xref: /qemu/hw/block/m25p80.c (revision 0ec8384f)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
38 #include "m25p80_sfdp.h"
39 
40 /* 16 MiB max in 3 byte address mode */
41 #define MAX_3BYTES_SIZE 0x1000000
42 #define SPI_NOR_MAX_ID_LEN 6
43 
44 /* Fields for FlashPartInfo->flags */
45 enum spi_flash_option_flags {
46     ER_4K                  = BIT(0),
47     ER_32K                 = BIT(1),
48     EEPROM                 = BIT(2),
49     HAS_SR_TB              = BIT(3),
50     HAS_SR_BP3_BIT6        = BIT(4),
51 };
52 
53 typedef struct FlashPartInfo {
54     const char *part_name;
55     /*
56      * This array stores the ID bytes.
57      * The first three bytes are the JEDIC ID.
58      * JEDEC ID zero means "no ID" (mostly older chips).
59      */
60     uint8_t id[SPI_NOR_MAX_ID_LEN];
61     uint8_t id_len;
62     /* there is confusion between manufacturers as to what a sector is. In this
63      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
64      * command (opcode 0xd8).
65      */
66     uint32_t sector_size;
67     uint32_t n_sectors;
68     uint32_t page_size;
69     uint16_t flags;
70     /*
71      * Big sized spi nor are often stacked devices, thus sometime
72      * replace chip erase with die erase.
73      * This field inform how many die is in the chip.
74      */
75     uint8_t die_cnt;
76     uint8_t (*sfdp_read)(uint32_t sfdp_addr);
77 } FlashPartInfo;
78 
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82     .part_name = _part_name,\
83     .id = {\
84         ((_jedec_id) >> 16) & 0xff,\
85         ((_jedec_id) >> 8) & 0xff,\
86         (_jedec_id) & 0xff,\
87         ((_ext_id) >> 8) & 0xff,\
88         (_ext_id) & 0xff,\
89           },\
90     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91     .sector_size = (_sector_size),\
92     .n_sectors = (_n_sectors),\
93     .page_size = 256,\
94     .flags = (_flags),\
95     .die_cnt = 0
96 
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98     .part_name = _part_name,\
99     .id = {\
100         ((_jedec_id) >> 16) & 0xff,\
101         ((_jedec_id) >> 8) & 0xff,\
102         (_jedec_id) & 0xff,\
103         ((_ext_id) >> 16) & 0xff,\
104         ((_ext_id) >> 8) & 0xff,\
105         (_ext_id) & 0xff,\
106           },\
107     .id_len = 6,\
108     .sector_size = (_sector_size),\
109     .n_sectors = (_n_sectors),\
110     .page_size = 256,\
111     .flags = (_flags),\
112     .die_cnt = 0
113 
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115                     _flags, _die_cnt)\
116     .part_name = _part_name,\
117     .id = {\
118         ((_jedec_id) >> 16) & 0xff,\
119         ((_jedec_id) >> 8) & 0xff,\
120         (_jedec_id) & 0xff,\
121         ((_ext_id) >> 8) & 0xff,\
122         (_ext_id) & 0xff,\
123           },\
124     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125     .sector_size = (_sector_size),\
126     .n_sectors = (_n_sectors),\
127     .page_size = 256,\
128     .flags = (_flags),\
129     .die_cnt = _die_cnt
130 
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
134 
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
157 
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
165 
166 /*
167  * Spansion read mode command length in bytes,
168  * the mode is currently not supported.
169 */
170 
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 
174 static const FlashPartInfo known_devices[] = {
175     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
177     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
178 
179     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
180     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
181     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
182 
183     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
184     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
185     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
186     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
187 
188     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
189 
190     /* Atmel EEPROMS - it is assumed, that don't care bit in command
191      * is set to 0. Block protection is not supported.
192      */
193     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
194     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
195 
196     /* EON -- en25xxx */
197     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
198     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
199     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
200     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
201     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
202 
203     /* GigaDevice */
204     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
205     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* Intel/Numonyx -- xxxs33b */
208     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
209     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
210     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
211     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
212 
213     /* ISSI */
214     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
215     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
216     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
217     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
218     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
219     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
220     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
221     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
222     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
223     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
224     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K),
225       .sfdp_read = m25p80_sfdp_is25wp256 },
226 
227     /* Macronix */
228     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
229     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
230     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
231     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
232     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
233     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
234     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
235     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
236     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512,
237             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
238     { INFO6("mx25l25635f", 0xc22019,     0xc22019,  64 << 10, 512,
239             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
240     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
241     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
242     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
243     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
244     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K),
245       .sfdp_read = m25p80_sfdp_mx66l1g45g },
246 
247     /* Micron */
248     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
249     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
250     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
251     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
252     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
253     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
254     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
255     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K),
256       .sfdp_read = m25p80_sfdp_n25q256a },
257     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
258     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
259     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
260     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
261            ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
262       .sfdp_read = m25p80_sfdp_n25q256a },
263    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
264     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
265     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
266     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
267                    ER_4K | ER_32K, 2) },
268     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
269     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
270     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
271     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
272     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
273     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
274 
275     /* Spansion -- single (large) sector size only, at least
276      * for the chips listed here (without boot sectors).
