xref: /qemu/hw/block/m25p80.c (revision 19f9c044)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/block/block.h"
28 #include "hw/block/flash.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/ssi/ssi.h"
32 #include "migration/vmstate.h"
33 #include "qemu/bitops.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "qemu/error-report.h"
37 #include "qapi/error.h"
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "m25p80_sfdp.h"
41 
42 /* 16 MiB max in 3 byte address mode */
43 #define MAX_3BYTES_SIZE 0x1000000
44 #define SPI_NOR_MAX_ID_LEN 6
45 
46 /* Fields for FlashPartInfo->flags */
47 enum spi_flash_option_flags {
48     ER_4K                  = BIT(0),
49     ER_32K                 = BIT(1),
50     EEPROM                 = BIT(2),
51     HAS_SR_TB              = BIT(3),
52     HAS_SR_BP3_BIT6        = BIT(4),
53 };
54 
55 typedef struct FlashPartInfo {
56     const char *part_name;
57     /*
58      * This array stores the ID bytes.
59      * The first three bytes are the JEDIC ID.
60      * JEDEC ID zero means "no ID" (mostly older chips).
61      */
62     uint8_t id[SPI_NOR_MAX_ID_LEN];
63     uint8_t id_len;
64     /* there is confusion between manufacturers as to what a sector is. In this
65      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
66      * command (opcode 0xd8).
67      */
68     uint32_t sector_size;
69     uint32_t n_sectors;
70     uint32_t page_size;
71     uint16_t flags;
72     /*
73      * Big sized spi nor are often stacked devices, thus sometime
74      * replace chip erase with die erase.
75      * This field inform how many die is in the chip.
76      */
77     uint8_t die_cnt;
78     uint8_t (*sfdp_read)(uint32_t sfdp_addr);
79 } FlashPartInfo;
80 
81 /* adapted from linux */
82 /* Used when the "_ext_id" is two bytes at most */
83 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
84     .part_name = _part_name,\
85     .id = {\
86         ((_jedec_id) >> 16) & 0xff,\
87         ((_jedec_id) >> 8) & 0xff,\
88         (_jedec_id) & 0xff,\
89         ((_ext_id) >> 8) & 0xff,\
90         (_ext_id) & 0xff,\
91           },\
92     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
93     .sector_size = (_sector_size),\
94     .n_sectors = (_n_sectors),\
95     .page_size = 256,\
96     .flags = (_flags),\
97     .die_cnt = 0
98 
99 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
100     .part_name = _part_name,\
101     .id = {\
102         ((_jedec_id) >> 16) & 0xff,\
103         ((_jedec_id) >> 8) & 0xff,\
104         (_jedec_id) & 0xff,\
105         ((_ext_id) >> 16) & 0xff,\
106         ((_ext_id) >> 8) & 0xff,\
107         (_ext_id) & 0xff,\
108           },\
109     .id_len = 6,\
110     .sector_size = (_sector_size),\
111     .n_sectors = (_n_sectors),\
112     .page_size = 256,\
113     .flags = (_flags),\
114     .die_cnt = 0
115 
116 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
117                     _flags, _die_cnt)\
118     .part_name = _part_name,\
119     .id = {\
120         ((_jedec_id) >> 16) & 0xff,\
121         ((_jedec_id) >> 8) & 0xff,\
122         (_jedec_id) & 0xff,\
123         ((_ext_id) >> 8) & 0xff,\
124         (_ext_id) & 0xff,\
125           },\
126     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
127     .sector_size = (_sector_size),\
128     .n_sectors = (_n_sectors),\
129     .page_size = 256,\
130     .flags = (_flags),\
131     .die_cnt = _die_cnt
132 
133 #define JEDEC_NUMONYX 0x20
134 #define JEDEC_WINBOND 0xEF
135 #define JEDEC_SPANSION 0x01
136 
137 /* Numonyx (Micron) Configuration register macros */
138 #define VCFG_DUMMY 0x1
139 #define VCFG_WRAP_SEQUENTIAL 0x2
140 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
141 #define NVCFG_XIP_MODE_MASK (7 << 9)
142 #define VCFG_XIP_MODE_DISABLED (1 << 3)
143 #define CFG_DUMMY_CLK_LEN 4
144 #define NVCFG_DUMMY_CLK_POS 12
145 #define VCFG_DUMMY_CLK_POS 4
146 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
147 #define EVCFG_VPP_ACCELERATOR (1 << 3)
148 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
149 #define NVCFG_DUAL_IO_MASK (1 << 2)
150 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
151 #define NVCFG_QUAD_IO_MASK (1 << 3)
152 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
153 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
154 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
155 
156 /* Numonyx (Micron) Flag Status Register macros */
157 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
158 #define FSR_FLASH_READY (1 << 7)
159 
160 /* Spansion configuration registers macros. */
161 #define SPANSION_QUAD_CFG_POS 0
162 #define SPANSION_QUAD_CFG_LEN 1
163 #define SPANSION_DUMMY_CLK_POS 0
164 #define SPANSION_DUMMY_CLK_LEN 4
165 #define SPANSION_ADDR_LEN_POS 7
166 #define SPANSION_ADDR_LEN_LEN 1
167 
168 /*
169  * Spansion read mode command length in bytes,
170  * the mode is currently not supported.
171 */
172 
173 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
174 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
175 
176 static const FlashPartInfo known_devices[] = {
177     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
178     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
179     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
180 
181     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
182     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
183     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
184 
185     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
186     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
187     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
188     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
189 
190     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
191 
192     /* Atmel EEPROMS - it is assumed, that don't care bit in command
193      * is set to 0. Block protection is not supported.
194      */
195     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
196     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
197 
198     /* EON -- en25xxx */
199     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
200     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
201     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
202     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
203     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
204 
205     /* GigaDevice */
206     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
207     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
208 
209     /* Intel/Numonyx -- xxxs33b */
210     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
211     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
212     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
213     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
214 
215     /* ISSI */
216     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
217     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
218     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
219     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
220     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
221     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
222     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
223     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
224     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
225     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
226     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K),
227       .sfdp_read = m25p80_sfdp_is25wp256 },
228 
229     /* Macronix */
230     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
231     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
232     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
233     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
234     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
235     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
236     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
237     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
238     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512,
239             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
240     { INFO6("mx25l25635f", 0xc22019,     0xc22019,  64 << 10, 512,
241             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
242     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
243     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
244     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
245     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
246     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K),
247       .sfdp_read = m25p80_sfdp_mx66l1g45g },
248 
249     /* Micron */
250     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
251     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
252     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
253     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
254     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
255     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
256     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
257     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K),
258       .sfdp_read = m25p80_sfdp_n25q256a },
259     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
260     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
261     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
262     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
263            ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
264       .sfdp_read = m25p80_sfdp_n25q256a },
265    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
266     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
267     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
268     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
269                    ER_4K | ER_32K, 2) },
270     { INFO_STACKED("mt35xu02gbba", 0x2c5b1c, 0x104100, 128 << 10, 2048,
271                    ER_4K | ER_32K, 4),
272                    .sfdp_read = m25p80_sfdp_mt35xu02g },
273     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
274     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
275     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
276     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
277     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
278     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
279 
280     /* Spansion -- single (large) sector size only, at least
281      * for the chips listed here (without boot sectors).
