPPY_DPRINTF("revalidate\n");
416     if (drv->blk != NULL) {
417         drv->ro = blk_is_read_only(drv->blk);
418         if (!blk_is_inserted(drv->blk)) {
419             FLOPPY_DPRINTF("No disk in drive\n");
420             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
421             fd_empty_seek_hack(drv);
422         } else if (!drv->media_validated) {
423             rc = pick_geometry(drv);
424             if (rc) {
425                 FLOPPY_DPRINTF("Could not validate floppy drive media");
426             } else {
427                 drv->media_validated = true;
428                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
429                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
430                                drv->max_track, drv->last_sect,
431                                drv->ro ? "ro" : "rw");
432             }
433         }
434     } else {
435         FLOPPY_DPRINTF("No drive connected\n");
436         drv->last_sect = 0;
437         drv->max_track = 0;
438         drv->flags &= ~FDISK_DBL_SIDES;
439         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
440         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
441     }
442 }
443 
444 /********************************************************/
445 /* Intel 82078 floppy disk controller emulation          */
446 
447 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
448 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
449 static int fdctrl_transfer_handler (void *opaque, int nchan,
450                                     int dma_pos, int dma_len);
451 static void fdctrl_raise_irq(FDCtrl *fdctrl);
452 static FDrive *get_cur_drv(FDCtrl *fdctrl);
453 
454 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
455 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
456 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
457 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
458 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
459 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
460 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
461 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
462 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
463 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
464 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
465 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
466 
467 enum {
468     FD_DIR_WRITE   = 0,
469     FD_DIR_READ    = 1,
470     FD_DIR_SCANE   = 2,
471     FD_DIR_SCANL   = 3,
472     FD_DIR_SCANH   = 4,
473     FD_DIR_VERIFY  = 5,
474 };
475 
476 enum {
477     FD_STATE_MULTI  = 0x01,	/* multi track flag */
478     FD_STATE_FORMAT = 0x02,	/* format flag */
479 };
480 
481 enum {
482     FD_REG_SRA = 0x00,
483     FD_REG_SRB = 0x01,
484     FD_REG_DOR = 0x02,
485     FD_REG_TDR = 0x03,
486     FD_REG_MSR = 0x04,
487     FD_REG_DSR = 0x04,
488     FD_REG_FIFO = 0x05,
489     FD_REG_DIR = 0x07,
490     FD_REG_CCR = 0x07,
491 };
492 
493 enum {
494     FD_CMD_READ_TRACK = 0x02,
495     FD_CMD_SPECIFY = 0x03,
496     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
497     FD_CMD_WRITE = 0x05,
498     FD_CMD_READ = 0x06,
499     FD_CMD_RECALIBRATE = 0x07,
500     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
501     FD_CMD_WRITE_DELETED = 0x09,
502     FD_CMD_READ_ID = 0x0a,
503     FD_CMD_READ_DELETED = 0x0c,
504     FD_CMD_FORMAT_TRACK = 0x0d,
505     FD_CMD_DUMPREG = 0x0e,
506     FD_CMD_SEEK = 0x0f,
507     FD_CMD_VERSION = 0x10,
508     FD_CMD_SCAN_EQUAL = 0x11,
509     FD_CMD_PERPENDICULAR_MODE = 0x12,
510     FD_CMD_CONFIGURE = 0x13,
511     FD_CMD_LOCK = 0x14,
512     FD_CMD_VERIFY = 0x16,
513     FD_CMD_POWERDOWN_MODE = 0x17,
514     FD_CMD_PART_ID = 0x18,
515     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
516     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
517     FD_CMD_SAVE = 0x2e,
518     FD_CMD_OPTION = 0x33,
519     FD_CMD_RESTORE = 0x4e,
520     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
521     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
522     FD_CMD_FORMAT_AND_WRITE = 0xcd,
523     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
524 };
525 
526 enum {
527     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
528     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
529     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
530     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
531     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
532 };
533 
534 enum {
535     FD_SR0_DS0      = 0x01,
536     FD_SR0_DS1      = 0x02,
537     FD_SR0_HEAD     = 0x04,
538     FD_SR0_EQPMT    = 0x10,
539     FD_SR0_SEEK     = 0x20,
540     FD_SR0_ABNTERM  = 0x40,
541     FD_SR0_INVCMD   = 0x80,
542     FD_SR0_RDYCHG   = 0xc0,
543 };
544 
545 enum {
546     FD_SR1_MA       = 0x01, /* Missing address mark */
547     FD_SR1_NW       = 0x02, /* Not writable */
548     FD_SR1_EC       = 0x80, /* End of cylinder */
549 };
550 
551 enum {
552     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
553     FD_SR2_SEH      = 0x08, /* Scan equal hit */
554 };
555 
556 enum {
557     FD_SRA_DIR      = 0x01,
558     FD_SRA_nWP      = 0x02,
559     FD_SRA_nINDX    = 0x04,
560     FD_SRA_HDSEL    = 0x08,
561     FD_SRA_nTRK0    = 0x10,
562     FD_SRA_STEP     = 0x20,
563     FD_SRA_nDRV2    = 0x40,
564     FD_SRA_INTPEND  = 0x80,
565 };
566 
567 enum {
568     FD_SRB_MTR0     = 0x01,
569     FD_SRB_MTR1     = 0x02,
570     FD_SRB_WGATE    = 0x04,
571     FD_SRB_RDATA    = 0x08,
572     FD_SRB_WDATA    = 0x10,
573     FD_SRB_DR0      = 0x20,
574 };
575 
576 enum {
577 #if MAX_FD == 4
578     FD_DOR_SELMASK  = 0x03,
579 #else
580     FD_DOR_SELMASK  = 0x01,
581 #endif
582     FD_DOR_nRESET   = 0x04,
583     FD_DOR_DMAEN    = 0x08,
584     FD_DOR_MOTEN0   = 0x10,
585     FD_DOR_MOTEN1   = 0x20,
586     FD_DOR_MOTEN2   = 0x40,
587     FD_DOR_MOTEN3   = 0x80,
588 };
589 
590 enum {
591 #if MAX_FD == 4
592     FD_TDR_BOOTSEL  = 0x0c,
593 #else
594     FD_TDR_BOOTSEL  = 0x04,
595 #endif
596 };
597 
598 enum {
599     FD_DSR_DRATEMASK= 0x03,
600     FD_DSR_PWRDOWN  = 0x40,
601     FD_DSR_SWRESET  = 0x80,
602 };
603 
604 enum {
605     FD_MSR_DRV0BUSY = 0x01,
606     FD_MSR_DRV1BUSY = 0x02,
607     FD_MSR_DRV2BUSY = 0x04,
608     FD_MSR_DRV3BUSY = 0x08,
609     FD_MSR_CMDBUSY  = 0x10,
610     FD_MSR_NONDMA   = 0x20,
611     FD_MSR_DIO      = 0x40,
612     FD_MSR_RQM      = 0x80,
613 };
614 
615 enum {
616     FD_DIR_DSKCHG   = 0x80,
617 };
618 
619 /*
620  * See chapter 5.0 "Controller phases" of the spec:
621  *
622  * Command phase:
623  * The host writes a command and its parameters into the FIFO. The command
624  * phase is completed when all parameters for the command have been supplied,
625  * and execution phase is entered.
626  *
627  * Execution phase:
628  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
629  * contains the payload now, otherwise it's unused. When all bytes of the
630  * required data have been transferred, the state is switched to either result
631  * phase (if the command produces status bytes) or directly back into the
632  * command phase for the next command.
633  *
634  * Result phase:
635  * The host reads out the FIFO, which contains one or more result bytes now.