277      */
278     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
279     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
280     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
281     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
282     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
283     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
284     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
285     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
286     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
287     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
288     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
289     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
290     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
291     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
292     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
293     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
294     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
295 
296     /* Spansion --  boot sectors support  */
297     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
298     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
299 
300     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
301     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
302     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
303     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
304     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
305     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
306     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
307     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
308     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
309     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
310 
311     /* ST Microelectronics -- newer production may have feature updates */
312     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
313     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
314     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
315     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
316     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
317     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
318     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
319     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
320     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
321     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
322 
323     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
324     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
325     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
326 
327     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
328     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
329     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
330 
331     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
332     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
333     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
334     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
335 
336     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
337     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
338     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
339     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
340     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
341     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
342     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
343     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
344     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
345     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
346     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
347     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
348     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
349     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K),
350       .sfdp_read = m25p80_sfdp_w25q256 },
351     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K),
352       .sfdp_read = m25p80_sfdp_w25q512jv },
353     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K),
354       .sfdp_read = m25p80_sfdp_w25q01jvq },
355 };
356 
357 typedef enum {
358     NOP = 0,
359     WRSR = 0x1,
360     WRDI = 0x4,
361     RDSR = 0x5,
362     WREN = 0x6,
363     BRRD = 0x16,
364     BRWR = 0x17,
365     JEDEC_READ = 0x9f,
366     BULK_ERASE_60 = 0x60,
367     BULK_ERASE = 0xc7,
368     READ_FSR = 0x70,
369     RDCR = 0x15,
370     RDSFDP = 0x5a,
371 
372     READ = 0x03,
373     READ4 = 0x13,
374     FAST_READ = 0x0b,
375     FAST_READ4 = 0x0c,
376     DOR = 0x3b,
377     DOR4 = 0x3c,
378     QOR = 0x6b,
379     QOR4 = 0x6c,
380     DIOR = 0xbb,
381     DIOR4 = 0xbc,
382     QIOR = 0xeb,
383     QIOR4 = 0xec,
384 
385     PP = 0x02,
386     PP4 = 0x12,
387     PP4_4 = 0x3e,
388     DPP = 0xa2,
389     QPP = 0x32,
390     QPP_4 = 0x34,
391     RDID_90 = 0x90,
392     RDID_AB = 0xab,
393     AAI_WP = 0xad,
394 
395     ERASE_4K = 0x20,
396     ERASE4_4K = 0x21,
397     ERASE_32K = 0x52,
398     ERASE4_32K = 0x5c,
399     ERASE_SECTOR = 0xd8,
400     ERASE4_SECTOR = 0xdc,
401 
402     EN_4BYTE_ADDR = 0xB7,
403     EX_4BYTE_ADDR = 0xE9,
404 
405     EXTEND_ADDR_READ = 0xC8,
406     EXTEND_ADDR_WRITE = 0xC5,
407 
408     RESET_ENABLE = 0x66,
409     RESET_MEMORY = 0x99,
410 
411     /*
412      * Micron: 0x35 - enable QPI
413      * Spansion: 0x35 - read control register
414      */
415     RDCR_EQIO = 0x35,
416     RSTQIO = 0xf5,
417 
418     RNVCR = 0xB5,
419     WNVCR = 0xB1,
420 
421     RVCR = 0x85,
422     WVCR = 0x81,
423 
424     REVCR = 0x65,
425     WEVCR = 0x61,
426 
427     DIE_ERASE = 0xC4,
428 } FlashCMD;
429 
430 typedef enum {
431     STATE_IDLE,
432     STATE_PAGE_PROGRAM,
433     STATE_READ,
434     STATE_COLLECTING_DATA,
435     STATE_COLLECTING_VAR_LEN_DATA,
436     STATE_READING_DATA,
437     STATE_READING_SFDP,
438 } CMDState;
439 
440 typedef enum {
441     MAN_SPANSION,
442     MAN_MACRONIX,
443     MAN_NUMONYX,
444     MAN_WINBOND,
445     MAN_SST,
446     MAN_ISSI,
447     MAN_GENERIC,
448 } Manufacturer;
449 
450 typedef enum {
451     MODE_STD = 0,
452     MODE_DIO = 1,
453     MODE_QIO = 2
454 } SPIMode;
455 
456 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
457 
458 struct Flash {
459     SSIPeripheral parent_obj;
460 
461     BlockBackend *blk;
462 
463     uint8_t *storage;
464     uint32_t size;
465     int page_size;
466 
467     uint8_t state;
468     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
469     uint32_t len;
470     uint32_t pos;
471     bool data_read_loop;
472     uint8_t needed_bytes;
473     uint8_t cmd_in_progress;
474     uint32_t cur_addr;
475     uint32_t nonvolatile_cfg;
476     /* Configuration register for Macronix */
477     uint32_t volatile_cfg;
478     uint32_t enh_volatile_cfg;
479     /* Spansion cfg registers. */
480     uint8_t spansion_cr1nv;
481     uint8_t spansion_cr2nv;
482     uint8_t spansion_cr3nv;
483     uint8_t spansion_cr4nv;
484     uint8_t spansion_cr1v;
485     uint8_t spansion_cr2v;
486     uint8_t spansion_cr3v;
487     uint8_t spansion_cr4v;
488     bool wp_level;
489     bool write_enable;
490     bool four_bytes_address_mode;
491     bool reset_enable;
492     bool quad_enable;
493     bool aai_enable;
494     bool block_protect0;
495     bool block_protect1;
496     bool block_protect2;
497     bool block_protect3;
498     bool top_bottom_bit;
499     bool status_register_write_disabled;
500     uint8_t ear;
501 
502     int64_t dirty_page;
503 
504     const FlashPartInfo *pi;
505 
506 };
507 
508 struct M25P80Class {
509     SSIPeripheralClass parent_class;
510     FlashPartInfo *pi;
511 };
512 
513 #define TYPE_M25P80 "m25p80-generic"
514 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
515 
516 static inline Manufacturer get_man(Flash *s)
517 {
518     switch (s->pi->id[0]) {
519     case 0x20:
520         return MAN_NUMONYX;
521     case 0xEF:
522         return MAN_WINBOND;
523     case 0x01:
524         return MAN_SPANSION;
525     case 0xC2:
526         return MAN_MACRONIX;
527     case 0xBF:
528         return MAN_SST;
529     case 0x9D:
530         return MAN_ISSI;
531     default:
532         return MAN_GENERIC;
533     }
534 }
535 
536 static void blk_sync_complete(void *opaque, int ret)
537 {
538     QEMUIOVector *iov = opaque;
539 
540     qemu_iovec_destroy(iov);
541     g_free(iov);
542 
543     /* do nothing. Masters do not directly interact with the backing store,
544      * only the working copy so no mutexing required.
