xref: /qemu/hw/block/m25p80.c (revision 2c533c54)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qapi/error.h"
32 
33 #ifndef M25P80_ERR_DEBUG
34 #define M25P80_ERR_DEBUG 0
35 #endif
36 
37 #define DB_PRINT_L(level, ...) do { \
38     if (M25P80_ERR_DEBUG > (level)) { \
39         fprintf(stderr,  ": %s: ", __func__); \
40         fprintf(stderr, ## __VA_ARGS__); \
41     } \
42 } while (0);
43 
44 /* Fields for FlashPartInfo->flags */
45 
46 /* erase capabilities */
47 #define ER_4K 1
48 #define ER_32K 2
49 /* set to allow the page program command to write 0s back to 1. Useful for
50  * modelling EEPROM with SPI flash command set
51  */
52 #define EEPROM 0x100
53 
54 /* 16 MiB max in 3 byte address mode */
55 #define MAX_3BYTES_SIZE 0x1000000
56 
57 #define SPI_NOR_MAX_ID_LEN 6
58 
59 typedef struct FlashPartInfo {
60     const char *part_name;
61     /*
62      * This array stores the ID bytes.
63      * The first three bytes are the JEDIC ID.
64      * JEDEC ID zero means "no ID" (mostly older chips).
65      */
66     uint8_t id[SPI_NOR_MAX_ID_LEN];
67     uint8_t id_len;
68     /* there is confusion between manufacturers as to what a sector is. In this
69      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
70      * command (opcode 0xd8).
71      */
72     uint32_t sector_size;
73     uint32_t n_sectors;
74     uint32_t page_size;
75     uint16_t flags;
76 } FlashPartInfo;
77 
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81     .part_name = _part_name,\
82     .id = {\
83         ((_jedec_id) >> 16) & 0xff,\
84         ((_jedec_id) >> 8) & 0xff,\
85         (_jedec_id) & 0xff,\
86         ((_ext_id) >> 8) & 0xff,\
87         (_ext_id) & 0xff,\
88           },\
89     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90     .sector_size = (_sector_size),\
91     .n_sectors = (_n_sectors),\
92     .page_size = 256,\
93     .flags = (_flags),
94 
95 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
96     .part_name = _part_name,\
97     .id = {\
98         ((_jedec_id) >> 16) & 0xff,\
99         ((_jedec_id) >> 8) & 0xff,\
100         (_jedec_id) & 0xff,\
101         ((_ext_id) >> 16) & 0xff,\
102         ((_ext_id) >> 8) & 0xff,\
103         (_ext_id) & 0xff,\
104           },\
105     .id_len = 6,\
106     .sector_size = (_sector_size),\
107     .n_sectors = (_n_sectors),\
108     .page_size = 256,\
109     .flags = (_flags),\
110 
111 #define JEDEC_NUMONYX 0x20
112 #define JEDEC_WINBOND 0xEF
113 #define JEDEC_SPANSION 0x01
114 
115 /* Numonyx (Micron) Configuration register macros */
116 #define VCFG_DUMMY 0x1
117 #define VCFG_WRAP_SEQUENTIAL 0x2
118 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
119 #define NVCFG_XIP_MODE_MASK (7 << 9)
120 #define VCFG_XIP_MODE_ENABLED (1 << 3)
121 #define CFG_DUMMY_CLK_LEN 4
122 #define NVCFG_DUMMY_CLK_POS 12
123 #define VCFG_DUMMY_CLK_POS 4
124 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
125 #define EVCFG_VPP_ACCELERATOR (1 << 3)
126 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
127 #define NVCFG_DUAL_IO_MASK (1 << 2)
128 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
129 #define NVCFG_QUAD_IO_MASK (1 << 3)
130 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
131 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
132 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
133 
134 /* Numonyx (Micron) Flag Status Register macros */
135 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
136 #define FSR_FLASH_READY (1 << 7)
137 
138 /* Spansion configuration registers macros. */
139 #define SPANSION_QUAD_CFG_POS 0
140 #define SPANSION_QUAD_CFG_LEN 1
141 #define SPANSION_DUMMY_CLK_POS 0
142 #define SPANSION_DUMMY_CLK_LEN 4
143 #define SPANSION_ADDR_LEN_POS 7
144 #define SPANSION_ADDR_LEN_LEN 1
145 
146 /*
147  * Spansion read mode command length in bytes,
148  * the mode is currently not supported.