282      */
283     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
284     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
285     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
286     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
287     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
288     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
289     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
290     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
291     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
292     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
293     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
294     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
295     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
296     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
297     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
298     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
299     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
300 
301     /* Spansion --  boot sectors support  */
302     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
303     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
304 
305     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
306     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
307     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
308     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
309     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
310     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
311     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
312     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
313     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
314     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
315 
316     /* ST Microelectronics -- newer production may have feature updates */
317     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
318     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
319     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
320     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
321     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
322     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
323     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
324     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
325     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
326     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
327 
328     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
329     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
330     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
331 
332     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
333     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
334     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
335 
336     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
337     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
338     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
339     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
340 
341     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
342     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
343     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
344     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
345     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
346     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
347     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
348     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
349     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
350     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
351     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
352     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
353     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
354     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K),
355       .sfdp_read = m25p80_sfdp_w25q256 },
356     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K),
357       .sfdp_read = m25p80_sfdp_w25q512jv },
358     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K),
359       .sfdp_read = m25p80_sfdp_w25q01jvq },
360 };
361 
362 typedef enum {
363     NOP = 0,
364     WRSR = 0x1,
365     WRDI = 0x4,
366     RDSR = 0x5,
367     WREN = 0x6,
368     BRRD = 0x16,
369     BRWR = 0x17,
370     JEDEC_READ = 0x9f,
371     BULK_ERASE_60 = 0x60,
372     BULK_ERASE = 0xc7,
373     READ_FSR = 0x70,
374     RDCR = 0x15,
375     RDSFDP = 0x5a,
376 
377     READ = 0x03,
378     READ4 = 0x13,
379     FAST_READ = 0x0b,
380     FAST_READ4 = 0x0c,
381     DOR = 0x3b,
382     DOR4 = 0x3c,
383     QOR = 0x6b,
384     QOR4 = 0x6c,
385     DIOR = 0xbb,
386     DIOR4 = 0xbc,
387     QIOR = 0xeb,
388     QIOR4 = 0xec,
389 
390     PP = 0x02,
391     PP4 = 0x12,
392     PP4_4 = 0x3e,
393     DPP = 0xa2,
394     QPP = 0x32,
395     QPP_4 = 0x34,
396     RDID_90 = 0x90,
397     RDID_AB = 0xab,
398     AAI_WP = 0xad,
399 
400     ERASE_4K = 0x20,
401     ERASE4_4K = 0x21,
402     ERASE_32K = 0x52,
403     ERASE4_32K = 0x5c,
404     ERASE_SECTOR = 0xd8,
405     ERASE4_SECTOR = 0xdc,
406 
407     EN_4BYTE_ADDR = 0xB7,
408     EX_4BYTE_ADDR = 0xE9,
409 
410     EXTEND_ADDR_READ = 0xC8,
411     EXTEND_ADDR_WRITE = 0xC5,
412 
413     RESET_ENABLE = 0x66,
414     RESET_MEMORY = 0x99,
415 
416     /*
417      * Micron: 0x35 - enable QPI
418      * Spansion: 0x35 - read control register
419      */
420     RDCR_EQIO = 0x35,
421     RSTQIO = 0xf5,
422 
423     RNVCR = 0xB5,
424     WNVCR = 0xB1,
425 
426     RVCR = 0x85,
427     WVCR = 0x81,
428 
429     REVCR = 0x65,
430     WEVCR = 0x61,
431 
432     DIE_ERASE = 0xC4,
433 } FlashCMD;
434 
435 typedef enum {
436     STATE_IDLE,
437     STATE_PAGE_PROGRAM,
438     STATE_READ,
439     STATE_COLLECTING_DATA,
440     STATE_COLLECTING_VAR_LEN_DATA,
441     STATE_READING_DATA,
442     STATE_READING_SFDP,
443 } CMDState;
444 
445 typedef enum {
446     MAN_SPANSION,
447     MAN_MACRONIX,
448     MAN_NUMONYX,
449     MAN_WINBOND,
450     MAN_SST,
451     MAN_ISSI,
452     MAN_GENERIC,
453 } Manufacturer;
454 
455 typedef enum {
456     MODE_STD = 0,
457     MODE_DIO = 1,
458     MODE_QIO = 2
459 } SPIMode;
460 
461 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
462 
463 struct Flash {
464     SSIPeripheral parent_obj;
465 
466     BlockBackend *blk;
467 
468     uint8_t *storage;
469     uint32_t size;
470     int page_size;
471 
472     uint8_t state;
473     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
474     uint32_t len;
475     uint32_t pos;
476     bool data_read_loop;
477     uint8_t needed_bytes;
478     uint8_t cmd_in_progress;
479     uint32_t cur_addr;
480     uint32_t nonvolatile_cfg;
481     /* Configuration register for Macronix */
482     uint32_t volatile_cfg;
483     uint32_t enh_volatile_cfg;
484     /* Spansion cfg registers. */
485     uint8_t spansion_cr1nv;
486     uint8_t spansion_cr2nv;
487     uint8_t spansion_cr3nv;
488     uint8_t spansion_cr4nv;
489     uint8_t spansion_cr1v;
490     uint8_t spansion_cr2v;
491     uint8_t spansion_cr3v;
492     uint8_t spansion_cr4v;
493     bool wp_level;
494     bool write_enable;
495     bool four_bytes_address_mode;
496     bool reset_enable;
497     bool quad_enable;
498     bool aai_enable;
499     bool block_protect0;
500     bool block_protect1;
501     bool block_protect2;
502     bool block_protect3;
503     bool top_bottom_bit;
504     bool status_register_write_disabled;
505     uint8_t ear;
506 
507     int64_t dirty_page;
508 
509     const FlashPartInfo *pi;
510 
511 };
512 
513 struct M25P80Class {
514     SSIPeripheralClass parent_class;
515     FlashPartInfo *pi;
516 };
517 
518 #define TYPE_M25P80 "m25p80-generic"
519 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
520 
521 static inline Manufacturer get_man(Flash *s)
522 {
523     switch (s->pi->id[0]) {
524     case 0x20:
525         return MAN_NUMONYX;
526     case 0xEF:
527         return MAN_WINBOND;
528     case 0x01:
529         return MAN_SPANSION;
530     case 0xC2:
531         return MAN_MACRONIX;
532     case 0xBF:
533         return MAN_SST;
534     case 0x9D:
535         return MAN_ISSI;
536     default:
537         return MAN_GENERIC;
538     }
539 }
540 
541 static void blk_sync_complete(void *opaque, int ret)
542 {
543     QEMUIOVector *iov = opaque;
544 
545     qemu_iovec_destroy(iov);
546     g_free(iov);
547 
548     /* do nothing. Masters do not directly interact with the backing store,
549      * only the working copy so no mutexing required.
