xref: /qemu/hw/block/m25p80.c (revision 27a4a30e)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ssi/ssi.h"
29 #include "migration/vmstate.h"
30 #include "qemu/bitops.h"
31 #include "qemu/log.h"
32 #include "qemu/module.h"
33 #include "qemu/error-report.h"
34 #include "qapi/error.h"
35 #include "trace.h"
36 
37 /* Fields for FlashPartInfo->flags */
38 
39 /* erase capabilities */
40 #define ER_4K 1
41 #define ER_32K 2
42 /* set to allow the page program command to write 0s back to 1. Useful for
43  * modelling EEPROM with SPI flash command set
44  */
45 #define EEPROM 0x100
46 
47 /* 16 MiB max in 3 byte address mode */
48 #define MAX_3BYTES_SIZE 0x1000000
49 
50 #define SPI_NOR_MAX_ID_LEN 6
51 
52 typedef struct FlashPartInfo {
53     const char *part_name;
54     /*
55      * This array stores the ID bytes.
56      * The first three bytes are the JEDIC ID.
57      * JEDEC ID zero means "no ID" (mostly older chips).
58      */
59     uint8_t id[SPI_NOR_MAX_ID_LEN];
60     uint8_t id_len;
61     /* there is confusion between manufacturers as to what a sector is. In this
62      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
63      * command (opcode 0xd8).
64      */
65     uint32_t sector_size;
66     uint32_t n_sectors;
67     uint32_t page_size;
68     uint16_t flags;
69     /*
70      * Big sized spi nor are often stacked devices, thus sometime
71      * replace chip erase with die erase.
72      * This field inform how many die is in the chip.
73      */
74     uint8_t die_cnt;
75 } FlashPartInfo;
76 
77 /* adapted from linux */
78 /* Used when the "_ext_id" is two bytes at most */
79 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
80     .part_name = _part_name,\
81     .id = {\
82         ((_jedec_id) >> 16) & 0xff,\
83         ((_jedec_id) >> 8) & 0xff,\
84         (_jedec_id) & 0xff,\
85         ((_ext_id) >> 8) & 0xff,\
86         (_ext_id) & 0xff,\
87           },\
88     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
89     .sector_size = (_sector_size),\
90     .n_sectors = (_n_sectors),\
91     .page_size = 256,\
92     .flags = (_flags),\
93     .die_cnt = 0
94 
95 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
96     .part_name = _part_name,\
97     .id = {\
98         ((_jedec_id) >> 16) & 0xff,\
99         ((_jedec_id) >> 8) & 0xff,\
100         (_jedec_id) & 0xff,\
101         ((_ext_id) >> 16) & 0xff,\
102         ((_ext_id) >> 8) & 0xff,\
103         (_ext_id) & 0xff,\
104           },\
105     .id_len = 6,\
106     .sector_size = (_sector_size),\
107     .n_sectors = (_n_sectors),\
108     .page_size = 256,\
109     .flags = (_flags),\
110     .die_cnt = 0
111 
112 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
113                     _flags, _die_cnt)\
114     .part_name = _part_name,\
115     .id = {\
116         ((_jedec_id) >> 16) & 0xff,\
117         ((_jedec_id) >> 8) & 0xff,\
118         (_jedec_id) & 0xff,\
119         ((_ext_id) >> 8) & 0xff,\
120         (_ext_id) & 0xff,\
121           },\
122     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
123     .sector_size = (_sector_size),\
124     .n_sectors = (_n_sectors),\
125     .page_size = 256,\
126     .flags = (_flags),\
127     .die_cnt = _die_cnt
128 
129 #define JEDEC_NUMONYX 0x20
130 #define JEDEC_WINBOND 0xEF
131 #define JEDEC_SPANSION 0x01
132 
133 /* Numonyx (Micron) Configuration register macros */
134 #define VCFG_DUMMY 0x1
135 #define VCFG_WRAP_SEQUENTIAL 0x2
136 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
137 #define NVCFG_XIP_MODE_MASK (7 << 9)
138 #define VCFG_XIP_MODE_ENABLED (1 << 3)
139 #define CFG_DUMMY_CLK_LEN 4
140 #define NVCFG_DUMMY_CLK_POS 12
141 #define VCFG_DUMMY_CLK_POS 4
142 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
143 #define EVCFG_VPP_ACCELERATOR (1 << 3)
144 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
145 #define NVCFG_DUAL_IO_MASK (1 << 2)
146 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
147 #define NVCFG_QUAD_IO_MASK (1 << 3)
148 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
149 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
150 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
151 
152 /* Numonyx (Micron) Flag Status Register macros */
153 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
154 #define FSR_FLASH_READY (1 << 7)
155 
156 /* Spansion configuration registers macros. */
157 #define SPANSION_QUAD_CFG_POS 0
158 #define SPANSION_QUAD_CFG_LEN 1
159 #define SPANSION_DUMMY_CLK_POS 0
160 #define SPANSION_DUMMY_CLK_LEN 4
161 #define SPANSION_ADDR_LEN_POS 7
162 #define SPANSION_ADDR_LEN_LEN 1
163 
164 /*
165  * Spansion read mode command length in bytes,
166  * the mode is currently not supported.
