xref: /qemu/hw/block/fdc.c (revision f03868bd)
1 /*
2  * QEMU Floppy disk emulator (Intel 82078)
3  *
4  * Copyright (c) 2003, 2007 Jocelyn Mayer
5  * Copyright (c) 2008 Hervé Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 /*
26  * The controller is used in Sun4m systems in a slightly different
27  * way. There are changes in DOR register and DMA is not available.
28  */
29 
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
43 
44 /********************************************************/
45 /* debug Floppy devices */
46 
47 #define DEBUG_FLOPPY 0
48 
49 #define FLOPPY_DPRINTF(fmt, ...)                                \
50     do {                                                        \
51         if (DEBUG_FLOPPY) {                                     \
52             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
53         }                                                       \
54     } while (0)
55 
56 
57 /********************************************************/
58 /* qdev floppy bus                                      */
59 
60 #define TYPE_FLOPPY_BUS "floppy-bus"
61 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
62 
63 typedef struct FDCtrl FDCtrl;
64 typedef struct FDrive FDrive;
65 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
66 
67 typedef struct FloppyBus {
68     BusState bus;
69     FDCtrl *fdc;
70 } FloppyBus;
71 
72 static const TypeInfo floppy_bus_info = {
73     .name = TYPE_FLOPPY_BUS,
74     .parent = TYPE_BUS,
75     .instance_size = sizeof(FloppyBus),
76 };
77 
78 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
79 {
80     qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
81     bus->fdc = fdc;
82 }
83 
84 
85 /********************************************************/
86 /* Floppy drive emulation                               */
87 
88 typedef enum FDriveRate {
89     FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
90     FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
91     FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
92     FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
93 } FDriveRate;
94 
95 typedef enum FDriveSize {
96     FDRIVE_SIZE_UNKNOWN,
97     FDRIVE_SIZE_350,
98     FDRIVE_SIZE_525,
99 } FDriveSize;
100 
101 typedef struct FDFormat {
102     FloppyDriveType drive;
103     uint8_t last_sect;
104     uint8_t max_track;
105     uint8_t max_head;
106     FDriveRate rate;
107 } FDFormat;
108 
109 /* In many cases, the total sector size of a format is enough to uniquely
110  * identify it. However, there are some total sector collisions between
111  * formats of different physical size, and these are noted below by
112  * highlighting the total sector size for entries with collisions. */
113 static const FDFormat fd_formats[] = {
114     /* First entry is default format */
115     /* 1.44 MB 3"1/2 floppy disks */
116     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
117     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
118     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
119     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
120     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
121     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
122     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
123     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
124     /* 2.88 MB 3"1/2 floppy disks */
125     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
126     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
127     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
128     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
129     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
130     /* 720 kB 3"1/2 floppy disks */
131     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
132     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
133     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
134     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
135     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
136     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
137     /* 1.2 MB 5"1/4 floppy disks */
138     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
139     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
140     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
141     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
142     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
143     /* 720 kB 5"1/4 floppy disks */
144     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
145     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
146     /* 360 kB 5"1/4 floppy disks */
147     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
148     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
149     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
150     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
151     /* 320 kB 5"1/4 floppy disks */
152     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
153     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
154     /* 360 kB must match 5"1/4 better than 3"1/2... */
155     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
156     /* end */
157     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
158 };
159 
160 static FDriveSize drive_size(FloppyDriveType drive)
161 {
162     switch (drive) {
163     case FLOPPY_DRIVE_TYPE_120:
164         return FDRIVE_SIZE_525;
165     case FLOPPY_DRIVE_TYPE_144:
166     case FLOPPY_DRIVE_TYPE_288:
167         return FDRIVE_SIZE_350;
168     default:
169         return FDRIVE_SIZE_UNKNOWN;
170     }
171 }
172 
173 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
174 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
175 
176 /* Will always be a fixed parameter for us */
177 #define FD_SECTOR_LEN          512
178 #define FD_SECTOR_SC           2   /* Sector size code */
179 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
180 
181 /* Floppy disk drive emulation */
182 typedef enum FDiskFlags {
183     FDISK_DBL_SIDES  = 0x01,
184 } FDiskFlags;
185 
186 struct FDrive {
187     FDCtrl *fdctrl;
188     BlockBackend *blk;
189     BlockConf *conf;
190     /* Drive status */
191     FloppyDriveType drive;    /* CMOS drive type        */
192     uint8_t perpendicular;    /* 2.88 MB access mode    */
193     /* Position */
194     uint8_t head;
195     uint8_t track;
196     uint8_t sect;
197     /* Media */
198     FloppyDriveType disk;     /* Current disk type      */
199     FDiskFlags flags;
200     uint8_t last_sect;        /* Nb sector per track    */
201     uint8_t max_track;        /* Nb of tracks           */
202     uint16_t bps;             /* Bytes per sector       */
203     uint8_t ro;               /* Is read-only           */
204     uint8_t media_changed;    /* Is media changed       */
205     uint8_t media_rate;       /* Data rate of medium    */
206 
207     bool media_validated;     /* Have we validated the media? */
208 };
209 
210 
211 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
212 
213 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
214  * currently goes through some pains to keep seeks within the bounds
215  * established by last_sect and max_track. Correcting this is difficult,
216  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
217  *
218  * For now: allow empty drives to have large bounds so we can seek around,
219  * with the understanding that when a diskette is inserted, the bounds will
220  * properly tighten to match the geometry of that inserted medium.
221  */
222 static void fd_empty_seek_hack(FDrive *drv)
223 {
224     drv->last_sect = 0xFF;
225     drv->max_track = 0xFF;
226 }
227 
228 static void fd_init(FDrive *drv)
229 {
230     /* Drive */
231     drv->perpendicular = 0;
232     /* Disk */
233     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
234     drv->last_sect = 0;
235     drv->max_track = 0;
236     drv->ro = true;
237     drv->media_changed = 1;
238 }
239 
240 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
241 
242 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
243                           uint8_t last_sect, uint8_t num_sides)
244 {
245     return (((track * num_sides) + head) * last_sect) + sect - 1;
246 }
247 
248 /* Returns current position, in sectors, for given drive */
249 static int fd_sector(FDrive *drv)
250 {
251     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
252                           NUM_SIDES(drv));
253 }
254 
255 /* Returns current position, in bytes, for given drive */
256 static int fd_offset(FDrive *drv)
257 {
258     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
259     return fd_sector(drv) << BDRV_SECTOR_BITS;
260 }
261 
262 /* Seek to a new position:
263  * returns 0 if already on right track
264  * returns 1 if track changed
265  * returns 2 if track is invalid
266  * returns 3 if sector is invalid
267  * returns 4 if seek is disabled
268  */
269 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
270                    int enable_seek)
271 {
272     uint32_t sector;
273     int ret;
274 
275     if (track > drv->max_track ||
276         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
277         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
278                        head, track, sect, 1,
279                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
280                        drv->max_track, drv->last_sect);
281         return 2;
282     }
283     if (sect > drv->last_sect) {
284         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
285                        head, track, sect, 1,
286                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
287                        drv->max_track, drv->last_sect);
288         return 3;
289     }
290     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
291     ret = 0;
292     if (sector != fd_sector(drv)) {
293 #if 0
294         if (!enable_seek) {
295             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
296                            " (max=%d %02x %02x)\n",
297                            head, track, sect, 1, drv->max_track,
298                            drv->last_sect);
299             return 4;
300         }
301 #endif
302         drv->head = head;
303         if (drv->track != track) {
304             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
305                 drv->media_changed = 0;
306             }
307             ret = 1;
308         }
309         drv->track = track;
310         drv->sect = sect;
311     }
312 
313     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
314         ret = 2;
315     }
316 
317     return ret;
318 }
319 
320 /* Set drive back to track 0 */
321 static void fd_recalibrate(FDrive *drv)
322 {
323     FLOPPY_DPRINTF("recalibrate\n");
324     fd_seek(drv, 0, 0, 1, 1);
325 }
326 
327 /**
328  * Determine geometry based on inserted diskette.
329  * Will not operate on an empty drive.
330  *
331  * @return: 0 on success, -1 if the drive is empty.
332  */
333 static int pick_geometry(FDrive *drv)
334 {
335     BlockBackend *blk = drv->blk;
336     const FDFormat *parse;
337     uint64_t nb_sectors, size;
338     int i;
339     int match, size_match, type_match;
340     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
341 
342     /* We can only pick a geometry if we have a diskette. */
343     if (!drv->blk || !blk_is_inserted(drv->blk) ||
344         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
345     {
346         return -1;
347     }
348 
349     /* We need to determine the likely geometry of the inserted medium.
350      * In order of preference, we look for:
351      * (1) The same drive type and number of sectors,
352      * (2) The same diskette size and number of sectors,
353      * (3) The same drive type.
354      *
355      * In all cases, matches that occur higher in the drive table will take
356      * precedence over matches that occur later in the table.