550      */
551 }
552 
553 static void flash_sync_page(Flash *s, int page)
554 {
555     QEMUIOVector *iov;
556 
557     if (!s->blk || !blk_is_writable(s->blk)) {
558         return;
559     }
560 
561     iov = g_new(QEMUIOVector, 1);
562     qemu_iovec_init(iov, 1);
563     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
564                    s->pi->page_size);
565     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
566                     blk_sync_complete, iov);
567 }
568 
569 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
570 {
571     QEMUIOVector *iov;
572 
573     if (!s->blk || !blk_is_writable(s->blk)) {
574         return;
575     }
576 
577     assert(!(len % BDRV_SECTOR_SIZE));
578     iov = g_new(QEMUIOVector, 1);
579     qemu_iovec_init(iov, 1);
580     qemu_iovec_add(iov, s->storage + off, len);
581     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
582 }
583 
584 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
585 {
586     uint32_t len;
587     uint8_t capa_to_assert = 0;
588 
589     switch (cmd) {
590     case ERASE_4K:
591     case ERASE4_4K:
592         len = 4 * KiB;
593         capa_to_assert = ER_4K;
594         break;
595     case ERASE_32K:
596     case ERASE4_32K:
597         len = 32 * KiB;
598         capa_to_assert = ER_32K;
599         break;
600     case ERASE_SECTOR:
601     case ERASE4_SECTOR:
602         len = s->pi->sector_size;
603         break;
604     case BULK_ERASE:
605         len = s->size;
606         break;
607     case DIE_ERASE:
608         if (s->pi->die_cnt) {
609             len = s->size / s->pi->die_cnt;
610             offset = offset & (~(len - 1));
611         } else {
612             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
613                           " by device\n");
614             return;
615         }
616         break;
617     default:
618         abort();
619     }
620 
621     trace_m25p80_flash_erase(s, offset, len);
622 
623     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
624         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
625                       " device\n", len);
626     }
627 
628     if (!s->write_enable) {
629         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
630         return;
631     }
632     memset(s->storage + offset, 0xff, len);
633     flash_sync_area(s, offset, len);
634 }
635 
636 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
637 {
638     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
639         flash_sync_page(s, s->dirty_page);
640         s->dirty_page = newpage;
641     }
642 }
643 
644 static inline
645 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
646 {
647     uint32_t page = addr / s->pi->page_size;
648     uint8_t prev = s->storage[s->cur_addr];
649     uint32_t block_protect_value = (s->block_protect3 << 3) |
650                                    (s->block_protect2 << 2) |
651                                    (s->block_protect1 << 1) |
652                                    (s->block_protect0 << 0);
653 
654     if (!s->write_enable) {
655         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
656         return;
657     }
658 
659     if (block_protect_value > 0) {
660         uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
661         uint32_t sector = addr / s->pi->sector_size;
662 
663         /* top_bottom_bit == 0 means TOP */
664         if (!s->top_bottom_bit) {
665             if (s->pi->n_sectors <= sector + num_protected_sectors) {
666                 qemu_log_mask(LOG_GUEST_ERROR,
667                               "M25P80: write with write protect!\n");
668                 return;
669             }
670         } else {
671             if (sector < num_protected_sectors) {
672                 qemu_log_mask(LOG_GUEST_ERROR,
673                               "M25P80: write with write protect!\n");
674                 return;
675             }
676         }
677     }
678 
679     if ((prev ^ data) & data) {
680         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
681     }
682 
683     if (s->pi->flags & EEPROM) {
684         s->storage[s->cur_addr] = data;
685     } else {
686         s->storage[s->cur_addr] &= data;
687     }
688 
689     flash_sync_dirty(s, page);
690     s->dirty_page = page;
691 }
692 
693 static inline int get_addr_length(Flash *s)
694 {
695    /* check if eeprom is in use */
696     if (s->pi->flags == EEPROM) {
697         return 2;
698     }
699 
700    switch (s->cmd_in_progress) {
701    case RDSFDP:
702        return 3;
703    case PP4:
704    case PP4_4:
705    case QPP_4:
706    case READ4:
707    case QIOR4:
708    case ERASE4_4K:
709    case ERASE4_32K:
710    case ERASE4_SECTOR:
711    case FAST_READ4:
712    case DOR4:
713    case QOR4:
714    case DIOR4:
715        return 4;
716    default:
717        return s->four_bytes_address_mode ? 4 : 3;
718    }
719 }
720 
721 static void complete_collecting_data(Flash *s)
722 {
723     int i, n;
724 
725     n = get_addr_length(s);
726     s->cur_addr = (n == 3 ? s->ear : 0);
727     for (i = 0; i < n; ++i) {
728         s->cur_addr <<= 8;
729         s->cur_addr |= s->data[i];
730     }
731 
732     s->cur_addr &= s->size - 1;
733 
734     s->state = STATE_IDLE;
735 
736     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
737                                      s->cur_addr);
738 
739     switch (s->cmd_in_progress) {
740     case DPP:
741     case QPP:
742     case QPP_4:
743     case PP:
744     case PP4:
745     case PP4_4:
746         s->state = STATE_PAGE_PROGRAM;
747         break;
748     case AAI_WP:
749         /* AAI programming starts from the even address */
750         s->cur_addr &= ~BIT(0);
751         s->state = STATE_PAGE_PROGRAM;
752         break;
753     case READ:
754     case READ4:
755     case FAST_READ:
756     case FAST_READ4:
757     case DOR:
758     case DOR4:
759     case QOR:
760     case QOR4:
761     case DIOR:
762     case DIOR4:
763     case QIOR:
764     case QIOR4:
765         s->state = STATE_READ;
766         break;
767     case ERASE_4K:
768     case ERASE4_4K:
769     case ERASE_32K:
770     case ERASE4_32K:
771     case ERASE_SECTOR:
772     case ERASE4_SECTOR:
773     case DIE_ERASE:
774         flash_erase(s, s->cur_addr, s->cmd_in_progress);
775         break;
776     case WRSR:
777         s->status_register_write_disabled = extract32(s->data[0], 7, 1);
778         s->block_protect0 = extract32(s->data[0], 2, 1);
779         s->block_protect1 = extract32(s->data[0], 3, 1);
780         s->block_protect2 = extract32(s->data[0], 4, 1);
781         if (s->pi->flags & HAS_SR_TB) {
782             s->top_bottom_bit = extract32(s->data[0], 5, 1);
783         }
784         if (s->pi->flags & HAS_SR_BP3_BIT6) {
785             s->block_protect3 = extract32(s->data[0], 6, 1);
786         }
787 
788         switch (get_man(s)) {
789         case MAN_SPANSION:
790             s->quad_enable = !!(s->data[1] & 0x02);