167 */
168 
169 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
170 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
171 
172 static const FlashPartInfo known_devices[] = {
173     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
174     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
175     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
176 
177     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
178     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
179     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
180 
181     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
182     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
183     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
184     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
185 
186     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
187 
188     /* Atmel EEPROMS - it is assumed, that don't care bit in command
189      * is set to 0. Block protection is not supported.
190      */
191     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
192     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
193 
194     /* EON -- en25xxx */
195     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
196     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
197     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
198     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
199     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
200 
201     /* GigaDevice */
202     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
203     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
204 
205     /* Intel/Numonyx -- xxxs33b */
206     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
207     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
208     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
209     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
210 
211     /* Macronix */
212     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
213     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
214     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
215     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
216     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
217     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
218     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
219     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
220     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
221     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
222     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
223     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
224     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
225 
226     /* Micron */
227     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
228     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
229     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
230     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
231     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
232     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
233     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
234     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
235     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
236     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
237     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
238     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
239     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
240     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
241     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
242     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
243     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
244 
245     /* Spansion -- single (large) sector size only, at least
246      * for the chips listed here (without boot sectors).
247      */
248     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
249     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
250     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
251     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
252     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
253     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
254     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
255     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
256     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
257     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
258     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
259     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
260     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
261     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
262     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
263     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
264     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
265 
266     /* Spansion --  boot sectors support  */
267     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
268     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
269 
270     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
271     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
272     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
273     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
274     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
275     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
276     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
277     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
278     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
279     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