149 */
150 
151 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
152 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
153 
154 static const FlashPartInfo known_devices[] = {
155     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
156     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
157     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
158 
159     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
160     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
161     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
162 
163     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
164     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
165     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
166     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
167 
168     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
169 
170     /* Atmel EEPROMS - it is assumed, that don't care bit in command
171      * is set to 0. Block protection is not supported.
172      */
173     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
174     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
175 
176     /* EON -- en25xxx */
177     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
178     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
179     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
180     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
181     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
182 
183     /* GigaDevice */
184     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
185     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
186 
187     /* Intel/Numonyx -- xxxs33b */
188     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
189     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
190     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
191     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
192 
193     /* Macronix */
194     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
195     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
196     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
197     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
198     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
199     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
200     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
201     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
202     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
203     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
204     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
205     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
206 
207     /* Micron */
208     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
209     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
210     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
211     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
212     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
213     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
214     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
215     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
216     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
217     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
218     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
219     { INFO("mt25ql01g",   0x20ba21,      0,  64 << 10, 2048, ER_4K) },
220     { INFO("mt25qu01g",   0x20bb21,      0,  64 << 10, 2048, ER_4K) },
221 
222     /* Spansion -- single (large) sector size only, at least
223      * for the chips listed here (without boot sectors).
224      */
225     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
226     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
227     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
228     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
229     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
230     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
231     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
232     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
233     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
234     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
235     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
236     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
237     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
238     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
239     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
240     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
241     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
242 
243     /* Spansion --  boot sectors support  */
244     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
245     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
246 
247     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
248     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
249     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