791             break;
792         case MAN_ISSI:
793             s->quad_enable = extract32(s->data[0], 6, 1);
794             break;
795         case MAN_MACRONIX:
796             s->quad_enable = extract32(s->data[0], 6, 1);
797             if (s->len > 1) {
798                 s->volatile_cfg = s->data[1];
799                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
800             }
801             break;
802         default:
803             break;
804         }
805         if (s->write_enable) {
806             s->write_enable = false;
807         }
808         break;
809     case BRWR:
810     case EXTEND_ADDR_WRITE:
811         s->ear = s->data[0];
812         break;
813     case WNVCR:
814         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
815         break;
816     case WVCR:
817         s->volatile_cfg = s->data[0];
818         break;
819     case WEVCR:
820         s->enh_volatile_cfg = s->data[0];
821         break;
822     case RDID_90:
823     case RDID_AB:
824         if (get_man(s) == MAN_SST) {
825             if (s->cur_addr <= 1) {
826                 if (s->cur_addr) {
827                     s->data[0] = s->pi->id[2];
828                     s->data[1] = s->pi->id[0];
829                 } else {
830                     s->data[0] = s->pi->id[0];
831                     s->data[1] = s->pi->id[2];
832                 }
833                 s->pos = 0;
834                 s->len = 2;
835                 s->data_read_loop = true;
836                 s->state = STATE_READING_DATA;
837             } else {
838                 qemu_log_mask(LOG_GUEST_ERROR,
839                               "M25P80: Invalid read id address\n");
840             }
841         } else {
842             qemu_log_mask(LOG_GUEST_ERROR,
843                           "M25P80: Read id (command 0x90/0xAB) is not supported"
844                           " by device\n");
845         }
846         break;
847 
848     case RDSFDP:
849         s->state = STATE_READING_SFDP;
850         break;
851 
852     default:
853         break;
854     }
855 }
856 
857 static void reset_memory(Flash *s)
858 {
859     s->cmd_in_progress = NOP;
860     s->cur_addr = 0;
861     s->ear = 0;
862     s->four_bytes_address_mode = false;
863     s->len = 0;
864     s->needed_bytes = 0;
865     s->pos = 0;
866     s->state = STATE_IDLE;
867     s->write_enable = false;
868     s->reset_enable = false;
869     s->quad_enable = false;
870     s->aai_enable = false;
871 
872     switch (get_man(s)) {
873     case MAN_NUMONYX:
874         s->volatile_cfg = 0;
875         s->volatile_cfg |= VCFG_DUMMY;
876         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
877         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
878                                 == NVCFG_XIP_MODE_DISABLED) {
879             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
880         }
881         s->volatile_cfg |= deposit32(s->volatile_cfg,
882                             VCFG_DUMMY_CLK_POS,
883                             CFG_DUMMY_CLK_LEN,
884                             extract32(s->nonvolatile_cfg,
885                                         NVCFG_DUMMY_CLK_POS,
886                                         CFG_DUMMY_CLK_LEN)
887                             );
888 
889         s->enh_volatile_cfg = 0;
890         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
891         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
892         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
893         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
894             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
895         }
896         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
897             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
898         }
899         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
900             s->four_bytes_address_mode = true;
901         }
902         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
903             s->ear = s->size / MAX_3BYTES_SIZE - 1;
904         }
905         break;
906     case MAN_MACRONIX:
907         s->volatile_cfg = 0x7;
908         break;
909     case MAN_SPANSION:
910         s->spansion_cr1v = s->spansion_cr1nv;
911         s->spansion_cr2v = s->spansion_cr2nv;
912         s->spansion_cr3v = s->spansion_cr3nv;
913         s->spansion_cr4v = s->spansion_cr4nv;
914         s->quad_enable = extract32(s->spansion_cr1v,
915                                    SPANSION_QUAD_CFG_POS,
916                                    SPANSION_QUAD_CFG_LEN
917                                    );
918         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
919                 SPANSION_ADDR_LEN_POS,
920                 SPANSION_ADDR_LEN_LEN
921                 );
922         break;
923     default:
924         break;
925     }
926 
927     trace_m25p80_reset_done(s);
928 }
929 
930 static uint8_t numonyx_mode(Flash *s)
931 {
932     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
933         return MODE_QIO;
934     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
935         return MODE_DIO;
936     } else {
937         return MODE_STD;
938     }
939 }
940 
941 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
942 {
943     uint8_t num_dummies;
944     uint8_t mode;
945     assert(get_man(s) == MAN_NUMONYX);
946 
947     mode = numonyx_mode(s);
948     num_dummies = extract32(s->volatile_cfg, 4, 4);
949 
950     if (num_dummies == 0x0 || num_dummies == 0xf) {
951         switch (s->cmd_in_progress) {
952         case QIOR:
953         case QIOR4:
954             num_dummies = 10;
955             break;
956         default:
957             num_dummies = (mode == MODE_QIO) ? 10 : 8;
958             break;
959         }
960     }
961 
962     return num_dummies;
963 }
964 
965 static void decode_fast_read_cmd(Flash *s)
966 {
967     s->needed_bytes = get_addr_length(s);
968     switch (get_man(s)) {
969     /* Dummy cycles - modeled with bytes writes instead of bits */
970     case MAN_SST:
971         s->needed_bytes += 1;
972         break;
973     case MAN_WINBOND:
974         s->needed_bytes += 8;
975         break;
976     case MAN_NUMONYX:
977         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
978         break;
979     case MAN_MACRONIX:
980         if (extract32(s->volatile_cfg, 6, 2) == 1) {
981             s->needed_bytes += 6;
982         } else {
983             s->needed_bytes += 8;
984         }
985         break;
986     case MAN_SPANSION:
987         s->needed_bytes += extract32(s->spansion_cr2v,
988                                     SPANSION_DUMMY_CLK_POS,
989                                     SPANSION_DUMMY_CLK_LEN
990                                     );
991         break;
992     case MAN_ISSI:
993         /*
994          * The Fast Read instruction code is followed by address bytes and
995          * dummy cycles, transmitted via the SI line.