280 
281     /* ST Microelectronics -- newer production may have feature updates */
282     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
283     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
284     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
285     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
286     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
287     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
288     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
289     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
290     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
291     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
292 
293     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
294     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
295     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
296 
297     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
298     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
299     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
300 
301     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
302     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
303     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
304     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
305 
306     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
307     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
308     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
309     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
310     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
311     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
312     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
313     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
314     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
315     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
316     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
317     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
318     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
319     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
320     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
321 };
322 
323 typedef enum {
324     NOP = 0,
325     WRSR = 0x1,
326     WRDI = 0x4,
327     RDSR = 0x5,
328     WREN = 0x6,
329     BRRD = 0x16,
330     BRWR = 0x17,
331     JEDEC_READ = 0x9f,
332     BULK_ERASE_60 = 0x60,
333     BULK_ERASE = 0xc7,
334     READ_FSR = 0x70,
335     RDCR = 0x15,
336 
337     READ = 0x03,
338     READ4 = 0x13,
339     FAST_READ = 0x0b,
340     FAST_READ4 = 0x0c,
341     DOR = 0x3b,
342     DOR4 = 0x3c,
343     QOR = 0x6b,
344     QOR4 = 0x6c,
345     DIOR = 0xbb,
346     DIOR4 = 0xbc,
347     QIOR = 0xeb,
348     QIOR4 = 0xec,
349 
350     PP = 0x02,
351     PP4 = 0x12,
352     PP4_4 = 0x3e,
353     DPP = 0xa2,
354     QPP = 0x32,
355     QPP_4 = 0x34,
356     RDID_90 = 0x90,
357     RDID_AB = 0xab,
358 
359     ERASE_4K = 0x20,
360     ERASE4_4K = 0x21,
361     ERASE_32K = 0x52,
362     ERASE4_32K = 0x5c,
363     ERASE_SECTOR = 0xd8,
364     ERASE4_SECTOR = 0xdc,
365 
366     EN_4BYTE_ADDR = 0xB7,
367     EX_4BYTE_ADDR = 0xE9,
368 
369     EXTEND_ADDR_READ = 0xC8,
370     EXTEND_ADDR_WRITE = 0xC5,
371 
372     RESET_ENABLE = 0x66,
373     RESET_MEMORY = 0x99,
374 
375     /*
376      * Micron: 0x35 - enable QPI
377      * Spansion: 0x35 - read control register
378      */
379     RDCR_EQIO = 0x35,
380     RSTQIO = 0xf5,
381 
382     RNVCR = 0xB5,
383     WNVCR = 0xB1,
384 
385     RVCR = 0x85,
386     WVCR = 0x81,
387 
388     REVCR = 0x65,
389     WEVCR = 0x61,
390 
391     DIE_ERASE = 0xC4,
392 } FlashCMD;
393 
394 typedef enum {
395     STATE_IDLE,
396     STATE_PAGE_PROGRAM,
397     STATE_READ,
398     STATE_COLLECTING_DATA,
399     STATE_COLLECTING_VAR_LEN_DATA,
400     STATE_READING_DATA,
401 } CMDState;
402 
403 typedef enum {
404     MAN_SPANSION,
405     MAN_MACRONIX,
406     MAN_NUMONYX,
407     MAN_WINBOND,
408     MAN_SST,
409     MAN_GENERIC,
410 } Manufacturer;
411 
412 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
413 
414 typedef struct Flash {
415     SSISlave parent_obj;
416 
417     BlockBackend *blk;
418 
419     uint8_t *storage;
420     uint32_t size;
421     int page_size;
422 
423     uint8_t state;
424     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
425     uint32_t len;
426     uint32_t pos;
427     bool data_read_loop;
428     uint8_t needed_bytes;
429     uint8_t cmd_in_progress;
430     uint32_t cur_addr;
431     uint32_t nonvolatile_cfg;
432     /* Configuration register for Macronix */
433     uint32_t volatile_cfg;
434     uint32_t enh_volatile_cfg;
435     /* Spansion cfg registers. */
436     uint8_t spansion_cr1nv;
437     uint8_t spansion_cr2nv;
438     uint8_t spansion_cr3nv;
439     uint8_t spansion_cr4nv;
440     uint8_t spansion_cr1v;
441     uint8_t spansion_cr2v;
442     uint8_t spansion_cr3v;
443     uint8_t spansion_cr4v;
444     bool write_enable;
445     bool four_bytes_address_mode;
446     bool reset_enable;
447     bool quad_enable;
448     uint8_t ear;
449 
450     int64_t dirty_page;
451 
452     const FlashPartInfo *pi;
453 
454 } Flash;
455 
456 typedef struct M25P80Class {
457     SSISlaveClass parent_class;
458     FlashPartInfo *pi;
459 } M25P80Class;
460 
461 #define TYPE_M25P80 "m25p80-generic"
462 #define M25P80(obj) \
463      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
464 #define M25P80_CLASS(klass) \
465      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
466 #define M25P80_GET_CLASS(obj) \
467      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
468 
469 static inline Manufacturer get_man(Flash *s)
470 {
471     switch (s->pi->id[0]) {
472     case 0x20:
473         return MAN_NUMONYX;