545      */
546 }
547 
548 static void flash_sync_page(Flash *s, int page)
549 {
550     QEMUIOVector *iov;
551 
552     if (!s->blk || !blk_is_writable(s->blk)) {
553         return;
554     }
555 
556     iov = g_new(QEMUIOVector, 1);
557     qemu_iovec_init(iov, 1);
558     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
559                    s->pi->page_size);
560     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
561                     blk_sync_complete, iov);
562 }
563 
564 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
565 {
566     QEMUIOVector *iov;
567 
568     if (!s->blk || !blk_is_writable(s->blk)) {
569         return;
570     }
571 
572     assert(!(len % BDRV_SECTOR_SIZE));
573     iov = g_new(QEMUIOVector, 1);
574     qemu_iovec_init(iov, 1);
575     qemu_iovec_add(iov, s->storage + off, len);
576     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
577 }
578 
579 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
580 {
581     uint32_t len;
582     uint8_t capa_to_assert = 0;
583 
584     switch (cmd) {
585     case ERASE_4K:
586     case ERASE4_4K:
587         len = 4 * KiB;
588         capa_to_assert = ER_4K;
589         break;
590     case ERASE_32K:
591     case ERASE4_32K:
592         len = 32 * KiB;
593         capa_to_assert = ER_32K;
594         break;
595     case ERASE_SECTOR:
596     case ERASE4_SECTOR:
597         len = s->pi->sector_size;
598         break;
599     case BULK_ERASE:
600         len = s->size;
601         break;
602     case DIE_ERASE:
603         if (s->pi->die_cnt) {
604             len = s->size / s->pi->die_cnt;
605             offset = offset & (~(len - 1));
606         } else {
607             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
608                           " by device\n");
609             return;
610         }
611         break;
612     default:
613         abort();
614     }
615 
616     trace_m25p80_flash_erase(s, offset, len);
617 
618     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
619         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
620                       " device\n", len);
621     }
622 
623     if (!s->write_enable) {
624         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
625         return;
626     }
627     memset(s->storage + offset, 0xff, len);
628     flash_sync_area(s, offset, len);
629 }
630 
631 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
632 {
633     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
634         flash_sync_page(s, s->dirty_page);
635         s->dirty_page = newpage;
636     }
637 }
638 
639 static inline
640 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
641 {
642     uint32_t page = addr / s->pi->page_size;
643     uint8_t prev = s->storage[s->cur_addr];
644     uint32_t block_protect_value = (s->block_protect3 << 3) |
645                                    (s->block_protect2 << 2) |
646                                    (s->block_protect1 << 1) |
647                                    (s->block_protect0 << 0);
648 
649     if (!s->write_enable) {
650         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
651         return;
652     }
653 
654     if (block_protect_value > 0) {
655         uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
656         uint32_t sector = addr / s->pi->sector_size;
657 
658         /* top_bottom_bit == 0 means TOP */
659         if (!s->top_bottom_bit) {
660             if (s->pi->n_sectors <= sector + num_protected_sectors) {
661                 qemu_log_mask(LOG_GUEST_ERROR,
662                               "M25P80: write with write protect!\n");
663                 return;
664             }
665         } else {
666             if (sector < num_protected_sectors) {
667                 qemu_log_mask(LOG_GUEST_ERROR,
668                               "M25P80: write with write protect!\n");
669                 return;
670             }
671         }
672     }
673 
674     if ((prev ^ data) & data) {
675         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
676     }
677 
678     if (s->pi->flags & EEPROM) {
679         s->storage[s->cur_addr] = data;
680     } else {
681         s->storage[s->cur_addr] &= data;
682     }
683 
684     flash_sync_dirty(s, page);
685     s->dirty_page = page;
686 }
687 
688 static inline int get_addr_length(Flash *s)
689 {
690    /* check if eeprom is in use */
691     if (s->pi->flags == EEPROM) {
692         return 2;
693     }
694 
695    switch (s->cmd_in_progress) {
696    case RDSFDP:
697        return 3;
698    case PP4:
699    case PP4_4:
700    case QPP_4:
701    case READ4:
702    case QIOR4:
703    case ERASE4_4K:
704    case ERASE4_32K:
705    case ERASE4_SECTOR:
706    case FAST_READ4:
707    case DOR4:
708    case QOR4:
709    case DIOR4:
710        return 4;
711    default:
712        return s->four_bytes_address_mode ? 4 : 3;
713    }
714 }
715 
716 static void complete_collecting_data(Flash *s)
717 {
718     int i, n;
719 
720     n = get_addr_length(s);
721     s->cur_addr = (n == 3 ? s->ear : 0);
722     for (i = 0; i < n; ++i) {
723         s->cur_addr <<= 8;
724         s->cur_addr |= s->data[i];
725     }
726 
727     s->cur_addr &= s->size - 1;
728 
729     s->state = STATE_IDLE;
730 
731     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
732                                      s->cur_addr);
733 
734     switch (s->cmd_in_progress) {
735     case DPP:
736     case QPP:
737     case QPP_4:
738     case PP:
739     case PP4:
740     case PP4_4:
741         s->state = STATE_PAGE_PROGRAM;
742         break;
743     case AAI_WP:
744         /* AAI programming starts from the even address */
745         s->cur_addr &= ~BIT(0);
746         s->state = STATE_PAGE_PROGRAM;
747         break;
748     case READ:
749     case READ4:
750     case FAST_READ:
751     case FAST_READ4:
752     case DOR:
753     case DOR4:
754     case QOR:
755     case QOR4:
756     case DIOR:
757     case DIOR4:
758     case QIOR:
759     case QIOR4:
760         s->state = STATE_READ;
761         break;
762     case ERASE_4K:
763     case ERASE4_4K:
764     case ERASE_32K:
765     case ERASE4_32K:
766     case ERASE_SECTOR:
767     case ERASE4_SECTOR:
768     case DIE_ERASE:
769         flash_erase(s, s->cur_addr, s->cmd_in_progress);
770         break;
771     case WRSR:
772         s->status_register_write_disabled = extract32(s->data[0], 7, 1);
773         s->block_protect0 = extract32(s->data[0], 2, 1);
774         s->block_protect1 = extract32(s->data[0], 3, 1);
775         s->block_protect2 = extract32(s->data[0], 4, 1);
776         if (s->pi->flags & HAS_SR_TB) {
777             s->top_bottom_bit = extract32(s->data[0], 5, 1);
778         }
779         if (s->pi->flags & HAS_SR_BP3_BIT6) {
780             s->block_protect3 = extract32(s->data[0], 6, 1);
781         }
782 
783         switch (get_man(s)) {
784         case MAN_SPANSION:
785             s->quad_enable = !!(s->data[1] & 0x02);
786             break;
787         case MAN_ISSI:
788             s->quad_enable = extract32(s->data[0], 6, 1);
789             break;
790         case MAN_MACRONIX:
791             s->quad_enable = extract32(s->data[0], 6, 1);
792             if (s->len > 1) {
793                 s->volatile_cfg = s->data[1];
794                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
795             }
796             break;
797         default:
798             break;
799         }
800         if (s->write_enable) {
801             s->write_enable = false;
802         }
803         break;
804     case BRWR:
805     case EXTEND_ADDR_WRITE:
806         s->ear = s->data[0];
807         break;
808     case WNVCR:
809         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
810         break;
811     case WVCR:
812         s->volatile_cfg = s->data[0];
813         break;
814     case WEVCR:
815         s->enh_volatile_cfg = s->data[0];