250     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
251     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
252     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
253     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
254     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
255     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
256     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
257 
258     /* ST Microelectronics -- newer production may have feature updates */
259     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
260     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
261     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
262     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
263     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
264     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
265     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
266     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
267     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
268     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
269 
270     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
271     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
272     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
273 
274     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
275     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
276     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
277 
278     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
279     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
280     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
281     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
282 
283     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
284     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
285     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
286     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
287     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
288     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
289     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
290     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
291     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
292     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
293     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
294     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
295     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
296     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
297 };
298 
299 typedef enum {
300     NOP = 0,
301     WRSR = 0x1,
302     WRDI = 0x4,
303     RDSR = 0x5,
304     WREN = 0x6,
305     JEDEC_READ = 0x9f,
306     BULK_ERASE = 0xc7,
307     READ_FSR = 0x70,
308     RDCR = 0x15,
309 
310     READ = 0x03,
311     READ4 = 0x13,
312     FAST_READ = 0x0b,
313     FAST_READ4 = 0x0c,
314     DOR = 0x3b,
315     DOR4 = 0x3c,
316     QOR = 0x6b,
317     QOR4 = 0x6c,
318     DIOR = 0xbb,
319     DIOR4 = 0xbc,
320     QIOR = 0xeb,
321     QIOR4 = 0xec,
322 
323     PP = 0x02,
324     PP4 = 0x12,
325     PP4_4 = 0x3e,
326     DPP = 0xa2,
327     QPP = 0x32,
328 
329     ERASE_4K = 0x20,
330     ERASE4_4K = 0x21,
331     ERASE_32K = 0x52,
332     ERASE4_32K = 0x5c,
333     ERASE_SECTOR = 0xd8,
334     ERASE4_SECTOR = 0xdc,
335 
336     EN_4BYTE_ADDR = 0xB7,
337     EX_4BYTE_ADDR = 0xE9,
338 
339     EXTEND_ADDR_READ = 0xC8,
340     EXTEND_ADDR_WRITE = 0xC5,
341 
342     RESET_ENABLE = 0x66,
343     RESET_MEMORY = 0x99,
344 
345     /*
346      * Micron: 0x35 - enable QPI
347      * Spansion: 0x35 - read control register
348      */
349     RDCR_EQIO = 0x35,
350     RSTQIO = 0xf5,
351 
352     RNVCR = 0xB5,
353     WNVCR = 0xB1,
354 
355     RVCR = 0x85,
356     WVCR = 0x81,
357 
358     REVCR = 0x65,
359     WEVCR = 0x61,
360 } FlashCMD;
361 
362 typedef enum {
363     STATE_IDLE,
364     STATE_PAGE_PROGRAM,
365     STATE_READ,
366     STATE_COLLECTING_DATA,
367     STATE_COLLECTING_VAR_LEN_DATA,
368     STATE_READING_DATA,
369 } CMDState;
370 
371 typedef enum {
372     MAN_SPANSION,
373     MAN_MACRONIX,
374     MAN_NUMONYX,
375     MAN_WINBOND,
376     MAN_GENERIC,
377 } Manufacturer;
378 
379 typedef struct Flash {
380     SSISlave parent_obj;
381 
382     BlockBackend *blk;
383 
384     uint8_t *storage;
385     uint32_t size;
386     int page_size;
387 
388     uint8_t state;
389     uint8_t data[16];
390     uint32_t len;
391     uint32_t pos;
392     uint8_t needed_bytes;
393     uint8_t cmd_in_progress;
394     uint32_t cur_addr;
395     uint32_t nonvolatile_cfg;
396     /* Configuration register for Macronix */
397     uint32_t volatile_cfg;
398     uint32_t enh_volatile_cfg;
399     /* Spansion cfg registers. */
400     uint8_t spansion_cr1nv;
401     uint8_t spansion_cr2nv;
402     uint8_t spansion_cr3nv;
403     uint8_t spansion_cr4nv;
404     uint8_t spansion_cr1v;
405     uint8_t spansion_cr2v;
406     uint8_t spansion_cr3v;
407     uint8_t spansion_cr4v;
408     bool write_enable;
409     bool four_bytes_address_mode;