474     case 0xEF:
475         return MAN_WINBOND;
476     case 0x01:
477         return MAN_SPANSION;
478     case 0xC2:
479         return MAN_MACRONIX;
480     case 0xBF:
481         return MAN_SST;
482     default:
483         return MAN_GENERIC;
484     }
485 }
486 
487 static void blk_sync_complete(void *opaque, int ret)
488 {
489     QEMUIOVector *iov = opaque;
490 
491     qemu_iovec_destroy(iov);
492     g_free(iov);
493 
494     /* do nothing. Masters do not directly interact with the backing store,
495      * only the working copy so no mutexing required.
496      */
497 }
498 
499 static void flash_sync_page(Flash *s, int page)
500 {
501     QEMUIOVector *iov;
502 
503     if (!s->blk || blk_is_read_only(s->blk)) {
504         return;
505     }
506 
507     iov = g_new(QEMUIOVector, 1);
508     qemu_iovec_init(iov, 1);
509     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
510                    s->pi->page_size);
511     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
512                     blk_sync_complete, iov);
513 }
514 
515 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
516 {
517     QEMUIOVector *iov;
518 
519     if (!s->blk || blk_is_read_only(s->blk)) {
520         return;
521     }
522 
523     assert(!(len % BDRV_SECTOR_SIZE));
524     iov = g_new(QEMUIOVector, 1);
525     qemu_iovec_init(iov, 1);
526     qemu_iovec_add(iov, s->storage + off, len);
527     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
528 }
529 
530 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
531 {
532     uint32_t len;
533     uint8_t capa_to_assert = 0;
534 
535     switch (cmd) {
536     case ERASE_4K:
537     case ERASE4_4K:
538         len = 4 * KiB;
539         capa_to_assert = ER_4K;
540         break;
541     case ERASE_32K:
542     case ERASE4_32K:
543         len = 32 * KiB;
544         capa_to_assert = ER_32K;
545         break;
546     case ERASE_SECTOR:
547     case ERASE4_SECTOR:
548         len = s->pi->sector_size;
549         break;
550     case BULK_ERASE:
551         len = s->size;
552         break;
553     case DIE_ERASE:
554         if (s->pi->die_cnt) {
555             len = s->size / s->pi->die_cnt;
556             offset = offset & (~(len - 1));
557         } else {
558             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
559                           " by device\n");
560             return;
561         }
562         break;
563     default:
564         abort();
565     }
566 
567     trace_m25p80_flash_erase(s, offset, len);
568 
569     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
570         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
571                       " device\n", len);
572     }
573 
574     if (!s->write_enable) {
575         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
576         return;
577     }
578     memset(s->storage + offset, 0xff, len);
579     flash_sync_area(s, offset, len);
580 }
581 
582 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
583 {
584     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
585         flash_sync_page(s, s->dirty_page);
586         s->dirty_page = newpage;
587     }
588 }
589 
590 static inline
591 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
592 {
593     uint32_t page = addr / s->pi->page_size;
594     uint8_t prev = s->storage[s->cur_addr];
595 
596     if (!s->write_enable) {
597         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
598     }
599 
600     if ((prev ^ data) & data) {
601         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
602     }
603 
604     if (s->pi->flags & EEPROM) {
605         s->storage[s->cur_addr] = data;
606     } else {
607         s->storage[s->cur_addr] &= data;
608     }
609 
610     flash_sync_dirty(s, page);
611     s->dirty_page = page;
612 }
613 
614 static inline int get_addr_length(Flash *s)
615 {
616    /* check if eeprom is in use */
617     if (s->pi->flags == EEPROM) {
618         return 2;
619     }
620 
621    switch (s->cmd_in_progress) {
622    case PP4:
623    case PP4_4:
624    case QPP_4:
625    case READ4:
626    case QIOR4:
627    case ERASE4_4K:
628    case ERASE4_32K:
629    case ERASE4_SECTOR:
630    case FAST_READ4:
631    case DOR4:
632    case QOR4:
633    case DIOR4:
634        return 4;
635    default:
636        return s->four_bytes_address_mode ? 4 : 3;
637    }
638 }
639 
640 static void complete_collecting_data(Flash *s)
641 {
642     int i, n;
643 
644     n = get_addr_length(s);
645     s->cur_addr = (n == 3 ? s->ear : 0);
646     for (i = 0; i < n; ++i) {
647         s->cur_addr <<= 8;
648         s->cur_addr |= s->data[i];
649     }
650 
651     s->cur_addr &= s->size - 1;
652 
653     s->state = STATE_IDLE;
654 
655     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
656                                      s->cur_addr);
657 
658     switch (s->cmd_in_progress) {
659     case DPP:
660     case QPP:
661     case QPP_4:
662     case PP:
663     case PP4:
664     case PP4_4:
665         s->state = STATE_PAGE_PROGRAM;
666         break;
667     case READ:
668     case READ4:
669     case FAST_READ:
670     case FAST_READ4:
671     case DOR:
672     case DOR4:
673     case QOR:
674     case QOR4:
675     case DIOR:
676     case DIOR4:
677     case QIOR:
678     case QIOR4:
679         s->state = STATE_READ;
680         break;
681     case ERASE_4K:
682     case ERASE4_4K:
683     case ERASE_32K:
684     case ERASE4_32K:
685     case ERASE_SECTOR:
686     case ERASE4_SECTOR:
687     case DIE_ERASE:
688         flash_erase(s, s->cur_addr, s->cmd_in_progress);
689         break;
690     case WRSR:
691         switch (get_man(s)) {
692         case MAN_SPANSION:
693             s->quad_enable = !!(s->data[1] & 0x02);
694             break;
695         case MAN_MACRONIX:
696             s->quad_enable = extract32(s->data[0], 6, 1);
697             if (s->len > 1) {
698                 s->volatile_cfg = s->data[1];
699                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
700             }
701             break;
702         default:
703             break;
704         }
705         if (s->write_enable) {
706             s->write_enable = false;
707         }
708         break;
709     case BRWR:
710     case EXTEND_ADDR_WRITE:
711         s->ear = s->data[0];
712         break;
713     case WNVCR:
714         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
715         break;
716     case WVCR:
717         s->volatile_cfg = s->data[0];
718         break;
719     case WEVCR:
720         s->enh_volatile_cfg = s->data[0];
721         break;
722     case RDID_90:
723     case RDID_AB:
724         if (get_man(s) == MAN_SST) {
725             if (s->cur_addr <= 1) {
726                 if (s->cur_addr) {
727                     s->data[0] = s->pi->id[2];
728                     s->data[1] = s->pi->id[0];
729                 } else {
730                     s->data[0] = s->pi->id[0];
731                     s->data[1] = s->pi->id[2];
732                 }
733                 s->pos = 0;
734                 s->len = 2;
735                 s->data_read_loop = true;
736                 s->state = STATE_READING_DATA;
737             } else {
738                 qemu_log_mask(LOG_GUEST_ERROR,
739                               "M25P80: Invalid read id address\n");
740             }
741         } else {
742             qemu_log_mask(LOG_GUEST_ERROR,
743                           "M25P80: Read id (command 0x90/0xAB) is not supported"
744                           " by device\n");
745         }
746         break;
747     default:
748         break;
749     }
750 }
751 
752 static void reset_memory(Flash *s)
753 {
754     s->cmd_in_progress = NOP;
755     s->cur_addr = 0;
756     s->ear = 0;
757     s->four_bytes_address_mode = false;
758     s->len = 0;
759     s->needed_bytes = 0;
760     s->pos = 0;
761     s->state = STATE_IDLE;
762     s->write_enable = false;
763     s->reset_enable = false;
764     s->quad_enable = false;
765 
766     switch (get_man(s)) {
767     case MAN_NUMONYX:
768         s->volatile_cfg = 0;
769         s->volatile_cfg |= VCFG_DUMMY;
770         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
771         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
772                                 != NVCFG_XIP_MODE_DISABLED) {
773             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
774         }
775         s->volatile_cfg |= deposit32(s->volatile_cfg,
776                             VCFG_DUMMY_CLK_POS,
777                             CFG_DUMMY_CLK_LEN,
778                             extract32(s->nonvolatile_cfg,
779                                         NVCFG_DUMMY_CLK_POS,
780                                         CFG_DUMMY_CLK_LEN)
781                             );
782 
783         s->enh_volatile_cfg = 0;
784         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
785         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
786         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
787         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
788             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
789         }
790         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
791             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
792         }
793         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
794             s->four_bytes_address_mode = true;
795         }
796         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
797             s->ear = s->size / MAX_3BYTES_SIZE - 1;
798         }
799         break;
800     case MAN_MACRONIX:
801         s->volatile_cfg = 0x7;
802         break;
803     case MAN_SPANSION:
804         s->spansion_cr1v = s->spansion_cr1nv;
805         s->spansion_cr2v = s->spansion_cr2nv;
806         s->spansion_cr3v = s->spansion_cr3nv;
807         s->spansion_cr4v = s->spansion_cr4nv;
808         s->quad_enable = extract32(s->spansion_cr1v,
809                                    SPANSION_QUAD_CFG_POS,
810                                    SPANSION_QUAD_CFG_LEN
811                                    );
812         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
813                 SPANSION_ADDR_LEN_POS,
814                 SPANSION_ADDR_LEN_LEN
815                 );
816         break;
817     default:
818         break;
819     }
820 
821     trace_m25p80_reset_done(s);
822 }
823 
824 static void decode_fast_read_cmd(Flash *s)
825 {
826     s->needed_bytes = get_addr_length(s);
827     switch (get_man(s)) {
828     /* Dummy cycles - modeled with bytes writes instead of bits */
829     case MAN_WINBOND:
830         s->needed_bytes += 8;
831         break;
832     case MAN_NUMONYX:
833         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
834         break;
835     case MAN_MACRONIX:
836         if (extract32(s->volatile_cfg, 6, 2) == 1) {
837             s->needed_bytes += 6;
838         } else {
839             s->needed_bytes += 8;
840         }
841         break;
842     case MAN_SPANSION:
843         s->needed_bytes += extract32(s->spansion_cr2v,
844                                     SPANSION_DUMMY_CLK_POS,
845                                     SPANSION_DUMMY_CLK_LEN
846                                     );
847         break;
848     default:
849         break;
850     }
851     s->pos = 0;
852     s->len = 0;
853     s->state = STATE_COLLECTING_DATA;
854 }
855 
856 static void decode_dio_read_cmd(Flash *s)
857 {
858     s->needed_bytes = get_addr_length(s);
859     /* Dummy cycles modeled with bytes writes instead of bits */
860     switch (get_man(s)) {