357      */
358     blk_get_geometry(blk, &nb_sectors);
359     match = size_match = type_match = -1;
360     for (i = 0; ; i++) {
361         parse = &fd_formats[i];
362         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
363             break;
364         }
365         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
366         if (nb_sectors == size) {
367             if (magic || parse->drive == drv->drive) {
368                 /* (1) perfect match -- nb_sectors and drive type */
369                 goto out;
370             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
371                 /* (2) size match -- nb_sectors and physical medium size */
372                 match = (match == -1) ? i : match;
373             } else {
374                 /* This is suspicious -- Did the user misconfigure? */
375                 size_match = (size_match == -1) ? i : size_match;
376             }
377         } else if (type_match == -1) {
378             if ((parse->drive == drv->drive) ||
379                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
380                 /* (3) type match -- nb_sectors mismatch, but matches the type
381                  *     specified explicitly by the user, or matches the fallback
382                  *     default type when using the drive autodetect mechanism */
383                 type_match = i;
384             }
385         }
386     }
387 
388     /* No exact match found */
389     if (match == -1) {
390         if (size_match != -1) {
391             parse = &fd_formats[size_match];
392             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
393                            "but inserted medium appears to be a "
394                            "%"PRId64" sector '%s' type\n",
395                            FloppyDriveType_str(drv->drive),
396                            nb_sectors,
397                            FloppyDriveType_str(parse->drive));
398         }
399         match = type_match;
400     }
401 
402     /* No match of any kind found -- fd_format is misconfigured, abort. */
403     if (match == -1) {
404         error_setg(&error_abort, "No candidate geometries present in table "
405                    " for floppy drive type '%s'",
406                    FloppyDriveType_str(drv->drive));
407     }
408 
409     parse = &(fd_formats[match]);
410 
411  out:
412     if (parse->max_head == 0) {
413         drv->flags &= ~FDISK_DBL_SIDES;
414     } else {
415         drv->flags |= FDISK_DBL_SIDES;
416     }
417     drv->max_track = parse->max_track;
418     drv->last_sect = parse->last_sect;
419     drv->disk = parse->drive;
420     drv->media_rate = parse->rate;
421     return 0;
422 }
423 
424 static void pick_drive_type(FDrive *drv)
425 {
426     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
427         return;
428     }
429 
430     if (pick_geometry(drv) == 0) {
431         drv->drive = drv->disk;
432     } else {
433         drv->drive = get_fallback_drive_type(drv);
434     }
435 
436     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
437 }
438 
439 /* Revalidate a disk drive after a disk change */
440 static void fd_revalidate(FDrive *drv)
441 {
442     int rc;
443 
444     FLOPPY_DPRINTF("revalidate\n");
445     if (drv->blk != NULL) {
446         drv->ro = blk_is_read_only(drv->blk);
447         if (!blk_is_inserted(drv->blk)) {
448             FLOPPY_DPRINTF("No disk in drive\n");
449             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
450             fd_empty_seek_hack(drv);
451         } else if (!drv->media_validated) {
452             rc = pick_geometry(drv);
453             if (rc) {
454                 FLOPPY_DPRINTF("Could not validate floppy drive media");
455             } else {
456                 drv->media_validated = true;
457                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
458                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
459                                drv->max_track, drv->last_sect,
460                                drv->ro ? "ro" : "rw");
461             }
462         }
463     } else {
464         FLOPPY_DPRINTF("No drive connected\n");
465         drv->last_sect = 0;
466         drv->max_track = 0;
467         drv->flags &= ~FDISK_DBL_SIDES;
468         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
469         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
470     }
471 }
472 
473 static void fd_change_cb(void *opaque, bool load, Error **errp)
474 {
475     FDrive *drive = opaque;
476 
477     if (!load) {
478         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
479     } else {
480         if (!blkconf_apply_backend_options(drive->conf,
481                                            blk_is_read_only(drive->blk), false,
482                                            errp)) {
483             return;
484         }
485     }
486 
487     drive->media_changed = 1;
488     drive->media_validated = false;
489     fd_revalidate(drive);
490 }
491 
492 static const BlockDevOps fd_block_ops = {
493     .change_media_cb = fd_change_cb,
494 };
495 
496 
497 #define TYPE_FLOPPY_DRIVE "floppy"
498 #define FLOPPY_DRIVE(obj) \
499      OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
500 
501 typedef struct FloppyDrive {
502     DeviceState     qdev;
503     uint32_t        unit;
504     BlockConf       conf;
505     FloppyDriveType type;
506 } FloppyDrive;
507 
508 static Property floppy_drive_properties[] = {
509     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
510     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
511     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
512                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
513                         FloppyDriveType),
514     DEFINE_PROP_END_OF_LIST(),
515 };
516 
517 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
518 {
519     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
520     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
521     FDrive *drive;
522     int ret;
523 
524     if (dev->unit == -1) {
525         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
526             drive = get_drv(bus->fdc, dev->unit);
527             if (!drive->blk) {
528                 break;
529             }
530         }
531     }
532 
533     if (dev->unit >= MAX_FD) {
534         error_setg(errp, "Can't create floppy unit %d, bus supports "
535                    "only %d units", dev->unit, MAX_FD);
536         return;
537     }
538 
539     drive = get_drv(bus->fdc, dev->unit);
540     if (drive->blk) {
541         error_setg(errp, "Floppy unit %d is in use", dev->unit);
542         return;
543     }
544 
545     if (!dev->conf.blk) {
546         /* Anonymous BlockBackend for an empty drive */
547         dev->conf.blk = blk_new(0, BLK_PERM_ALL);
548         ret = blk_attach_dev(dev->conf.blk, qdev);
549         assert(ret == 0);
550     }
551 
552     blkconf_blocksizes(&dev->conf);
553     if (dev->conf.logical_block_size != 512 ||
554         dev->conf.physical_block_size != 512)
555     {
556         error_setg(errp, "Physical and logical block size must "
557                    "be 512 for floppy");
558         return;
559     }
560 
561     /* rerror/werror aren't supported by fdc and therefore not even registered
562      * with qdev. So set the defaults manually before they are used in
563      * blkconf_apply_backend_options(). */
564     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
565     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
566 
567     if (!blkconf_apply_backend_options(&dev->conf,
568                                        blk_is_read_only(dev->conf.blk),
569                                        false, errp)) {
570         return;
571     }
572 
573     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
574      * for empty drives. */
575     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
576         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
577         error_setg(errp, "fdc doesn't support drive option werror");
578         return;
579     }
580     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
581         error_setg(errp, "fdc doesn't support drive option rerror");
582         return;
583     }
584 
585     drive->conf = &dev->conf;
586     drive->blk = dev->conf.blk;
587     drive->fdctrl = bus->fdc;
588 
589     fd_init(drive);
590     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
591 
592     /* Keep 'type' qdev property and FDrive->drive in sync */
593     drive->drive = dev->type;
594     pick_drive_type(drive);
595     dev->type = drive->drive;
596 
597     fd_revalidate(drive);
598 }
599 
600 static void floppy_drive_class_init(ObjectClass *klass, void *data)
601 {
602     DeviceClass *k = DEVICE_CLASS(klass);
603     k->realize = floppy_drive_realize;
604     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
605     k->bus_type = TYPE_FLOPPY_BUS;
606     k->props = floppy_drive_properties;
607     k->desc = "virtual floppy drive";
608 }
609 
610 static const TypeInfo floppy_drive_info = {
611     .name = TYPE_FLOPPY_DRIVE,
612     .parent = TYPE_DEVICE,
613     .instance_size = sizeof(FloppyDrive),
614     .class_init = floppy_drive_class_init,
615 };
616 
617 /********************************************************/
618 /* Intel 82078 floppy disk controller emulation          */
619 
620 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
621 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
622 static int fdctrl_transfer_handler (void *opaque, int nchan,
623                                     int dma_pos, int dma_len);
624 static void fdctrl_raise_irq(FDCtrl *fdctrl);
625 static FDrive *get_cur_drv(FDCtrl *fdctrl);
626 
627 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
628 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
629 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
630 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
631 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
632 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
633 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
634 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
635 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
636 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
637 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
638 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
639 
640 enum {
641     FD_DIR_WRITE   = 0,
642     FD_DIR_READ    = 1,
643     FD_DIR_SCANE   = 2,
644     FD_DIR_SCANL   = 3,
645     FD_DIR_SCANH   = 4,
646     FD_DIR_VERIFY  = 5,
647 };
648 
649 enum {
650     FD_STATE_MULTI  = 0x01,	/* multi track flag */
651     FD_STATE_FORMAT = 0x02,	/* format flag */
652 };
653 
654 enum {
655     FD_REG_SRA = 0x00,
656     FD_REG_SRB = 0x01,
657     FD_REG_DOR = 0x02,
658     FD_REG_TDR = 0x03,
659     FD_REG_MSR = 0x04,
660     FD_REG_DSR = 0x04,
661     FD_REG_FIFO = 0x05,
662     FD_REG_DIR = 0x07,
663     FD_REG_CCR = 0x07,
664 };
665 
666 enum {
667     FD_CMD_READ_TRACK = 0x02,
668     FD_CMD_SPECIFY = 0x03,
669     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
670     FD_CMD_WRITE = 0x05,
671     FD_CMD_READ = 0x06,
672     FD_CMD_RECALIBRATE = 0x07,
673     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
674     FD_CMD_WRITE_DELETED = 0x09,
675     FD_CMD_READ_ID = 0x0a,
676     FD_CMD_READ_DELETED = 0x0c,
677     FD_CMD_FORMAT_TRACK = 0x0d,
678     FD_CMD_DUMPREG = 0x0e,
679     FD_CMD_SEEK = 0x0f,
680     FD_CMD_VERSION = 0x10,
681     FD_CMD_SCAN_EQUAL = 0x11,
682     FD_CMD_PERPENDICULAR_MODE = 0x12,
683     FD_CMD_CONFIGURE = 0x13,
684     FD_CMD_LOCK = 0x14,
685     FD_CMD_VERIFY = 0x16,
686     FD_CMD_POWERDOWN_MODE = 0x17,
687     FD_CMD_PART_ID = 0x18,
688     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
689     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
690     FD_CMD_SAVE = 0x2e,
691     FD_CMD_OPTION = 0x33,
692     FD_CMD_RESTORE = 0x4e,
693     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
694     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
695     FD_CMD_FORMAT_AND_WRITE = 0xcd,
696     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
697 };
698 
699 enum {
700     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
701     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
702     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
703     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
704     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
705 };
706 
707 enum {
708     FD_SR0_DS0      = 0x01,
709     FD_SR0_DS1      = 0x02,
710     FD_SR0_HEAD     = 0x04,
711     FD_SR0_EQPMT    = 0x10,
712     FD_SR0_SEEK     = 0x20,
713     FD_SR0_ABNTERM  = 0x40,
714     FD_SR0_INVCMD   = 0x80,
715     FD_SR0_RDYCHG   = 0xc0,
716 };
717 
718 enum {
719     FD_SR1_MA       = 0x01, /* Missing address mark */
720     FD_SR1_NW       = 0x02, /* Not writable */
721     FD_SR1_EC       = 0x80, /* End of cylinder */
722 };
723 
724 enum {
725     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
726     FD_SR2_SEH      = 0x08, /* Scan equal hit */
727 };
728 
729 enum {
730     FD_SRA_DIR      = 0x01,
731     FD_SRA_nWP      = 0x02,
732     FD_SRA_nINDX    = 0x04,
733     FD_SRA_HDSEL    = 0x08,
734     FD_SRA_nTRK0    = 0x10,
735     FD_SRA_STEP     = 0x20,
736     FD_SRA_nDRV2    = 0x40,
737     FD_SRA_INTPEND  = 0x80,
738 };
739 
740 enum {
741     FD_SRB_MTR0     = 0x01,
742     FD_SRB_MTR1     = 0x02,
743     FD_SRB_WGATE    = 0x04,
744     FD_SRB_RDATA    = 0x08,
745     FD_SRB_WDATA    = 0x10,
746     FD_SRB_DR0      = 0x20,
747 };
748 
749 enum {
750 #if MAX_FD == 4
751     FD_DOR_SELMASK  = 0x03,
752 #else
753     FD_DOR_SELMASK  = 0x01,
754 #endif
755     FD_DOR_nRESET   = 0x04,
756     FD_DOR_DMAEN    = 0x08,
757     FD_DOR_MOTEN0   = 0x10,
758     FD_DOR_MOTEN1   = 0x20,
759     FD_DOR_MOTEN2   = 0x40,
760     FD_DOR_MOTEN3   = 0x80,
761 };
762 
763 enum {
764 #if MAX_FD == 4
765     FD_TDR_BOOTSEL  = 0x0c,
766 #else
767     FD_TDR_BOOTSEL  = 0x04,
768 #endif
769 };
770 
771 enum {
772     FD_DSR_DRATEMASK= 0x03,
773     FD_DSR_PWRDOWN  = 0x40,
774     FD_DSR_SWRESET  = 0x80,
775 };
776 
777 enum {
778     FD_MSR_DRV0BUSY = 0x01,
779     FD_MSR_DRV1BUSY = 0x02,
780     FD_MSR_DRV2BUSY = 0x04,
781     FD_MSR_DRV3BUSY = 0x08,
782     FD_MSR_CMDBUSY  = 0x10,
783     FD_MSR_NONDMA   = 0x20,
784     FD_MSR_DIO      = 0x40,
785     FD_MSR_RQM      = 0x80,
786 };
787 
788 enum {
789     FD_DIR_DSKCHG   = 0x80,
790 };
791 
792 /*
793  * See chapter 5.0 "Controller phases" of the spec:
794  *
795  * Command phase:
796  * The host writes a command and its parameters into the FIFO. The command
797  * phase is completed when all parameters for the command have been supplied,
798  * and execution phase is entered.
