xref: /qemu/hw/block/m25p80.c (revision 7271a819)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
33 
34 #ifndef M25P80_ERR_DEBUG
35 #define M25P80_ERR_DEBUG 0
36 #endif
37 
38 #define DB_PRINT_L(level, ...) do { \
39     if (M25P80_ERR_DEBUG > (level)) { \
40         fprintf(stderr,  ": %s: ", __func__); \
41         fprintf(stderr, ## __VA_ARGS__); \
42     } \
43 } while (0);
44 
45 /* Fields for FlashPartInfo->flags */
46 
47 /* erase capabilities */
48 #define ER_4K 1
49 #define ER_32K 2
50 /* set to allow the page program command to write 0s back to 1. Useful for
51  * modelling EEPROM with SPI flash command set
52  */
53 #define EEPROM 0x100
54 
55 /* 16 MiB max in 3 byte address mode */
56 #define MAX_3BYTES_SIZE 0x1000000
57 
58 #define SPI_NOR_MAX_ID_LEN 6
59 
60 typedef struct FlashPartInfo {
61     const char *part_name;
62     /*
63      * This array stores the ID bytes.
64      * The first three bytes are the JEDIC ID.
65      * JEDEC ID zero means "no ID" (mostly older chips).
66      */
67     uint8_t id[SPI_NOR_MAX_ID_LEN];
68     uint8_t id_len;
69     /* there is confusion between manufacturers as to what a sector is. In this
70      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
71      * command (opcode 0xd8).
72      */
73     uint32_t sector_size;
74     uint32_t n_sectors;
75     uint32_t page_size;
76     uint16_t flags;
77     /*
78      * Big sized spi nor are often stacked devices, thus sometime
79      * replace chip erase with die erase.
80      * This field inform how many die is in the chip.
81      */
82     uint8_t die_cnt;
83 } FlashPartInfo;
84 
85 /* adapted from linux */
86 /* Used when the "_ext_id" is two bytes at most */
87 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
88     .part_name = _part_name,\
89     .id = {\
90         ((_jedec_id) >> 16) & 0xff,\
91         ((_jedec_id) >> 8) & 0xff,\
92         (_jedec_id) & 0xff,\
93         ((_ext_id) >> 8) & 0xff,\
94         (_ext_id) & 0xff,\
95           },\
96     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
97     .sector_size = (_sector_size),\
98     .n_sectors = (_n_sectors),\
99     .page_size = 256,\
100     .flags = (_flags),\
101     .die_cnt = 0
102 
103 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
104     .part_name = _part_name,\
105     .id = {\
106         ((_jedec_id) >> 16) & 0xff,\
107         ((_jedec_id) >> 8) & 0xff,\
108         (_jedec_id) & 0xff,\
109         ((_ext_id) >> 16) & 0xff,\
110         ((_ext_id) >> 8) & 0xff,\
111         (_ext_id) & 0xff,\
112           },\
113     .id_len = 6,\
114     .sector_size = (_sector_size),\
115     .n_sectors = (_n_sectors),\
116     .page_size = 256,\
117     .flags = (_flags),\
118     .die_cnt = 0
119 
120 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
121                     _flags, _die_cnt)\
122     .part_name = _part_name,\
123     .id = {\
124         ((_jedec_id) >> 16) & 0xff,\
125         ((_jedec_id) >> 8) & 0xff,\
126         (_jedec_id) & 0xff,\
127         ((_ext_id) >> 8) & 0xff,\
128         (_ext_id) & 0xff,\
129           },\
130     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
131     .sector_size = (_sector_size),\
132     .n_sectors = (_n_sectors),\
133     .page_size = 256,\
134     .flags = (_flags),\
135     .die_cnt = _die_cnt
136 
137 #define JEDEC_NUMONYX 0x20
138 #define JEDEC_WINBOND 0xEF
139 #define JEDEC_SPANSION 0x01
140 
141 /* Numonyx (Micron) Configuration register macros */
142 #define VCFG_DUMMY 0x1
143 #define VCFG_WRAP_SEQUENTIAL 0x2
144 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
145 #define NVCFG_XIP_MODE_MASK (7 << 9)
146 #define VCFG_XIP_MODE_ENABLED (1 << 3)
147 #define CFG_DUMMY_CLK_LEN 4
148 #define NVCFG_DUMMY_CLK_POS 12
149 #define VCFG_DUMMY_CLK_POS 4
150 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
151 #define EVCFG_VPP_ACCELERATOR (1 << 3)
152 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
153 #define NVCFG_DUAL_IO_MASK (1 << 2)
154 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
155 #define NVCFG_QUAD_IO_MASK (1 << 3)
156 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
157 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
158 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
159 
160 /* Numonyx (Micron) Flag Status Register macros */
161 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
162 #define FSR_FLASH_READY (1 << 7)
163 
164 /* Spansion configuration registers macros. */
165 #define SPANSION_QUAD_CFG_POS 0
166 #define SPANSION_QUAD_CFG_LEN 1
167 #define SPANSION_DUMMY_CLK_POS 0
168 #define SPANSION_DUMMY_CLK_LEN 4
169 #define SPANSION_ADDR_LEN_POS 7
170 #define SPANSION_ADDR_LEN_LEN 1
171 
172 /*
173  * Spansion read mode command length in bytes,
174  * the mode is currently not supported.