410     bool reset_enable;
411     bool quad_enable;
412     uint8_t ear;
413 
414     int64_t dirty_page;
415 
416     const FlashPartInfo *pi;
417 
418 } Flash;
419 
420 typedef struct M25P80Class {
421     SSISlaveClass parent_class;
422     FlashPartInfo *pi;
423 } M25P80Class;
424 
425 #define TYPE_M25P80 "m25p80-generic"
426 #define M25P80(obj) \
427      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
428 #define M25P80_CLASS(klass) \
429      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
430 #define M25P80_GET_CLASS(obj) \
431      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
432 
433 static inline Manufacturer get_man(Flash *s)
434 {
435     switch (s->pi->id[0]) {
436     case 0x20:
437         return MAN_NUMONYX;
438     case 0xEF:
439         return MAN_WINBOND;
440     case 0x01:
441         return MAN_SPANSION;
442     case 0xC2:
443         return MAN_MACRONIX;
444     default:
445         return MAN_GENERIC;
446     }
447 }
448 
449 static void blk_sync_complete(void *opaque, int ret)
450 {
451     QEMUIOVector *iov = opaque;
452 
453     qemu_iovec_destroy(iov);
454     g_free(iov);
455 
456     /* do nothing. Masters do not directly interact with the backing store,
457      * only the working copy so no mutexing required.
458      */
459 }
460 
461 static void flash_sync_page(Flash *s, int page)
462 {
463     QEMUIOVector *iov;
464 
465     if (!s->blk || blk_is_read_only(s->blk)) {
466         return;
467     }
468 
469     iov = g_new(QEMUIOVector, 1);
470     qemu_iovec_init(iov, 1);
471     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
472                    s->pi->page_size);
473     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
474                     blk_sync_complete, iov);
475 }
476 
477 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
478 {
479     QEMUIOVector *iov;
480 
481     if (!s->blk || blk_is_read_only(s->blk)) {
482         return;
483     }
484 
485     assert(!(len % BDRV_SECTOR_SIZE));
486     iov = g_new(QEMUIOVector, 1);
487     qemu_iovec_init(iov, 1);
488     qemu_iovec_add(iov, s->storage + off, len);
489     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
490 }
491 
492 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
493 {
494     uint32_t len;
495     uint8_t capa_to_assert = 0;
496 
497     switch (cmd) {
498     case ERASE_4K:
499     case ERASE4_4K:
500         len = 4 << 10;
501         capa_to_assert = ER_4K;
502         break;
503     case ERASE_32K:
504     case ERASE4_32K:
505         len = 32 << 10;
506         capa_to_assert = ER_32K;
507         break;
508     case ERASE_SECTOR:
509     case ERASE4_SECTOR:
510         len = s->pi->sector_size;
511         break;
512     case BULK_ERASE:
513         len = s->size;
514         break;
515     default:
516         abort();
517     }
518 
519     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
520     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
521         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
522                       " device\n", len);
523     }
524 
525     if (!s->write_enable) {
526         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
527         return;
528     }
529     memset(s->storage + offset, 0xff, len);
530     flash_sync_area(s, offset, len);
531 }
532 
533 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
534 {
535     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
536         flash_sync_page(s, s->dirty_page);
537         s->dirty_page = newpage;
538     }
539 }
540 
541 static inline
542 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
543 {
544     uint32_t page = addr / s->pi->page_size;
545     uint8_t prev = s->storage[s->cur_addr];
546 
547     if (!s->write_enable) {
548         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
549     }
550 
551     if ((prev ^ data) & data) {
552         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
553                    " -> %" PRIx8 "\n", addr, prev, data);
554     }
555 
556     if (s->pi->flags & EEPROM) {
557         s->storage[s->cur_addr] = data;
558     } else {
559         s->storage[s->cur_addr] &= data;
560     }
561 
562     flash_sync_dirty(s, page);
563     s->dirty_page = page;
564 }
565 
566 static inline int get_addr_length(Flash *s)
567 {
568    /* check if eeprom is in use */
569     if (s->pi->flags == EEPROM) {
570         return 2;
571     }
572 
573    switch (s->cmd_in_progress) {
574    case PP4:
575    case PP4_4:
576    case READ4:
577    case QIOR4:
578    case ERASE4_4K:
579    case ERASE4_32K:
580    case ERASE4_SECTOR:
581    case FAST_READ4:
582    case DOR4:
583    case QOR4:
584    case DIOR4:
585        return 4;
586    default:
587        return s->four_bytes_address_mode ? 4 : 3;
588    }
589 }
590 
591 static void complete_collecting_data(Flash *s)
592 {
593     int i, n;
594 
595     n = get_addr_length(s);
596     s->cur_addr = (n == 3 ? s->ear : 0);
597     for (i = 0; i < n; ++i) {
598         s->cur_addr <<= 8;
599         s->cur_addr |= s->data[i];
600     }
601 
602     s->cur_addr &= s->size - 1;
603 