816         break;
817     case RDID_90:
818     case RDID_AB:
819         if (get_man(s) == MAN_SST) {
820             if (s->cur_addr <= 1) {
821                 if (s->cur_addr) {
822                     s->data[0] = s->pi->id[2];
823                     s->data[1] = s->pi->id[0];
824                 } else {
825                     s->data[0] = s->pi->id[0];
826                     s->data[1] = s->pi->id[2];
827                 }
828                 s->pos = 0;
829                 s->len = 2;
830                 s->data_read_loop = true;
831                 s->state = STATE_READING_DATA;
832             } else {
833                 qemu_log_mask(LOG_GUEST_ERROR,
834                               "M25P80: Invalid read id address\n");
835             }
836         } else {
837             qemu_log_mask(LOG_GUEST_ERROR,
838                           "M25P80: Read id (command 0x90/0xAB) is not supported"
839                           " by device\n");
840         }
841         break;
842 
843     case RDSFDP:
844         s->state = STATE_READING_SFDP;
845         break;
846 
847     default:
848         break;
849     }
850 }
851 
852 static void reset_memory(Flash *s)
853 {
854     s->cmd_in_progress = NOP;
855     s->cur_addr = 0;
856     s->ear = 0;
857     s->four_bytes_address_mode = false;
858     s->len = 0;
859     s->needed_bytes = 0;
860     s->pos = 0;
861     s->state = STATE_IDLE;
862     s->write_enable = false;
863     s->reset_enable = false;
864     s->quad_enable = false;
865     s->aai_enable = false;
866 
867     switch (get_man(s)) {
868     case MAN_NUMONYX:
869         s->volatile_cfg = 0;
870         s->volatile_cfg |= VCFG_DUMMY;
871         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
872         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
873                                 == NVCFG_XIP_MODE_DISABLED) {
874             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
875         }
876         s->volatile_cfg |= deposit32(s->volatile_cfg,
877                             VCFG_DUMMY_CLK_POS,
878                             CFG_DUMMY_CLK_LEN,
879                             extract32(s->nonvolatile_cfg,
880                                         NVCFG_DUMMY_CLK_POS,
881                                         CFG_DUMMY_CLK_LEN)
882                             );
883 
884         s->enh_volatile_cfg = 0;
885         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
886         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
887         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
888         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
889             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
890         }
891         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
892             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
893         }
894         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
895             s->four_bytes_address_mode = true;
896         }
897         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
898             s->ear = s->size / MAX_3BYTES_SIZE - 1;
899         }
900         break;
901     case MAN_MACRONIX:
902         s->volatile_cfg = 0x7;
903         break;
904     case MAN_SPANSION:
905         s->spansion_cr1v = s->spansion_cr1nv;
906         s->spansion_cr2v = s->spansion_cr2nv;
907         s->spansion_cr3v = s->spansion_cr3nv;
908         s->spansion_cr4v = s->spansion_cr4nv;
909         s->quad_enable = extract32(s->spansion_cr1v,
910                                    SPANSION_QUAD_CFG_POS,
911                                    SPANSION_QUAD_CFG_LEN
912                                    );
913         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
914                 SPANSION_ADDR_LEN_POS,
915                 SPANSION_ADDR_LEN_LEN
916                 );
917         break;
918     default:
919         break;
920     }
921 
922     trace_m25p80_reset_done(s);
923 }
924 
925 static uint8_t numonyx_mode(Flash *s)
926 {
927     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
928         return MODE_QIO;
929     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
930         return MODE_DIO;
931     } else {
932         return MODE_STD;
933     }
934 }
935 
936 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
937 {
938     uint8_t num_dummies;
939     uint8_t mode;
940     assert(get_man(s) == MAN_NUMONYX);
941 
942     mode = numonyx_mode(s);
943     num_dummies = extract32(s->volatile_cfg, 4, 4);
944 
945     if (num_dummies == 0x0 || num_dummies == 0xf) {
946         switch (s->cmd_in_progress) {
947         case QIOR:
948         case QIOR4:
949             num_dummies = 10;
950             break;
951         default:
952             num_dummies = (mode == MODE_QIO) ? 10 : 8;
953             break;
954         }
955     }
956 
957     return num_dummies;
958 }
959 
960 static void decode_fast_read_cmd(Flash *s)
961 {
962     s->needed_bytes = get_addr_length(s);
963     switch (get_man(s)) {
964     /* Dummy cycles - modeled with bytes writes instead of bits */
965     case MAN_SST:
966         s->needed_bytes += 1;
967         break;
968     case MAN_WINBOND:
969         s->needed_bytes += 8;
970         break;
971     case MAN_NUMONYX:
972         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
973         break;
974     case MAN_MACRONIX:
975         if (extract32(s->volatile_cfg, 6, 2) == 1) {
976             s->needed_bytes += 6;
977         } else {
978             s->needed_bytes += 8;
979         }
980         break;
981     case MAN_SPANSION:
982         s->needed_bytes += extract32(s->spansion_cr2v,
983                                     SPANSION_DUMMY_CLK_POS,
984                                     SPANSION_DUMMY_CLK_LEN
985                                     );
986         break;
987     case MAN_ISSI:
988         /*
989          * The Fast Read instruction code is followed by address bytes and
990          * dummy cycles, transmitted via the SI line.
991          *
992          * The number of dummy cycles is configurable but this is currently
993          * unmodeled, hence the default value 8 is used.
994          *
995          * QPI (Quad Peripheral Interface) mode has different default value
996          * of dummy cycles, but this is unsupported at the time being.
997          */
998         s->needed_bytes += 1;
999         break;
1000     default:
1001         break;
1002     }
1003     s->pos = 0;
1004     s->len = 0;
1005     s->state = STATE_COLLECTING_DATA;
1006 }
1007 
1008 static void decode_dio_read_cmd(Flash *s)
1009 {
1010     s->needed_bytes = get_addr_length(s);
1011     /* Dummy cycles modeled with bytes writes instead of bits */
1012     switch (get_man(s)) {
1013     case MAN_WINBOND:
1014         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1015         break;
1016     case MAN_SPANSION:
1017         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1018         s->needed_bytes += extract32(s->spansion_cr2v,
1019                                     SPANSION_DUMMY_CLK_POS,
1020                                     SPANSION_DUMMY_CLK_LEN
1021                                     );
1022         break;
1023     case MAN_NUMONYX:
1024         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1025         break;
1026     case MAN_MACRONIX:
1027         switch (extract32(s->volatile_cfg, 6, 2)) {
1028         case 1:
1029             s->needed_bytes += 6;
1030             break;
1031         case 2:
1032             s->needed_bytes += 8;
1033             break;
1034         default:
1035             s->needed_bytes += 4;
1036             break;
1037         }
1038         break;
1039     case MAN_ISSI:
1040         /*
1041          * The Fast Read Dual I/O instruction code is followed by address bytes
1042          * and dummy cycles, transmitted via the IO1 and IO0 line.