996          *
997          * The number of dummy cycles is configurable but this is currently
998          * unmodeled, hence the default value 8 is used.
999          *
1000          * QPI (Quad Peripheral Interface) mode has different default value
1001          * of dummy cycles, but this is unsupported at the time being.
1002          */
1003         s->needed_bytes += 1;
1004         break;
1005     default:
1006         break;
1007     }
1008     s->pos = 0;
1009     s->len = 0;
1010     s->state = STATE_COLLECTING_DATA;
1011 }
1012 
1013 static void decode_dio_read_cmd(Flash *s)
1014 {
1015     s->needed_bytes = get_addr_length(s);
1016     /* Dummy cycles modeled with bytes writes instead of bits */
1017     switch (get_man(s)) {
1018     case MAN_WINBOND:
1019         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1020         break;
1021     case MAN_SPANSION:
1022         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1023         s->needed_bytes += extract32(s->spansion_cr2v,
1024                                     SPANSION_DUMMY_CLK_POS,
1025                                     SPANSION_DUMMY_CLK_LEN
1026                                     );
1027         break;
1028     case MAN_NUMONYX:
1029         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1030         break;
1031     case MAN_MACRONIX:
1032         switch (extract32(s->volatile_cfg, 6, 2)) {
1033         case 1:
1034             s->needed_bytes += 6;
1035             break;
1036         case 2:
1037             s->needed_bytes += 8;
1038             break;
1039         default:
1040             s->needed_bytes += 4;
1041             break;
1042         }
1043         break;
1044     case MAN_ISSI:
1045         /*
1046          * The Fast Read Dual I/O instruction code is followed by address bytes
1047          * and dummy cycles, transmitted via the IO1 and IO0 line.
1048          *
1049          * The number of dummy cycles is configurable but this is currently
1050          * unmodeled, hence the default value 4 is used.
1051          */
1052         s->needed_bytes += 1;
1053         break;
1054     default:
1055         break;
1056     }
1057     s->pos = 0;
1058     s->len = 0;
1059     s->state = STATE_COLLECTING_DATA;
1060 }
1061 
1062 static void decode_qio_read_cmd(Flash *s)
1063 {
1064     s->needed_bytes = get_addr_length(s);
1065     /* Dummy cycles modeled with bytes writes instead of bits */
1066     switch (get_man(s)) {
1067     case MAN_WINBOND:
1068         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1069         s->needed_bytes += 4;
1070         break;
1071     case MAN_SPANSION:
1072         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1073         s->needed_bytes += extract32(s->spansion_cr2v,
1074                                     SPANSION_DUMMY_CLK_POS,
1075                                     SPANSION_DUMMY_CLK_LEN
1076                                     );
1077         break;
1078     case MAN_NUMONYX:
1079         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1080         break;
1081     case MAN_MACRONIX:
1082         switch (extract32(s->volatile_cfg, 6, 2)) {
1083         case 1:
1084             s->needed_bytes += 4;
1085             break;
1086         case 2:
1087             s->needed_bytes += 8;
1088             break;
1089         default:
1090             s->needed_bytes += 6;
1091             break;
1092         }
1093         break;
1094     case MAN_ISSI:
1095         /*
1096          * The Fast Read Quad I/O instruction code is followed by address bytes
1097          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1098          *
1099          * The number of dummy cycles is configurable but this is currently
1100          * unmodeled, hence the default value 6 is used.
1101          *
1102          * QPI (Quad Peripheral Interface) mode has different default value
1103          * of dummy cycles, but this is unsupported at the time being.
1104          */
1105         s->needed_bytes += 3;
1106         break;
1107     default:
1108         break;
1109     }
1110     s->pos = 0;
1111     s->len = 0;
1112     s->state = STATE_COLLECTING_DATA;
1113 }
1114 
1115 static bool is_valid_aai_cmd(uint32_t cmd)
1116 {
1117     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1118 }
1119 
1120 static void decode_new_cmd(Flash *s, uint32_t value)
1121 {
1122     int i;
1123 
1124     s->cmd_in_progress = value;
1125     trace_m25p80_command_decoded(s, value);
1126 
1127     if (value != RESET_MEMORY) {
1128         s->reset_enable = false;
1129     }
1130 
1131     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1132         qemu_log_mask(LOG_GUEST_ERROR,
1133                       "M25P80: Invalid cmd within AAI programming sequence");
1134     }
1135 
1136     switch (value) {
1137 
1138     case ERASE_4K:
1139     case ERASE4_4K:
1140     case ERASE_32K:
1141     case ERASE4_32K:
1142     case ERASE_SECTOR:
1143     case ERASE4_SECTOR:
1144     case PP:
1145     case PP4:
1146     case DIE_ERASE:
1147     case RDID_90:
1148     case RDID_AB:
1149         s->needed_bytes = get_addr_length(s);
1150         s->pos = 0;
1151         s->len = 0;
1152         s->state = STATE_COLLECTING_DATA;
1153         break;
1154     case READ:
1155     case READ4:
1156         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1157             s->needed_bytes = get_addr_length(s);
1158             s->pos = 0;
1159             s->len = 0;
1160             s->state = STATE_COLLECTING_DATA;
1161         } else {
1162             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1163                           "DIO or QIO mode\n", s->cmd_in_progress);
1164         }
1165         break;
1166     case DPP:
1167         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1168             s->needed_bytes = get_addr_length(s);
1169             s->pos = 0;
1170             s->len = 0;
1171             s->state = STATE_COLLECTING_DATA;
1172         } else {
1173             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1174                           "QIO mode\n", s->cmd_in_progress);
1175         }
1176         break;
1177     case QPP:
1178     case QPP_4:
1179     case PP4_4:
1180         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1181             s->needed_bytes = get_addr_length(s);
1182             s->pos = 0;
1183             s->len = 0;
1184             s->state = STATE_COLLECTING_DATA;
1185         } else {
1186             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1187                           "DIO mode\n", s->cmd_in_progress);
1188         }
1189         break;
1190 
1191     case FAST_READ:
1192     case FAST_READ4:
1193         decode_fast_read_cmd(s);
1194         break;
1195     case DOR:
1196     case DOR4:
1197         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1198             decode_fast_read_cmd(s);
1199         } else {
1200             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1201                           "QIO mode\n", s->cmd_in_progress);
1202         }
1203         break;
1204     case QOR:
1205     case QOR4:
1206         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1207             decode_fast_read_cmd(s);
1208         } else {
1209             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1210                           "DIO mode\n", s->cmd_in_progress);
1211         }
1212         break;
1213 
1214     case DIOR:
1215     case DIOR4:
1216         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1217             decode_dio_read_cmd(s);
1218         } else {
1219             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1220                           "QIO mode\n", s->cmd_in_progress);
1221         }
1222         break;
1223 
1224     case QIOR:
1225     case QIOR4:
1226         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1227             decode_qio_read_cmd(s);
1228         } else {
1229             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1230                           "DIO mode\n", s->cmd_in_progress);
1231         }
1232         break;
1233 
1234     case WRSR:
1235         /*
1236          * If WP# is low and status_register_write_disabled is high,
1237          * status register writes are disabled.