604     s->state = STATE_IDLE;
605 
606     switch (s->cmd_in_progress) {
607     case DPP:
608     case QPP:
609     case PP:
610     case PP4:
611     case PP4_4:
612         s->state = STATE_PAGE_PROGRAM;
613         break;
614     case READ:
615     case READ4:
616     case FAST_READ:
617     case FAST_READ4:
618     case DOR:
619     case DOR4:
620     case QOR:
621     case QOR4:
622     case DIOR:
623     case DIOR4:
624     case QIOR:
625     case QIOR4:
626         s->state = STATE_READ;
627         break;
628     case ERASE_4K:
629     case ERASE4_4K:
630     case ERASE_32K:
631     case ERASE4_32K:
632     case ERASE_SECTOR:
633     case ERASE4_SECTOR:
634         flash_erase(s, s->cur_addr, s->cmd_in_progress);
635         break;
636     case WRSR:
637         switch (get_man(s)) {
638         case MAN_SPANSION:
639             s->quad_enable = !!(s->data[1] & 0x02);
640             break;
641         case MAN_MACRONIX:
642             s->quad_enable = extract32(s->data[0], 6, 1);
643             if (s->len > 1) {
644                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
645             }
646             break;
647         default:
648             break;
649         }
650         if (s->write_enable) {
651             s->write_enable = false;
652         }
653         break;
654     case EXTEND_ADDR_WRITE:
655         s->ear = s->data[0];
656         break;
657     case WNVCR:
658         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
659         break;
660     case WVCR:
661         s->volatile_cfg = s->data[0];
662         break;
663     case WEVCR:
664         s->enh_volatile_cfg = s->data[0];
665         break;
666     default:
667         break;
668     }
669 }
670 
671 static void reset_memory(Flash *s)
672 {
673     s->cmd_in_progress = NOP;
674     s->cur_addr = 0;
675     s->ear = 0;
676     s->four_bytes_address_mode = false;
677     s->len = 0;
678     s->needed_bytes = 0;
679     s->pos = 0;
680     s->state = STATE_IDLE;
681     s->write_enable = false;
682     s->reset_enable = false;
683     s->quad_enable = false;
684 
685     switch (get_man(s)) {
686     case MAN_NUMONYX:
687         s->volatile_cfg = 0;
688         s->volatile_cfg |= VCFG_DUMMY;
689         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
690         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
691                                 != NVCFG_XIP_MODE_DISABLED) {
692             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
693         }
694         s->volatile_cfg |= deposit32(s->volatile_cfg,
695                             VCFG_DUMMY_CLK_POS,
696                             CFG_DUMMY_CLK_LEN,
697                             extract32(s->nonvolatile_cfg,
698                                         NVCFG_DUMMY_CLK_POS,
699                                         CFG_DUMMY_CLK_LEN)
700                             );
701 
702         s->enh_volatile_cfg = 0;
703         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
704         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
705         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
706         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
707             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
708         }
709         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
710             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
711         }
712         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
713             s->four_bytes_address_mode = true;
714         }
715         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
716             s->ear = s->size / MAX_3BYTES_SIZE - 1;
717         }
718         break;
719     case MAN_MACRONIX:
720         s->volatile_cfg = 0x7;
721         break;
722     case MAN_SPANSION:
723         s->spansion_cr1v = s->spansion_cr1nv;
724         s->spansion_cr2v = s->spansion_cr2nv;
725         s->spansion_cr3v = s->spansion_cr3nv;
726         s->spansion_cr4v = s->spansion_cr4nv;
727         s->quad_enable = extract32(s->spansion_cr1v,
728                                    SPANSION_QUAD_CFG_POS,
729                                    SPANSION_QUAD_CFG_LEN
730                                    );
731         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
732                 SPANSION_ADDR_LEN_POS,
733                 SPANSION_ADDR_LEN_LEN
734                 );
735         break;
736     default:
737         break;
738     }
739 
740     DB_PRINT_L(0, "Reset done.\n");
741 }
742 
743 static void decode_fast_read_cmd(Flash *s)
744 {
745     s->needed_bytes = get_addr_length(s);
746     switch (get_man(s)) {
747     /* Dummy cycles - modeled with bytes writes instead of bits */
748     case MAN_WINBOND:
749         s->needed_bytes += 8;
750         break;
751     case MAN_NUMONYX:
752         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
753         break;
754     case MAN_MACRONIX:
755         if (extract32(s->volatile_cfg, 6, 2) == 1) {
756             s->needed_bytes += 6;
757         } else {
758             s->needed_bytes += 8;
759         }