861     case MAN_WINBOND:
862         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
863         break;
864     case MAN_SPANSION:
865         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
866         s->needed_bytes += extract32(s->spansion_cr2v,
867                                     SPANSION_DUMMY_CLK_POS,
868                                     SPANSION_DUMMY_CLK_LEN
869                                     );
870         break;
871     case MAN_NUMONYX:
872         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
873         break;
874     case MAN_MACRONIX:
875         switch (extract32(s->volatile_cfg, 6, 2)) {
876         case 1:
877             s->needed_bytes += 6;
878             break;
879         case 2:
880             s->needed_bytes += 8;
881             break;
882         default:
883             s->needed_bytes += 4;
884             break;
885         }
886         break;
887     default:
888         break;
889     }
890     s->pos = 0;
891     s->len = 0;
892     s->state = STATE_COLLECTING_DATA;
893 }
894 
895 static void decode_qio_read_cmd(Flash *s)
896 {
897     s->needed_bytes = get_addr_length(s);
898     /* Dummy cycles modeled with bytes writes instead of bits */
899     switch (get_man(s)) {
900     case MAN_WINBOND:
901         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
902         s->needed_bytes += 4;
903         break;
904     case MAN_SPANSION:
905         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
906         s->needed_bytes += extract32(s->spansion_cr2v,
907                                     SPANSION_DUMMY_CLK_POS,
908                                     SPANSION_DUMMY_CLK_LEN
909                                     );
910         break;
911     case MAN_NUMONYX:
912         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
913         break;
914     case MAN_MACRONIX:
915         switch (extract32(s->volatile_cfg, 6, 2)) {
916         case 1:
917             s->needed_bytes += 4;
918             break;
919         case 2:
920             s->needed_bytes += 8;
921             break;
922         default:
923             s->needed_bytes += 6;
924             break;
925         }
926         break;
927     default:
928         break;
929     }
930     s->pos = 0;
931     s->len = 0;
932     s->state = STATE_COLLECTING_DATA;
933 }
934 
935 static void decode_new_cmd(Flash *s, uint32_t value)
936 {
937     int i;
938 
939     s->cmd_in_progress = value;
940     trace_m25p80_command_decoded(s, value);
941 
942     if (value != RESET_MEMORY) {
943         s->reset_enable = false;
944     }
945 
946     switch (value) {
947 
948     case ERASE_4K:
949     case ERASE4_4K:
950     case ERASE_32K:
951     case ERASE4_32K:
952     case ERASE_SECTOR:
953     case ERASE4_SECTOR:
954     case READ:
955     case READ4:
956     case DPP:
957     case QPP:
958     case QPP_4:
959     case PP:
960     case PP4:
961     case PP4_4:
962     case DIE_ERASE:
963     case RDID_90:
964     case RDID_AB:
965         s->needed_bytes = get_addr_length(s);
966         s->pos = 0;
967         s->len = 0;
968         s->state = STATE_COLLECTING_DATA;
969         break;
970 
971     case FAST_READ:
972     case FAST_READ4:
973     case DOR:
974     case DOR4:
975     case QOR:
976     case QOR4:
977         decode_fast_read_cmd(s);
978         break;
979 
980     case DIOR:
981     case DIOR4:
982         decode_dio_read_cmd(s);
983         break;
984 
985     case QIOR:
986     case QIOR4:
987         decode_qio_read_cmd(s);
988         break;
989 
990     case WRSR:
991         if (s->write_enable) {
992             switch (get_man(s)) {
993             case MAN_SPANSION:
994                 s->needed_bytes = 2;
995                 s->state = STATE_COLLECTING_DATA;
996                 break;
997             case MAN_MACRONIX:
998                 s->needed_bytes = 2;
999                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1000                 break;
1001             default:
1002                 s->needed_bytes = 1;
1003                 s->state = STATE_COLLECTING_DATA;
1004             }
1005             s->pos = 0;
1006         }
1007         break;
1008 
1009     case WRDI:
1010         s->write_enable = false;
1011         break;
1012     case WREN:
1013         s->write_enable = true;
1014         break;
1015 
1016     case RDSR:
1017         s->data[0] = (!!s->write_enable) << 1;
1018         if (get_man(s) == MAN_MACRONIX) {
1019             s->data[0] |= (!!s->quad_enable) << 6;
1020         }
1021         s->pos = 0;
1022         s->len = 1;
1023         s->data_read_loop = true;
1024         s->state = STATE_READING_DATA;
1025         break;
1026 
1027     case READ_FSR:
1028         s->data[0] = FSR_FLASH_READY;
1029         if (s->four_bytes_address_mode) {
1030             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1031         }
1032         s->pos = 0;
1033         s->len = 1;
1034         s->data_read_loop = true;
1035         s->state = STATE_READING_DATA;
1036         break;
1037 
1038     case JEDEC_READ:
1039         trace_m25p80_populated_jedec(s);
1040         for (i = 0; i < s->pi->id_len; i++) {
1041             s->data[i] = s->pi->id[i];
1042         }
1043         for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1044             s->data[i] = 0;
1045         }
1046 
1047         s->len = SPI_NOR_MAX_ID_LEN;
1048         s->pos = 0;
1049         s->state = STATE_READING_DATA;
1050         break;
1051 
1052     case RDCR:
1053         s->data[0] = s->volatile_cfg & 0xFF;
1054         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1055         s->pos = 0;
1056         s->len = 1;
1057         s->state = STATE_READING_DATA;
1058         break;
1059 
1060     case BULK_ERASE_60:
1061     case BULK_ERASE:
1062         if (s->write_enable) {