1238          * This is also called "hardware protected mode" (HPM). All other
1239          * combinations of the two states are called "software protected mode"
1240          * (SPM), and status register writes are permitted.
1241          */
1242         if ((s->wp_level == 0 && s->status_register_write_disabled)
1243             || !s->write_enable) {
1244             qemu_log_mask(LOG_GUEST_ERROR,
1245                           "M25P80: Status register write is disabled!\n");
1246             break;
1247         }
1248 
1249         switch (get_man(s)) {
1250         case MAN_SPANSION:
1251             s->needed_bytes = 2;
1252             s->state = STATE_COLLECTING_DATA;
1253             break;
1254         case MAN_MACRONIX:
1255             s->needed_bytes = 2;
1256             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1257             break;
1258         default:
1259             s->needed_bytes = 1;
1260             s->state = STATE_COLLECTING_DATA;
1261         }
1262         s->pos = 0;
1263         break;
1264 
1265     case WRDI:
1266         s->write_enable = false;
1267         if (get_man(s) == MAN_SST) {
1268             s->aai_enable = false;
1269         }
1270         break;
1271     case WREN:
1272         s->write_enable = true;
1273         break;
1274 
1275     case RDSR:
1276         s->data[0] = (!!s->write_enable) << 1;
1277         s->data[0] |= (!!s->status_register_write_disabled) << 7;
1278         s->data[0] |= (!!s->block_protect0) << 2;
1279         s->data[0] |= (!!s->block_protect1) << 3;
1280         s->data[0] |= (!!s->block_protect2) << 4;
1281         if (s->pi->flags & HAS_SR_TB) {
1282             s->data[0] |= (!!s->top_bottom_bit) << 5;
1283         }
1284         if (s->pi->flags & HAS_SR_BP3_BIT6) {
1285             s->data[0] |= (!!s->block_protect3) << 6;
1286         }
1287 
1288         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1289             s->data[0] |= (!!s->quad_enable) << 6;
1290         }
1291         if (get_man(s) == MAN_SST) {
1292             s->data[0] |= (!!s->aai_enable) << 6;
1293         }
1294 
1295         s->pos = 0;
1296         s->len = 1;
1297         s->data_read_loop = true;
1298         s->state = STATE_READING_DATA;
1299         break;
1300 
1301     case READ_FSR:
1302         s->data[0] = FSR_FLASH_READY;
1303         if (s->four_bytes_address_mode) {
1304             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1305         }
1306         s->pos = 0;
1307         s->len = 1;
1308         s->data_read_loop = true;
1309         s->state = STATE_READING_DATA;
1310         break;
1311 
1312     case JEDEC_READ:
1313         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1314             trace_m25p80_populated_jedec(s);
1315             for (i = 0; i < s->pi->id_len; i++) {
1316                 s->data[i] = s->pi->id[i];
1317             }
1318             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1319                 s->data[i] = 0;
1320             }
1321 
1322             s->len = SPI_NOR_MAX_ID_LEN;
1323             s->pos = 0;
1324             s->state = STATE_READING_DATA;
1325         } else {
1326             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1327                           "in DIO or QIO mode\n");
1328         }
1329         break;
1330 
1331     case RDCR:
1332         s->data[0] = s->volatile_cfg & 0xFF;
1333         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1334         s->pos = 0;
1335         s->len = 1;
1336         s->state = STATE_READING_DATA;
1337         break;
1338 
1339     case BULK_ERASE_60:
1340     case BULK_ERASE:
1341         if (s->write_enable) {
1342             trace_m25p80_chip_erase(s);
1343             flash_erase(s, 0, BULK_ERASE);
1344         } else {
1345             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1346                           "protect!\n");
1347         }
1348         break;
1349     case NOP:
1350         break;
1351     case EN_4BYTE_ADDR:
1352         s->four_bytes_address_mode = true;
1353         break;
1354     case EX_4BYTE_ADDR:
1355         s->four_bytes_address_mode = false;
1356         break;
1357     case BRRD:
1358     case EXTEND_ADDR_READ:
1359         s->data[0] = s->ear;
1360         s->pos = 0;
1361         s->len = 1;
1362         s->state = STATE_READING_DATA;
1363         break;
1364     case BRWR:
1365     case EXTEND_ADDR_WRITE:
1366         if (s->write_enable) {
1367             s->needed_bytes = 1;
1368             s->pos = 0;
1369             s->len = 0;
1370             s->state = STATE_COLLECTING_DATA;
1371         }
1372         break;
1373     case RNVCR:
1374         s->data[0] = s->nonvolatile_cfg & 0xFF;
1375         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1376         s->pos = 0;
1377         s->len = 2;
1378         s->state = STATE_READING_DATA;
1379         break;
1380     case WNVCR:
1381         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1382             s->needed_bytes = 2;
1383             s->pos = 0;
1384             s->len = 0;
1385             s->state = STATE_COLLECTING_DATA;
1386         }
1387         break;
1388     case RVCR:
1389         s->data[0] = s->volatile_cfg & 0xFF;
1390         s->pos = 0;
1391         s->len = 1;
1392         s->state = STATE_READING_DATA;
1393         break;
1394     case WVCR:
1395         if (s->write_enable) {
1396             s->needed_bytes = 1;
1397             s->pos = 0;
1398             s->len = 0;
1399             s->state = STATE_COLLECTING_DATA;
1400         }
1401         break;
1402     case REVCR:
1403         s->data[0] = s->enh_volatile_cfg & 0xFF;
1404         s->pos = 0;
1405         s->len = 1;
1406         s->state = STATE_READING_DATA;
1407         break;
1408     case WEVCR:
1409         if (s->write_enable) {
1410             s->needed_bytes = 1;
1411             s->pos = 0;
1412             s->len = 0;
1413             s->state = STATE_COLLECTING_DATA;
1414         }
1415         break;
1416     case RESET_ENABLE:
1417         s->reset_enable = true;
1418         break;
1419     case RESET_MEMORY:
1420         if (s->reset_enable) {
1421             reset_memory(s);
1422         }
1423         break;
1424     case RDCR_EQIO:
1425         switch (get_man(s)) {
1426         case MAN_SPANSION:
1427             s->data[0] = (!!s->quad_enable) << 1;
1428             s->pos = 0;
1429             s->len = 1;
1430             s->state = STATE_READING_DATA;
1431             break;
1432         case MAN_MACRONIX:
1433             s->quad_enable = true;
1434             break;
1435         default:
1436             break;
1437         }
1438         break;