760         break;
761     case MAN_SPANSION:
762         s->needed_bytes += extract32(s->spansion_cr2v,
763                                     SPANSION_DUMMY_CLK_POS,
764                                     SPANSION_DUMMY_CLK_LEN
765                                     );
766         break;
767     default:
768         break;
769     }
770     s->pos = 0;
771     s->len = 0;
772     s->state = STATE_COLLECTING_DATA;
773 }
774 
775 static void decode_dio_read_cmd(Flash *s)
776 {
777     s->needed_bytes = get_addr_length(s);
778     /* Dummy cycles modeled with bytes writes instead of bits */
779     switch (get_man(s)) {
780     case MAN_WINBOND:
781         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
782         break;
783     case MAN_SPANSION:
784         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
785         s->needed_bytes += extract32(s->spansion_cr2v,
786                                     SPANSION_DUMMY_CLK_POS,
787                                     SPANSION_DUMMY_CLK_LEN
788                                     );
789         break;
790     case MAN_NUMONYX:
791         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
792         break;
793     case MAN_MACRONIX:
794         switch (extract32(s->volatile_cfg, 6, 2)) {
795         case 1:
796             s->needed_bytes += 6;
797             break;
798         case 2:
799             s->needed_bytes += 8;
800             break;
801         default:
802             s->needed_bytes += 4;
803             break;
804         }
805         break;
806     default:
807         break;
808     }
809     s->pos = 0;
810     s->len = 0;
811     s->state = STATE_COLLECTING_DATA;
812 }
813 
814 static void decode_qio_read_cmd(Flash *s)
815 {
816     s->needed_bytes = get_addr_length(s);
817     /* Dummy cycles modeled with bytes writes instead of bits */
818     switch (get_man(s)) {
819     case MAN_WINBOND:
820         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
821         s->needed_bytes += 4;
822         break;
823     case MAN_SPANSION:
824         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
825         s->needed_bytes += extract32(s->spansion_cr2v,
826                                     SPANSION_DUMMY_CLK_POS,
827                                     SPANSION_DUMMY_CLK_LEN
828                                     );
829         break;
830     case MAN_NUMONYX:
831         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
832         break;
833     case MAN_MACRONIX:
834         switch (extract32(s->volatile_cfg, 6, 2)) {
835         case 1:
836             s->needed_bytes += 4;
837             break;
838         case 2:
839             s->needed_bytes += 8;
840             break;
841         default:
842             s->needed_bytes += 6;
843             break;
844         }
845         break;
846     default:
847         break;
848     }
849     s->pos = 0;
850     s->len = 0;
851     s->state = STATE_COLLECTING_DATA;
852 }
853 
854 static void decode_new_cmd(Flash *s, uint32_t value)
855 {
856     s->cmd_in_progress = value;
857     int i;
858     DB_PRINT_L(0, "decoded new command:%x\n", value);
859 
860     if (value != RESET_MEMORY) {
861         s->reset_enable = false;
862     }
863 
864     switch (value) {
865 
866     case ERASE_4K:
867     case ERASE4_4K:
868     case ERASE_32K:
869     case ERASE4_32K:
870     case ERASE_SECTOR:
871     case ERASE4_SECTOR:
872     case READ:
873     case READ4:
874     case DPP:
875     case QPP:
876     case PP:
877     case PP4:
878     case PP4_4:
879         s->needed_bytes = get_addr_length(s);
880         s->pos = 0;
881         s->len = 0;
882         s->state = STATE_COLLECTING_DATA;
883         break;
884 
885     case FAST_READ:
886     case FAST_READ4:
887     case DOR:
888     case DOR4:
889     case QOR:
890     case QOR4:
891         decode_fast_read_cmd(s);
892         break;
893 
894     case DIOR:
895     case DIOR4:
896         decode_dio_read_cmd(s);
897         break;
898 
899     case QIOR:
900     case QIOR4:
901         decode_qio_read_cmd(s);
902         break;
903 
904     case WRSR:
905         if (s->write_enable) {
906             switch (get_man(s)) {
907             case MAN_SPANSION:
908                 s->needed_bytes = 2;
909                 s->state = STATE_COLLECTING_DATA;
910                 break;
911             case MAN_MACRONIX:
912                 s->needed_bytes = 2;
913                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
914                 break;
915             default:
916                 s->needed_bytes = 1;
917                 s->state = STATE_COLLECTING_DATA;
918             }
919             s->pos = 0;
920         }
921         break;
922 
923     case WRDI:
924         s->write_enable = false;
925         break;
926     case WREN:
927         s->write_enable = true;
928         break;
929 
930     case RDSR:
931         s->data[0] = (!!s->write_enable) << 1;
932         if (get_man(s) == MAN_MACRONIX) {
933             s->data[0] |= (!!s->quad_enable) << 6;
934         }
935         s->pos = 0;
936         s->len = 1;