799  *
800  * Execution phase:
801  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
802  * contains the payload now, otherwise it's unused. When all bytes of the
803  * required data have been transferred, the state is switched to either result
804  * phase (if the command produces status bytes) or directly back into the
805  * command phase for the next command.
806  *
807  * Result phase:
808  * The host reads out the FIFO, which contains one or more result bytes now.
809  */
810 enum {
811     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
812     FD_PHASE_RECONSTRUCT    = 0,
813 
814     FD_PHASE_COMMAND        = 1,
815     FD_PHASE_EXECUTION      = 2,
816     FD_PHASE_RESULT         = 3,
817 };
818 
819 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
820 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
821 
822 struct FDCtrl {
823     MemoryRegion iomem;
824     qemu_irq irq;
825     /* Controller state */
826     QEMUTimer *result_timer;
827     int dma_chann;
828     uint8_t phase;
829     IsaDma *dma;
830     /* Controller's identification */
831     uint8_t version;
832     /* HW */
833     uint8_t sra;
834     uint8_t srb;
835     uint8_t dor;
836     uint8_t dor_vmstate; /* only used as temp during vmstate */
837     uint8_t tdr;
838     uint8_t dsr;
839     uint8_t msr;
840     uint8_t cur_drv;
841     uint8_t status0;
842     uint8_t status1;
843     uint8_t status2;
844     /* Command FIFO */
845     uint8_t *fifo;
846     int32_t fifo_size;
847     uint32_t data_pos;
848     uint32_t data_len;
849     uint8_t data_state;
850     uint8_t data_dir;
851     uint8_t eot; /* last wanted sector */
852     /* States kept only to be returned back */
853     /* precompensation */
854     uint8_t precomp_trk;
855     uint8_t config;
856     uint8_t lock;
857     /* Power down config (also with status regB access mode */
858     uint8_t pwrd;
859     /* Floppy drives */
860     FloppyBus bus;
861     uint8_t num_floppies;
862     FDrive drives[MAX_FD];
863     struct {
864         BlockBackend *blk;
865         FloppyDriveType type;
866     } qdev_for_drives[MAX_FD];
867     int reset_sensei;
868     uint32_t check_media_rate;
869     FloppyDriveType fallback; /* type=auto failure fallback */
870     /* Timers state */
871     uint8_t timer0;
872     uint8_t timer1;
873     PortioList portio_list;
874 };
875 
876 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
877 {
878     return drv->fdctrl->fallback;
879 }
880 
881 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
882 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
883 
884 typedef struct FDCtrlSysBus {
885     /*< private >*/
886     SysBusDevice parent_obj;
887     /*< public >*/
888 
889     struct FDCtrl state;
890 } FDCtrlSysBus;
891 
892 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
893 
894 typedef struct FDCtrlISABus {
895     ISADevice parent_obj;
896 
897     uint32_t iobase;
898     uint32_t irq;
899     uint32_t dma;
900     struct FDCtrl state;
901     int32_t bootindexA;
902     int32_t bootindexB;
903 } FDCtrlISABus;
904 
905 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
906 {
907     FDCtrl *fdctrl = opaque;
908     uint32_t retval;
909 
910     reg &= 7;
911     switch (reg) {
912     case FD_REG_SRA:
913         retval = fdctrl_read_statusA(fdctrl);
914         break;
915     case FD_REG_SRB:
916         retval = fdctrl_read_statusB(fdctrl);
917         break;
918     case FD_REG_DOR:
919         retval = fdctrl_read_dor(fdctrl);
920         break;
921     case FD_REG_TDR:
922         retval = fdctrl_read_tape(fdctrl);
923         break;
924     case FD_REG_MSR:
925         retval = fdctrl_read_main_status(fdctrl);
926         break;
927     case FD_REG_FIFO:
928         retval = fdctrl_read_data(fdctrl);
929         break;
930     case FD_REG_DIR:
931         retval = fdctrl_read_dir(fdctrl);
932         break;
933     default:
934         retval = (uint32_t)(-1);
935         break;
936     }
937     FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
938 
939     return retval;
940 }
941 
942 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
943 {
944     FDCtrl *fdctrl = opaque;
945 
946     FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
947 
948     reg &= 7;
949     switch (reg) {
950     case FD_REG_DOR:
951         fdctrl_write_dor(fdctrl, value);
952         break;
953     case FD_REG_TDR:
954         fdctrl_write_tape(fdctrl, value);
955         break;
956     case FD_REG_DSR:
957         fdctrl_write_rate(fdctrl, value);
958         break;
959     case FD_REG_FIFO:
960         fdctrl_write_data(fdctrl, value);
961         break;
962     case FD_REG_CCR:
963         fdctrl_write_ccr(fdctrl, value);
964         break;
965     default:
966         break;
967     }
968 }
969 
970 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
971                                  unsigned ize)
972 {
973     return fdctrl_read(opaque, (uint32_t)reg);
974 }
975 
976 static void fdctrl_write_mem (void *opaque, hwaddr reg,
977                               uint64_t value, unsigned size)
978 {
979     fdctrl_write(opaque, (uint32_t)reg, value);
980 }
981 
982 static const MemoryRegionOps fdctrl_mem_ops = {
983     .read = fdctrl_read_mem,
984     .write = fdctrl_write_mem,
985     .endianness = DEVICE_NATIVE_ENDIAN,
986 };
987 
988 static const MemoryRegionOps fdctrl_mem_strict_ops = {
989     .read = fdctrl_read_mem,
990     .write = fdctrl_write_mem,
991     .endianness = DEVICE_NATIVE_ENDIAN,
992     .valid = {
993         .min_access_size = 1,
994         .max_access_size = 1,
995     },
996 };
997 
998 static bool fdrive_media_changed_needed(void *opaque)
999 {
1000     FDrive *drive = opaque;
1001 
1002     return (drive->blk != NULL && drive->media_changed != 1);
1003 }
1004 
1005 static const VMStateDescription vmstate_fdrive_media_changed = {
1006     .name = "fdrive/media_changed",
1007     .version_id = 1,
1008     .minimum_version_id = 1,
1009     .needed = fdrive_media_changed_needed,
1010     .fields = (VMStateField[]) {
1011         VMSTATE_UINT8(media_changed, FDrive),
1012         VMSTATE_END_OF_LIST()
1013     }
1014 };
1015 
1016 static bool fdrive_media_rate_needed(void *opaque)
1017 {
1018     FDrive *drive = opaque;
1019 
1020     return drive->fdctrl->check_media_rate;
1021 }
1022 
1023 static const VMStateDescription vmstate_fdrive_media_rate = {
1024     .name = "fdrive/media_rate",
1025     .version_id = 1,
1026     .minimum_version_id = 1,
1027     .needed = fdrive_media_rate_needed,
1028     .fields = (VMStateField[]) {
1029         VMSTATE_UINT8(media_rate, FDrive),
1030         VMSTATE_END_OF_LIST()
1031     }
1032 };
1033 
1034 static bool fdrive_perpendicular_needed(void *opaque)
1035 {
1036     FDrive *drive = opaque;
1037 
1038     return drive->perpendicular != 0;
1039 }
1040 
1041 static const VMStateDescription vmstate_fdrive_perpendicular = {
1042     .name = "fdrive/perpendicular",
1043     .version_id = 1,
1044     .minimum_version_id = 1,
1045     .needed = fdrive_perpendicular_needed,
1046     .fields = (VMStateField[]) {
1047         VMSTATE_UINT8(perpendicular, FDrive),
1048         VMSTATE_END_OF_LIST()
1049     }
1050 };
1051 
1052 static int fdrive_post_load(void *opaque, int version_id)
1053 {
1054     fd_revalidate(opaque);
1055     return 0;
1056 }
1057 
1058 static const VMStateDescription vmstate_fdrive = {
1059     .name = "fdrive",
1060     .version_id = 1,
1061     .minimum_version_id = 1,
1062     .post_load = fdrive_post_load,
1063     .fields = (VMStateField[]) {
1064         VMSTATE_UINT8(head, FDrive),
1065         VMSTATE_UINT8(track, FDrive),
1066         VMSTATE_UINT8(sect, FDrive),
1067         VMSTATE_END_OF_LIST()
1068     },
1069     .subsections = (const VMStateDescription*[]) {
1070         &vmstate_fdrive_media_changed,
1071         &vmstate_fdrive_media_rate,
1072         &vmstate_fdrive_perpendicular,
1073         NULL
1074     }
1075 };
1076 
1077 /*
1078  * Reconstructs the phase from register values according to the logic that was
1079  * implemented in qemu 2.3. This is the default value that is used if the phase
1080  * subsection is not present on migration.
1081  *
1082  * Don't change this function to reflect newer qemu versions, it is part of
1083  * the migration ABI.