636  */
637 enum {
638     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
639     FD_PHASE_RECONSTRUCT    = 0,
640 
641     FD_PHASE_COMMAND        = 1,
642     FD_PHASE_EXECUTION      = 2,
643     FD_PHASE_RESULT         = 3,
644 };
645 
646 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
647 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
648 
649 struct FDCtrl {
650     MemoryRegion iomem;
651     qemu_irq irq;
652     /* Controller state */
653     QEMUTimer *result_timer;
654     int dma_chann;
655     uint8_t phase;
656     IsaDma *dma;
657     /* Controller's identification */
658     uint8_t version;
659     /* HW */
660     uint8_t sra;
661     uint8_t srb;
662     uint8_t dor;
663     uint8_t dor_vmstate; /* only used as temp during vmstate */
664     uint8_t tdr;
665     uint8_t dsr;
666     uint8_t msr;
667     uint8_t cur_drv;
668     uint8_t status0;
669     uint8_t status1;
670     uint8_t status2;
671     /* Command FIFO */
672     uint8_t *fifo;
673     int32_t fifo_size;
674     uint32_t data_pos;
675     uint32_t data_len;
676     uint8_t data_state;
677     uint8_t data_dir;
678     uint8_t eot; /* last wanted sector */
679     /* States kept only to be returned back */
680     /* precompensation */
681     uint8_t precomp_trk;
682     uint8_t config;
683     uint8_t lock;
684     /* Power down config (also with status regB access mode */
685     uint8_t pwrd;
686     /* Floppy drives */
687     uint8_t num_floppies;
688     FDrive drives[MAX_FD];
689     int reset_sensei;
690     uint32_t check_media_rate;
691     FloppyDriveType fallback; /* type=auto failure fallback */
692     /* Timers state */
693     uint8_t timer0;
694     uint8_t timer1;
695 };
696 
697 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
698 {
699     return drv->fdctrl->fallback;
700 }
701 
702 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
703 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
704 
705 typedef struct FDCtrlSysBus {
706     /*< private >*/
707     SysBusDevice parent_obj;
708     /*< public >*/
709 
710     struct FDCtrl state;
711 } FDCtrlSysBus;
712 
713 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
714 
715 typedef struct FDCtrlISABus {
716     ISADevice parent_obj;
717 
718     uint32_t iobase;
719     uint32_t irq;
720     uint32_t dma;
721     struct FDCtrl state;
722     int32_t bootindexA;
723     int32_t bootindexB;
724 } FDCtrlISABus;
725 
726 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
727 {
728     FDCtrl *fdctrl = opaque;
729     uint32_t retval;
730 
731     reg &= 7;
732     switch (reg) {
733     case FD_REG_SRA:
734         retval = fdctrl_read_statusA(fdctrl);
735         break;
736     case FD_REG_SRB:
737         retval = fdctrl_read_statusB(fdctrl);
738         break;
739     case FD_REG_DOR:
740         retval = fdctrl_read_dor(fdctrl);
741         break;
742     case FD_REG_TDR:
743         retval = fdctrl_read_tape(fdctrl);
744         break;
745     case FD_REG_MSR:
746         retval = fdctrl_read_main_status(fdctrl);
747         break;
748     case FD_REG_FIFO:
749         retval = fdctrl_read_data(fdctrl);
750         break;
751     case FD_REG_DIR:
752         retval = fdctrl_read_dir(fdctrl);
753         break;
754     default:
755         retval = (uint32_t)(-1);
756         break;
757     }
758     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
759 
760     return retval;
761 }
762 
763 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
764 {
765     FDCtrl *fdctrl = opaque;
766 
767     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
768 
769     reg &= 7;
770     switch (reg) {
771     case FD_REG_DOR:
772         fdctrl_write_dor(fdctrl, value);
773         break;
774     case FD_REG_TDR:
775         fdctrl_write_tape(fdctrl, value);
776         break;
777     case FD_REG_DSR:
778         fdctrl_write_rate(fdctrl, value);
779         break;
780     case FD_REG_FIFO:
781         fdctrl_write_data(fdctrl, value);
782         break;
783     case FD_REG_CCR:
784         fdctrl_write_ccr(fdctrl, value);
785         break;
786     default:
787         break;
788     }
789 }
790 
791 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
792                                  unsigned ize)
793 {
794     return fdctrl_read(opaque, (uint32_t)reg);
795 }
796 
797 static void fdctrl_write_mem (void *opaque, hwaddr reg,
798                               uint64_t value, unsigned size)
799 {
800     fdctrl_write(opaque, (uint32_t)reg, value);
801 }
802 
803 static const MemoryRegionOps fdctrl_mem_ops = {
804     .read = fdctrl_read_mem,
805     .write = fdctrl_write_mem,
806     .endianness = DEVICE_NATIVE_ENDIAN,
807 };
808 
809 static const MemoryRegionOps fdctrl_mem_strict_ops = {
810     .read = fdctrl_read_mem,
811     .write = fdctrl_write_mem,
812     .endianness = DEVICE_NATIVE_ENDIAN,
813     .valid = {
814         .min_access_size = 1,
815         .max_access_size = 1,
816     },
817 };
818 
819 static bool fdrive_media_changed_needed(void *opaque)
820 {
821     FDrive *drive = opaque;
822 
823     return (drive->blk != NULL && drive->media_changed != 1);
824 }
825 
826 static const VMStateDescription vmstate_fdrive_media_changed = {
827     .name = "fdrive/media_changed",
828     .version_id = 1,
829     .minimum_version_id = 1,
830     .needed = fdrive_media_changed_needed,
831     .fields = (VMStateField[]) {
832         VMSTATE_UINT8(media_changed, FDrive),
833         VMSTATE_END_OF_LIST()
834     }
835 };
836 
837 static bool fdrive_media_rate_needed(void *opaque)
838 {
839     FDrive *drive = opaque;
840 
841     return drive->fdctrl->check_media_rate;
842 }
843 
844 static const VMStateDescription vmstate_fdrive_media_rate = {
845     .name = "fdrive/media_rate",
846     .version_id = 1,
847     .minimum_version_id = 1,
848     .needed = fdrive_media_rate_needed,
849     .fields = (VMStateField[]) {
850         VMSTATE_UINT8(media_rate, FDrive),
851         VMSTATE_END_OF_LIST()
852     }
853 };
854 
855 static bool fdrive_perpendicular_needed(void *opaque)
856 {
857     FDrive *drive = opaque;
858 
859     return drive->perpendicular != 0;
860 }
861 
862 static const VMStateDescription vmstate_fdrive_perpendicular = {
863     .name = "fdrive/perpendicular",
864     .version_id = 1,
865     .minimum_version_id = 1,
866     .needed = fdrive_perpendicular_needed,
867     .fields = (VMStateField[]) {
868         VMSTATE_UINT8(perpendicular, FDrive),
869         VMSTATE_END_OF_LIST()
870     }
871 };
872 
873 static int fdrive_post_load(void *opaque, int version_id)
874 {
875     fd_revalidate(opaque);
876     return 0;
877 }
878 
879 static const VMStateDescription vmstate_fdrive = {
880     .name = "fdrive",
881     .version_id = 1,
882     .minimum_version_id = 1,
883     .post_load = fdrive_post_load,
884     .fields = (VMStateField[]) {
885         VMSTATE_UINT8(head, FDrive),
886         VMSTATE_UINT8(track, FDrive),
887         VMSTATE_UINT8(sect, FDrive),
888         VMSTATE_END_OF_LIST()
889     },
890     .subsections = (const VMStateDescription*[]) {
891         &vmstate_fdrive_media_changed,
892         &vmstate_fdrive_media_rate,
893         &vmstate_fdrive_perpendicular,
894         NULL
895     }
896 };
897 
898 /*
899  * Reconstructs the phase from register values according to the logic that was
900  * implemented in qemu 2.3. This is the default value that is used if the phase
901  * subsection is not present on migration.
902  *
903  * Don't change this function to reflect newer qemu versions, it is part of
904  * the migration ABI.