1043          *
1044          * The number of dummy cycles is configurable but this is currently
1045          * unmodeled, hence the default value 4 is used.
1046          */
1047         s->needed_bytes += 1;
1048         break;
1049     default:
1050         break;
1051     }
1052     s->pos = 0;
1053     s->len = 0;
1054     s->state = STATE_COLLECTING_DATA;
1055 }
1056 
1057 static void decode_qio_read_cmd(Flash *s)
1058 {
1059     s->needed_bytes = get_addr_length(s);
1060     /* Dummy cycles modeled with bytes writes instead of bits */
1061     switch (get_man(s)) {
1062     case MAN_WINBOND:
1063         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1064         s->needed_bytes += 4;
1065         break;
1066     case MAN_SPANSION:
1067         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1068         s->needed_bytes += extract32(s->spansion_cr2v,
1069                                     SPANSION_DUMMY_CLK_POS,
1070                                     SPANSION_DUMMY_CLK_LEN
1071                                     );
1072         break;
1073     case MAN_NUMONYX:
1074         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1075         break;
1076     case MAN_MACRONIX:
1077         switch (extract32(s->volatile_cfg, 6, 2)) {
1078         case 1:
1079             s->needed_bytes += 4;
1080             break;
1081         case 2:
1082             s->needed_bytes += 8;
1083             break;
1084         default:
1085             s->needed_bytes += 6;
1086             break;
1087         }
1088         break;
1089     case MAN_ISSI:
1090         /*
1091          * The Fast Read Quad I/O instruction code is followed by address bytes
1092          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1093          *
1094          * The number of dummy cycles is configurable but this is currently
1095          * unmodeled, hence the default value 6 is used.
1096          *
1097          * QPI (Quad Peripheral Interface) mode has different default value
1098          * of dummy cycles, but this is unsupported at the time being.
1099          */
1100         s->needed_bytes += 3;
1101         break;
1102     default:
1103         break;
1104     }
1105     s->pos = 0;
1106     s->len = 0;
1107     s->state = STATE_COLLECTING_DATA;
1108 }
1109 
1110 static bool is_valid_aai_cmd(uint32_t cmd)
1111 {
1112     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1113 }
1114 
1115 static void decode_new_cmd(Flash *s, uint32_t value)
1116 {
1117     int i;
1118 
1119     s->cmd_in_progress = value;
1120     trace_m25p80_command_decoded(s, value);
1121 
1122     if (value != RESET_MEMORY) {
1123         s->reset_enable = false;
1124     }
1125 
1126     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1127         qemu_log_mask(LOG_GUEST_ERROR,
1128                       "M25P80: Invalid cmd within AAI programming sequence");
1129     }
1130 
1131     switch (value) {
1132 
1133     case ERASE_4K:
1134     case ERASE4_4K:
1135     case ERASE_32K:
1136     case ERASE4_32K:
1137     case ERASE_SECTOR:
1138     case ERASE4_SECTOR:
1139     case PP:
1140     case PP4:
1141     case DIE_ERASE:
1142     case RDID_90:
1143     case RDID_AB:
1144         s->needed_bytes = get_addr_length(s);
1145         s->pos = 0;
1146         s->len = 0;
1147         s->state = STATE_COLLECTING_DATA;
1148         break;
1149     case READ:
1150     case READ4:
1151         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1152             s->needed_bytes = get_addr_length(s);
1153             s->pos = 0;
1154             s->len = 0;
1155             s->state = STATE_COLLECTING_DATA;
1156         } else {
1157             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1158                           "DIO or QIO mode\n", s->cmd_in_progress);
1159         }
1160         break;
1161     case DPP:
1162         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1163             s->needed_bytes = get_addr_length(s);
1164             s->pos = 0;
1165             s->len = 0;
1166             s->state = STATE_COLLECTING_DATA;
1167         } else {
1168             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1169                           "QIO mode\n", s->cmd_in_progress);
1170         }
1171         break;
1172     case QPP:
1173     case QPP_4:
1174     case PP4_4:
1175         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1176             s->needed_bytes = get_addr_length(s);
1177             s->pos = 0;
1178             s->len = 0;
1179             s->state = STATE_COLLECTING_DATA;
1180         } else {
1181             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1182                           "DIO mode\n", s->cmd_in_progress);
1183         }
1184         break;
1185 
1186     case FAST_READ:
1187     case FAST_READ4:
1188         decode_fast_read_cmd(s);
1189         break;
1190     case DOR:
1191     case DOR4:
1192         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1193             decode_fast_read_cmd(s);
1194         } else {
1195             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1196                           "QIO mode\n", s->cmd_in_progress);
1197         }
1198         break;
1199     case QOR:
1200     case QOR4:
1201         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1202             decode_fast_read_cmd(s);
1203         } else {
1204             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1205                           "DIO mode\n", s->cmd_in_progress);
1206         }
1207         break;
1208 
1209     case DIOR:
1210     case DIOR4:
1211         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1212             decode_dio_read_cmd(s);
1213         } else {
1214             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1215                           "QIO mode\n", s->cmd_in_progress);
1216         }
1217         break;
1218 
1219     case QIOR:
1220     case QIOR4:
1221         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1222             decode_qio_read_cmd(s);
1223         } else {
1224             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1225                           "DIO mode\n", s->cmd_in_progress);
1226         }
1227         break;
1228 
1229     case WRSR:
1230         /*
1231          * If WP# is low and status_register_write_disabled is high,
1232          * status register writes are disabled.
1233          * This is also called "hardware protected mode" (HPM). All other
1234          * combinations of the two states are called "software protected mode"
1235          * (SPM), and status register writes are permitted.