1084  */
1085 static int reconstruct_phase(FDCtrl *fdctrl)
1086 {
1087     if (fdctrl->msr & FD_MSR_NONDMA) {
1088         return FD_PHASE_EXECUTION;
1089     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1090         /* qemu 2.3 disabled RQM only during DMA transfers */
1091         return FD_PHASE_EXECUTION;
1092     } else if (fdctrl->msr & FD_MSR_DIO) {
1093         return FD_PHASE_RESULT;
1094     } else {
1095         return FD_PHASE_COMMAND;
1096     }
1097 }
1098 
1099 static int fdc_pre_save(void *opaque)
1100 {
1101     FDCtrl *s = opaque;
1102 
1103     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1104 
1105     return 0;
1106 }
1107 
1108 static int fdc_pre_load(void *opaque)
1109 {
1110     FDCtrl *s = opaque;
1111     s->phase = FD_PHASE_RECONSTRUCT;
1112     return 0;
1113 }
1114 
1115 static int fdc_post_load(void *opaque, int version_id)
1116 {
1117     FDCtrl *s = opaque;
1118 
1119     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1120     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1121 
1122     if (s->phase == FD_PHASE_RECONSTRUCT) {
1123         s->phase = reconstruct_phase(s);
1124     }
1125 
1126     return 0;
1127 }
1128 
1129 static bool fdc_reset_sensei_needed(void *opaque)
1130 {
1131     FDCtrl *s = opaque;
1132 
1133     return s->reset_sensei != 0;
1134 }
1135 
1136 static const VMStateDescription vmstate_fdc_reset_sensei = {
1137     .name = "fdc/reset_sensei",
1138     .version_id = 1,
1139     .minimum_version_id = 1,
1140     .needed = fdc_reset_sensei_needed,
1141     .fields = (VMStateField[]) {
1142         VMSTATE_INT32(reset_sensei, FDCtrl),
1143         VMSTATE_END_OF_LIST()
1144     }
1145 };
1146 
1147 static bool fdc_result_timer_needed(void *opaque)
1148 {
1149     FDCtrl *s = opaque;
1150 
1151     return timer_pending(s->result_timer);
1152 }
1153 
1154 static const VMStateDescription vmstate_fdc_result_timer = {
1155     .name = "fdc/result_timer",
1156     .version_id = 1,
1157     .minimum_version_id = 1,
1158     .needed = fdc_result_timer_needed,
1159     .fields = (VMStateField[]) {
1160         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1161         VMSTATE_END_OF_LIST()
1162     }
1163 };
1164 
1165 static bool fdc_phase_needed(void *opaque)
1166 {
1167     FDCtrl *fdctrl = opaque;
1168 
1169     return reconstruct_phase(fdctrl) != fdctrl->phase;
1170 }
1171 
1172 static const VMStateDescription vmstate_fdc_phase = {
1173     .name = "fdc/phase",
1174     .version_id = 1,
1175     .minimum_version_id = 1,
1176     .needed = fdc_phase_needed,
1177     .fields = (VMStateField[]) {
1178         VMSTATE_UINT8(phase, FDCtrl),
1179         VMSTATE_END_OF_LIST()
1180     }
1181 };
1182 
1183 static const VMStateDescription vmstate_fdc = {
1184     .name = "fdc",
1185     .version_id = 2,
1186     .minimum_version_id = 2,
1187     .pre_save = fdc_pre_save,
1188     .pre_load = fdc_pre_load,
1189     .post_load = fdc_post_load,
1190     .fields = (VMStateField[]) {
1191         /* Controller State */
1192         VMSTATE_UINT8(sra, FDCtrl),
1193         VMSTATE_UINT8(srb, FDCtrl),
1194         VMSTATE_UINT8(dor_vmstate, FDCtrl),
1195         VMSTATE_UINT8(tdr, FDCtrl),
1196         VMSTATE_UINT8(dsr, FDCtrl),
1197         VMSTATE_UINT8(msr, FDCtrl),
1198         VMSTATE_UINT8(status0, FDCtrl),
1199         VMSTATE_UINT8(status1, FDCtrl),
1200         VMSTATE_UINT8(status2, FDCtrl),
1201         /* Command FIFO */
1202         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1203                              uint8_t),
1204         VMSTATE_UINT32(data_pos, FDCtrl),
1205         VMSTATE_UINT32(data_len, FDCtrl),
1206         VMSTATE_UINT8(data_state, FDCtrl),
1207         VMSTATE_UINT8(data_dir, FDCtrl),
1208         VMSTATE_UINT8(eot, FDCtrl),
1209         /* States kept only to be returned back */
1210         VMSTATE_UINT8(timer0, FDCtrl),
1211         VMSTATE_UINT8(timer1, FDCtrl),
1212         VMSTATE_UINT8(precomp_trk, FDCtrl),
1213         VMSTATE_UINT8(config, FDCtrl),
1214         VMSTATE_UINT8(lock, FDCtrl),
1215         VMSTATE_UINT8(pwrd, FDCtrl),
1216         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1217         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1218                              vmstate_fdrive, FDrive),
1219         VMSTATE_END_OF_LIST()
1220     },
1221     .subsections = (const VMStateDescription*[]) {
1222         &vmstate_fdc_reset_sensei,
1223         &vmstate_fdc_result_timer,
1224         &vmstate_fdc_phase,
1225         NULL
1226     }
1227 };
1228 
1229 static void fdctrl_external_reset_sysbus(DeviceState *d)
1230 {
1231     FDCtrlSysBus *sys = SYSBUS_FDC(d);
1232     FDCtrl *s = &sys->state;
1233 
1234     fdctrl_reset(s, 0);
1235 }
1236 
1237 static void fdctrl_external_reset_isa(DeviceState *d)
1238 {
1239     FDCtrlISABus *isa = ISA_FDC(d);
1240     FDCtrl *s = &isa->state;
1241 
1242     fdctrl_reset(s, 0);
1243 }
1244 
1245 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1246 {
1247     //FDCtrl *s = opaque;
1248 
1249     if (level) {
1250         // XXX
1251         FLOPPY_DPRINTF("TC pulsed\n");
1252     }
1253 }
1254 
1255 /* Change IRQ state */
1256 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1257 {
1258     fdctrl->status0 = 0;
1259     if (!(fdctrl->sra & FD_SRA_INTPEND))
1260         return;
1261     FLOPPY_DPRINTF("Reset interrupt\n");
1262     qemu_set_irq(fdctrl->irq, 0);
1263     fdctrl->sra &= ~FD_SRA_INTPEND;
1264 }
1265 
1266 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1267 {
1268     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1269         qemu_set_irq(fdctrl->irq, 1);
1270         fdctrl->sra |= FD_SRA_INTPEND;
1271     }
1272 
1273     fdctrl->reset_sensei = 0;
1274     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1275 }
1276 
1277 /* Reset controller */
1278 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1279 {
1280     int i;
1281 
1282     FLOPPY_DPRINTF("reset controller\n");
1283     fdctrl_reset_irq(fdctrl);
1284     /* Initialise controller */
1285     fdctrl->sra = 0;
1286     fdctrl->srb = 0xc0;
1287     if (!fdctrl->drives[1].blk) {
1288         fdctrl->sra |= FD_SRA_nDRV2;
1289     }
1290     fdctrl->cur_drv = 0;
1291     fdctrl->dor = FD_DOR_nRESET;
1292     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1293     fdctrl->msr = FD_MSR_RQM;
1294     fdctrl->reset_sensei = 0;
1295     timer_del(fdctrl->result_timer);
1296     /* FIFO state */
1297     fdctrl->data_pos = 0;
1298     fdctrl->data_len = 0;
1299     fdctrl->data_state = 0;
1300     fdctrl->data_dir = FD_DIR_WRITE;
1301     for (i = 0; i < MAX_FD; i++)
1302         fd_recalibrate(&fdctrl->drives[i]);
1303     fdctrl_to_command_phase(fdctrl);
1304     if (do_irq) {
1305         fdctrl->status0 |= FD_SR0_RDYCHG;
1306         fdctrl_raise_irq(fdctrl);
1307         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1308     }
1309 }
1310 
1311 static inline FDrive *drv0(FDCtrl *fdctrl)
1312 {
1313     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1314 }
1315 
1316 static inline FDrive *drv1(FDCtrl *fdctrl)
1317 {
1318     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1319         return &fdctrl->drives[1];
1320     else
1321         return &fdctrl->drives[0];
1322 }
1323 
1324 #if MAX_FD == 4
1325 static inline FDrive *drv2(FDCtrl *fdctrl)
1326 {
1327     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1328         return &fdctrl->drives[2];
1329     else
1330         return &fdctrl->drives[1];
1331 }
1332 
1333 static inline FDrive *drv3(FDCtrl *fdctrl)
1334 {
1335     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1336         return &fdctrl->drives[3];
1337     else
1338         return &fdctrl->drives[2];
1339 }
1340 #endif
1341 
1342 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1343 {
1344     switch (unit) {
1345         case 0: return drv0(fdctrl);
1346         case 1: return drv1(fdctrl);
1347 #if MAX_FD == 4
1348         case 2: return drv2(fdctrl);
1349         case 3: return drv3(fdctrl);
1350 #endif
1351         default: return NULL;
1352     }
1353 }
1354 
1355 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1356 {
1357     return get_drv(fdctrl, fdctrl->cur_drv);
1358 }
1359 
1360 /* Status A register : 0x00 (read-only) */
1361 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1362 {
1363     uint32_t retval = fdctrl->sra;
1364 
1365     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1366 
1367     return retval;
1368 }
1369 
1370 /* Status B register : 0x01 (read-only) */
1371 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1372 {
1373     uint32_t retval = fdctrl->srb;
1374 
1375     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1376 
1377     return retval;
1378 }
1379 
1380 /* Digital output register : 0x02 */
1381 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1382 {
1383     uint32_t retval = fdctrl->dor;
1384 
1385     /* Selected drive */
1386     retval |= fdctrl->cur_drv;
1387     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1388 
1389     return retval;
1390 }
1391 
1392 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1393 {
1394     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1395 
1396     /* Motors */
1397     if (value & FD_DOR_MOTEN0)
1398         fdctrl->srb |= FD_SRB_MTR0;
1399     else
1400         fdctrl->srb &= ~FD_SRB_MTR0;
1401     if (value & FD_DOR_MOTEN1)
1402         fdctrl->srb |= FD_SRB_MTR1;
1403     else
1404         fdctrl->srb &= ~FD_SRB_MTR1;
1405 
1406     /* Drive */
1407     if (value & 1)
1408         fdctrl->srb |= FD_SRB_DR0;
1409     else
1410         fdctrl->srb &= ~FD_SRB_DR0;
1411 
1412     /* Reset */
1413     if (!(value & FD_DOR_nRESET)) {
1414         if (fdctrl->dor & FD_DOR_nRESET) {
1415             FLOPPY_DPRINTF("controller enter RESET state\n");
1416         }
1417     } else {
1418         if (!(fdctrl->dor & FD_DOR_nRESET)) {
1419             FLOPPY_DPRINTF("controller out of RESET state\n");
1420             fdctrl_reset(fdctrl, 1);
1421             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1422         }
1423     }
1424     /* Selected drive */
1425     fdctrl->cur_drv = value & FD_DOR_SELMASK;
1426 
1427     fdctrl->dor = value;
1428 }
1429 
1430 /* Tape drive register : 0x03 */
1431 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1432 {
1433     uint32_t retval = fdctrl->tdr;
1434 
1435     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1436 
1437     return retval;
1438 }
1439 
1440 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1441 {
1442     /* Reset mode */
1443     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1444         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1445         return;
1446     }
1447     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1448     /* Disk boot selection indicator */
1449     fdctrl->tdr = value & FD_TDR_BOOTSEL;
1450     /* Tape indicators: never allow */
1451 }
1452 
1453 /* Main status register : 0x04 (read) */
1454 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1455 {
1456     uint32_t retval = fdctrl->msr;
1457 
1458     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1459     fdctrl->dor |= FD_DOR_nRESET;
1460 
1461     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1462 
1463     return retval;
1464 }
1465 
1466 /* Data select rate register : 0x04 (write) */
1467 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1468 {
1469     /* Reset mode */
1470     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1471         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1472         return;
1473     }
1474     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1475     /* Reset: autoclear */
1476     if (value & FD_DSR_SWRESET) {
1477         fdctrl->dor &= ~FD_DOR_nRESET;
1478         fdctrl_reset(fdctrl, 1);
1479         fdctrl->dor |= FD_DOR_nRESET;
1480     }
1481     if (value & FD_DSR_PWRDOWN) {
1482         fdctrl_reset(fdctrl, 1);
1483     }
1484     fdctrl->dsr = value;
1485 }
1486 
1487 /* Configuration control register: 0x07 (write) */
1488 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1489 {
1490     /* Reset mode */
1491     if (!(fdctrl->dor & FD_DOR_nRESET)) {
1492         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1493         return;
1494     }
1495     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1496 
1497     /* Only the rate selection bits used in AT mode, and we
1498      * store those in the DSR.