175 */
176 
177 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
178 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
179 
180 static const FlashPartInfo known_devices[] = {
181     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
182     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
183     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
184 
185     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
186     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
187     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
188 
189     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
190     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
191     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
192     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
193 
194     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
195 
196     /* Atmel EEPROMS - it is assumed, that don't care bit in command
197      * is set to 0. Block protection is not supported.
198      */
199     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
200     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
201 
202     /* EON -- en25xxx */
203     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
204     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
205     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
206     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
207     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
208 
209     /* GigaDevice */
210     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
211     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
212 
213     /* Intel/Numonyx -- xxxs33b */
214     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
215     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
216     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
217     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
218 
219     /* Macronix */
220     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
221     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
222     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
223     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
224     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
225     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
226     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
227     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
228     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
229     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
230     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
231     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
232     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
233 
234     /* Micron */
235     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
236     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
237     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
238     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
239     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
240     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
241     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
242     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
243     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
244     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
245     { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
246     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
247     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
248     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
249     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
250 
251     /* Spansion -- single (large) sector size only, at least
252      * for the chips listed here (without boot sectors).
253      */
254     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
255     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
256     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
257     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
258     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
259     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
260     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
261     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
262     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
263     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
264     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
265     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
266     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
267     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
268     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
269     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
270     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
271 
272     /* Spansion --  boot sectors support  */
273     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
274     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
275 
276     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
277     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
278     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
279     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
280     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
281     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
282     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
283     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
284     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
285     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
286 
287     /* ST Microelectronics -- newer production may have feature updates */
288     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
289     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