1236          */
1237         if ((s->wp_level == 0 && s->status_register_write_disabled)
1238             || !s->write_enable) {
1239             qemu_log_mask(LOG_GUEST_ERROR,
1240                           "M25P80: Status register write is disabled!\n");
1241             break;
1242         }
1243 
1244         switch (get_man(s)) {
1245         case MAN_SPANSION:
1246             s->needed_bytes = 2;
1247             s->state = STATE_COLLECTING_DATA;
1248             break;
1249         case MAN_MACRONIX:
1250             s->needed_bytes = 2;
1251             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1252             break;
1253         default:
1254             s->needed_bytes = 1;
1255             s->state = STATE_COLLECTING_DATA;
1256         }
1257         s->pos = 0;
1258         break;
1259 
1260     case WRDI:
1261         s->write_enable = false;
1262         if (get_man(s) == MAN_SST) {
1263             s->aai_enable = false;
1264         }
1265         break;
1266     case WREN:
1267         s->write_enable = true;
1268         break;
1269 
1270     case RDSR:
1271         s->data[0] = (!!s->write_enable) << 1;
1272         s->data[0] |= (!!s->status_register_write_disabled) << 7;
1273         s->data[0] |= (!!s->block_protect0) << 2;
1274         s->data[0] |= (!!s->block_protect1) << 3;
1275         s->data[0] |= (!!s->block_protect2) << 4;
1276         if (s->pi->flags & HAS_SR_TB) {
1277             s->data[0] |= (!!s->top_bottom_bit) << 5;
1278         }
1279         if (s->pi->flags & HAS_SR_BP3_BIT6) {
1280             s->data[0] |= (!!s->block_protect3) << 6;
1281         }
1282 
1283         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1284             s->data[0] |= (!!s->quad_enable) << 6;
1285         }
1286         if (get_man(s) == MAN_SST) {
1287             s->data[0] |= (!!s->aai_enable) << 6;
1288         }
1289 
1290         s->pos = 0;
1291         s->len = 1;
1292         s->data_read_loop = true;
1293         s->state = STATE_READING_DATA;
1294         break;
1295 
1296     case READ_FSR:
1297         s->data[0] = FSR_FLASH_READY;
1298         if (s->four_bytes_address_mode) {
1299             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1300         }
1301         s->pos = 0;
1302         s->len = 1;
1303         s->data_read_loop = true;
1304         s->state = STATE_READING_DATA;
1305         break;
1306 
1307     case JEDEC_READ:
1308         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1309             trace_m25p80_populated_jedec(s);
1310             for (i = 0; i < s->pi->id_len; i++) {
1311                 s->data[i] = s->pi->id[i];
1312             }
1313             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1314                 s->data[i] = 0;
1315             }
1316 
1317             s->len = SPI_NOR_MAX_ID_LEN;
1318             s->pos = 0;
1319             s->state = STATE_READING_DATA;
1320         } else {
1321             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1322                           "in DIO or QIO mode\n");
1323         }
1324         break;
1325 
1326     case RDCR:
1327         s->data[0] = s->volatile_cfg & 0xFF;
1328         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1329         s->pos = 0;
1330         s->len = 1;
1331         s->state = STATE_READING_DATA;
1332         break;
1333 
1334     case BULK_ERASE_60:
1335     case BULK_ERASE:
1336         if (s->write_enable) {
1337             trace_m25p80_chip_erase(s);
1338             flash_erase(s, 0, BULK_ERASE);
1339         } else {
1340             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1341                           "protect!\n");
1342         }
1343         break;
1344     case NOP:
1345         break;
1346     case EN_4BYTE_ADDR:
1347         s->four_bytes_address_mode = true;
1348         break;
1349     case EX_4BYTE_ADDR:
1350         s->four_bytes_address_mode = false;
1351         break;
1352     case BRRD:
1353     case EXTEND_ADDR_READ:
1354         s->data[0] = s->ear;
1355         s->pos = 0;
1356         s->len = 1;
1357         s->state = STATE_READING_DATA;
1358         break;
1359     case BRWR:
1360     case EXTEND_ADDR_WRITE:
1361         if (s->write_enable) {
1362             s->needed_bytes = 1;
1363             s->pos = 0;
1364             s->len = 0;
1365             s->state = STATE_COLLECTING_DATA;
1366         }
1367         break;
1368     case RNVCR:
1369         s->data[0] = s->nonvolatile_cfg & 0xFF;
1370         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1371         s->pos = 0;
1372         s->len = 2;
1373         s->state = STATE_READING_DATA;
1374         break;
1375     case WNVCR:
1376         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1377             s->needed_bytes = 2;
1378             s->pos = 0;
1379             s->len = 0;
1380             s->state = STATE_COLLECTING_DATA;
1381         }
1382         break;
1383     case RVCR:
1384         s->data[0] = s->volatile_cfg & 0xFF;
1385         s->pos = 0;
1386         s->len = 1;
1387         s->state = STATE_READING_DATA;
1388         break;
1389     case WVCR:
1390         if (s->write_enable) {
1391             s->needed_bytes = 1;
1392             s->pos = 0;
1393             s->len = 0;
1394             s->state = STATE_COLLECTING_DATA;
1395         }
1396         break;
1397     case REVCR:
1398         s->data[0] = s->enh_volatile_cfg & 0xFF;
1399         s->pos = 0;
1400         s->len = 1;
1401         s->state = STATE_READING_DATA;
1402         break;
1403     case WEVCR:
1404         if (s->write_enable) {
1405             s->needed_bytes = 1;
1406             s->pos = 0;
1407             s->len = 0;
1408             s->state = STATE_COLLECTING_DATA;
1409         }
1410         break;
1411     case RESET_ENABLE:
1412         s->reset_enable = true;
1413         break;
1414     case RESET_MEMORY:
1415         if (s->reset_enable) {
1416             reset_memory(s);
1417         }
1418         break;
1419     case RDCR_EQIO:
1420         switch (get_man(s)) {
1421         case MAN_SPANSION:
1422             s->data[0] = (!!s->quad_enable) << 1;
1423             s->pos = 0;
1424             s->len = 1;
1425             s->state = STATE_READING_DATA;
1426             break;
1427         case MAN_MACRONIX:
1428             s->quad_enable = true;
1429             break;
1430         default:
1431             break;
1432         }
1433         break;
1434     case RSTQIO:
1435         s->quad_enable = false;
1436         break;
1437     case AAI_WP:
1438         if (get_man(s) == MAN_SST) {
1439             if (s->write_enable) {
1440                 if (s->aai_enable) {
1441                     s->state = STATE_PAGE_PROGRAM;
1442                 } else {
1443                     s->aai_enable = true;
1444                     s->needed_bytes = get_addr_length(s);
1445                     s->state = STATE_COLLECTING_DATA;
1446                 }
1447             } else {
1448                 qemu_log_mask(LOG_GUEST_ERROR,
1449                               "M25P80: AAI_WP with write protect\n");
1450             }
1451         } else {
1452             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1453         }
1454         break;
1455     case RDSFDP:
1456         if (s->pi->sfdp_read) {
1457             s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1458             s->pos = 0;
1459             s->len = 0;
1460             s->state = STATE_COLLECTING_DATA;
1461             break;
1462         }
1463         /* Fallthrough */
1464 
1465     default:
1466         s->pos = 0;
1467         s->len = 1;
1468         s->state = STATE_READING_DATA;
1469         s->data_read_loop = true;
1470         s->data[0] = 0;
1471         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1472         break;
1473     }
1474 }
1475 
1476 static int m25p80_cs(SSIPeripheral *ss, bool select)
1477 {
1478     Flash *s = M25P80(ss);
1479 
1480     if (select) {
1481         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1482             complete_collecting_data(s);
1483         }
1484         s->len = 0;
1485         s->pos = 0;
1486         s->state = STATE_IDLE;
1487         flash_sync_dirty(s, -1);
1488         s->data_read_loop = false;
1489     }
1490 
1491     trace_m25p80_select(s, select ? "de" : "");
1492 
1493     return 0;
1494 }
1495 
1496 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1497 {
1498     Flash *s = M25P80(ss);
1499     uint32_t r = 0;
1500 
1501     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1502                           s->cur_addr, (uint8_t)tx);
1503 
1504     switch (s->state) {
1505 
1506     case STATE_PAGE_PROGRAM:
1507         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1508         flash_write8(s, s->cur_addr, (uint8_t)tx);
1509         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1510 
1511         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1512             /*
1513              * There is no wrap mode during AAI programming once the highest
1514              * unprotected memory address is reached. The Write-Enable-Latch
1515              * bit is automatically reset, and AAI programming mode aborts.
1516              */
1517             s->write_enable = false;
1518             s->aai_enable = false;
1519         }
1520 
1521         break;
1522 
1523     case STATE_READ:
1524         r = s->storage[s->cur_addr];
1525         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1526         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1527         break;
1528 
1529     case STATE_COLLECTING_DATA:
1530     case STATE_COLLECTING_VAR_LEN_DATA:
1531 
1532         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1533             qemu_log_mask(LOG_GUEST_ERROR,
1534                           "M25P80: Write overrun internal data buffer. "
1535                           "SPI controller (QEMU emulator or guest driver) "
1536                           "is misbehaving\n");
1537             s->len = s->pos = 0;
1538             s->state = STATE_IDLE;
1539             break;
1540         }
1541 
1542         s->data[s->len] = (uint8_t)tx;
1543         s->len++;
1544 
1545         if (s->len == s->needed_bytes) {
1546             complete_collecting_data(s);
1547         }
1548         break;
1549 
1550     case STATE_READING_DATA:
1551 
1552         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1553             qemu_log_mask(LOG_GUEST_ERROR,
1554                           "M25P80: Read overrun internal data buffer. "
1555                           "SPI controller (QEMU emulator or guest driver) "
1556                           "is misbehaving\n");
1557             s->len = s->pos = 0;
1558             s->state = STATE_IDLE;
1559             break;
1560         }
1561 
1562         r = s->data[s->pos];
1563         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1564         s->pos++;
1565         if (s->pos == s->len) {
1566             s->pos = 0;
1567             if (!s->data_read_loop) {
1568                 s->state = STATE_IDLE;
1569             }
1570         }
1571         break;
1572     case STATE_READING_SFDP:
1573         assert(s->pi->sfdp_read);
1574         r = s->pi->sfdp_read(s->cur_addr);
1575         trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1576         s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1577         break;
1578 
1579     default:
1580     case STATE_IDLE:
1581         decode_new_cmd(s, (uint8_t)tx);
1582         break;
1583     }
1584 
1585     return r;
1586 }
1587 
1588 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1589 {
1590     Flash *s = M25P80(opaque);
1591     /* WP# is just a single pin. */
1592     assert(n == 0);
1593     s->wp_level = !!level;
1594 }
1595 
1596 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1597 {
1598     Flash *s = M25P80(ss);
1599     M25P80Class *mc = M25P80_GET_CLASS(s);
1600     int ret;
1601 
1602     s->pi = mc->pi;
1603 
1604     s->size = s->pi->sector_size * s->pi->n_sectors;
1605     s->dirty_page = -1;
1606 
1607     if (s->blk) {
1608         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1609                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1610         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1611         if (ret < 0) {
1612             return;
1613         }
1614 
1615         trace_m25p80_binding(s);
1616         s->storage = blk_blockalign(s->blk, s->size);
1617 
1618         if (blk_pread(s->blk, 0, s->size, s->storage, 0) < 0) {
1619             error_setg(errp, "failed to read the initial flash content");
1620             return;
1621         }
1622     } else {
1623         trace_m25p80_binding_no_bdrv(s);
1624         s->storage = blk_blockalign(NULL, s->size);
1625         memset(s->storage, 0xFF, s->size);
1626     }
1627 
1628     qdev_init_gpio_in_named(DEVICE(s),
1629                             m25p80_write_protect_pin_irq_handler, "WP#", 1);
1630 }
1631 
1632 static void m25p80_reset(DeviceState *d)
1633 {
1634     Flash *s = M25P80(d);
1635 