905  */
906 static int reconstruct_phase(FDCtrl *fdctrl)
907 {
908     if (fdctrl->msr & FD_MSR_NONDMA) {
909         return FD_PHASE_EXECUTION;
910     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
911         /* qemu 2.3 disabled RQM only during DMA transfers */
912         return FD_PHASE_EXECUTION;
913     } else if (fdctrl->msr & FD_MSR_DIO) {
914         return FD_PHASE_RESULT;
915     } else {
916         return FD_PHASE_COMMAND;
917     }
918 }
919 
920 static void fdc_pre_save(void *opaque)
921 {
922     FDCtrl *s = opaque;
923 
924     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
925 }
926 
927 static int fdc_pre_load(void *opaque)
928 {
929     FDCtrl *s = opaque;
930     s->phase = FD_PHASE_RECONSTRUCT;
931     return 0;
932 }
933 
934 static int fdc_post_load(void *opaque, int version_id)
935 {
936     FDCtrl *s = opaque;
937 
938     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
939     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
940 
941     if (s->phase == FD_PHASE_RECONSTRUCT) {
942         s->phase = reconstruct_phase(s);
943     }
944 
945     return 0;
946 }
947 
948 static bool fdc_reset_sensei_needed(void *opaque)
949 {
950     FDCtrl *s = opaque;
951 
952     return s->reset_sensei != 0;
953 }
954 
955 static const VMStateDescription vmstate_fdc_reset_sensei = {
956     .name = "fdc/reset_sensei",
957     .version_id = 1,
958     .minimum_version_id = 1,
959     .needed = fdc_reset_sensei_needed,
960     .fields = (VMStateField[]) {
961         VMSTATE_INT32(reset_sensei, FDCtrl),
962         VMSTATE_END_OF_LIST()
963     }
964 };
965 
966 static bool fdc_result_timer_needed(void *opaque)
967 {
968     FDCtrl *s = opaque;
969 
970     return timer_pending(s->result_timer);
971 }
972 
973 static const VMStateDescription vmstate_fdc_result_timer = {
974     .name = "fdc/result_timer",
975     .version_id = 1,
976     .minimum_version_id = 1,
977     .needed = fdc_result_timer_needed,
978     .fields = (VMStateField[]) {
979         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
980         VMSTATE_END_OF_LIST()
981     }
982 };
983 
984 static bool fdc_phase_needed(void *opaque)
985 {
986     FDCtrl *fdctrl = opaque;
987 
988     return reconstruct_phase(fdctrl) != fdctrl->phase;
989 }
990 
991 static const VMStateDescription vmstate_fdc_phase = {
992     .name = "fdc/phase",
993     .version_id = 1,
994     .minimum_version_id = 1,
995     .needed = fdc_phase_needed,
996     .fields = (VMStateField[]) {
997         VMSTATE_UINT8(phase, FDCtrl),
998         VMSTATE_END_OF_LIST()
999     }
1000 };
1001 
1002 static const VMStateDescription vmstate_fdc = {
1003     .name = "fdc",
1004     .version_id = 2,
1005     .minimum_version_id = 2,
1006     .pre_save = fdc_pre_save,
1007     .pre_load = fdc_pre_load,
1008     .post_load = fdc_post_load,
1009     .fields = (VMStateField[]) {
1010         /* Controller State */
1011         VMSTATE_UINT8(sra, FDCtrl),
1012         VMSTATE_UINT8(srb, FDCtrl),
1013         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1014         VMSTATE_UINT8(tdr, FDCtrl),
1015         VMSTATE_UINT8(dsr, FDCtrl),
1016         VMSTATE_UINT8(msr, FDCtrl),
1017         VMSTATE_UINT8(status0, FDCtrl),
1018         VMSTATE_UINT8(status1, FDCtrl),
1019         VMSTATE_UINT8(status2, FDCtrl),
1020         /* Command FIFO */
1021         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1022                              uint8_t),
1023         VMSTATE_UINT32(data_pos, FDCtrl),
1024         VMSTATE_UINT32(data_len, FDCtrl),
1025         VMSTATE_UINT8(data_state, FDCtrl),
1026         VMSTATE_UINT8(data_dir, FDCtrl),
1027         VMSTATE_UINT8(eot, FDCtrl),
1028         /* States kept only to be returned back */
1029         VMSTATE_UINT8(timer0, FDCtrl),
1030         VMSTATE_UINT8(timer1, FDCtrl),
1031         VMSTATE_UINT8(precomp_trk, FDCtrl),
1032         VMSTATE_UINT8(config, FDCtrl),
1033         VMSTATE_UINT8(lock, FDCtrl),
1034         VMSTATE_UINT8(pwrd, FDCtrl),
1035         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1036         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1037                              vmstate_fdrive, FDrive),
1038         VMSTATE_END_OF_LIST()
1039     },
1040     .subsections = (const VMStateDescription*[]) {
1041         &vmstate_fdc_reset_sensei,
1042         &vmstate_fdc_result_timer,
1043         &vmstate_fdc_phase,
1044         NULL
1045     }
1046 };
1047 
1048 static void fdctrl_external_reset_sysbus(DeviceState *d)
1049 {
1050     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1051     FDCtrl *s = &sys->state;
1052 
1053     fdctrl_reset(s, 0);
1054 }
1055 
1056 static void fdctrl_external_reset_isa(DeviceState *d)
1057 {
1058     FDCtrlISABus *isa = ISA_FDC(d);
1059     FDCtrl *s = &isa->state;
1060 
1061     fdctrl_reset(s, 0);
1062 }
1063 
1064 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1065 {
1066     //FDCtrl *s = opaque;
1067 
1068     if (level) {
1069         // XXX
1070         FLOPPY_DPRINTF("TC pulsed\n");
1071     }
1072 }
1073 
1074 /* Change IRQ state */
1075 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1076 {
1077     fdctrl->status0 = 0;
1078     if (!(fdctrl->sra & FD_SRA_INTPEND))
1079         return;
1080     FLOPPY_DPRINTF("Reset interrupt\n");
1081     qemu_set_irq(fdctrl->irq, 0);
1082     fdctrl->sra &= ~FD_SRA_INTPEND;
1083 }
1084 
1085 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1086 {
1087     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1088         qemu_set_irq(fdctrl->irq, 1);
1089         fdctrl->sra |= FD_SRA_INTPEND;
1090     }
1091 
1092     fdctrl->reset_sensei = 0;
1093     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1094 }
1095 
1096 /* Reset controller */
1097 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1098 {
1099     int i;
1100 
1101     FLOPPY_DPRINTF("reset controller\n");
1102     fdctrl_reset_irq(fdctrl);
1103     /* Initialise controller */
1104     fdctrl->sra = 0;
1105     fdctrl->srb = 0xc0;
1106     if (!fdctrl->drives[1].blk) {
1107         fdctrl->sra |= FD_SRA_nDRV2;
1108     }
1109     fdctrl->cur_drv = 0;
1110     fdctrl->dor = FD_DOR_nRESET;
1111     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1112     fdctrl->msr = FD_MSR_RQM;
1113     fdctrl->reset_sensei = 0;
1114     timer_del(fdctrl->result_timer);
1115     /* FIFO state */
1116     fdctrl->data_pos = 0;
1117     fdctrl->data_len = 0;
1118     fdctrl->data_state = 0;
1119     fdctrl->data_dir = FD_DIR_WRITE;
1120     for (i = 0; i < MAX_FD; i++)
1121         fd_recalibrate(&fdctrl->drives[i]);
1122     fdctrl_to_command_phase(fdctrl);
1123     if (do_irq) {
1124         fdctrl->status0 |= FD_SR0_RDYCHG;
1125         fdctrl_raise_irq(fdctrl);
1126         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1127     }
1128 }
1129 
1130 static inline FDrive *drv0(FDCtrl *fdctrl)
1131 {
1132     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1133 }
1134 
1135 static inline FDrive *drv1(FDCtrl *fdctrl)
1136 {
1137     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1138         return &fdctrl->drives[1];
1139     else
1140         return &fdctrl->drives[0];
1141 }
1142 
1143 #if MAX_FD == 4
1144 static inline FDrive *drv2(FDCtrl *fdctrl)
1145 {
1146     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1147         return &fdctrl->drives[2];
1148     else
1149         return &fdctrl->drives[1];
1150 }
1151 
1152 static inline FDrive *drv3(FDCtrl *fdctrl)
1153 {
1154     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1155         return &fdctrl->drives[3];
1156     else
1157         return &fdctrl->drives[2];
1158 }
1159 #endif
1160 
1161 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1162 {
1163     switch (fdctrl->cur_drv) {
1164         case 0: return drv0(fdctrl);
1165         case 1: return drv1(fdctrl);
1166 #if MAX_FD == 4
1167         case 2: return drv2(fdctrl);
1168         case 3: return drv3(fdctrl);
1169 #endif
1170         default: return NULL;
1171     }
1172 }
1173 
1174 /* Status A register : 0x00 (read-only) */
1175 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1176 {
1177     uint32_t retval = fdctrl->sra;
1178 
1179     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1180 
1181     return retval;
1182 }
1183 
1184 /* Status B register : 0x01 (read-only) */
1185 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1186 {
1187     uint32_t retval = fdctrl->srb;
1188 
1189     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1190 
1191     return retval;
1192 }
1193 
1194 /* Digital output register : 0x02 */
1195 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1196 {
1197     uint32_t retval = fdctrl->dor;
1198 
1199     /* Selected drive */
1200     retval |= fdctrl->cur_drv;
1201     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1202 
1203     return retval;
1204 }
1205 
1206 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1207 {
1208     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1209 
1210     /* Motors */
1211     if (value & FD_DOR_MOTEN0)
1212         fdctrl->srb |= FD_SRB_MTR0;
1213     else
1214         fdctrl->srb &= ~FD_SRB_MTR0;
1215     if (value & FD_DOR_MOTEN1)
1216         fdctrl->srb |= FD_SRB_MTR1;
1217     else
1218         fdctrl->srb &= ~FD_SRB_MTR1;
1219 
1220     /* Drive */
1221     if (value & 1)
1222         fdctrl->srb |= FD_SRB_DR0;
1223     else
1224         fdctrl->srb &= ~FD_SRB_DR0;
1225 
1226     /* Reset */
1227     if (!(value & FD_DOR_nRESET)) {
1228         if (fdctrl->dor & FD_DOR_nRESET) {
1229             FLOPPY_DPRINTF("controller enter RESET state\n");
1230         }
1231     } else {
1232         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1233             FLOPPY_DPRINTF("controller out of RESET state\n");
1234             fdctrl_reset(fdctrl, 1);
1235             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1236         }
1237     }
1238     /* Selected drive */
1239     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1240 
1241     fdctrl->dor = value;
1242 }
1243 
1244 /* Tape drive register : 0x03 */
1245 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1246 {
1247     uint32_t retval = fdctrl->tdr;
1248 
1249     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1250 
1251     return retval;
1252 }
1253 
1254 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1255 {
1256     /* Reset mode */
1257     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1258         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1259         return;
1260     }
1261     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1262     /* Disk boot selection indicator */
1263     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1264     /* Tape indicators: never allow */
1265 }
1266 
1267 /* Main status register : 0x04 (read) */
1268 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1269 {
1270     uint32_t retval = fdctrl->msr;
1271 
1272     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1273     fdctrl->dor |= FD_DOR_nRESET;
1274 
1275     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1276 
1277     return retval;
1278 }
1279 
1280 /* Data select rate register : 0x04 (write) */
1281 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1282 {
1283     /* Reset mode */
1284     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1285         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1286         return;
1287     }
1288     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1289     /* Reset: autoclear */
1290     if (value & FD_DSR_SWRESET) {
1291         fdctrl->dor &= ~FD_DOR_nRESET;
1292         fdctrl_reset(fdctrl, 1);
1293         fdctrl->dor |= FD_DOR_nRESET;
1294     }
1295     if (value & FD_DSR_PWRDOWN) {
1296         fdctrl_reset(fdctrl, 1);
1297     }
1298     fdctrl->dsr = value;
1299 }
1300 
1301 /* Configuration control register: 0x07 (write) */
1302 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1303 {
1304     /* Reset mode */
1305     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1306         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1307         return;
1308     }
1309     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1310 
1311     /* Only the rate selection bits used in AT mode, and we
1312      * store those in the DSR.