1439     case RSTQIO:
1440         s->quad_enable = false;
1441         break;
1442     case AAI_WP:
1443         if (get_man(s) == MAN_SST) {
1444             if (s->write_enable) {
1445                 if (s->aai_enable) {
1446                     s->state = STATE_PAGE_PROGRAM;
1447                 } else {
1448                     s->aai_enable = true;
1449                     s->needed_bytes = get_addr_length(s);
1450                     s->state = STATE_COLLECTING_DATA;
1451                 }
1452             } else {
1453                 qemu_log_mask(LOG_GUEST_ERROR,
1454                               "M25P80: AAI_WP with write protect\n");
1455             }
1456         } else {
1457             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1458         }
1459         break;
1460     case RDSFDP:
1461         if (s->pi->sfdp_read) {
1462             s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1463             s->pos = 0;
1464             s->len = 0;
1465             s->state = STATE_COLLECTING_DATA;
1466             break;
1467         }
1468         /* Fallthrough */
1469 
1470     default:
1471         s->pos = 0;
1472         s->len = 1;
1473         s->state = STATE_READING_DATA;
1474         s->data_read_loop = true;
1475         s->data[0] = 0;
1476         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1477         break;
1478     }
1479 }
1480 
1481 static int m25p80_cs(SSIPeripheral *ss, bool select)
1482 {
1483     Flash *s = M25P80(ss);
1484 
1485     if (select) {
1486         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1487             complete_collecting_data(s);
1488         }
1489         s->len = 0;
1490         s->pos = 0;
1491         s->state = STATE_IDLE;
1492         flash_sync_dirty(s, -1);
1493         s->data_read_loop = false;
1494     }
1495 
1496     trace_m25p80_select(s, select ? "de" : "");
1497 
1498     return 0;
1499 }
1500 
1501 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1502 {
1503     Flash *s = M25P80(ss);
1504     uint32_t r = 0;
1505 
1506     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1507                           s->cur_addr, (uint8_t)tx);
1508 
1509     switch (s->state) {
1510 
1511     case STATE_PAGE_PROGRAM:
1512         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1513         flash_write8(s, s->cur_addr, (uint8_t)tx);
1514         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1515 
1516         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1517             /*
1518              * There is no wrap mode during AAI programming once the highest
1519              * unprotected memory address is reached. The Write-Enable-Latch
1520              * bit is automatically reset, and AAI programming mode aborts.
1521              */
1522             s->write_enable = false;
1523             s->aai_enable = false;
1524         }
1525 
1526         break;
1527 
1528     case STATE_READ:
1529         r = s->storage[s->cur_addr];
1530         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1531         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1532         break;
1533 
1534     case STATE_COLLECTING_DATA:
1535     case STATE_COLLECTING_VAR_LEN_DATA:
1536 
1537         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1538             qemu_log_mask(LOG_GUEST_ERROR,
1539                           "M25P80: Write overrun internal data buffer. "
1540                           "SPI controller (QEMU emulator or guest driver) "
1541                           "is misbehaving\n");
1542             s->len = s->pos = 0;
1543             s->state = STATE_IDLE;
1544             break;
1545         }
1546 
1547         s->data[s->len] = (uint8_t)tx;
1548         s->len++;
1549 
1550         if (s->len == s->needed_bytes) {
1551             complete_collecting_data(s);
1552         }
1553         break;
1554 
1555     case STATE_READING_DATA:
1556 
1557         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1558             qemu_log_mask(LOG_GUEST_ERROR,
1559                           "M25P80: Read overrun internal data buffer. "
1560                           "SPI controller (QEMU emulator or guest driver) "
1561                           "is misbehaving\n");
1562             s->len = s->pos = 0;
1563             s->state = STATE_IDLE;
1564             break;
1565         }
1566 
1567         r = s->data[s->pos];
1568         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1569         s->pos++;
1570         if (s->pos == s->len) {
1571             s->pos = 0;
1572             if (!s->data_read_loop) {
1573                 s->state = STATE_IDLE;
1574             }
1575         }
1576         break;
1577     case STATE_READING_SFDP:
1578         assert(s->pi->sfdp_read);
1579         r = s->pi->sfdp_read(s->cur_addr);
1580         trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1581         s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1582         break;
1583 
1584     default:
1585     case STATE_IDLE:
1586         decode_new_cmd(s, (uint8_t)tx);
1587         break;
1588     }
1589 
1590     return r;
1591 }
1592 
1593 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1594 {
1595     Flash *s = M25P80(opaque);
1596     /* WP# is just a single pin. */
1597     assert(n == 0);
1598     s->wp_level = !!level;
1599 }
1600 
1601 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1602 {
1603     Flash *s = M25P80(ss);
1604     M25P80Class *mc = M25P80_GET_CLASS(s);
1605     int ret;
1606 
1607     s->pi = mc->pi;
1608 
1609     s->size = s->pi->sector_size * s->pi->n_sectors;
1610     s->dirty_page = -1;
1611 
1612     if (s->blk) {
1613         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1614                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1615         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1616         if (ret < 0) {
1617             return;
1618         }
1619 
1620         trace_m25p80_binding(s);
1621         s->storage = blk_blockalign(s->blk, s->size);
1622 
1623         if (!blk_check_size_and_read_all(s->blk, DEVICE(s),
1624                                          s->storage, s->size, errp)) {
1625             return;
1626         }
1627     } else {
1628         trace_m25p80_binding_no_bdrv(s);
1629         s->storage = blk_blockalign(NULL, s->size);
1630         memset(s->storage, 0xFF, s->size);
1631     }
1632 
1633     qdev_init_gpio_in_named(DEVICE(s),
1634                             m25p80_write_protect_pin_irq_handler, "WP#", 1);
1635 }
1636 
1637 static void m25p80_reset(DeviceState *d)
1638 {
1639     Flash *s = M25P80(d);
1640 
1641     s->wp_level = true;