1499      */
1500     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1501                   (value & FD_DSR_DRATEMASK);
1502 }
1503 
1504 static int fdctrl_media_changed(FDrive *drv)
1505 {
1506     return drv->media_changed;
1507 }
1508 
1509 /* Digital input register : 0x07 (read-only) */
1510 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1511 {
1512     uint32_t retval = 0;
1513 
1514     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1515         retval |= FD_DIR_DSKCHG;
1516     }
1517     if (retval != 0) {
1518         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1519     }
1520 
1521     return retval;
1522 }
1523 
1524 /* Clear the FIFO and update the state for receiving the next command */
1525 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1526 {
1527     fdctrl->phase = FD_PHASE_COMMAND;
1528     fdctrl->data_dir = FD_DIR_WRITE;
1529     fdctrl->data_pos = 0;
1530     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1531     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1532     fdctrl->msr |= FD_MSR_RQM;
1533 }
1534 
1535 /* Update the state to allow the guest to read out the command status.
1536  * @fifo_len is the number of result bytes to be read out. */
1537 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1538 {
1539     fdctrl->phase = FD_PHASE_RESULT;
1540     fdctrl->data_dir = FD_DIR_READ;
1541     fdctrl->data_len = fifo_len;
1542     fdctrl->data_pos = 0;
1543     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1544 }
1545 
1546 /* Set an error: unimplemented/unknown command */
1547 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1548 {
1549     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1550                   fdctrl->fifo[0]);
1551     fdctrl->fifo[0] = FD_SR0_INVCMD;
1552     fdctrl_to_result_phase(fdctrl, 1);
1553 }
1554 
1555 /* Seek to next sector
1556  * returns 0 when end of track reached (for DBL_SIDES on head 1)
1557  * otherwise returns 1
1558  */
1559 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1560 {
1561     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1562                    cur_drv->head, cur_drv->track, cur_drv->sect,
1563                    fd_sector(cur_drv));
1564     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1565        error in fact */
1566     uint8_t new_head = cur_drv->head;
1567     uint8_t new_track = cur_drv->track;
1568     uint8_t new_sect = cur_drv->sect;
1569 
1570     int ret = 1;
1571 
1572     if (new_sect >= cur_drv->last_sect ||
1573         new_sect == fdctrl->eot) {
1574         new_sect = 1;
1575         if (FD_MULTI_TRACK(fdctrl->data_state)) {
1576             if (new_head == 0 &&
1577                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1578                 new_head = 1;
1579             } else {
1580                 new_head = 0;
1581                 new_track++;
1582                 fdctrl->status0 |= FD_SR0_SEEK;
1583                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1584                     ret = 0;
1585                 }
1586             }
1587         } else {
1588             fdctrl->status0 |= FD_SR0_SEEK;
1589             new_track++;
1590             ret = 0;
1591         }
1592         if (ret == 1) {
1593             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1594                     new_head, new_track, new_sect, fd_sector(cur_drv));
1595         }
1596     } else {
1597         new_sect++;
1598     }
1599     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1600     return ret;
1601 }
1602 
1603 /* Callback for transfer end (stop or abort) */
1604 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1605                                  uint8_t status1, uint8_t status2)
1606 {
1607     FDrive *cur_drv;
1608     cur_drv = get_cur_drv(fdctrl);
1609 
1610     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1611     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1612     if (cur_drv->head) {
1613         fdctrl->status0 |= FD_SR0_HEAD;
1614     }
1615     fdctrl->status0 |= status0;
1616 
1617     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1618                    status0, status1, status2, fdctrl->status0);
1619     fdctrl->fifo[0] = fdctrl->status0;
1620     fdctrl->fifo[1] = status1;
1621     fdctrl->fifo[2] = status2;
1622     fdctrl->fifo[3] = cur_drv->track;
1623     fdctrl->fifo[4] = cur_drv->head;
1624     fdctrl->fifo[5] = cur_drv->sect;
1625     fdctrl->fifo[6] = FD_SECTOR_SC;
1626     fdctrl->data_dir = FD_DIR_READ;
1627     if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1628         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1629         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1630     }
1631     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1632     fdctrl->msr &= ~FD_MSR_NONDMA;
1633 
1634     fdctrl_to_result_phase(fdctrl, 7);
1635     fdctrl_raise_irq(fdctrl);
1636 }
1637 
1638 /* Prepare a data transfer (either DMA or FIFO) */
1639 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1640 {
1641     FDrive *cur_drv;
1642     uint8_t kh, kt, ks;
1643 
1644     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1645     cur_drv = get_cur_drv(fdctrl);
1646     kt = fdctrl->fifo[2];
1647     kh = fdctrl->fifo[3];
1648     ks = fdctrl->fifo[4];
1649     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1650                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1651                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1652                                   NUM_SIDES(cur_drv)));
1653     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1654     case 2:
1655         /* sect too big */
1656         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1657         fdctrl->fifo[3] = kt;
1658         fdctrl->fifo[4] = kh;
1659         fdctrl->fifo[5] = ks;
1660         return;
1661     case 3:
1662         /* track too big */
1663         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1664         fdctrl->fifo[3] = kt;
1665         fdctrl->fifo[4] = kh;
1666         fdctrl->fifo[5] = ks;
1667         return;
1668     case 4:
1669         /* No seek enabled */
1670         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1671         fdctrl->fifo[3] = kt;
1672         fdctrl->fifo[4] = kh;
1673         fdctrl->fifo[5] = ks;
1674         return;
1675     case 1:
1676         fdctrl->status0 |= FD_SR0_SEEK;
1677         break;
1678     default:
1679         break;
1680     }
1681 
1682     /* Check the data rate. If the programmed data rate does not match
1683      * the currently inserted medium, the operation has to fail. */
1684     if (fdctrl->check_media_rate &&
1685         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1686         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1687                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1688         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1689         fdctrl->fifo[3] = kt;
1690         fdctrl->fifo[4] = kh;
1691         fdctrl->fifo[5] = ks;
1692         return;
1693     }
1694 
1695     /* Set the FIFO state */
1696     fdctrl->data_dir = direction;
1697     fdctrl->data_pos = 0;
1698     assert(fdctrl->msr & FD_MSR_CMDBUSY);
1699     if (fdctrl->fifo[0] & 0x80)
1700         fdctrl->data_state |= FD_STATE_MULTI;
1701     else
1702         fdctrl->data_state &= ~FD_STATE_MULTI;
1703     if (fdctrl->fifo[5] == 0) {
1704         fdctrl->data_len = fdctrl->fifo[8];
1705     } else {
1706         int tmp;
1707         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1708         tmp = (fdctrl->fifo[6] - ks + 1);
1709         if (fdctrl->fifo[0] & 0x80)
1710             tmp += fdctrl->fifo[6];
1711         fdctrl->data_len *= tmp;
1712     }
1713     fdctrl->eot = fdctrl->fifo[6];
1714     if (fdctrl->dor & FD_DOR_DMAEN) {
1715         IsaDmaTransferMode dma_mode;
1716         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1717         bool dma_mode_ok;
1718         /* DMA transfer are enabled. Check if DMA channel is well programmed */
1719         dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1720         FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1721                        dma_mode, direction,
1722                        (128 << fdctrl->fifo[5]) *
1723                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1724         switch (direction) {
1725         case FD_DIR_SCANE:
1726         case FD_DIR_SCANL:
1727         case FD_DIR_SCANH:
1728             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1729             break;
1730         case FD_DIR_WRITE:
1731             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1732             break;
1733         case FD_DIR_READ:
1734             dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1735             break;
1736         case FD_DIR_VERIFY:
1737             dma_mode_ok = true;
1738             break;
1739         default:
1740             dma_mode_ok = false;
1741             break;
1742         }
1743         if (dma_mode_ok) {
1744             /* No access is allowed until DMA transfer has completed */
1745             fdctrl->msr &= ~FD_MSR_RQM;
1746             if (direction != FD_DIR_VERIFY) {
1747                 /* Now, we just have to wait for the DMA controller to
1748                  * recall us...
1749                  */
1750                 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1751                 k->schedule(fdctrl->dma);
1752             } else {
1753                 /* Start transfer */
1754                 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1755                                         fdctrl->data_len);
1756             }
1757             return;
1758         } else {
1759             FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1760                            direction);
1761         }
1762     }
1763     FLOPPY_DPRINTF("start non-DMA transfer\n");
1764     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1765     if (direction != FD_DIR_WRITE)
1766         fdctrl->msr |= FD_MSR_DIO;
1767     /* IO based transfer: calculate len */
1768     fdctrl_raise_irq(fdctrl);
1769 }
1770 
1771 /* Prepare a transfer of deleted data */
1772 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1773 {
1774     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1775 
1776     /* We don't handle deleted data,
1777      * so we don't return *ANYTHING*
1778      */
1779     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1780 }
1781 
1782 /* handlers for DMA transfers */
1783 static int fdctrl_transfer_handler (void *opaque, int nchan,
1784                                     int dma_pos, int dma_len)
1785 {
1786     FDCtrl *fdctrl;
1787     FDrive *cur_drv;
1788     int len, start_pos, rel_pos;
1789     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1790     IsaDmaClass *k;
1791 
1792     fdctrl = opaque;
1793     if (fdctrl->msr & FD_MSR_RQM) {
1794         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1795         return 0;
1796     }
1797     k = ISADMA_GET_CLASS(fdctrl->dma);
1798     cur_drv = get_cur_drv(fdctrl);
1799     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1800         fdctrl->data_dir == FD_DIR_SCANH)
1801         status2 = FD_SR2_SNS;
1802     if (dma_len > fdctrl->data_len)
1803         dma_len = fdctrl->data_len;
1804     if (cur_drv->blk == NULL) {
1805         if (fdctrl->data_dir == FD_DIR_WRITE)
1806             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1807         else
1808             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1809         len = 0;
1810         goto transfer_error;
1811     }
1812     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1813     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1814         len = dma_len - fdctrl->data_pos;
1815         if (len + rel_pos > FD_SECTOR_LEN)
1816             len = FD_SECTOR_LEN - rel_pos;
1817         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1818                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1819                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1820                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1821                        fd_sector(cur_drv) * FD_SECTOR_LEN);
1822         if (fdctrl->data_dir != FD_DIR_WRITE ||
1823             len < FD_SECTOR_LEN || rel_pos != 0) {
1824             /* READ & SCAN commands and realign to a sector for WRITE */
1825             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1826                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1827                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1828                                fd_sector(cur_drv));
1829                 /* Sure, image size is too small... */
1830                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1831             }
1832         }
1833         switch (fdctrl->data_dir) {
1834         case FD_DIR_READ:
1835             /* READ commands */
1836             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1837                             fdctrl->data_pos, len);
1838             break;
1839         case FD_DIR_WRITE:
1840             /* WRITE commands */
1841             if (cur_drv->ro) {
1842                 /* Handle readonly medium early, no need to do DMA, touch the
1843                  * LED or attempt any writes. A real floppy doesn't attempt
1844                  * to write to readonly media either. */
1845                 fdctrl_stop_transfer(fdctrl,
1846                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1847                                      0x00);
1848                 goto transfer_error;
1849             }
1850 
1851             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1852                            fdctrl->data_pos, len);