1313      */
1314     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1315                   (value & FD_DSR_DRATEMASK);
1316 }
1317 
1318 static int fdctrl_media_changed(FDrive *drv)
1319 {
1320     return drv->media_changed;
1321 }
1322 
1323 /* Digital input register : 0x07 (read-only) */
1324 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1325 {
1326     uint32_t retval = 0;
1327 
1328     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1329         retval |= FD_DIR_DSKCHG;
1330     }
1331     if (retval != 0) {
1332         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1333     }
1334 
1335     return retval;
1336 }
1337 
1338 /* Clear the FIFO and update the state for receiving the next command */
1339 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1340 {
1341     fdctrl->phase = FD_PHASE_COMMAND;
1342     fdctrl->data_dir = FD_DIR_WRITE;
1343     fdctrl->data_pos = 0;
1344     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1345     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1346     fdctrl->msr |= FD_MSR_RQM;
1347 }
1348 
1349 /* Update the state to allow the guest to read out the command status.
1350  * @fifo_len is the number of result bytes to be read out. */
1351 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1352 {
1353     fdctrl->phase = FD_PHASE_RESULT;
1354     fdctrl->data_dir = FD_DIR_READ;
1355     fdctrl->data_len = fifo_len;
1356     fdctrl->data_pos = 0;
1357     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1358 }
1359 
1360 /* Set an error: unimplemented/unknown command */
1361 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1362 {
1363     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1364                   fdctrl->fifo[0]);
1365     fdctrl->fifo[0] = FD_SR0_INVCMD;
1366     fdctrl_to_result_phase(fdctrl, 1);
1367 }
1368 
1369 /* Seek to next sector
1370  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1371  * otherwise returns 1
1372  */
1373 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1374 {
1375     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1376                    cur_drv->head, cur_drv->track, cur_drv->sect,
1377                    fd_sector(cur_drv));
1378     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1379        error in fact */
1380     uint8_t new_head = cur_drv->head;
1381     uint8_t new_track = cur_drv->track;
1382     uint8_t new_sect = cur_drv->sect;
1383 
1384     int ret = 1;
1385 
1386     if (new_sect >= cur_drv->last_sect ||
1387         new_sect == fdctrl->eot) {
1388         new_sect = 1;
1389         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1390             if (new_head == 0 &&
1391                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1392                 new_head = 1;
1393             } else {
1394                 new_head = 0;
1395                 new_track++;
1396                 fdctrl->status0 |= FD_SR0_SEEK;
1397                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1398                     ret = 0;
1399                 }
1400             }
1401         } else {
1402             fdctrl->status0 |= FD_SR0_SEEK;
1403             new_track++;
1404             ret = 0;
1405         }
1406         if (ret == 1) {
1407             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1408                     new_head, new_track, new_sect, fd_sector(cur_drv));
1409         }
1410     } else {
1411         new_sect++;
1412     }
1413     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1414     return ret;
1415 }
1416 
1417 /* Callback for transfer end (stop or abort) */
1418 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1419                                  uint8_t status1, uint8_t status2)
1420 {
1421     FDrive *cur_drv;
1422     cur_drv = get_cur_drv(fdctrl);
1423 
1424     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1425     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1426     if (cur_drv->head) {
1427         fdctrl->status0 |= FD_SR0_HEAD;
1428     }
1429     fdctrl->status0 |= status0;
1430 
1431     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1432                    status0, status1, status2, fdctrl->status0);
1433     fdctrl->fifo[0] = fdctrl->status0;
1434     fdctrl->fifo[1] = status1;
1435     fdctrl->fifo[2] = status2;
1436     fdctrl->fifo[3] = cur_drv->track;
1437     fdctrl->fifo[4] = cur_drv->head;
1438     fdctrl->fifo[5] = cur_drv->sect;
1439     fdctrl->fifo[6] = FD_SECTOR_SC;
1440     fdctrl->data_dir = FD_DIR_READ;
1441     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1442         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1443         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1444     }
1445     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1446     fdctrl->msr &= ~FD_MSR_NONDMA;
1447 
1448     fdctrl_to_result_phase(fdctrl, 7);
1449     fdctrl_raise_irq(fdctrl);
1450 }
1451 
1452 /* Prepare a data transfer (either DMA or FIFO) */
1453 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1454 {
1455     FDrive *cur_drv;
1456     uint8_t kh, kt, ks;
1457 
1458     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1459     cur_drv = get_cur_drv(fdctrl);
1460     kt = fdctrl->fifo[2];
1461     kh = fdctrl->fifo[3];
1462     ks = fdctrl->fifo[4];
1463     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1464                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1465                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1466                                   NUM_SIDES(cur_drv)));
1467     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1468     case 2:
1469         /* sect too big */
1470         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1471         fdctrl->fifo[3] = kt;
1472         fdctrl->fifo[4] = kh;
1473         fdctrl->fifo[5] = ks;
1474         return;
1475     case 3:
1476         /* track too big */
1477         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1478         fdctrl->fifo[3] = kt;
1479         fdctrl->fifo[4] = kh;
1480         fdctrl->fifo[5] = ks;
1481         return;
1482     case 4:
1483         /* No seek enabled */
1484         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1485         fdctrl->fifo[3] = kt;
1486         fdctrl->fifo[4] = kh;
1487         fdctrl->fifo[5] = ks;
1488         return;
1489     case 1:
1490         fdctrl->status0 |= FD_SR0_SEEK;
1491         break;
1492     default:
1493         break;
1494     }
1495 
1496     /* Check the data rate. If the programmed data rate does not match
1497      * the currently inserted medium, the operation has to fail. */
1498     if (fdctrl->check_media_rate &&
1499         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1500         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1501                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1502         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1503         fdctrl->fifo[3] = kt;
1504         fdctrl->fifo[4] = kh;
1505         fdctrl->fifo[5] = ks;
1506         return;
1507     }
1508 
1509     /* Set the FIFO state */
1510     fdctrl->data_dir = direction;
1511     fdctrl->data_pos = 0;
1512     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1513     if (fdctrl->fifo[0] & 0x80)
1514         fdctrl->data_state |= FD_STATE_MULTI;
1515     else
1516         fdctrl->data_state &= ~FD_STATE_MULTI;
1517     if (fdctrl->fifo[5] == 0) {
1518         fdctrl->data_len = fdctrl->fifo[8];
1519     } else {
1520         int tmp;
1521         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1522         tmp = (fdctrl->fifo[6] - ks + 1);
1523         if (fdctrl->fifo[0] & 0x80)
1524             tmp += fdctrl->fifo[6];
1525         fdctrl->data_len *= tmp;
1526     }
1527     fdctrl->eot = fdctrl->fifo[6];
1528     if (fdctrl->dor & FD_DOR_DMAEN) {
1529         IsaDmaTransferMode dma_mode;
1530         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1531         bool dma_mode_ok;
1532         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1533         dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1534         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1535                        dma_mode, direction,
1536                        (128 << fdctrl->fifo[5]) *
1537                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1538         switch (direction) {
1539         case FD_DIR_SCANE:
1540         case FD_DIR_SCANL:
1541         case FD_DIR_SCANH:
1542             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1543             break;
1544         case FD_DIR_WRITE:
1545             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1546             break;
1547         case FD_DIR_READ:
1548             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1549             break;
1550         case FD_DIR_VERIFY:
1551             dma_mode_ok = true;
1552             break;
1553         default:
1554             dma_mode_ok = false;
1555             break;
1556         }
1557         if (dma_mode_ok) {
1558             /* No access is allowed until DMA transfer has completed */
1559             fdctrl->msr &= ~FD_MSR_RQM;
1560             if (direction != FD_DIR_VERIFY) {
1561                 /* Now, we just have to wait for the DMA controller to
1562                  * recall us...