290     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
291     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
292     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
293     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
294     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
295     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
296     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
297     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
298 
299     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
300     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
301     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
302 
303     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
304     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
305     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
306 
307     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
308     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
309     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
310     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
311 
312     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
313     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
314     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
315     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
316     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
317     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
318     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
319     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
320     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
321     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
322     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
323     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
324     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
325     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
326 };
327 
328 typedef enum {
329     NOP = 0,
330     WRSR = 0x1,
331     WRDI = 0x4,
332     RDSR = 0x5,
333     WREN = 0x6,
334     JEDEC_READ = 0x9f,
335     BULK_ERASE = 0xc7,
336     READ_FSR = 0x70,
337     RDCR = 0x15,
338 
339     READ = 0x03,
340     READ4 = 0x13,
341     FAST_READ = 0x0b,
342     FAST_READ4 = 0x0c,
343     DOR = 0x3b,
344     DOR4 = 0x3c,
345     QOR = 0x6b,
346     QOR4 = 0x6c,
347     DIOR = 0xbb,
348     DIOR4 = 0xbc,
349     QIOR = 0xeb,
350     QIOR4 = 0xec,
351 
352     PP = 0x02,
353     PP4 = 0x12,
354     PP4_4 = 0x3e,
355     DPP = 0xa2,
356     QPP = 0x32,
357     QPP_4 = 0x34,
358 
359     ERASE_4K = 0x20,
360     ERASE4_4K = 0x21,
361     ERASE_32K = 0x52,
362     ERASE4_32K = 0x5c,
363     ERASE_SECTOR = 0xd8,
364     ERASE4_SECTOR = 0xdc,
365 
366     EN_4BYTE_ADDR = 0xB7,
367     EX_4BYTE_ADDR = 0xE9,
368 
369     EXTEND_ADDR_READ = 0xC8,
370     EXTEND_ADDR_WRITE = 0xC5,
371 
372     RESET_ENABLE = 0x66,
373     RESET_MEMORY = 0x99,
374 
375     /*
376      * Micron: 0x35 - enable QPI
377      * Spansion: 0x35 - read control register
378      */
379     RDCR_EQIO = 0x35,
380     RSTQIO = 0xf5,
381 
382     RNVCR = 0xB5,
383     WNVCR = 0xB1,
384 
385     RVCR = 0x85,
386     WVCR = 0x81,
387 
388     REVCR = 0x65,
389     WEVCR = 0x61,
390 
391     DIE_ERASE = 0xC4,
392 } FlashCMD;
393 
394 typedef enum {
395     STATE_IDLE,
396     STATE_PAGE_PROGRAM,
397     STATE_READ,
398     STATE_COLLECTING_DATA,
399     STATE_COLLECTING_VAR_LEN_DATA,
400     STATE_READING_DATA,
401 } CMDState;
402 
403 typedef enum {
404     MAN_SPANSION,
405     MAN_MACRONIX,
406     MAN_NUMONYX,
407     MAN_WINBOND,
408     MAN_GENERIC,
409 } Manufacturer;
410 
411 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
412 
413 typedef struct Flash {
414     SSISlave parent_obj;
415 
416     BlockBackend *blk;
417 
418     uint8_t *storage;
419     uint32_t size;
420     int page_size;
421 
422     uint8_t state;
423     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
424     uint32_t len;
425     uint32_t pos;
426     uint8_t needed_bytes;
427     uint8_t cmd_in_progress;
428     uint32_t cur_addr;
429     uint32_t nonvolatile_cfg;
430     /* Configuration register for Macronix */
431     uint32_t volatile_cfg;
432     uint32_t enh_volatile_cfg;
433     /* Spansion cfg registers. */
434     uint8_t spansion_cr1nv;
435     uint8_t spansion_cr2nv;
436     uint8_t spansion_cr3nv;
437     uint8_t spansion_cr4nv;
438     uint8_t spansion_cr1v;
439     uint8_t spansion_cr2v;
440     uint8_t spansion_cr3v;
441     uint8_t spansion_cr4v;
442     bool write_enable;
443     bool four_bytes_address_mode;
444     bool reset_enable;
445     bool quad_enable;
446     uint8_t ear;
447 
448     int64_t dirty_page;
449 
450     const FlashPartInfo *pi;
451 
452 } Flash;
453 
454 typedef struct M25P80Class {
455     SSISlaveClass parent_class;
456     FlashPartInfo *pi;
457 } M25P80Class;
458 
459 #define TYPE_M25P80 "m25p80-generic"
460 #define M25P80(obj) \
461      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
462 #define M25P80_CLASS(klass) \
463      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
464 #define M25P80_GET_CLASS(obj) \
465      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
466 
467 static inline Manufacturer get_man(Flash *s)
468 {
469     switch (s->pi->id[0]) {
470     case 0x20:
471         return MAN_NUMONYX;
472     case 0xEF:
473         return MAN_WINBOND;
474     case 0x01:
475         return MAN_SPANSION;
476     case 0xC2:
477         return MAN_MACRONIX;
478     default:
479         return MAN_GENERIC;
480     }
481 }
482 
483 static void blk_sync_complete(void *opaque, int ret)
484 {
485     QEMUIOVector *iov = opaque;
486 
487     qemu_iovec_destroy(iov);
488     g_free(iov);
489 
490     /* do nothing. Masters do not directly interact with the backing store,
491      * only the working copy so no mutexing required.