1853             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1854                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1855                 FLOPPY_DPRINTF("error writing sector %d\n",
1856                                fd_sector(cur_drv));
1857                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1858                 goto transfer_error;
1859             }
1860             break;
1861         case FD_DIR_VERIFY:
1862             /* VERIFY commands */
1863             break;
1864         default:
1865             /* SCAN commands */
1866             {
1867                 uint8_t tmpbuf[FD_SECTOR_LEN];
1868                 int ret;
1869                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1870                                len);
1871                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1872                 if (ret == 0) {
1873                     status2 = FD_SR2_SEH;
1874                     goto end_transfer;
1875                 }
1876                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1877                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1878                     status2 = 0x00;
1879                     goto end_transfer;
1880                 }
1881             }
1882             break;
1883         }
1884         fdctrl->data_pos += len;
1885         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1886         if (rel_pos == 0) {
1887             /* Seek to next sector */
1888             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1889                 break;
1890         }
1891     }
1892  end_transfer:
1893     len = fdctrl->data_pos - start_pos;
1894     FLOPPY_DPRINTF("end transfer %d %d %d\n",
1895                    fdctrl->data_pos, len, fdctrl->data_len);
1896     if (fdctrl->data_dir == FD_DIR_SCANE ||
1897         fdctrl->data_dir == FD_DIR_SCANL ||
1898         fdctrl->data_dir == FD_DIR_SCANH)
1899         status2 = FD_SR2_SEH;
1900     fdctrl->data_len -= len;
1901     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1902  transfer_error:
1903 
1904     return len;
1905 }
1906 
1907 /* Data register : 0x05 */
1908 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1909 {
1910     FDrive *cur_drv;
1911     uint32_t retval = 0;
1912     uint32_t pos;
1913 
1914     cur_drv = get_cur_drv(fdctrl);
1915     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1916     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1917         FLOPPY_DPRINTF("error: controller not ready for reading\n");
1918         return 0;
1919     }
1920 
1921     /* If data_len spans multiple sectors, the current position in the FIFO
1922      * wraps around while fdctrl->data_pos is the real position in the whole
1923      * request. */
1924     pos = fdctrl->data_pos;
1925     pos %= FD_SECTOR_LEN;
1926 
1927     switch (fdctrl->phase) {
1928     case FD_PHASE_EXECUTION:
1929         assert(fdctrl->msr & FD_MSR_NONDMA);
1930         if (pos == 0) {
1931             if (fdctrl->data_pos != 0)
1932                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1933                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
1934                                    fd_sector(cur_drv));
1935                     return 0;
1936                 }
1937             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1938                           BDRV_SECTOR_SIZE)
1939                 < 0) {
1940                 FLOPPY_DPRINTF("error getting sector %d\n",
1941                                fd_sector(cur_drv));
1942                 /* Sure, image size is too small... */
1943                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1944             }
1945         }
1946 
1947         if (++fdctrl->data_pos == fdctrl->data_len) {
1948             fdctrl->msr &= ~FD_MSR_RQM;
1949             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1950         }
1951         break;
1952 
1953     case FD_PHASE_RESULT:
1954         assert(!(fdctrl->msr & FD_MSR_NONDMA));
1955         if (++fdctrl->data_pos == fdctrl->data_len) {
1956             fdctrl->msr &= ~FD_MSR_RQM;
1957             fdctrl_to_command_phase(fdctrl);
1958             fdctrl_reset_irq(fdctrl);
1959         }
1960         break;
1961 
1962     case FD_PHASE_COMMAND:
1963     default:
1964         abort();
1965     }
1966 
1967     retval = fdctrl->fifo[pos];
1968     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1969 
1970     return retval;
1971 }
1972 
1973 static void fdctrl_format_sector(FDCtrl *fdctrl)
1974 {
1975     FDrive *cur_drv;
1976     uint8_t kh, kt, ks;
1977 
1978     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1979     cur_drv = get_cur_drv(fdctrl);
1980     kt = fdctrl->fifo[6];
1981     kh = fdctrl->fifo[7];
1982     ks = fdctrl->fifo[8];
1983     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1984                    GET_CUR_DRV(fdctrl), kh, kt, ks,
1985                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1986                                   NUM_SIDES(cur_drv)));
1987     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1988     case 2:
1989         /* sect too big */
1990         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1991         fdctrl->fifo[3] = kt;
1992         fdctrl->fifo[4] = kh;
1993         fdctrl->fifo[5] = ks;
1994         return;
1995     case 3:
1996         /* track too big */
1997         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1998         fdctrl->fifo[3] = kt;
1999         fdctrl->fifo[4] = kh;
2000         fdctrl->fifo[5] = ks;
2001         return;
2002     case 4:
2003         /* No seek enabled */
2004         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
2005         fdctrl->fifo[3] = kt;
2006         fdctrl->fifo[4] = kh;
2007         fdctrl->fifo[5] = ks;
2008         return;
2009     case 1:
2010         fdctrl->status0 |= FD_SR0_SEEK;
2011         break;
2012     default:
2013         break;
2014     }
2015     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2016     if (cur_drv->blk == NULL ||
2017         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2018                    BDRV_SECTOR_SIZE, 0) < 0) {
2019         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2020         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2021     } else {
2022         if (cur_drv->sect == cur_drv->last_sect) {
2023             fdctrl->data_state &= ~FD_STATE_FORMAT;
2024             /* Last sector done */
2025             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2026         } else {
2027             /* More to do */
2028             fdctrl->data_pos = 0;
2029             fdctrl->data_len = 4;
2030         }
2031     }
2032 }
2033 
2034 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2035 {
2036     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2037     fdctrl->fifo[0] = fdctrl->lock << 4;
2038     fdctrl_to_result_phase(fdctrl, 1);
2039 }
2040 
2041 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2042 {
2043     FDrive *cur_drv = get_cur_drv(fdctrl);
2044 
2045     /* Drives position */
2046     fdctrl->fifo[0] = drv0(fdctrl)->track;
2047     fdctrl->fifo[1] = drv1(fdctrl)->track;
2048 #if MAX_FD == 4
2049     fdctrl->fifo[2] = drv2(fdctrl)->track;
2050     fdctrl->fifo[3] = drv3(fdctrl)->track;
2051 #else
2052     fdctrl->fifo[2] = 0;
2053     fdctrl->fifo[3] = 0;
2054 #endif
2055     /* timers */
2056     fdctrl->fifo[4] = fdctrl->timer0;
2057     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2058     fdctrl->fifo[6] = cur_drv->last_sect;
2059     fdctrl->fifo[7] = (fdctrl->lock << 7) |
2060         (cur_drv->perpendicular << 2);
2061     fdctrl->fifo[8] = fdctrl->config;
2062     fdctrl->fifo[9] = fdctrl->precomp_trk;
2063     fdctrl_to_result_phase(fdctrl, 10);
2064 }
2065 
2066 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2067 {
2068     /* Controller's version */
2069     fdctrl->fifo[0] = fdctrl->version;
2070     fdctrl_to_result_phase(fdctrl, 1);
2071 }
2072 
2073 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2074 {
2075     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2076     fdctrl_to_result_phase(fdctrl, 1);
2077 }
2078 
2079 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2080 {
2081     FDrive *cur_drv = get_cur_drv(fdctrl);
2082 
2083     /* Drives position */
2084     drv0(fdctrl)->track = fdctrl->fifo[3];
2085     drv1(fdctrl)->track = fdctrl->fifo[4];
2086 #if MAX_FD == 4
2087     drv2(fdctrl)->track = fdctrl->fifo[5];
2088     drv3(fdctrl)->track = fdctrl->fifo[6];
2089 #endif
2090     /* timers */
2091     fdctrl->timer0 = fdctrl->fifo[7];
2092     fdctrl->timer1 = fdctrl->fifo[8];
2093     cur_drv->last_sect = fdctrl->fifo[9];
2094     fdctrl->lock = fdctrl->fifo[10] >> 7;
2095     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2096     fdctrl->config = fdctrl->fifo[11];
2097     fdctrl->precomp_trk = fdctrl->fifo[12];
2098     fdctrl->pwrd = fdctrl->fifo[13];
2099     fdctrl_to_command_phase(fdctrl);
2100 }
2101 
2102 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2103 {
2104     FDrive *cur_drv = get_cur_drv(fdctrl);
2105 
2106     fdctrl->fifo[0] = 0;
2107     fdctrl->fifo[1] = 0;
2108     /* Drives position */
2109     fdctrl->fifo[2] = drv0(fdctrl)->track;
2110     fdctrl->fifo[3] = drv1(fdctrl)->track;
2111 #if MAX_FD == 4
2112     fdctrl->fifo[4] = drv2(fdctrl)->track;
2113     fdctrl->fifo[5] = drv3(fdctrl)->track;
2114 #else
2115     fdctrl->fifo[4] = 0;
2116     fdctrl->fifo[5] = 0;
2117 #endif
2118     /* timers */
2119     fdctrl->fifo[6] = fdctrl->timer0;
2120     fdctrl->fifo[7] = fdctrl->timer1;
2121     fdctrl->fifo[8] = cur_drv->last_sect;
2122     fdctrl->fifo[9] = (fdctrl->lock << 7) |
2123         (cur_drv->perpendicular << 2);
2124     fdctrl->fifo[10] = fdctrl->config;
2125     fdctrl->fifo[11] = fdctrl->precomp_trk;
2126     fdctrl->fifo[12] = fdctrl->pwrd;
2127     fdctrl->fifo[13] = 0;
2128     fdctrl->fifo[14] = 0;
2129     fdctrl_to_result_phase(fdctrl, 15);
2130 }
2131 
2132 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2133 {
2134     FDrive *cur_drv = get_cur_drv(fdctrl);
2135 
2136     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2137     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2138              (NANOSECONDS_PER_SECOND / 50));
2139 }
2140 
2141 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2142 {
2143     FDrive *cur_drv;
2144 
2145     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2146     cur_drv = get_cur_drv(fdctrl);
2147     fdctrl->data_state |= FD_STATE_FORMAT;
2148     if (fdctrl->fifo[0] & 0x80)
2149         fdctrl->data_state |= FD_STATE_MULTI;
2150     else
2151         fdctrl->data_state &= ~FD_STATE_MULTI;
2152     cur_drv->bps =
2153         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2154 #if 0
2155     cur_drv->last_sect =
2156         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2157         fdctrl->fifo[3] / 2;
2158 #else
2159     cur_drv->last_sect = fdctrl->fifo[3];
2160 #endif
2161     /* TODO: implement format using DMA expected by the Bochs BIOS
2162      * and Linux fdformat (read 3 bytes per sector via DMA and fill
2163      * the sector with the specified fill byte
2164      */
2165     fdctrl->data_state &= ~FD_STATE_FORMAT;
2166     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2167 }
2168 
2169 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2170 {
2171     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2172     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2173     if (fdctrl->fifo[2] & 1)
2174         fdctrl->dor &= ~FD_DOR_DMAEN;
2175     else
2176         fdctrl->dor |= FD_DOR_DMAEN;
2177     /* No result back */
2178     fdctrl_to_command_phase(fdctrl);
2179 }
2180 
2181 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2182 {
2183     FDrive *cur_drv;
2184 
2185     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2186     cur_drv = get_cur_drv(fdctrl);
2187     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2188     /* 1 Byte status back */
2189     fdctrl->fifo[0] = (cur_drv->ro << 6) |
2190         (cur_drv->track == 0 ? 0x10 : 0x00) |
2191         (cur_drv->head << 2) |
2192         GET_CUR_DRV(fdctrl) |
2193         0x28;
2194     fdctrl_to_result_phase(fdctrl, 1);
2195 }
2196 
2197 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2198 {
2199     FDrive *cur_drv;
2200 
2201     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2202     cur_drv = get_cur_drv(fdctrl);
2203     fd_recalibrate(cur_drv);
2204     fdctrl_to_command_phase(fdctrl);
2205     /* Raise Interrupt */
2206     fdctrl->status0 |= FD_SR0_SEEK;
2207     fdctrl_raise_irq(fdctrl);
2208 }
2209 
2210 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2211 {
2212     FDrive *cur_drv = get_cur_drv(fdctrl);
2213 
2214     if (fdctrl->reset_sensei > 0) {
2215         fdctrl->fifo[0] =
2216             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2217         fdctrl->reset_sensei--;
2218     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2219         fdctrl->fifo[0] = FD_SR0_INVCMD;
2220         fdctrl_to_result_phase(fdctrl, 1);
2221         return;
2222     } else {
2223         fdctrl->fifo[0] =
2224                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2225                 | GET_CUR_DRV(fdctrl);
2226     }
2227 
2228     fdctrl->fifo[1] = cur_drv->track;
2229     fdctrl_to_result_phase(fdctrl, 2);
2230     fdctrl_reset_irq(fdctrl);
2231     fdctrl->status0 = FD_SR0_RDYCHG;
2232 }
2233 
2234 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2235 {
2236     FDrive *cur_drv;
2237 
2238     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2239     cur_drv = get_cur_drv(fdctrl);
2240     fdctrl_to_command_phase(fdctrl);
2241     /* The seek command just sends step pulses to the drive and doesn't care if
2242      * there is a medium inserted of if it's banging the head against the drive.