1563                  */
1564                 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1565                 k->schedule(fdctrl->dma);
1566             } else {
1567                 /* Start transfer */
1568                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1569                                         fdctrl->data_len);
1570             }
1571             return;
1572         } else {
1573             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1574                            direction);
1575         }
1576     }
1577     FLOPPY_DPRINTF("start non-DMA transfer\n");
1578     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1579     if (direction != FD_DIR_WRITE)
1580         fdctrl->msr |= FD_MSR_DIO;
1581     /* IO based transfer: calculate len */
1582     fdctrl_raise_irq(fdctrl);
1583 }
1584 
1585 /* Prepare a transfer of deleted data */
1586 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1587 {
1588     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1589 
1590     /* We don't handle deleted data,
1591      * so we don't return *ANYTHING*
1592      */
1593     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1594 }
1595 
1596 /* handlers for DMA transfers */
1597 static int fdctrl_transfer_handler (void *opaque, int nchan,
1598                                     int dma_pos, int dma_len)
1599 {
1600     FDCtrl *fdctrl;
1601     FDrive *cur_drv;
1602     int len, start_pos, rel_pos;
1603     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1604     IsaDmaClass *k;
1605 
1606     fdctrl = opaque;
1607     if (fdctrl->msr & FD_MSR_RQM) {
1608         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1609         return 0;
1610     }
1611     k = ISADMA_GET_CLASS(fdctrl->dma);
1612     cur_drv = get_cur_drv(fdctrl);
1613     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1614         fdctrl->data_dir == FD_DIR_SCANH)
1615         status2 = FD_SR2_SNS;
1616     if (dma_len > fdctrl->data_len)
1617         dma_len = fdctrl->data_len;
1618     if (cur_drv->blk == NULL) {
1619         if (fdctrl->data_dir == FD_DIR_WRITE)
1620             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1621         else
1622             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1623         len = 0;
1624         goto transfer_error;
1625     }
1626     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1627     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1628         len = dma_len - fdctrl->data_pos;
1629         if (len + rel_pos > FD_SECTOR_LEN)
1630             len = FD_SECTOR_LEN - rel_pos;
1631         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1632                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1633                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1634                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1635                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1636         if (fdctrl->data_dir != FD_DIR_WRITE ||
1637             len < FD_SECTOR_LEN || rel_pos != 0) {
1638             /* READ & SCAN commands and realign to a sector for WRITE */
1639             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1640                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1641                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1642                                fd_sector(cur_drv));
1643                 /* Sure, image size is too small... */
1644                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1645             }
1646         }
1647         switch (fdctrl->data_dir) {
1648         case FD_DIR_READ:
1649             /* READ commands */
1650             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1651                             fdctrl->data_pos, len);
1652             break;
1653         case FD_DIR_WRITE:
1654             /* WRITE commands */
1655             if (cur_drv->ro) {
1656                 /* Handle readonly medium early, no need to do DMA, touch the
1657                  * LED or attempt any writes. A real floppy doesn't attempt
1658                  * to write to readonly media either. */
1659                 fdctrl_stop_transfer(fdctrl,
1660                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1661                                      0x00);
1662                 goto transfer_error;
1663             }
1664 
1665             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1666                            fdctrl->data_pos, len);
1667             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1668                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1669                 FLOPPY_DPRINTF("error writing sector %d\n",
1670                                fd_sector(cur_drv));
1671                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1672                 goto transfer_error;
1673             }
1674             break;
1675         case FD_DIR_VERIFY:
1676             /* VERIFY commands */
1677             break;
1678         default:
1679             /* SCAN commands */
1680             {
1681                 uint8_t tmpbuf[FD_SECTOR_LEN];
1682                 int ret;
1683                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1684                                len);
1685                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1686                 if (ret == 0) {
1687                     status2 = FD_SR2_SEH;
1688                     goto end_transfer;
1689                 }
1690                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1691                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1692                     status2 = 0x00;
1693                     goto end_transfer;
1694                 }
1695             }
1696             break;
1697         }
1698         fdctrl->data_pos += len;
1699         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1700         if (rel_pos == 0) {
1701             /* Seek to next sector */
1702             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1703                 break;
1704         }
1705     }
1706  end_transfer:
1707     len = fdctrl->data_pos - start_pos;
1708     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1709                    fdctrl->data_pos, len, fdctrl->data_len);
1710     if (fdctrl->data_dir == FD_DIR_SCANE ||
1711         fdctrl->data_dir == FD_DIR_SCANL ||
1712         fdctrl->data_dir == FD_DIR_SCANH)
1713         status2 = FD_SR2_SEH;
1714     fdctrl->data_len -= len;
1715     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1716  transfer_error:
1717 
1718     return len;
1719 }
1720 
1721 /* Data register : 0x05 */
1722 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1723 {
1724     FDrive *cur_drv;
1725     uint32_t retval = 0;
1726     uint32_t pos;
1727 
1728     cur_drv = get_cur_drv(fdctrl);
1729     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1730     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1731         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1732         return 0;
1733     }
1734 
1735     /* If data_len spans multiple sectors, the current position in the FIFO
1736      * wraps around while fdctrl->data_pos is the real position in the whole
1737      * request. */
1738     pos = fdctrl->data_pos;
1739     pos %= FD_SECTOR_LEN;
1740 
1741     switch (fdctrl->phase) {
1742     case FD_PHASE_EXECUTION:
1743         assert(fdctrl->msr & FD_MSR_NONDMA);
1744         if (pos == 0) {
1745             if (fdctrl->data_pos != 0)
1746                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1747                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1748                                    fd_sector(cur_drv));
1749                     return 0;
1750                 }
1751             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1752                           BDRV_SECTOR_SIZE)
1753                 < 0) {
1754                 FLOPPY_DPRINTF("error getting sector %d\n",
1755                                fd_sector(cur_drv));
1756                 /* Sure, image size is too small... */
1757                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1758             }
1759         }
1760 
1761         if (++fdctrl->data_pos == fdctrl->data_len) {
1762             fdctrl->msr &= ~FD_MSR_RQM;
1763             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1764         }
1765         break;
1766 
1767     case FD_PHASE_RESULT:
1768         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1769         if (++fdctrl->data_pos == fdctrl->data_len) {
1770             fdctrl->msr &= ~FD_MSR_RQM;
1771             fdctrl_to_command_phase(fdctrl);
1772             fdctrl_reset_irq(fdctrl);
1773         }
1774         break;
1775 
1776     case FD_PHASE_COMMAND:
1777     default:
1778         abort();
1779     }
1780 
1781     retval = fdctrl->fifo[pos];
1782     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1783 
1784     return retval;
1785 }
1786 
1787 static void fdctrl_format_sector(FDCtrl *fdctrl)
1788 {
1789     FDrive *cur_drv;
1790     uint8_t kh, kt, ks;
1791 
1792     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1793     cur_drv = get_cur_drv(fdctrl);