1063             trace_m25p80_chip_erase(s);
1064             flash_erase(s, 0, BULK_ERASE);
1065         } else {
1066             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1067                           "protect!\n");
1068         }
1069         break;
1070     case NOP:
1071         break;
1072     case EN_4BYTE_ADDR:
1073         s->four_bytes_address_mode = true;
1074         break;
1075     case EX_4BYTE_ADDR:
1076         s->four_bytes_address_mode = false;
1077         break;
1078     case BRRD:
1079     case EXTEND_ADDR_READ:
1080         s->data[0] = s->ear;
1081         s->pos = 0;
1082         s->len = 1;
1083         s->state = STATE_READING_DATA;
1084         break;
1085     case BRWR:
1086     case EXTEND_ADDR_WRITE:
1087         if (s->write_enable) {
1088             s->needed_bytes = 1;
1089             s->pos = 0;
1090             s->len = 0;
1091             s->state = STATE_COLLECTING_DATA;
1092         }
1093         break;
1094     case RNVCR:
1095         s->data[0] = s->nonvolatile_cfg & 0xFF;
1096         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1097         s->pos = 0;
1098         s->len = 2;
1099         s->state = STATE_READING_DATA;
1100         break;
1101     case WNVCR:
1102         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1103             s->needed_bytes = 2;
1104             s->pos = 0;
1105             s->len = 0;
1106             s->state = STATE_COLLECTING_DATA;
1107         }
1108         break;
1109     case RVCR:
1110         s->data[0] = s->volatile_cfg & 0xFF;
1111         s->pos = 0;
1112         s->len = 1;
1113         s->state = STATE_READING_DATA;
1114         break;
1115     case WVCR:
1116         if (s->write_enable) {
1117             s->needed_bytes = 1;
1118             s->pos = 0;
1119             s->len = 0;
1120             s->state = STATE_COLLECTING_DATA;
1121         }
1122         break;
1123     case REVCR:
1124         s->data[0] = s->enh_volatile_cfg & 0xFF;
1125         s->pos = 0;
1126         s->len = 1;
1127         s->state = STATE_READING_DATA;
1128         break;
1129     case WEVCR:
1130         if (s->write_enable) {
1131             s->needed_bytes = 1;
1132             s->pos = 0;
1133             s->len = 0;
1134             s->state = STATE_COLLECTING_DATA;
1135         }
1136         break;
1137     case RESET_ENABLE:
1138         s->reset_enable = true;
1139         break;
1140     case RESET_MEMORY:
1141         if (s->reset_enable) {
1142             reset_memory(s);
1143         }
1144         break;
1145     case RDCR_EQIO:
1146         switch (get_man(s)) {
1147         case MAN_SPANSION:
1148             s->data[0] = (!!s->quad_enable) << 1;
1149             s->pos = 0;
1150             s->len = 1;
1151             s->state = STATE_READING_DATA;
1152             break;
1153         case MAN_MACRONIX:
1154             s->quad_enable = true;
1155             break;
1156         default:
1157             break;
1158         }
1159         break;
1160     case RSTQIO:
1161         s->quad_enable = false;
1162         break;
1163     default:
1164         s->pos = 0;
1165         s->len = 1;
1166         s->state = STATE_READING_DATA;
1167         s->data_read_loop = true;
1168         s->data[0] = 0;
1169         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1170         break;
1171     }
1172 }
1173 
1174 static int m25p80_cs(SSISlave *ss, bool select)
1175 {
1176     Flash *s = M25P80(ss);
1177 
1178     if (select) {
1179         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1180             complete_collecting_data(s);
1181         }
1182         s->len = 0;
1183         s->pos = 0;
1184         s->state = STATE_IDLE;
1185         flash_sync_dirty(s, -1);
1186         s->data_read_loop = false;
1187     }
1188 
1189     trace_m25p80_select(s, select ? "de" : "");
1190 
1191     return 0;
1192 }
1193 
1194 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1195 {
1196     Flash *s = M25P80(ss);
1197     uint32_t r = 0;
1198 
1199     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1200                           s->cur_addr, (uint8_t)tx);
1201 
1202     switch (s->state) {
1203 
1204     case STATE_PAGE_PROGRAM:
1205         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1206         flash_write8(s, s->cur_addr, (uint8_t)tx);
1207         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1208         break;
1209 
1210     case STATE_READ:
1211         r = s->storage[s->cur_addr];
1212         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1213         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1214         break;
1215 
1216     case STATE_COLLECTING_DATA:
1217     case STATE_COLLECTING_VAR_LEN_DATA:
1218 
1219         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1220             qemu_log_mask(LOG_GUEST_ERROR,
1221                           "M25P80: Write overrun internal data buffer. "
1222                           "SPI controller (QEMU emulator or guest driver) "
1223                           "is misbehaving\n");
1224             s->len = s->pos = 0;
1225             s->state = STATE_IDLE;
1226             break;
1227         }
1228 
1229         s->data[s->len] = (uint8_t)tx;
1230         s->len++;
1231 
1232         if (s->len == s->needed_bytes) {
1233             complete_collecting_data(s);
1234         }
1235         break;
1236 
1237     case STATE_READING_DATA:
1238 
1239         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1240             qemu_log_mask(LOG_GUEST_ERROR,
1241                           "M25P80: Read overrun internal data buffer. "
1242                           "SPI controller (QEMU emulator or guest driver) "
1243                           "is misbehaving\n");
1244             s->len = s->pos = 0;
1245             s->state = STATE_IDLE;