2243      */
2244     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2245     /* Raise Interrupt */
2246     fdctrl->status0 |= FD_SR0_SEEK;
2247     fdctrl_raise_irq(fdctrl);
2248 }
2249 
2250 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2251 {
2252     FDrive *cur_drv = get_cur_drv(fdctrl);
2253 
2254     if (fdctrl->fifo[1] & 0x80)
2255         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2256     /* No result back */
2257     fdctrl_to_command_phase(fdctrl);
2258 }
2259 
2260 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2261 {
2262     fdctrl->config = fdctrl->fifo[2];
2263     fdctrl->precomp_trk =  fdctrl->fifo[3];
2264     /* No result back */
2265     fdctrl_to_command_phase(fdctrl);
2266 }
2267 
2268 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2269 {
2270     fdctrl->pwrd = fdctrl->fifo[1];
2271     fdctrl->fifo[0] = fdctrl->fifo[1];
2272     fdctrl_to_result_phase(fdctrl, 1);
2273 }
2274 
2275 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2276 {
2277     /* No result back */
2278     fdctrl_to_command_phase(fdctrl);
2279 }
2280 
2281 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2282 {
2283     FDrive *cur_drv = get_cur_drv(fdctrl);
2284     uint32_t pos;
2285 
2286     pos = fdctrl->data_pos - 1;
2287     pos %= FD_SECTOR_LEN;
2288     if (fdctrl->fifo[pos] & 0x80) {
2289         /* Command parameters done */
2290         if (fdctrl->fifo[pos] & 0x40) {
2291             fdctrl->fifo[0] = fdctrl->fifo[1];
2292             fdctrl->fifo[2] = 0;
2293             fdctrl->fifo[3] = 0;
2294             fdctrl_to_result_phase(fdctrl, 4);
2295         } else {
2296             fdctrl_to_command_phase(fdctrl);
2297         }
2298     } else if (fdctrl->data_len > 7) {
2299         /* ERROR */
2300         fdctrl->fifo[0] = 0x80 |
2301             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2302         fdctrl_to_result_phase(fdctrl, 1);
2303     }
2304 }
2305 
2306 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2307 {
2308     FDrive *cur_drv;
2309 
2310     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2311     cur_drv = get_cur_drv(fdctrl);
2312     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2313         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2314                 cur_drv->sect, 1);
2315     } else {
2316         fd_seek(cur_drv, cur_drv->head,
2317                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2318     }
2319     fdctrl_to_command_phase(fdctrl);
2320     /* Raise Interrupt */
2321     fdctrl->status0 |= FD_SR0_SEEK;
2322     fdctrl_raise_irq(fdctrl);
2323 }
2324 
2325 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2326 {
2327     FDrive *cur_drv;
2328 
2329     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2330     cur_drv = get_cur_drv(fdctrl);
2331     if (fdctrl->fifo[2] > cur_drv->track) {
2332         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2333     } else {
2334         fd_seek(cur_drv, cur_drv->head,
2335                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2336     }
2337     fdctrl_to_command_phase(fdctrl);
2338     /* Raise Interrupt */
2339     fdctrl->status0 |= FD_SR0_SEEK;
2340     fdctrl_raise_irq(fdctrl);
2341 }
2342 
2343 /*
2344  * Handlers for the execution phase of each command
2345  */
2346 typedef struct FDCtrlCommand {
2347     uint8_t value;
2348     uint8_t mask;
2349     const char* name;
2350     int parameters;
2351     void (*handler)(FDCtrl *fdctrl, int direction);
2352     int direction;
2353 } FDCtrlCommand;
2354 
2355 static const FDCtrlCommand handlers[] = {
2356     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2357     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2358     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2359     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2360     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2361     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2362     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2363     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2364     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2365     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2366     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2367     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2368     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2369     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2370     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2371     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2372     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2373     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2374     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2375     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2376     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2377     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2378     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2379     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2380     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2381     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2382     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2383     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2384     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2385     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2386     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2387     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2388 };
2389 /* Associate command to an index in the 'handlers' array */
2390 static uint8_t command_to_handler[256];
2391 
2392 static const FDCtrlCommand *get_command(uint8_t cmd)
2393 {
2394     int idx;
2395 
2396     idx = command_to_handler[cmd];
2397     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2398     return &handlers[idx];
2399 }
2400 
2401 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2402 {
2403     FDrive *cur_drv;
2404     const FDCtrlCommand *cmd;
2405     uint32_t pos;
2406 
2407     /* Reset mode */
2408     if (!(fdctrl->dor & FD_DOR_nRESET)) {
2409         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2410         return;
2411     }
2412     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2413         FLOPPY_DPRINTF("error: controller not ready for writing\n");
2414         return;
2415     }
2416     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2417 
2418     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2419 
2420     /* If data_len spans multiple sectors, the current position in the FIFO
2421      * wraps around while fdctrl->data_pos is the real position in the whole
2422      * request. */
2423     pos = fdctrl->data_pos++;
2424     pos %= FD_SECTOR_LEN;
2425     fdctrl->fifo[pos] = value;
2426 
2427     if (fdctrl->data_pos == fdctrl->data_len) {
2428         fdctrl->msr &= ~FD_MSR_RQM;
2429     }
2430 
2431     switch (fdctrl->phase) {
2432     case FD_PHASE_EXECUTION:
2433         /* For DMA requests, RQM should be cleared during execution phase, so
2434          * we would have errored out above. */
2435         assert(fdctrl->msr & FD_MSR_NONDMA);
2436 
2437         /* FIFO data write */
2438         if (pos == FD_SECTOR_LEN - 1 ||
2439             fdctrl->data_pos == fdctrl->data_len) {
2440             cur_drv = get_cur_drv(fdctrl);
2441             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2442                            BDRV_SECTOR_SIZE, 0) < 0) {
2443                 FLOPPY_DPRINTF("error writing sector %d\n",
2444                                fd_sector(cur_drv));
2445                 break;
2446             }
2447             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2448                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2449                                fd_sector(cur_drv));
2450                 break;
2451             }
2452         }
2453 
2454         /* Switch to result phase when done with the transfer */
2455         if (fdctrl->data_pos == fdctrl->data_len) {
2456             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2457         }
2458         break;
2459 
2460     case FD_PHASE_COMMAND:
2461         assert(!(fdctrl->msr & FD_MSR_NONDMA));
2462         assert(fdctrl->data_pos < FD_SECTOR_LEN);
2463 
2464         if (pos == 0) {
2465             /* The first byte specifies the command. Now we start reading
2466              * as many parameters as this command requires. */
2467             cmd = get_command(value);
2468             fdctrl->data_len = cmd->parameters + 1;
2469             if (cmd->parameters) {
2470                 fdctrl->msr |= FD_MSR_RQM;
2471             }
2472             fdctrl->msr |= FD_MSR_CMDBUSY;
2473         }
2474 
2475         if (fdctrl->data_pos == fdctrl->data_len) {
2476             /* We have all parameters now, execute the command */
2477             fdctrl->phase = FD_PHASE_EXECUTION;
2478 
2479             if (fdctrl->data_state & FD_STATE_FORMAT) {
2480                 fdctrl_format_sector(fdctrl);
2481                 break;
2482             }
2483 
2484             cmd = get_command(fdctrl->fifo[0]);
2485             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2486             cmd->handler(fdctrl, cmd->direction);
2487         }
2488         break;
2489 
2490     case FD_PHASE_RESULT:
2491     default:
2492         abort();
2493     }
2494 }
2495 
2496 static void fdctrl_result_timer(void *opaque)
2497 {
2498     FDCtrl *fdctrl = opaque;
2499     FDrive *cur_drv = get_cur_drv(fdctrl);
2500 
2501     /* Pretend we are spinning.
2502      * This is needed for Coherent, which uses READ ID to check for
2503      * sector interleaving.