492      */
493 }
494 
495 static void flash_sync_page(Flash *s, int page)
496 {
497     QEMUIOVector *iov;
498 
499     if (!s->blk || blk_is_read_only(s->blk)) {
500         return;
501     }
502 
503     iov = g_new(QEMUIOVector, 1);
504     qemu_iovec_init(iov, 1);
505     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
506                    s->pi->page_size);
507     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
508                     blk_sync_complete, iov);
509 }
510 
511 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
512 {
513     QEMUIOVector *iov;
514 
515     if (!s->blk || blk_is_read_only(s->blk)) {
516         return;
517     }
518 
519     assert(!(len % BDRV_SECTOR_SIZE));
520     iov = g_new(QEMUIOVector, 1);
521     qemu_iovec_init(iov, 1);
522     qemu_iovec_add(iov, s->storage + off, len);
523     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
524 }
525 
526 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
527 {
528     uint32_t len;
529     uint8_t capa_to_assert = 0;
530 
531     switch (cmd) {
532     case ERASE_4K:
533     case ERASE4_4K:
534         len = 4 << 10;
535         capa_to_assert = ER_4K;
536         break;
537     case ERASE_32K:
538     case ERASE4_32K:
539         len = 32 << 10;
540         capa_to_assert = ER_32K;
541         break;
542     case ERASE_SECTOR:
543     case ERASE4_SECTOR:
544         len = s->pi->sector_size;
545         break;
546     case BULK_ERASE:
547         len = s->size;
548         break;
549     case DIE_ERASE:
550         if (s->pi->die_cnt) {
551             len = s->size / s->pi->die_cnt;
552             offset = offset & (~(len - 1));
553         } else {
554             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
555                           " by device\n");
556             return;
557         }
558         break;
559     default:
560         abort();
561     }
562 
563     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
564     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
565         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
566                       " device\n", len);
567     }
568 
569     if (!s->write_enable) {
570         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
571         return;
572     }
573     memset(s->storage + offset, 0xff, len);
574     flash_sync_area(s, offset, len);
575 }
576 
577 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
578 {
579     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
580         flash_sync_page(s, s->dirty_page);
581         s->dirty_page = newpage;
582     }
583 }
584 
585 static inline
586 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
587 {
588     uint32_t page = addr / s->pi->page_size;
589     uint8_t prev = s->storage[s->cur_addr];
590 
591     if (!s->write_enable) {
592         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
593     }
594 
595     if ((prev ^ data) & data) {
596         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 "  %" PRIx8
597                    " -> %" PRIx8 "\n", addr, prev, data);
598     }
599 
600     if (s->pi->flags & EEPROM) {
601         s->storage[s->cur_addr] = data;
602     } else {
603         s->storage[s->cur_addr] &= data;
604     }
605 
606     flash_sync_dirty(s, page);
607     s->dirty_page = page;
608 }
609 
610 static inline int get_addr_length(Flash *s)
611 {
612    /* check if eeprom is in use */
613     if (s->pi->flags == EEPROM) {
614         return 2;
615     }
616 
617    switch (s->cmd_in_progress) {
618    case PP4:
619    case PP4_4:
620    case QPP_4:
621    case READ4:
622    case QIOR4:
623    case ERASE4_4K:
624    case ERASE4_32K:
625    case ERASE4_SECTOR:
626    case FAST_READ4:
627    case DOR4:
628    case QOR4:
629    case DIOR4:
630        return 4;
631    default:
632        return s->four_bytes_address_mode ? 4 : 3;
633    }
634 }
635 
636 static void complete_collecting_data(Flash *s)
637 {
638     int i, n;
639 
640     n = get_addr_length(s);
641     s->cur_addr = (n == 3 ? s->ear : 0);
642     for (i = 0; i < n; ++i) {
643         s->cur_addr <<= 8;
644         s->cur_addr |= s->data[i];
645     }
646 
647     s->cur_addr &= s->size - 1;
648 
649     s->state = STATE_IDLE;
650 
651     switch (s->cmd_in_progress) {
652     case DPP:
653     case QPP:
654     case QPP_4:
655     case PP:
656     case PP4:
657     case PP4_4:
658         s->state = STATE_PAGE_PROGRAM;
659         break;
660     case READ:
661     case READ4:
662     case FAST_READ:
663     case FAST_READ4:
664     case DOR:
665     case DOR4:
666     case QOR:
667     case QOR4:
668     case DIOR:
669     case DIOR4:
670     case QIOR:
671     case QIOR4:
672         s->state = STATE_READ;
673         break;
674     case ERASE_4K:
675     case ERASE4_4K:
676     case ERASE_32K:
677     case ERASE4_32K:
678     case ERASE_SECTOR:
679     case ERASE4_SECTOR:
680     case DIE_ERASE:
681         flash_erase(s, s->cur_addr, s->cmd_in_progress);
682         break;
683     case WRSR:
684         switch (get_man(s)) {
685         case MAN_SPANSION:
686             s->quad_enable = !!(s->data[1] & 0x02);
687             break;
688         case MAN_MACRONIX:
689             s->quad_enable = extract32(s->data[0], 6, 1);
690             if (s->len > 1) {
691                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
692             }
693             break;
694         default:
695             break;
696         }
697         if (s->write_enable) {
698             s->write_enable = false;
699         }
700         break;
701     case EXTEND_ADDR_WRITE:
702         s->ear = s->data[0];
703         break;
704     case WNVCR:
705         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
706         break;
707     case WVCR:
708         s->volatile_cfg = s->data[0];
709         break;
710     case WEVCR:
711         s->enh_volatile_cfg = s->data[0];
712         break;
713     default:
714         break;
715     }
716 }
717 
718 static void reset_memory(Flash *s)
719 {
720     s->cmd_in_progress = NOP;
721     s->cur_addr = 0;
722     s->ear = 0;
723     s->four_bytes_address_mode = false;
724     s->len = 0;
725     s->needed_bytes = 0;
726     s->pos = 0;
727     s->state = STATE_IDLE;
728     s->write_enable = false;
729     s->reset_enable = false;
730     s->quad_enable = false;
731 
732     switch (get_man(s)) {
733     case MAN_NUMONYX:
734         s->volatile_cfg = 0;
735         s->volatile_cfg |= VCFG_DUMMY;
736         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
737         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
738                                 != NVCFG_XIP_MODE_DISABLED) {
739             s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
740         }
741         s->volatile_cfg |= deposit32(s->volatile_cfg,
742                             VCFG_DUMMY_CLK_POS,
743                             CFG_DUMMY_CLK_LEN,
744                             extract32(s->nonvolatile_cfg,
745                                         NVCFG_DUMMY_CLK_POS,
746                                         CFG_DUMMY_CLK_LEN)
747                             );
748 
749         s->enh_volatile_cfg = 0;
750         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
751         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
752         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
753         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
754             s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
755         }
756         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
757             s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
758         }
759         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
760             s->four_bytes_address_mode = true;
761         }
762         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
763             s->ear = s->size / MAX_3BYTES_SIZE - 1;
764         }
765         break;
766     case MAN_MACRONIX:
767         s->volatile_cfg = 0x7;
768         break;
769     case MAN_SPANSION:
770         s->spansion_cr1v = s->spansion_cr1nv;
771         s->spansion_cr2v = s->spansion_cr2nv;
772         s->spansion_cr3v = s->spansion_cr3nv;
773         s->spansion_cr4v = s->spansion_cr4nv;
774         s->quad_enable = extract32(s->spansion_cr1v,
775                                    SPANSION_QUAD_CFG_POS,
776                                    SPANSION_QUAD_CFG_LEN
777                                    );
778         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
779                 SPANSION_ADDR_LEN_POS,
780                 SPANSION_ADDR_LEN_LEN
781                 );
782         break;
783     default:
784         break;
785     }
786 
787     DB_PRINT_L(0, "Reset done.\n");
788 }
789 
790 static void decode_fast_read_cmd(Flash *s)
791 {
792     s->needed_bytes = get_addr_length(s);
793     switch (get_man(s)) {
794     /* Dummy cycles - modeled with bytes writes instead of bits */
795     case MAN_WINBOND:
796         s->needed_bytes += 8;
797         break;
798     case MAN_NUMONYX:
799         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
800         break;
801     case MAN_MACRONIX:
802         if (extract32(s->volatile_cfg, 6, 2) == 1) {
803             s->needed_bytes += 6;
804         } else {
805             s->needed_bytes += 8;
806         }
807         break;
808     case MAN_SPANSION:
809         s->needed_bytes += extract32(s->spansion_cr2v,
810                                     SPANSION_DUMMY_CLK_POS,
811                                     SPANSION_DUMMY_CLK_LEN
812                                     );
813         break;
814     default:
815         break;
816     }
817     s->pos = 0;
818     s->len = 0;
819     s->state = STATE_COLLECTING_DATA;
820 }
821 
822 static void decode_dio_read_cmd(Flash *s)
823 {
824     s->needed_bytes = get_addr_length(s);
825     /* Dummy cycles modeled with bytes writes instead of bits */
826     switch (get_man(s)) {
827     case MAN_WINBOND:
828         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
829         break;
830     case MAN_SPANSION:
831         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
832         s->needed_bytes += extract32(s->spansion_cr2v,
833                                     SPANSION_DUMMY_CLK_POS,
834                                     SPANSION_DUMMY_CLK_LEN
835                                     );
836         break;
837     case MAN_NUMONYX:
838         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
839         break;
840     case MAN_MACRONIX:
841         switch (extract32(s->volatile_cfg, 6, 2)) {
842         case 1:
843             s->needed_bytes += 6;
844             break;
845         case 2:
846             s->needed_bytes += 8;
847             break;
848         default:
849             s->needed_bytes += 4;
850             break;
851         }
852         break;
853     default:
854         break;
855     }
856     s->pos = 0;
857     s->len = 0;
858     s->state = STATE_COLLECTING_DATA;
859 }
860 
861 static void decode_qio_read_cmd(Flash *s)
862 {
863     s->needed_bytes = get_addr_length(s);
864     /* Dummy cycles modeled with bytes writes instead of bits */
865     switch (get_man(s)) {
866     case MAN_WINBOND:
867         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
868         s->needed_bytes += 4;
869         break;
870     case MAN_SPANSION:
871         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
872         s->needed_bytes += extract32(s->spansion_cr2v,
873                                     SPANSION_DUMMY_CLK_POS,
874                                     SPANSION_DUMMY_CLK_LEN
875                                     );
876         break;
877     case MAN_NUMONYX:
878         s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
879         break;
880     case MAN_MACRONIX:
881         switch (extract32(s->volatile_cfg, 6, 2)) {
882         case 1:
883             s->needed_bytes += 4;
884             break;
885         case 2:
886             s->needed_bytes += 8;
887             break;
888         default:
889             s->needed_bytes += 6;
890             break;
891         }
892         break;
893     default:
894         break;
895     }
896     s->pos = 0;
897     s->len = 0;
898     s->state = STATE_COLLECTING_DATA;
899 }
900 
901 static void decode_new_cmd(Flash *s, uint32_t value)
902 {
903     s->cmd_in_progress = value;
904     int i;
905     DB_PRINT_L(0, "decoded new command:%x\n", value);
906 
907     if (value != RESET_MEMORY) {
908         s->reset_enable = false;
909     }
910 
911     switch (value) {
912 
913     case ERASE_4K:
914     case ERASE4_4K:
915     case ERASE_32K:
916     case ERASE4_32K:
917     case ERASE_SECTOR:
918     case ERASE4_SECTOR:
919     case READ:
920     case READ4:
921     case DPP:
922     case QPP:
923     case QPP_4:
924     case PP:
925     case PP4:
926     case PP4_4:
927     case DIE_ERASE:
928         s->needed_bytes = get_addr_length(s);
929         s->pos = 0;
930         s->len = 0;
931         s->state = STATE_COLLECTING_DATA;
932         break;
933 
934     case FAST_READ:
935     case FAST_READ4:
936     case DOR:
937     case DOR4:
938     case QOR:
939     case QOR4:
940         decode_fast_read_cmd(s);
941         break;
942 
943     case DIOR:
944     case DIOR4:
945         decode_dio_read_cmd(s);
946         break;
947 
948     case QIOR:
949     case QIOR4:
950         decode_qio_read_cmd(s);
951         break;
952 
953     case WRSR:
954         if (s->write_enable) {
955             switch (get_man(s)) {
956             case MAN_SPANSION:
957                 s->needed_bytes = 2;
958                 s->state = STATE_COLLECTING_DATA;
959                 break;
960             case MAN_MACRONIX:
961                 s->needed_bytes = 2;
962                 s->state = STATE_COLLECTING_VAR_LEN_DATA;
963                 break;
964             default:
965                 s->needed_bytes = 1;
966                 s->state = STATE_COLLECTING_DATA;
967             }
968             s->pos = 0;
969         }
970         break;
971 
972     case WRDI:
973         s->write_enable = false;
974         break;
975     case WREN:
976         s->write_enable = true;
977         break;
978 
979     case RDSR:
980         s->data[0] = (!!s->write_enable) << 1;
981         if (get_man(s) == MAN_MACRONIX) {
982             s->data[0] |= (!!s->quad_enable) << 6;
983         }
984         s->pos = 0;
985         s->len = 1;
986         s->state = STATE_READING_DATA;