1636     s->wp_level = true;
1637     s->status_register_write_disabled = false;
1638     s->block_protect0 = false;
1639     s->block_protect1 = false;
1640     s->block_protect2 = false;
1641     s->block_protect3 = false;
1642     s->top_bottom_bit = false;
1643 
1644     reset_memory(s);
1645 }
1646 
1647 static int m25p80_pre_save(void *opaque)
1648 {
1649     flash_sync_dirty((Flash *)opaque, -1);
1650 
1651     return 0;
1652 }
1653 
1654 static Property m25p80_properties[] = {
1655     /* This is default value for Micron flash */
1656     DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1657     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1658     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1659     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1660     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1661     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1662     DEFINE_PROP_DRIVE("drive", Flash, blk),
1663     DEFINE_PROP_END_OF_LIST(),
1664 };
1665 
1666 static int m25p80_pre_load(void *opaque)
1667 {
1668     Flash *s = (Flash *)opaque;
1669 
1670     s->data_read_loop = false;
1671     return 0;
1672 }
1673 
1674 static bool m25p80_data_read_loop_needed(void *opaque)
1675 {
1676     Flash *s = (Flash *)opaque;
1677 
1678     return s->data_read_loop;
1679 }
1680 
1681 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1682     .name = "m25p80/data_read_loop",
1683     .version_id = 1,
1684     .minimum_version_id = 1,
1685     .needed = m25p80_data_read_loop_needed,
1686     .fields = (VMStateField[]) {
1687         VMSTATE_BOOL(data_read_loop, Flash),
1688         VMSTATE_END_OF_LIST()
1689     }
1690 };
1691 
1692 static bool m25p80_aai_enable_needed(void *opaque)
1693 {
1694     Flash *s = (Flash *)opaque;
1695 
1696     return s->aai_enable;
1697 }
1698 
1699 static const VMStateDescription vmstate_m25p80_aai_enable = {
1700     .name = "m25p80/aai_enable",
1701     .version_id = 1,
1702     .minimum_version_id = 1,
1703     .needed = m25p80_aai_enable_needed,
1704     .fields = (VMStateField[]) {
1705         VMSTATE_BOOL(aai_enable, Flash),
1706         VMSTATE_END_OF_LIST()
1707     }
1708 };
1709 
1710 static bool m25p80_wp_level_srwd_needed(void *opaque)
1711 {
1712     Flash *s = (Flash *)opaque;
1713 
1714     return !s->wp_level || s->status_register_write_disabled;
1715 }
1716 
1717 static const VMStateDescription vmstate_m25p80_write_protect = {
1718     .name = "m25p80/write_protect",
1719     .version_id = 1,
1720     .minimum_version_id = 1,
1721     .needed = m25p80_wp_level_srwd_needed,
1722     .fields = (VMStateField[]) {
1723         VMSTATE_BOOL(wp_level, Flash),
1724         VMSTATE_BOOL(status_register_write_disabled, Flash),
1725         VMSTATE_END_OF_LIST()
1726     }
1727 };
1728 
1729 static bool m25p80_block_protect_needed(void *opaque)
1730 {
1731     Flash *s = (Flash *)opaque;
1732 
1733     return s->block_protect0 ||
1734            s->block_protect1 ||
1735            s->block_protect2 ||
1736            s->block_protect3 ||
1737            s->top_bottom_bit;
1738 }
1739 
1740 static const VMStateDescription vmstate_m25p80_block_protect = {
1741     .name = "m25p80/block_protect",
1742     .version_id = 1,
1743     .minimum_version_id = 1,
1744     .needed = m25p80_block_protect_needed,
1745     .fields = (VMStateField[]) {
1746         VMSTATE_BOOL(block_protect0, Flash),
1747         VMSTATE_BOOL(block_protect1, Flash),
1748         VMSTATE_BOOL(block_protect2, Flash),
1749         VMSTATE_BOOL(block_protect3, Flash),
1750         VMSTATE_BOOL(top_bottom_bit, Flash),
1751         VMSTATE_END_OF_LIST()
1752     }
1753 };
1754 
1755 static const VMStateDescription vmstate_m25p80 = {
1756     .name = "m25p80",
1757     .version_id = 0,
1758     .minimum_version_id = 0,
1759     .pre_save = m25p80_pre_save,
1760     .pre_load = m25p80_pre_load,
1761     .fields = (VMStateField[]) {
1762         VMSTATE_UINT8(state, Flash),
1763         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1764         VMSTATE_UINT32(len, Flash),
1765         VMSTATE_UINT32(pos, Flash),
1766         VMSTATE_UINT8(needed_bytes, Flash),
1767         VMSTATE_UINT8(cmd_in_progress, Flash),
1768         VMSTATE_UINT32(cur_addr, Flash),
1769         VMSTATE_BOOL(write_enable, Flash),
1770         VMSTATE_BOOL(reset_enable, Flash),
1771         VMSTATE_UINT8(ear, Flash),
1772         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1773         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1774         VMSTATE_UINT32(volatile_cfg, Flash),
1775         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1776         VMSTATE_BOOL(quad_enable, Flash),
1777         VMSTATE_UINT8(spansion_cr1nv, Flash),
1778         VMSTATE_UINT8(spansion_cr2nv, Flash),
1779         VMSTATE_UINT8(spansion_cr3nv, Flash),
1780         VMSTATE_UINT8(spansion_cr4nv, Flash),
1781         VMSTATE_END_OF_LIST()
1782     },
1783     .subsections = (const VMStateDescription * []) {
1784         &vmstate_m25p80_data_read_loop,
1785         &vmstate_m25p80_aai_enable,
1786         &vmstate_m25p80_write_protect,
1787         &vmstate_m25p80_block_protect,
1788         NULL
1789     }
1790 };
1791 
1792 static void m25p80_class_init(ObjectClass *klass, void *data)
1793 {
1794     DeviceClass *dc = DEVICE_CLASS(klass);
1795     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1796     M25P80Class *mc = M25P80_CLASS(klass);
1797 
1798     k->realize = m25p80_realize;
1799     k->transfer = m25p80_transfer8;
1800     k->set_cs = m25p80_cs;
1801     k->cs_polarity = SSI_CS_LOW;
1802     dc->vmsd = &vmstate_m25p80;
1803     device_class_set_props(dc, m25p80_properties);
1804     dc->reset = m25p80_reset;
1805     mc->pi = data;
1806 }
1807 
1808 static const TypeInfo m25p80_info = {
1809     .name           = TYPE_M25P80,
1810     .parent         = TYPE_SSI_PERIPHERAL,
1811     .instance_size  = sizeof(Flash),
1812     .class_size     = sizeof(M25P80Class),
1813     .abstract       = true,
1814 };
1815 
1816 static void m25p80_register_types(void)
1817 {
1818     int i;
1819 
1820     type_register_static(&m25p80_info);
1821     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1822         TypeInfo ti = {
1823             .name       = known_devices[i].part_name,
1824             .parent     = TYPE_M25P80,
1825             .class_init = m25p80_class_init,
1826             .class_data = (void *)&known_devices[i],
1827         };
1828         type_register(&ti);
1829     }
1830 }
1831 
1832 type_init(m25p80_register_types)
1833