1794     kt = fdctrl->fifo[6];
1795     kh = fdctrl->fifo[7];
1796     ks = fdctrl->fifo[8];
1797     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1798                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1799                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1800                                   NUM_SIDES(cur_drv)));
1801     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1802     case 2:
1803         /* sect too big */
1804         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1805         fdctrl->fifo[3] = kt;
1806         fdctrl->fifo[4] = kh;
1807         fdctrl->fifo[5] = ks;
1808         return;
1809     case 3:
1810         /* track too big */
1811         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1812         fdctrl->fifo[3] = kt;
1813         fdctrl->fifo[4] = kh;
1814         fdctrl->fifo[5] = ks;
1815         return;
1816     case 4:
1817         /* No seek enabled */
1818         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1819         fdctrl->fifo[3] = kt;
1820         fdctrl->fifo[4] = kh;
1821         fdctrl->fifo[5] = ks;
1822         return;
1823     case 1:
1824         fdctrl->status0 |= FD_SR0_SEEK;
1825         break;
1826     default:
1827         break;
1828     }
1829     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1830     if (cur_drv->blk == NULL ||
1831         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1832                    BDRV_SECTOR_SIZE, 0) < 0) {
1833         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1834         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1835     } else {
1836         if (cur_drv->sect == cur_drv->last_sect) {
1837             fdctrl->data_state &= ~FD_STATE_FORMAT;
1838             /* Last sector done */
1839             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1840         } else {
1841             /* More to do */
1842             fdctrl->data_pos = 0;
1843             fdctrl->data_len = 4;
1844         }
1845     }
1846 }
1847 
1848 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1849 {
1850     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1851     fdctrl->fifo[0] = fdctrl->lock << 4;
1852     fdctrl_to_result_phase(fdctrl, 1);
1853 }
1854 
1855 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1856 {
1857     FDrive *cur_drv = get_cur_drv(fdctrl);
1858 
1859     /* Drives position */
1860     fdctrl->fifo[0] = drv0(fdctrl)->track;
1861     fdctrl->fifo[1] = drv1(fdctrl)->track;
1862 #if MAX_FD == 4
1863     fdctrl->fifo[2] = drv2(fdctrl)->track;
1864     fdctrl->fifo[3] = drv3(fdctrl)->track;
1865 #else
1866     fdctrl->fifo[2] = 0;
1867     fdctrl->fifo[3] = 0;
1868 #endif
1869     /* timers */
1870     fdctrl->fifo[4] = fdctrl->timer0;
1871     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1872     fdctrl->fifo[6] = cur_drv->last_sect;
1873     fdctrl->fifo[7] = (fdctrl->lock << 7) |
1874         (cur_drv->perpendicular << 2);
1875     fdctrl->fifo[8] = fdctrl->config;
1876     fdctrl->fifo[9] = fdctrl->precomp_trk;
1877     fdctrl_to_result_phase(fdctrl, 10);
1878 }
1879 
1880 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1881 {
1882     /* Controller's version */
1883     fdctrl->fifo[0] = fdctrl->version;
1884     fdctrl_to_result_phase(fdctrl, 1);
1885 }
1886 
1887 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1888 {
1889     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1890     fdctrl_to_result_phase(fdctrl, 1);
1891 }
1892 
1893 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1894 {
1895     FDrive *cur_drv = get_cur_drv(fdctrl);
1896 
1897     /* Drives position */
1898     drv0(fdctrl)->track = fdctrl->fifo[3];
1899     drv1(fdctrl)->track = fdctrl->fifo[4];
1900 #if MAX_FD == 4
1901     drv2(fdctrl)->track = fdctrl->fifo[5];
1902     drv3(fdctrl)->track = fdctrl->fifo[6];
1903 #endif
1904     /* timers */
1905     fdctrl->timer0 = fdctrl->fifo[7];
1906     fdctrl->timer1 = fdctrl->fifo[8];
1907     cur_drv->last_sect = fdctrl->fifo[9];
1908     fdctrl->lock = fdctrl->fifo[10] >> 7;
1909     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1910     fdctrl->config = fdctrl->fifo[11];
1911     fdctrl->precomp_trk = fdctrl->fifo[12];
1912     fdctrl->pwrd = fdctrl->fifo[13];
1913     fdctrl_to_command_phase(fdctrl);
1914 }
1915 
1916 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1917 {
1918     FDrive *cur_drv = get_cur_drv(fdctrl);
1919 
1920     fdctrl->fifo[0] = 0;
1921     fdctrl->fifo[1] = 0;
1922     /* Drives position */
1923     fdctrl->fifo[2] = drv0(fdctrl)->track;
1924     fdctrl->fifo[3] = drv1(fdctrl)->track;
1925 #if MAX_FD == 4
1926     fdctrl->fifo[4] = drv2(fdctrl)->track;
1927     fdctrl->fifo[5] = drv3(fdctrl)->track;
1928 #else
1929     fdctrl->fifo[4] = 0;
1930     fdctrl->fifo[5] = 0;
1931 #endif
1932     /* timers */
1933     fdctrl->fifo[6] = fdctrl->timer0;
1934     fdctrl->fifo[7] = fdctrl->timer1;
1935     fdctrl->fifo[8] = cur_drv->last_sect;
1936     fdctrl->fifo[9] = (fdctrl->lock << 7) |
1937         (cur_drv->perpendicular << 2);
1938     fdctrl->fifo[10] = fdctrl->config;
1939     fdctrl->fifo[11] = fdctrl->precomp_trk;
1940     fdctrl->fifo[12] = fdctrl->pwrd;
1941     fdctrl->fifo[13] = 0;
1942     fdctrl->fifo[14] = 0;
1943     fdctrl_to_result_phase(fdctrl, 15);
1944 }
1945 
1946 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1947 {
1948     FDrive *cur_drv = get_cur_drv(fdctrl);
1949 
1950     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1951     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1952              (NANOSECONDS_PER_SECOND / 50));
1953 }
1954 
1955 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1956 {
1957     FDrive *cur_drv;
1958 
1959     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1960     cur_drv = get_cur_drv(fdctrl);
1961     fdctrl->data_state |= FD_STATE_FORMAT;
1962     if (fdctrl->fifo[0] & 0x80)
1963         fdctrl->data_state |= FD_STATE_MULTI;
1964     else
1965         fdctrl->data_state &= ~FD_STATE_MULTI;
1966     cur_drv->bps =
1967         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1968 #if 0
1969     cur_drv->last_sect =
1970         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1971         fdctrl->fifo[3] / 2;
1972 #else
1973     cur_drv->last_sect = fdctrl->fifo[3];
1974 #endif
1975     /* TODO: implement format using DMA expected by the Bochs BIOS
1976      * and Linux fdformat (read 3 bytes per sector via DMA and fill
1977      * the sector with the specified fill byte
1978      */
1979     fdctrl->data_state &= ~FD_STATE_FORMAT;
1980     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1981 }
1982 
1983 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1984 {
1985     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1986     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1987     if (fdctrl->fifo[2] & 1)
1988         fdctrl->dor &= ~FD_DOR_DMAEN;
1989     else
1990         fdctrl->dor |= FD_DOR_DMAEN;
1991     /* No result back */
1992     fdctrl_to_command_phase(fdctrl);
1993 }
1994 
1995 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1996 {
1997     FDrive *cur_drv;
1998 
1999     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2000     cur_drv = get_cur_drv(fdctrl);
2001     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2002     /* 1 Byte status back */
2003     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2004         (cur_drv->track == 0 ? 0x10 : 0x00) |
2005         (cur_drv->head << 2) |
2006         GET_CUR_DRV(fdctrl) |
2007         0x28;
2008     fdctrl_to_result_phase(fdctrl, 1);
2009 }
2010 
2011 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2012 {
2013     FDrive *cur_drv;
2014 
2015     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2016     cur_drv = get_cur_drv(fdctrl);
2017     fd_recalibrate(cur_drv);
2018     fdctrl_to_command_phase(fdctrl);
2019     /* Raise Interrupt */
2020     fdctrl->status0 |= FD_SR0_SEEK;
2021     fdctrl_raise_irq(fdctrl);
2022 }
2023 
2024 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2025 {
2026     FDrive *cur_drv = get_cur_drv(fdctrl);
2027 
2028     if (fdctrl->reset_sensei > 0) {
2029         fdctrl->fifo[0] =
2030             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2031         fdctrl->reset_sensei--;
2032     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2033         fdctrl->fifo[0] = FD_SR0_INVCMD;
2034         fdctrl_to_result_phase(fdctrl, 1);
2035         return;
2036     } else {
2037         fdctrl->fifo[0] =
2038                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2039                 | GET_CUR_DRV(fdctrl);
2040     }
2041 
2042     fdctrl->fifo[1] = cur_drv->track;
2043     fdctrl_to_result_phase(fdctrl, 2);
2044     fdctrl_reset_irq(fdctrl);
2045     fdctrl->status0 = FD_SR0_RDYCHG;
2046 }
2047 
2048 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2049 {
2050     FDrive *cur_drv;
2051 
2052     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2053     cur_drv = get_cur_drv(fdctrl);
2054     fdctrl_to_command_phase(fdctrl);
2055     /* The seek command just sends step pulses to the drive and doesn't care if
2056      * there is a medium inserted of if it's banging the head against the drive.