937         s->state = STATE_READING_DATA;
938         break;
939 
940     case READ_FSR:
941         s->data[0] = FSR_FLASH_READY;
942         if (s->four_bytes_address_mode) {
943             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
944         }
945         s->pos = 0;
946         s->len = 1;
947         s->state = STATE_READING_DATA;
948         break;
949 
950     case JEDEC_READ:
951         DB_PRINT_L(0, "populated jedec code\n");
952         for (i = 0; i < s->pi->id_len; i++) {
953             s->data[i] = s->pi->id[i];
954         }
955 
956         s->len = s->pi->id_len;
957         s->pos = 0;
958         s->state = STATE_READING_DATA;
959         break;
960 
961     case RDCR:
962         s->data[0] = s->volatile_cfg & 0xFF;
963         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
964         s->pos = 0;
965         s->len = 1;
966         s->state = STATE_READING_DATA;
967         break;
968 
969     case BULK_ERASE:
970         if (s->write_enable) {
971             DB_PRINT_L(0, "chip erase\n");
972             flash_erase(s, 0, BULK_ERASE);
973         } else {
974             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
975                           "protect!\n");
976         }
977         break;
978     case NOP:
979         break;
980     case EN_4BYTE_ADDR:
981         s->four_bytes_address_mode = true;
982         break;
983     case EX_4BYTE_ADDR:
984         s->four_bytes_address_mode = false;
985         break;
986     case EXTEND_ADDR_READ:
987         s->data[0] = s->ear;
988         s->pos = 0;
989         s->len = 1;
990         s->state = STATE_READING_DATA;
991         break;
992     case EXTEND_ADDR_WRITE:
993         if (s->write_enable) {
994             s->needed_bytes = 1;
995             s->pos = 0;
996             s->len = 0;
997             s->state = STATE_COLLECTING_DATA;
998         }
999         break;
1000     case RNVCR:
1001         s->data[0] = s->nonvolatile_cfg & 0xFF;
1002         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1003         s->pos = 0;
1004         s->len = 2;
1005         s->state = STATE_READING_DATA;
1006         break;
1007     case WNVCR:
1008         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1009             s->needed_bytes = 2;
1010             s->pos = 0;
1011             s->len = 0;
1012             s->state = STATE_COLLECTING_DATA;
1013         }
1014         break;
1015     case RVCR:
1016         s->data[0] = s->volatile_cfg & 0xFF;
1017         s->pos = 0;
1018         s->len = 1;
1019         s->state = STATE_READING_DATA;
1020         break;
1021     case WVCR:
1022         if (s->write_enable) {
1023             s->needed_bytes = 1;
1024             s->pos = 0;
1025             s->len = 0;
1026             s->state = STATE_COLLECTING_DATA;
1027         }
1028         break;
1029     case REVCR:
1030         s->data[0] = s->enh_volatile_cfg & 0xFF;
1031         s->pos = 0;
1032         s->len = 1;
1033         s->state = STATE_READING_DATA;
1034         break;
1035     case WEVCR:
1036         if (s->write_enable) {
1037             s->needed_bytes = 1;
1038             s->pos = 0;
1039             s->len = 0;
1040             s->state = STATE_COLLECTING_DATA;
1041         }
1042         break;
1043     case RESET_ENABLE:
1044         s->reset_enable = true;
1045         break;
1046     case RESET_MEMORY:
1047         if (s->reset_enable) {
1048             reset_memory(s);
1049         }
1050         break;
1051     case RDCR_EQIO:
1052         switch (get_man(s)) {
1053         case MAN_SPANSION:
1054             s->data[0] = (!!s->quad_enable) << 1;
1055             s->pos = 0;
1056             s->len = 1;
1057             s->state = STATE_READING_DATA;
1058             break;
1059         case MAN_MACRONIX:
1060             s->quad_enable = true;
1061             break;
1062         default:
1063             break;
1064         }
1065         break;
1066     case RSTQIO:
1067         s->quad_enable = false;
1068         break;
1069     default:
1070         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1071         break;
1072     }
1073 }
1074 
1075 static int m25p80_cs(SSISlave *ss, bool select)
1076 {
1077     Flash *s = M25P80(ss);
1078 
1079     if (select) {
1080         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1081             complete_collecting_data(s);
1082         }
1083         s->len = 0;
1084         s->pos = 0;
1085         s->state = STATE_IDLE;
1086         flash_sync_dirty(s, -1);
1087     }
1088 
1089     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1090 
1091     return 0;
1092 }
1093 
1094 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1095 {
1096     Flash *s = M25P80(ss);
1097     uint32_t r = 0;
1098 
1099     switch (s->state) {
1100 
1101     case STATE_PAGE_PROGRAM:
1102         DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1103                    s->cur_addr, (uint8_t)tx);
1104         flash_write8(s, s->cur_addr, (uint8_t)tx);
1105         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1106         break;
1107 
1108     case STATE_READ:
1109         r = s->storage[s->cur_addr];