1246             break;
1247         }
1248 
1249         r = s->data[s->pos];
1250         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1251         s->pos++;
1252         if (s->pos == s->len) {
1253             s->pos = 0;
1254             if (!s->data_read_loop) {
1255                 s->state = STATE_IDLE;
1256             }
1257         }
1258         break;
1259 
1260     default:
1261     case STATE_IDLE:
1262         decode_new_cmd(s, (uint8_t)tx);
1263         break;
1264     }
1265 
1266     return r;
1267 }
1268 
1269 static void m25p80_realize(SSISlave *ss, Error **errp)
1270 {
1271     Flash *s = M25P80(ss);
1272     M25P80Class *mc = M25P80_GET_CLASS(s);
1273     int ret;
1274 
1275     s->pi = mc->pi;
1276 
1277     s->size = s->pi->sector_size * s->pi->n_sectors;
1278     s->dirty_page = -1;
1279 
1280     if (s->blk) {
1281         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1282                         (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1283         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1284         if (ret < 0) {
1285             return;
1286         }
1287 
1288         trace_m25p80_binding(s);
1289         s->storage = blk_blockalign(s->blk, s->size);
1290 
1291         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1292             error_setg(errp, "failed to read the initial flash content");
1293             return;
1294         }
1295     } else {
1296         trace_m25p80_binding_no_bdrv(s);
1297         s->storage = blk_blockalign(NULL, s->size);
1298         memset(s->storage, 0xFF, s->size);
1299     }
1300 }
1301 
1302 static void m25p80_reset(DeviceState *d)
1303 {
1304     Flash *s = M25P80(d);
1305 
1306     reset_memory(s);
1307 }
1308 
1309 static int m25p80_pre_save(void *opaque)
1310 {
1311     flash_sync_dirty((Flash *)opaque, -1);
1312 
1313     return 0;
1314 }
1315 
1316 static Property m25p80_properties[] = {
1317     /* This is default value for Micron flash */
1318     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1319     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1320     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1321     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1322     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1323     DEFINE_PROP_DRIVE("drive", Flash, blk),
1324     DEFINE_PROP_END_OF_LIST(),
1325 };
1326 
1327 static int m25p80_pre_load(void *opaque)
1328 {
1329     Flash *s = (Flash *)opaque;
1330 
1331     s->data_read_loop = false;
1332     return 0;
1333 }
1334 
1335 static bool m25p80_data_read_loop_needed(void *opaque)
1336 {
1337     Flash *s = (Flash *)opaque;
1338 
1339     return s->data_read_loop;
1340 }
1341 
1342 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1343     .name = "m25p80/data_read_loop",
1344     .version_id = 1,
1345     .minimum_version_id = 1,
1346     .needed = m25p80_data_read_loop_needed,
1347     .fields = (VMStateField[]) {
1348         VMSTATE_BOOL(data_read_loop, Flash),
1349         VMSTATE_END_OF_LIST()
1350     }
1351 };
1352 
1353 static const VMStateDescription vmstate_m25p80 = {
1354     .name = "m25p80",
1355     .version_id = 0,
1356     .minimum_version_id = 0,
1357     .pre_save = m25p80_pre_save,
1358     .pre_load = m25p80_pre_load,
1359     .fields = (VMStateField[]) {
1360         VMSTATE_UINT8(state, Flash),
1361         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1362         VMSTATE_UINT32(len, Flash),
1363         VMSTATE_UINT32(pos, Flash),
1364         VMSTATE_UINT8(needed_bytes, Flash),
1365         VMSTATE_UINT8(cmd_in_progress, Flash),
1366         VMSTATE_UINT32(cur_addr, Flash),
1367         VMSTATE_BOOL(write_enable, Flash),
1368         VMSTATE_BOOL(reset_enable, Flash),
1369         VMSTATE_UINT8(ear, Flash),
1370         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1371         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1372         VMSTATE_UINT32(volatile_cfg, Flash),
1373         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1374         VMSTATE_BOOL(quad_enable, Flash),
1375         VMSTATE_UINT8(spansion_cr1nv, Flash),
1376         VMSTATE_UINT8(spansion_cr2nv, Flash),
1377         VMSTATE_UINT8(spansion_cr3nv, Flash),
1378         VMSTATE_UINT8(spansion_cr4nv, Flash),
1379         VMSTATE_END_OF_LIST()
1380     },
1381     .subsections = (const VMStateDescription * []) {
1382         &vmstate_m25p80_data_read_loop,
1383         NULL
1384     }
1385 };
1386 
1387 static void m25p80_class_init(ObjectClass *klass, void *data)
1388 {
1389     DeviceClass *dc = DEVICE_CLASS(klass);
1390     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1391     M25P80Class *mc = M25P80_CLASS(klass);
1392 
1393     k->realize = m25p80_realize;
1394     k->transfer = m25p80_transfer8;
1395     k->set_cs = m25p80_cs;
1396     k->cs_polarity = SSI_CS_LOW;
1397     dc->vmsd = &vmstate_m25p80;
1398     device_class_set_props(dc, m25p80_properties);
1399     dc->reset = m25p80_reset;
1400     mc->pi = data;
1401 }
1402 
1403 static const TypeInfo m25p80_info = {
1404     .name           = TYPE_M25P80,
1405     .parent         = TYPE_SSI_SLAVE,
1406     .instance_size  = sizeof(Flash),
1407     .class_size     = sizeof(M25P80Class),
1408     .abstract       = true,
1409 };
1410 
1411 static void m25p80_register_types(void)
1412 {
1413     int i;
1414 
1415     type_register_static(&m25p80_info);
1416     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1417         TypeInfo ti = {
1418             .name       = known_devices[i].part_name,
1419             .parent     = TYPE_M25P80,
1420             .class_init = m25p80_class_init,
1421             .class_data = (void *)&known_devices[i],
1422         };
1423         type_register(&ti);
1424     }
1425 }
1426 
1427 type_init(m25p80_register_types)
1428