2057      */
2058     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2059     /* Raise Interrupt */
2060     fdctrl->status0 |= FD_SR0_SEEK;
2061     fdctrl_raise_irq(fdctrl);
2062 }
2063 
2064 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2065 {
2066     FDrive *cur_drv = get_cur_drv(fdctrl);
2067 
2068     if (fdctrl->fifo[1] & 0x80)
2069         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2070     /* No result back */
2071     fdctrl_to_command_phase(fdctrl);
2072 }
2073 
2074 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2075 {
2076     fdctrl->config = fdctrl->fifo[2];
2077     fdctrl->precomp_trk =  fdctrl->fifo[3];
2078     /* No result back */
2079     fdctrl_to_command_phase(fdctrl);
2080 }
2081 
2082 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2083 {
2084     fdctrl->pwrd = fdctrl->fifo[1];
2085     fdctrl->fifo[0] = fdctrl->fifo[1];
2086     fdctrl_to_result_phase(fdctrl, 1);
2087 }
2088 
2089 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2090 {
2091     /* No result back */
2092     fdctrl_to_command_phase(fdctrl);
2093 }
2094 
2095 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2096 {
2097     FDrive *cur_drv = get_cur_drv(fdctrl);
2098     uint32_t pos;
2099 
2100     pos = fdctrl->data_pos - 1;
2101     pos %= FD_SECTOR_LEN;
2102     if (fdctrl->fifo[pos] & 0x80) {
2103         /* Command parameters done */
2104         if (fdctrl->fifo[pos] & 0x40) {
2105             fdctrl->fifo[0] = fdctrl->fifo[1];
2106             fdctrl->fifo[2] = 0;
2107             fdctrl->fifo[3] = 0;
2108             fdctrl_to_result_phase(fdctrl, 4);
2109         } else {
2110             fdctrl_to_command_phase(fdctrl);
2111         }
2112     } else if (fdctrl->data_len > 7) {
2113         /* ERROR */
2114         fdctrl->fifo[0] = 0x80 |
2115             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2116         fdctrl_to_result_phase(fdctrl, 1);
2117     }
2118 }
2119 
2120 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2121 {
2122     FDrive *cur_drv;
2123 
2124     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2125     cur_drv = get_cur_drv(fdctrl);
2126     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2127         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2128                 cur_drv->sect, 1);
2129     } else {
2130         fd_seek(cur_drv, cur_drv->head,
2131                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2132     }
2133     fdctrl_to_command_phase(fdctrl);
2134     /* Raise Interrupt */
2135     fdctrl->status0 |= FD_SR0_SEEK;
2136     fdctrl_raise_irq(fdctrl);
2137 }
2138 
2139 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2140 {
2141     FDrive *cur_drv;
2142 
2143     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2144     cur_drv = get_cur_drv(fdctrl);
2145     if (fdctrl->fifo[2] > cur_drv->track) {
2146         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2147     } else {
2148         fd_seek(cur_drv, cur_drv->head,
2149                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2150     }
2151     fdctrl_to_command_phase(fdctrl);
2152     /* Raise Interrupt */
2153     fdctrl->status0 |= FD_SR0_SEEK;
2154     fdctrl_raise_irq(fdctrl);
2155 }
2156 
2157 /*
2158  * Handlers for the execution phase of each command
2159  */
2160 typedef struct FDCtrlCommand {
2161     uint8_t value;
2162     uint8_t mask;
2163     const char* name;
2164     int parameters;
2165     void (*handler)(FDCtrl *fdctrl, int direction);
2166     int direction;
2167 } FDCtrlCommand;
2168 
2169 static const FDCtrlCommand handlers[] = {
2170     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2171     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2172     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2173     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2174     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2175     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2176     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2177     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2178     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2179     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2180     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2181     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2182     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2183     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2184     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2185     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2186     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2187     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2188     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2189     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2190     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2191     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2192     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2193     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2194     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2195     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2196     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2197     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2198     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2199     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2200     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2201     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2202 };
2203 /* Associate command to an index in the 'handlers' array */
2204 static uint8_t command_to_handler[256];
2205 
2206 static const FDCtrlCommand *get_command(uint8_t cmd)
2207 {
2208     int idx;
2209 
2210     idx = command_to_handler[cmd];
2211     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2212     return &handlers[idx];
2213 }
2214 
2215 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2216 {
2217     FDrive *cur_drv;
2218     const FDCtrlCommand *cmd;
2219     uint32_t pos;
2220 
2221     /* Reset mode */
2222     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2223         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2224         return;
2225     }
2226     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2227         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2228         return;
2229     }
2230     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2231 
2232     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2233 
2234     /* If data_len spans multiple sectors, the current position in the FIFO
2235      * wraps around while fdctrl->data_pos is the real position in the whole
2236      * request. */
2237     pos = fdctrl->data_pos++;
2238     pos %= FD_SECTOR_LEN;
2239     fdctrl->fifo[pos] = value;
2240 
2241     if (fdctrl->data_pos == fdctrl->data_len) {
2242         fdctrl->msr &= ~FD_MSR_RQM;
2243     }
2244 
2245     switch (fdctrl->phase) {
2246     case FD_PHASE_EXECUTION:
2247         /* For DMA requests, RQM should be cleared during execution phase, so
2248          * we would have errored out above. */
2249         assert(fdctrl->msr & FD_MSR_NONDMA);
2250 
2251         /* FIFO data write */
2252         if (pos == FD_SECTOR_LEN - 1 ||
2253             fdctrl->data_pos == fdctrl->data_len) {
2254             cur_drv = get_cur_drv(fdctrl);
2255             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2256                            BDRV_SECTOR_SIZE, 0) < 0) {
2257                 FLOPPY_DPRINTF("error writing sector %d\n",
2258                                fd_sector(cur_drv));
2259                 break;
2260             }
2261             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2262                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2263                                fd_sector(cur_drv));
2264                 break;
2265             }
2266         }
2267 
2268         /* Switch to result phase when done with the transfer */
2269         if (fdctrl->data_pos == fdctrl->data_len) {
2270             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2271         }
2272         break;
2273 
2274     case FD_PHASE_COMMAND:
2275         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2276         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2277 
2278         if (pos == 0) {
2279             /* The first byte specifies the command. Now we start reading
2280              * as many parameters as this command requires. */
2281             cmd = get_command(value);
2282             fdctrl->data_len = cmd->parameters + 1;
2283             if (cmd->parameters) {
2284                 fdctrl->msr |= FD_MSR_RQM;
2285             }
2286             fdctrl->msr |= FD_MSR_CMDBUSY;
2287         }
2288 
2289         if (fdctrl->data_pos == fdctrl->data_len) {
2290             /* We have all parameters now, execute the command */
2291             fdctrl->phase = FD_PHASE_EXECUTION;
2292 
2293             if (fdctrl->data_state & FD_STATE_FORMAT) {
2294                 fdctrl_format_sector(fdctrl);
2295                 break;
2296             }
2297 
2298             cmd = get_command(fdctrl->fifo[0]);
2299             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2300             cmd->handler(fdctrl, cmd->direction);
2301         }
2302         break;
2303 
2304     case FD_PHASE_RESULT:
2305     default:
2306         abort();
2307     }
2308 }
2309 
2310 static void fdctrl_result_timer(void *opaque)
2311 {
2312     FDCtrl *fdctrl = opaque;
2313     FDrive *cur_drv = get_cur_drv(fdctrl);
2314 
2315     /* Pretend we are spinning.
2316      * This is needed for Coherent, which uses READ ID to check for
2317      * sector interleaving.
2318      */
2319     if (cur_drv->last_sect != 0) {
2320         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2321     }
2322     /* READ_ID can't automatically succeed! */
2323     if (fdctrl->check_media_rate &&
2324         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2325         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2326                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2327         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2328     } else {
2329         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2330     }
2331 }
2332 
2333 static void fdctrl_change_cb(void *opaque, bool load)
2334 {
2335     FDrive *drive = opaque;
2336 
2337     drive->media_changed = 1;
2338     drive->media_validated = false;
2339     fd_revalidate(drive);
2340 }
2341 
2342 static const BlockDevOps fdctrl_block_ops = {
2343     .change_media_cb = fdctrl_change_cb,
2344 };
2345 
2346 /* Init functions */
2347 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2348 {
2349     unsigned int i;
2350     FDrive *drive;
2351 
2352     for (i = 0; i < MAX_FD; i++) {
2353         drive = &fdctrl->drives[i];
2354         drive->fdctrl = fdctrl;
2355 
2356         if (drive->blk) {
2357             if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2358                 error_setg(errp, "fdc doesn't support drive option werror");
2359                 return;
2360             }
2361             if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2362                 error_setg(errp, "fdc doesn't support drive option rerror");
2363                 return;
2364             }
2365         }
2366 
2367         fd_init(drive);
2368         if (drive->blk) {
2369             blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2370             pick_drive_type(drive);
2371         }
2372         fd_revalidate(drive);
2373     }
2374 }
2375 
2376 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2377 {
2378     DeviceState *dev;
2379     ISADevice *isadev;
2380 
2381     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2382     if (!isadev) {
2383         return NULL;
2384     }
2385     dev = DEVICE(isadev);
2386 
2387     if (fds[0]) {
2388         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2389                             &error_fatal);
2390     }
2391     if (fds[1]) {
2392         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2393                             &error_fatal);
2394     }
2395     qdev_init_nofail(dev);
2396 
2397     return isadev;
2398 }
2399 
2400 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2401                         hwaddr mmio_base, DriveInfo **fds)