1110         DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1111                    (uint8_t)r);
1112         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1113         break;
1114 
1115     case STATE_COLLECTING_DATA:
1116     case STATE_COLLECTING_VAR_LEN_DATA:
1117         s->data[s->len] = (uint8_t)tx;
1118         s->len++;
1119 
1120         if (s->len == s->needed_bytes) {
1121             complete_collecting_data(s);
1122         }
1123         break;
1124 
1125     case STATE_READING_DATA:
1126         r = s->data[s->pos];
1127         s->pos++;
1128         if (s->pos == s->len) {
1129             s->pos = 0;
1130             s->state = STATE_IDLE;
1131         }
1132         break;
1133 
1134     default:
1135     case STATE_IDLE:
1136         decode_new_cmd(s, (uint8_t)tx);
1137         break;
1138     }
1139 
1140     return r;
1141 }
1142 
1143 static void m25p80_realize(SSISlave *ss, Error **errp)
1144 {
1145     Flash *s = M25P80(ss);
1146     M25P80Class *mc = M25P80_GET_CLASS(s);
1147 
1148     s->pi = mc->pi;
1149 
1150     s->size = s->pi->sector_size * s->pi->n_sectors;
1151     s->dirty_page = -1;
1152 
1153     if (s->blk) {
1154         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1155         s->storage = blk_blockalign(s->blk, s->size);
1156 
1157         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1158             error_setg(errp, "failed to read the initial flash content");
1159             return;
1160         }
1161     } else {
1162         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1163         s->storage = blk_blockalign(NULL, s->size);
1164         memset(s->storage, 0xFF, s->size);
1165     }
1166 }
1167 
1168 static void m25p80_reset(DeviceState *d)
1169 {
1170     Flash *s = M25P80(d);
1171 
1172     reset_memory(s);
1173 }
1174 
1175 static void m25p80_pre_save(void *opaque)
1176 {
1177     flash_sync_dirty((Flash *)opaque, -1);
1178 }
1179 
1180 static Property m25p80_properties[] = {
1181     /* This is default value for Micron flash */
1182     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1183     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1184     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1185     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1186     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1187     DEFINE_PROP_DRIVE("drive", Flash, blk),
1188     DEFINE_PROP_END_OF_LIST(),
1189 };
1190 
1191 static const VMStateDescription vmstate_m25p80 = {
1192     .name = "xilinx_spi",
1193     .version_id = 3,
1194     .minimum_version_id = 1,
1195     .pre_save = m25p80_pre_save,
1196     .fields = (VMStateField[]) {
1197         VMSTATE_UINT8(state, Flash),
1198         VMSTATE_UINT8_ARRAY(data, Flash, 16),
1199         VMSTATE_UINT32(len, Flash),
1200         VMSTATE_UINT32(pos, Flash),
1201         VMSTATE_UINT8(needed_bytes, Flash),
1202         VMSTATE_UINT8(cmd_in_progress, Flash),
1203         VMSTATE_UNUSED(4),
1204         VMSTATE_UINT32(cur_addr, Flash),
1205         VMSTATE_BOOL(write_enable, Flash),
1206         VMSTATE_BOOL_V(reset_enable, Flash, 2),
1207         VMSTATE_UINT8_V(ear, Flash, 2),
1208         VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
1209         VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
1210         VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
1211         VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
1212         VMSTATE_BOOL_V(quad_enable, Flash, 3),
1213         VMSTATE_UINT8_V(spansion_cr1nv, Flash, 3),
1214         VMSTATE_UINT8_V(spansion_cr2nv, Flash, 3),
1215         VMSTATE_UINT8_V(spansion_cr3nv, Flash, 3),
1216         VMSTATE_UINT8_V(spansion_cr4nv, Flash, 3),
1217         VMSTATE_END_OF_LIST()
1218     }
1219 };
1220 
1221 static void m25p80_class_init(ObjectClass *klass, void *data)
1222 {
1223     DeviceClass *dc = DEVICE_CLASS(klass);
1224     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1225     M25P80Class *mc = M25P80_CLASS(klass);
1226 
1227     k->realize = m25p80_realize;
1228     k->transfer = m25p80_transfer8;
1229     k->set_cs = m25p80_cs;
1230     k->cs_polarity = SSI_CS_LOW;
1231     dc->vmsd = &vmstate_m25p80;
1232     dc->props = m25p80_properties;
1233     dc->reset = m25p80_reset;
1234     mc->pi = data;
1235 }
1236 
1237 static const TypeInfo m25p80_info = {
1238     .name           = TYPE_M25P80,
1239     .parent         = TYPE_SSI_SLAVE,
1240     .instance_size  = sizeof(Flash),
1241     .class_size     = sizeof(M25P80Class),
1242     .abstract       = true,
1243 };
1244 
1245 static void m25p80_register_types(void)
1246 {
1247     int i;
1248 
1249     type_register_static(&m25p80_info);
1250     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1251         TypeInfo ti = {
1252             .name       = known_devices[i].part_name,
1253             .parent     = TYPE_M25P80,
1254             .class_init = m25p80_class_init,
1255             .class_data = (void *)&known_devices[i],
1256         };
1257         type_register(&ti);
1258     }
1259 }
1260 
1261 type_init(m25p80_register_types)
1262