2504      */
2505     if (cur_drv->last_sect != 0) {
2506         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2507     }
2508     /* READ_ID can't automatically succeed! */
2509     if (fdctrl->check_media_rate &&
2510         (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2511         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2512                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2513         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2514     } else {
2515         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2516     }
2517 }
2518 
2519 /* Init functions */
2520 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2521                                   Error **errp)
2522 {
2523     unsigned int i;
2524     FDrive *drive;
2525     DeviceState *dev;
2526     BlockBackend *blk;
2527     Error *local_err = NULL;
2528 
2529     for (i = 0; i < MAX_FD; i++) {
2530         drive = &fdctrl->drives[i];
2531         drive->fdctrl = fdctrl;
2532 
2533         /* If the drive is not present, we skip creating the qdev device, but
2534          * still have to initialise the controller. */
2535         blk = fdctrl->qdev_for_drives[i].blk;
2536         if (!blk) {
2537             fd_init(drive);
2538             fd_revalidate(drive);
2539             continue;
2540         }
2541 
2542         dev = qdev_create(&fdctrl->bus.bus, "floppy");
2543         qdev_prop_set_uint32(dev, "unit", i);
2544         qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2545 
2546         blk_ref(blk);
2547         blk_detach_dev(blk, fdc_dev);
2548         fdctrl->qdev_for_drives[i].blk = NULL;
2549         qdev_prop_set_drive(dev, "drive", blk, &local_err);
2550         blk_unref(blk);
2551 
2552         if (local_err) {
2553             error_propagate(errp, local_err);
2554             return;
2555         }
2556 
2557         object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2558         if (local_err) {
2559             error_propagate(errp, local_err);
2560             return;
2561         }
2562     }
2563 }
2564 
2565 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2566 {
2567     DeviceState *dev;
2568     ISADevice *isadev;
2569 
2570     isadev = isa_try_create(bus, TYPE_ISA_FDC);
2571     if (!isadev) {
2572         return NULL;
2573     }
2574     dev = DEVICE(isadev);
2575 
2576     if (fds[0]) {
2577         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2578                             &error_fatal);
2579     }
2580     if (fds[1]) {
2581         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2582                             &error_fatal);
2583     }
2584     qdev_init_nofail(dev);
2585 
2586     return isadev;
2587 }
2588 
2589 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2590                         hwaddr mmio_base, DriveInfo **fds)
2591 {
2592     FDCtrl *fdctrl;
2593     DeviceState *dev;
2594     SysBusDevice *sbd;
2595     FDCtrlSysBus *sys;
2596 
2597     dev = qdev_create(NULL, "sysbus-fdc");
2598     sys = SYSBUS_FDC(dev);
2599     fdctrl = &sys->state;
2600     fdctrl->dma_chann = dma_chann; /* FIXME */
2601     if (fds[0]) {
2602         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2603                             &error_fatal);
2604     }
2605     if (fds[1]) {
2606         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2607                             &error_fatal);
2608     }
2609     qdev_init_nofail(dev);
2610     sbd = SYS_BUS_DEVICE(dev);
2611     sysbus_connect_irq(sbd, 0, irq);
2612     sysbus_mmio_map(sbd, 0, mmio_base);
2613 }
2614 
2615 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2616                        DriveInfo **fds, qemu_irq *fdc_tc)
2617 {
2618     DeviceState *dev;
2619     FDCtrlSysBus *sys;
2620 
2621     dev = qdev_create(NULL, "SUNW,fdtwo");
2622     if (fds[0]) {
2623         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2624                             &error_fatal);
2625     }
2626     qdev_init_nofail(dev);
2627     sys = SYSBUS_FDC(dev);
2628     sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2629     sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2630     *fdc_tc = qdev_get_gpio_in(dev, 0);
2631 }
2632 
2633 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2634                                   Error **errp)
2635 {
2636     int i, j;
2637     static int command_tables_inited = 0;
2638 
2639     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2640         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2641     }
2642 
2643     /* Fill 'command_to_handler' lookup table */
2644     if (!command_tables_inited) {
2645         command_tables_inited = 1;
2646         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2647             for (j = 0; j < sizeof(command_to_handler); j++) {
2648                 if ((j & handlers[i].mask) == handlers[i].value) {
2649                     command_to_handler[j] = i;
2650                 }
2651             }
2652         }
2653     }
2654 
2655     FLOPPY_DPRINTF("init controller\n");
2656     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2657     fdctrl->fifo_size = 512;
2658     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2659                                              fdctrl_result_timer, fdctrl);
2660 
2661     fdctrl->version = 0x90; /* Intel 82078 controller */
2662     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2663     fdctrl->num_floppies = MAX_FD;
2664 
2665     if (fdctrl->dma_chann != -1) {
2666         IsaDmaClass *k;
2667         assert(fdctrl->dma);
2668         k = ISADMA_GET_CLASS(fdctrl->dma);
2669         k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2670                             &fdctrl_transfer_handler, fdctrl);
2671     }
2672 
2673     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2674     fdctrl_connect_drives(fdctrl, dev, errp);
2675 }
2676 
2677 static const MemoryRegionPortio fdc_portio_list[] = {
2678     { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2679     { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2680     PORTIO_END_OF_LIST(),
2681 };
2682 
2683 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2684 {
2685     ISADevice *isadev = ISA_DEVICE(dev);
2686     FDCtrlISABus *isa = ISA_FDC(dev);
2687     FDCtrl *fdctrl = &isa->state;
2688     Error *err = NULL;
2689 
2690     isa_register_portio_list(isadev, &fdctrl->portio_list,
2691                              isa->iobase, fdc_portio_list, fdctrl,
2692                              "fdc");
2693 
2694     isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2695     fdctrl->dma_chann = isa->dma;
2696     if (fdctrl->dma_chann != -1) {
2697         fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2698         if (!fdctrl->dma) {
2699             error_setg(errp, "ISA controller does not support DMA");
2700             return;
2701         }
2702     }
2703 
2704     qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2705     fdctrl_realize_common(dev, fdctrl, &err);
2706     if (err != NULL) {
2707         error_propagate(errp, err);
2708         return;
2709     }
2710 }
2711 
2712 static void sysbus_fdc_initfn(Object *obj)
2713 {
2714     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2715     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2716     FDCtrl *fdctrl = &sys->state;
2717 
2718     fdctrl->dma_chann = -1;
2719 
2720     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2721                           "fdc", 0x08);
2722     sysbus_init_mmio(sbd, &fdctrl->iomem);
2723 }
2724 
2725 static void sun4m_fdc_initfn(Object *obj)
2726 {
2727     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2728     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2729     FDCtrl *fdctrl = &sys->state;
2730 
2731     fdctrl->dma_chann = -1;
2732 
2733     memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2734                           fdctrl, "fdctrl", 0x08);
2735     sysbus_init_mmio(sbd, &fdctrl->iomem);
2736 }
2737 
2738 static void sysbus_fdc_common_initfn(Object *obj)
2739 {
2740     DeviceState *dev = DEVICE(obj);
2741     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2742     FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2743     FDCtrl *fdctrl = &sys->state;
2744 
2745     qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2746 
2747     sysbus_init_irq(sbd, &fdctrl->irq);
2748     qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2749 }
2750 
2751 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2752 {
2753     FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2754     FDCtrl *fdctrl = &sys->state;
2755 
2756     fdctrl_realize_common(dev, fdctrl, errp);
2757 }
2758 
2759 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2760 {
2761     FDCtrlISABus *isa = ISA_FDC(fdc);
2762 
2763     return isa->state.drives[i].drive;
2764 }
2765 
2766 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2767                                uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2768 {
2769     const FDFormat *fdf;
2770 
2771     *maxc = *maxh = *maxs = 0;
2772     for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2773         if (fdf->drive != type) {
2774             continue;
2775         }
2776         if (*maxc < fdf->max_track) {
2777             *maxc = fdf->max_track;
2778         }
2779         if (*maxh < fdf->max_head) {
2780             *maxh = fdf->max_head;
2781         }
2782         if (*maxs < fdf->last_sect) {
2783             *maxs = fdf->last_sect;
2784         }
2785     }
2786     (*maxc)--;
2787 }
2788 
2789 static const VMStateDescription vmstate_isa_fdc ={
2790     .name = "fdc",
2791     .version_id = 2,
2792     .minimum_version_id = 2,
2793     .fields = (VMStateField[]) {
2794         VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2795         VMSTATE_END_OF_LIST()
2796     }
2797 };
2798 
2799 static Property isa_fdc_properties[] = {
2800     DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2801     DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2802     DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2803     DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2804     DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2805     DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2806                     0, true),
2807     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2808                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2809                         FloppyDriveType),
2810     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2811                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2812                         FloppyDriveType),
2813     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2814                         FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2815                         FloppyDriveType),
2816     DEFINE_PROP_END_OF_LIST(),
2817 };
2818 
2819 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2820 {
2821     DeviceClass *dc = DEVICE_CLASS(klass);
2822 
2823     dc->realize = isabus_fdc_realize;
2824     dc->fw_name = "fdc";
2825     dc->reset = fdctrl_external_reset_isa;
2826     dc->vmsd = &vmstate_isa_fdc;
2827     dc->props = isa_fdc_properties;
2828     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2829 }
2830 
2831 static void isabus_fdc_instance_init(Object *obj)
2832 {
2833     FDCtrlISABus *isa = ISA_FDC(obj);
2834 
2835     device_add_bootindex_property(obj, &isa->bootindexA,
2836                                   "bootindexA", "/floppy@0",
2837                                   DEVICE(obj), NULL);
2838     device_add_bootindex_property(obj, &isa->bootindexB,
2839                                   "bootindexB", "/floppy@1",
2840                                   DEVICE(obj), NULL);
2841 }
2842 
2843 static const TypeInfo isa_fdc_info = {
2844     .name          = TYPE_ISA_FDC,
2845     .parent        = TYPE_ISA_DEVICE,
2846     .instance_size = sizeof(FDCtrlISABus),
2847     .class_init    = isabus_fdc_class_init,
2848     .instance_init = isabus_fdc_instance_init,
2849 };
2850 
2851 static const VMStateDescription vmstate_sysbus_fdc ={
2852     .name = "fdc",
2853     .version_id = 2,
2854     .minimum_version_id = 2,
2855     .fields = (VMStateField[]) {
2856         VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2857         VMSTATE_END_OF_LIST()
2858     }
2859 };
2860 
2861 static Property sysbus_fdc_properties[] = {
2862     DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2863     DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2864     DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2865                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2866                         FloppyDriveType),
2867     DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2868                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2869                         FloppyDriveType),
2870     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2871                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2872                         FloppyDriveType),
2873     DEFINE_PROP_END_OF_LIST(),
2874 };
2875 
2876 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2877 {
2878     DeviceClass *dc = DEVICE_CLASS(klass);
2879 
2880     dc->props = sysbus_fdc_properties;
2881     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2882 }
2883 
2884 static const TypeInfo sysbus_fdc_info = {
2885     .name          = "sysbus-fdc",
2886     .parent        = TYPE_SYSBUS_FDC,
2887     .instance_init = sysbus_fdc_initfn,
2888     .class_init    = sysbus_fdc_class_init,
2889 };
2890 
2891 static Property sun4m_fdc_properties[] = {
2892     DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2893     DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2894                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2895                         FloppyDriveType),
2896     DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2897                         FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2898                         FloppyDriveType),
2899     DEFINE_PROP_END_OF_LIST(),
2900 };
2901 
2902 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2903 {
2904     DeviceClass *dc = DEVICE_CLASS(klass);
2905 
2906     dc->props = sun4m_fdc_properties;
2907     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2908 }
2909 
2910 static const TypeInfo sun4m_fdc_info = {
2911     .name          = "SUNW,fdtwo",
2912     .parent        = TYPE_SYSBUS_FDC,
2913     .instance_init = sun4m_fdc_initfn,
2914     .class_init    = sun4m_fdc_class_init,
2915 };
2916 
2917 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2918 {
2919     DeviceClass *dc = DEVICE_CLASS(klass);
2920 
2921     dc->realize = sysbus_fdc_common_realize;
2922     dc->reset = fdctrl_external_reset_sysbus;
2923     dc->vmsd = &vmstate_sysbus_fdc;
2924 }
2925 
2926 static const TypeInfo sysbus_fdc_type_info = {
2927     .name          = TYPE_SYSBUS_FDC,
2928     .parent        = TYPE_SYS_BUS_DEVICE,
2929     .instance_size = sizeof(FDCtrlSysBus),
2930     .instance_init = sysbus_fdc_common_initfn,
2931     .abstract      = true,
2932     .class_init    = sysbus_fdc_common_class_init,
2933 };
2934 
2935 static void fdc_register_types(void)
2936 {
2937     type_register_static(&isa_fdc_info);
2938     type_register_static(&sysbus_fdc_type_info);
2939     type_register_static(&sysbus_fdc_info);
2940     type_register_static(&sun4m_fdc_info);
2941     type_register_static(&floppy_bus_info);
2942     type_register_static(&floppy_drive_info);
2943 }
2944 
2945 type_init(fdc_register_types)
2946