2402 {
2403     FDCtrl *fdctrl;
2404     DeviceState *dev;
2405     SysBusDevice *sbd;
2406     FDCtrlSysBus *sys;
2407 
2408     dev = qdev_create(NULL, "sysbus-fdc");
2409     sys = SYSBUS_FDC(dev);
2410     fdctrl = &sys->state;
2411     fdctrl->dma_chann = dma_chann; /* FIXME */
2412     if (fds[0]) {
2413         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2414                             &error_fatal);
2415     }
2416     if (fds[1]) {
2417         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2418                             &error_fatal);
2419     }
2420     qdev_init_nofail(dev);
2421     sbd = SYS_BUS_DEVICE(dev);
2422     sysbus_connect_irq(sbd, 0, irq);
2423     sysbus_mmio_map(sbd, 0, mmio_base);
2424 }
2425 
2426 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2427                        DriveInfo **fds, qemu_irq *fdc_tc)
2428 {
2429     DeviceState *dev;
2430     FDCtrlSysBus *sys;
2431 
2432     dev = qdev_create(NULL, "SUNW,fdtwo");
2433     if (fds[0]) {
2434         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2435                             &error_fatal);
2436     }
2437     qdev_init_nofail(dev);
2438     sys = SYSBUS_FDC(dev);
2439     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2440     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2441     *fdc_tc = qdev_get_gpio_in(dev, 0);
2442 }
2443 
2444 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2445 {
2446     int i, j;
2447     static int command_tables_inited = 0;
2448 
2449     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2450         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2451     }
2452 
2453     /* Fill 'command_to_handler' lookup table */
2454     if (!command_tables_inited) {
2455         command_tables_inited = 1;
2456         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2457             for (j = 0; j < sizeof(command_to_handler); j++) {
2458                 if ((j & handlers[i].mask) == handlers[i].value) {
2459                     command_to_handler[j] = i;
2460                 }
2461             }
2462         }
2463     }
2464 
2465     FLOPPY_DPRINTF("init controller\n");
2466     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2467     fdctrl->fifo_size = 512;
2468     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2469                                              fdctrl_result_timer, fdctrl);
2470 
2471     fdctrl->version = 0x90; /* Intel 82078 controller */
2472     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2473     fdctrl->num_floppies = MAX_FD;
2474 
2475     if (fdctrl->dma_chann != -1) {
2476         IsaDmaClass *k;
2477         assert(fdctrl->dma);
2478         k = ISADMA_GET_CLASS(fdctrl->dma);
2479         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2480                             &fdctrl_transfer_handler, fdctrl);
2481     }
2482     fdctrl_connect_drives(fdctrl, errp);
2483 }
2484 
2485 static const MemoryRegionPortio fdc_portio_list[] = {
2486     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2487     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2488     PORTIO_END_OF_LIST(),
2489 };
2490 
2491 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2492 {
2493     ISADevice *isadev = ISA_DEVICE(dev);
2494     FDCtrlISABus *isa = ISA_FDC(dev);
2495     FDCtrl *fdctrl = &isa->state;
2496     Error *err = NULL;
2497 
2498     isa_register_portio_list(isadev, isa->iobase, fdc_portio_list, fdctrl,
2499                              "fdc");
2500 
2501     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2502     fdctrl->dma_chann = isa->dma;
2503     if (fdctrl->dma_chann != -1) {
2504         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2505         assert(fdctrl->dma);
2506     }
2507 
2508     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2509     fdctrl_realize_common(fdctrl, &err);
2510     if (err != NULL) {
2511         error_propagate(errp, err);
2512         return;
2513     }
2514 }
2515 
2516 static void sysbus_fdc_initfn(Object *obj)
2517 {
2518     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2519     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2520     FDCtrl *fdctrl = &sys->state;
2521 
2522     fdctrl->dma_chann = -1;
2523 
2524     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2525                           "fdc", 0x08);
2526     sysbus_init_mmio(sbd, &fdctrl->iomem);
2527 }
2528 
2529 static void sun4m_fdc_initfn(Object *obj)
2530 {
2531     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2532     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2533     FDCtrl *fdctrl = &sys->state;
2534 
2535     fdctrl->dma_chann = -1;
2536 
2537     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2538                           fdctrl, "fdctrl", 0x08);
2539     sysbus_init_mmio(sbd, &fdctrl->iomem);
2540 }
2541 
2542 static void sysbus_fdc_common_initfn(Object *obj)
2543 {
2544     DeviceState *dev = DEVICE(obj);
2545     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2546     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2547     FDCtrl *fdctrl = &sys->state;
2548 
2549     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2550 
2551     sysbus_init_irq(sbd, &fdctrl->irq);
2552     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2553 }
2554 
2555 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2556 {
2557     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2558     FDCtrl *fdctrl = &sys->state;
2559 
2560     fdctrl_realize_common(fdctrl, errp);
2561 }
2562 
2563 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2564 {
2565     FDCtrlISABus *isa = ISA_FDC(fdc);
2566 
2567     return isa->state.drives[i].drive;
2568 }
2569 
2570 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2571                                uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2572 {
2573     const FDFormat *fdf;
2574 
2575     *maxc = *maxh = *maxs = 0;
2576     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2577         if (fdf->drive != type) {
2578             continue;
2579         }
2580         if (*maxc < fdf->max_track) {
2581             *maxc = fdf->max_track;
2582         }
2583         if (*maxh < fdf->max_head) {
2584             *maxh = fdf->max_head;
2585         }
2586         if (*maxs < fdf->last_sect) {
2587             *maxs = fdf->last_sect;
2588         }
2589     }
2590     (*maxc)--;
2591 }
2592 
2593 static const VMStateDescription vmstate_isa_fdc ={
2594     .name = "fdc",
2595     .version_id = 2,
2596     .minimum_version_id = 2,
2597     .fields = (VMStateField[]) {
2598         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2599         VMSTATE_END_OF_LIST()
2600     }
2601 };
2602 
2603 static Property isa_fdc_properties[] = {
2604     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2605     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2606     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2607     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2608     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2609     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2610                     0, true),
2611     DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2612                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2613                         FloppyDriveType),
2614     DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2615                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2616                         FloppyDriveType),
2617     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2618                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2619                         FloppyDriveType),
2620     DEFINE_PROP_END_OF_LIST(),
2621 };
2622 
2623 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2624 {
2625     DeviceClass *dc = DEVICE_CLASS(klass);
2626 
2627     dc->realize = isabus_fdc_realize;
2628     dc->fw_name = "fdc";
2629     dc->reset = fdctrl_external_reset_isa;
2630     dc->vmsd = &vmstate_isa_fdc;
2631     dc->props = isa_fdc_properties;
2632     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2633 }
2634 
2635 static void isabus_fdc_instance_init(Object *obj)
2636 {
2637     FDCtrlISABus *isa = ISA_FDC(obj);
2638 
2639     device_add_bootindex_property(obj, &isa->bootindexA,
2640                                   "bootindexA", "/floppy@0",
2641                                   DEVICE(obj), NULL);
2642     device_add_bootindex_property(obj, &isa->bootindexB,
2643                                   "bootindexB", "/floppy@1",
2644                                   DEVICE(obj), NULL);
2645 }
2646 
2647 static const TypeInfo isa_fdc_info = {
2648     .name          = TYPE_ISA_FDC,
2649     .parent        = TYPE_ISA_DEVICE,
2650     .instance_size = sizeof(FDCtrlISABus),
2651     .class_init    = isabus_fdc_class_init,
2652     .instance_init = isabus_fdc_instance_init,
2653 };
2654 
2655 static const VMStateDescription vmstate_sysbus_fdc ={
2656     .name = "fdc",
2657     .version_id = 2,
2658     .minimum_version_id = 2,
2659     .fields = (VMStateField[]) {
2660         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2661         VMSTATE_END_OF_LIST()
2662     }
2663 };
2664 
2665 static Property sysbus_fdc_properties[] = {
2666     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2667     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2668     DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2669                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2670                         FloppyDriveType),
2671     DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2672                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2673                         FloppyDriveType),
2674     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2675                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2676                         FloppyDriveType),
2677     DEFINE_PROP_END_OF_LIST(),
2678 };
2679 
2680 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2681 {
2682     DeviceClass *dc = DEVICE_CLASS(klass);
2683 
2684     dc->props = sysbus_fdc_properties;
2685     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2686 }
2687 
2688 static const TypeInfo sysbus_fdc_info = {
2689     .name          = "sysbus-fdc",
2690     .parent        = TYPE_SYSBUS_FDC,
2691     .instance_init = sysbus_fdc_initfn,
2692     .class_init    = sysbus_fdc_class_init,
2693 };
2694 
2695 static Property sun4m_fdc_properties[] = {
2696     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2697     DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2698                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2699                         FloppyDriveType),
2700     DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2701                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2702                         FloppyDriveType),
2703     DEFINE_PROP_END_OF_LIST(),
2704 };
2705 
2706 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2707 {
2708     DeviceClass *dc = DEVICE_CLASS(klass);
2709 
2710     dc->props = sun4m_fdc_properties;
2711     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2712 }
2713 
2714 static const TypeInfo sun4m_fdc_info = {
2715     .name          = "SUNW,fdtwo",
2716     .parent        = TYPE_SYSBUS_FDC,
2717     .instance_init = sun4m_fdc_initfn,
2718     .class_init    = sun4m_fdc_class_init,
2719 };
2720 
2721 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2722 {
2723     DeviceClass *dc = DEVICE_CLASS(klass);
2724 
2725     dc->realize = sysbus_fdc_common_realize;
2726     dc->reset = fdctrl_external_reset_sysbus;
2727     dc->vmsd = &vmstate_sysbus_fdc;
2728 }
2729 
2730 static const TypeInfo sysbus_fdc_type_info = {
2731     .name          = TYPE_SYSBUS_FDC,
2732     .parent        = TYPE_SYS_BUS_DEVICE,
2733     .instance_size = sizeof(FDCtrlSysBus),
2734     .instance_init = sysbus_fdc_common_initfn,
2735     .abstract      = true,
2736     .class_init    = sysbus_fdc_common_class_init,
2737 };
2738 
2739 static void fdc_register_types(void)
2740 {
2741     type_register_static(&isa_fdc_info);
2742     type_register_static(&sysbus_fdc_type_info);
2743     type_register_static(&sysbus_fdc_info);
2744     type_register_static(&sun4m_fdc_info);
2745 }
2746 
2747 type_init(fdc_register_types)
2748