1642     s->status_register_write_disabled = false;
1643     s->block_protect0 = false;
1644     s->block_protect1 = false;
1645     s->block_protect2 = false;
1646     s->block_protect3 = false;
1647     s->top_bottom_bit = false;
1648 
1649     reset_memory(s);
1650 }
1651 
1652 static int m25p80_pre_save(void *opaque)
1653 {
1654     flash_sync_dirty((Flash *)opaque, -1);
1655 
1656     return 0;
1657 }
1658 
1659 static Property m25p80_properties[] = {
1660     /* This is default value for Micron flash */
1661     DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1662     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1663     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1664     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1665     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1666     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1667     DEFINE_PROP_DRIVE("drive", Flash, blk),
1668     DEFINE_PROP_END_OF_LIST(),
1669 };
1670 
1671 static int m25p80_pre_load(void *opaque)
1672 {
1673     Flash *s = (Flash *)opaque;
1674 
1675     s->data_read_loop = false;
1676     return 0;
1677 }
1678 
1679 static bool m25p80_data_read_loop_needed(void *opaque)
1680 {
1681     Flash *s = (Flash *)opaque;
1682 
1683     return s->data_read_loop;
1684 }
1685 
1686 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1687     .name = "m25p80/data_read_loop",
1688     .version_id = 1,
1689     .minimum_version_id = 1,
1690     .needed = m25p80_data_read_loop_needed,
1691     .fields = (const VMStateField[]) {
1692         VMSTATE_BOOL(data_read_loop, Flash),
1693         VMSTATE_END_OF_LIST()
1694     }
1695 };
1696 
1697 static bool m25p80_aai_enable_needed(void *opaque)
1698 {
1699     Flash *s = (Flash *)opaque;
1700 
1701     return s->aai_enable;
1702 }
1703 
1704 static const VMStateDescription vmstate_m25p80_aai_enable = {
1705     .name = "m25p80/aai_enable",
1706     .version_id = 1,
1707     .minimum_version_id = 1,
1708     .needed = m25p80_aai_enable_needed,
1709     .fields = (const VMStateField[]) {
1710         VMSTATE_BOOL(aai_enable, Flash),
1711         VMSTATE_END_OF_LIST()
1712     }
1713 };
1714 
1715 static bool m25p80_wp_level_srwd_needed(void *opaque)
1716 {
1717     Flash *s = (Flash *)opaque;
1718 
1719     return !s->wp_level || s->status_register_write_disabled;
1720 }
1721 
1722 static const VMStateDescription vmstate_m25p80_write_protect = {
1723     .name = "m25p80/write_protect",
1724     .version_id = 1,
1725     .minimum_version_id = 1,
1726     .needed = m25p80_wp_level_srwd_needed,
1727     .fields = (const VMStateField[]) {
1728         VMSTATE_BOOL(wp_level, Flash),
1729         VMSTATE_BOOL(status_register_write_disabled, Flash),
1730         VMSTATE_END_OF_LIST()
1731     }
1732 };
1733 
1734 static bool m25p80_block_protect_needed(void *opaque)
1735 {
1736     Flash *s = (Flash *)opaque;
1737 
1738     return s->block_protect0 ||
1739            s->block_protect1 ||
1740            s->block_protect2 ||
1741            s->block_protect3 ||
1742            s->top_bottom_bit;
1743 }
1744 
1745 static const VMStateDescription vmstate_m25p80_block_protect = {
1746     .name = "m25p80/block_protect",
1747     .version_id = 1,
1748     .minimum_version_id = 1,
1749     .needed = m25p80_block_protect_needed,
1750     .fields = (const VMStateField[]) {
1751         VMSTATE_BOOL(block_protect0, Flash),
1752         VMSTATE_BOOL(block_protect1, Flash),
1753         VMSTATE_BOOL(block_protect2, Flash),
1754         VMSTATE_BOOL(block_protect3, Flash),
1755         VMSTATE_BOOL(top_bottom_bit, Flash),
1756         VMSTATE_END_OF_LIST()
1757     }
1758 };
1759 
1760 static const VMStateDescription vmstate_m25p80 = {
1761     .name = "m25p80",
1762     .version_id = 0,
1763     .minimum_version_id = 0,
1764     .pre_save = m25p80_pre_save,
1765     .pre_load = m25p80_pre_load,
1766     .fields = (const VMStateField[]) {
1767         VMSTATE_UINT8(state, Flash),
1768         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1769         VMSTATE_UINT32(len, Flash),
1770         VMSTATE_UINT32(pos, Flash),
1771         VMSTATE_UINT8(needed_bytes, Flash),
1772         VMSTATE_UINT8(cmd_in_progress, Flash),
1773         VMSTATE_UINT32(cur_addr, Flash),
1774         VMSTATE_BOOL(write_enable, Flash),
1775         VMSTATE_BOOL(reset_enable, Flash),
1776         VMSTATE_UINT8(ear, Flash),
1777         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1778         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1779         VMSTATE_UINT32(volatile_cfg, Flash),
1780         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1781         VMSTATE_BOOL(quad_enable, Flash),
1782         VMSTATE_UINT8(spansion_cr1nv, Flash),
1783         VMSTATE_UINT8(spansion_cr2nv, Flash),
1784         VMSTATE_UINT8(spansion_cr3nv, Flash),
1785         VMSTATE_UINT8(spansion_cr4nv, Flash),
1786         VMSTATE_END_OF_LIST()
1787     },
1788     .subsections = (const VMStateDescription * const []) {
1789         &vmstate_m25p80_data_read_loop,
1790         &vmstate_m25p80_aai_enable,
1791         &vmstate_m25p80_write_protect,
1792         &vmstate_m25p80_block_protect,
1793         NULL
1794     }
1795 };
1796 
1797 static void m25p80_class_init(ObjectClass *klass, void *data)
1798 {
1799     DeviceClass *dc = DEVICE_CLASS(klass);
1800     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1801     M25P80Class *mc = M25P80_CLASS(klass);
1802 
1803     k->realize = m25p80_realize;
1804     k->transfer = m25p80_transfer8;
1805     k->set_cs = m25p80_cs;
1806     k->cs_polarity = SSI_CS_LOW;
1807     dc->vmsd = &vmstate_m25p80;
1808     device_class_set_props(dc, m25p80_properties);
1809     dc->reset = m25p80_reset;
1810     mc->pi = data;
1811 }
1812 
1813 static const TypeInfo m25p80_info = {
1814     .name           = TYPE_M25P80,
1815     .parent         = TYPE_SSI_PERIPHERAL,
1816     .instance_size  = sizeof(Flash),
1817     .class_size     = sizeof(M25P80Class),
1818     .abstract       = true,
1819 };
1820 
1821 static void m25p80_register_types(void)
1822 {
1823     int i;
1824 
1825     type_register_static(&m25p80_info);
1826     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1827         TypeInfo ti = {
1828             .name       = known_devices[i].part_name,
1829             .parent     = TYPE_M25P80,
1830             .class_init = m25p80_class_init,
1831             .class_data = (void *)&known_devices[i],
1832         };
1833         type_register(&ti);
1834     }
1835 }
1836 
1837 type_init(m25p80_register_types)
1838 
1839 BlockBackend *m25p80_get_blk(DeviceState *dev)
1840 {
1841     return M25P80(dev)->blk;
1842 }
1843