987         break;
988 
989     case READ_FSR:
990         s->data[0] = FSR_FLASH_READY;
991         if (s->four_bytes_address_mode) {
992             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
993         }
994         s->pos = 0;
995         s->len = 1;
996         s->state = STATE_READING_DATA;
997         break;
998 
999     case JEDEC_READ:
1000         DB_PRINT_L(0, "populated jedec code\n");
1001         for (i = 0; i < s->pi->id_len; i++) {
1002             s->data[i] = s->pi->id[i];
1003         }
1004 
1005         s->len = s->pi->id_len;
1006         s->pos = 0;
1007         s->state = STATE_READING_DATA;
1008         break;
1009 
1010     case RDCR:
1011         s->data[0] = s->volatile_cfg & 0xFF;
1012         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1013         s->pos = 0;
1014         s->len = 1;
1015         s->state = STATE_READING_DATA;
1016         break;
1017 
1018     case BULK_ERASE:
1019         if (s->write_enable) {
1020             DB_PRINT_L(0, "chip erase\n");
1021             flash_erase(s, 0, BULK_ERASE);
1022         } else {
1023             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1024                           "protect!\n");
1025         }
1026         break;
1027     case NOP:
1028         break;
1029     case EN_4BYTE_ADDR:
1030         s->four_bytes_address_mode = true;
1031         break;
1032     case EX_4BYTE_ADDR:
1033         s->four_bytes_address_mode = false;
1034         break;
1035     case EXTEND_ADDR_READ:
1036         s->data[0] = s->ear;
1037         s->pos = 0;
1038         s->len = 1;
1039         s->state = STATE_READING_DATA;
1040         break;
1041     case EXTEND_ADDR_WRITE:
1042         if (s->write_enable) {
1043             s->needed_bytes = 1;
1044             s->pos = 0;
1045             s->len = 0;
1046             s->state = STATE_COLLECTING_DATA;
1047         }
1048         break;
1049     case RNVCR:
1050         s->data[0] = s->nonvolatile_cfg & 0xFF;
1051         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1052         s->pos = 0;
1053         s->len = 2;
1054         s->state = STATE_READING_DATA;
1055         break;
1056     case WNVCR:
1057         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1058             s->needed_bytes = 2;
1059             s->pos = 0;
1060             s->len = 0;
1061             s->state = STATE_COLLECTING_DATA;
1062         }
1063         break;
1064     case RVCR:
1065         s->data[0] = s->volatile_cfg & 0xFF;
1066         s->pos = 0;
1067         s->len = 1;
1068         s->state = STATE_READING_DATA;
1069         break;
1070     case WVCR:
1071         if (s->write_enable) {
1072             s->needed_bytes = 1;
1073             s->pos = 0;
1074             s->len = 0;
1075             s->state = STATE_COLLECTING_DATA;
1076         }
1077         break;
1078     case REVCR:
1079         s->data[0] = s->enh_volatile_cfg & 0xFF;
1080         s->pos = 0;
1081         s->len = 1;
1082         s->state = STATE_READING_DATA;
1083         break;
1084     case WEVCR:
1085         if (s->write_enable) {
1086             s->needed_bytes = 1;
1087             s->pos = 0;
1088             s->len = 0;
1089             s->state = STATE_COLLECTING_DATA;
1090         }
1091         break;
1092     case RESET_ENABLE:
1093         s->reset_enable = true;
1094         break;
1095     case RESET_MEMORY:
1096         if (s->reset_enable) {
1097             reset_memory(s);
1098         }
1099         break;
1100     case RDCR_EQIO:
1101         switch (get_man(s)) {
1102         case MAN_SPANSION:
1103             s->data[0] = (!!s->quad_enable) << 1;
1104             s->pos = 0;
1105             s->len = 1;
1106             s->state = STATE_READING_DATA;
1107             break;
1108         case MAN_MACRONIX:
1109             s->quad_enable = true;
1110             break;
1111         default:
1112             break;
1113         }
1114         break;
1115     case RSTQIO:
1116         s->quad_enable = false;
1117         break;
1118     default:
1119         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1120         break;
1121     }
1122 }
1123 
1124 static int m25p80_cs(SSISlave *ss, bool select)
1125 {
1126     Flash *s = M25P80(ss);
1127 
1128     if (select) {
1129         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1130             complete_collecting_data(s);
1131         }
1132         s->len = 0;
1133         s->pos = 0;
1134         s->state = STATE_IDLE;
1135         flash_sync_dirty(s, -1);
1136     }
1137 
1138     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1139 
1140     return 0;
1141 }
1142 
1143 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1144 {
1145     Flash *s = M25P80(ss);
1146     uint32_t r = 0;
1147 
1148     switch (s->state) {
1149 
1150     case STATE_PAGE_PROGRAM:
1151         DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1152                    s->cur_addr, (uint8_t)tx);
1153         flash_write8(s, s->cur_addr, (uint8_t)tx);
1154         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1155         break;
1156 
1157     case STATE_READ:
1158         r = s->storage[s->cur_addr];
1159         DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1160                    (uint8_t)r);
1161         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1162         break;
1163 
1164     case STATE_COLLECTING_DATA:
1165     case STATE_COLLECTING_VAR_LEN_DATA:
1166 
1167         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1168             qemu_log_mask(LOG_GUEST_ERROR,
1169                           "M25P80: Write overrun internal data buffer. "
1170                           "SPI controller (QEMU emulator or guest driver) "
1171                           "is misbehaving\n");
1172             s->len = s->pos = 0;
1173             s->state = STATE_IDLE;
1174             break;
1175         }
1176 
1177         s->data[s->len] = (uint8_t)tx;
1178         s->len++;
1179 
1180         if (s->len == s->needed_bytes) {
1181             complete_collecting_data(s);
1182         }
1183         break;
1184 
1185     case STATE_READING_DATA:
1186 
1187         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1188             qemu_log_mask(LOG_GUEST_ERROR,
1189                           "M25P80: Read overrun internal data buffer. "
1190                           "SPI controller (QEMU emulator or guest driver) "
1191                           "is misbehaving\n");
1192             s->len = s->pos = 0;
1193             s->state = STATE_IDLE;
1194             break;
1195         }
1196 
1197         r = s->data[s->pos];
1198         s->pos++;
1199         if (s->pos == s->len) {
1200             s->pos = 0;
1201             s->state = STATE_IDLE;
1202         }
1203         break;
1204 
1205     default:
1206     case STATE_IDLE:
1207         decode_new_cmd(s, (uint8_t)tx);
1208         break;
1209     }
1210 
1211     return r;
1212 }
1213 
1214 static void m25p80_realize(SSISlave *ss, Error **errp)
1215 {
1216     Flash *s = M25P80(ss);
1217     M25P80Class *mc = M25P80_GET_CLASS(s);
1218     int ret;
1219 
1220     s->pi = mc->pi;
1221 
1222     s->size = s->pi->sector_size * s->pi->n_sectors;
1223     s->dirty_page = -1;
1224 
1225     if (s->blk) {
1226         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1227                         (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1228         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1229         if (ret < 0) {
1230             return;
1231         }
1232 
1233         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1234         s->storage = blk_blockalign(s->blk, s->size);
1235 
1236         if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1237             error_setg(errp, "failed to read the initial flash content");
1238             return;
1239         }
1240     } else {
1241         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1242         s->storage = blk_blockalign(NULL, s->size);
1243         memset(s->storage, 0xFF, s->size);
1244     }
1245 }
1246 
1247 static void m25p80_reset(DeviceState *d)
1248 {
1249     Flash *s = M25P80(d);
1250 
1251     reset_memory(s);
1252 }
1253 
1254 static int m25p80_pre_save(void *opaque)
1255 {
1256     flash_sync_dirty((Flash *)opaque, -1);
1257 
1258     return 0;
1259 }
1260 
1261 static Property m25p80_properties[] = {
1262     /* This is default value for Micron flash */
1263     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1264     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1265     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1266     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1267     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1268     DEFINE_PROP_DRIVE("drive", Flash, blk),
1269     DEFINE_PROP_END_OF_LIST(),
1270 };
1271 
1272 static const VMStateDescription vmstate_m25p80 = {
1273     .name = "m25p80",
1274     .version_id = 0,
1275     .minimum_version_id = 0,
1276     .pre_save = m25p80_pre_save,
1277     .fields = (VMStateField[]) {
1278         VMSTATE_UINT8(state, Flash),
1279         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1280         VMSTATE_UINT32(len, Flash),
1281         VMSTATE_UINT32(pos, Flash),
1282         VMSTATE_UINT8(needed_bytes, Flash),
1283         VMSTATE_UINT8(cmd_in_progress, Flash),
1284         VMSTATE_UINT32(cur_addr, Flash),
1285         VMSTATE_BOOL(write_enable, Flash),
1286         VMSTATE_BOOL(reset_enable, Flash),
1287         VMSTATE_UINT8(ear, Flash),
1288         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1289         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1290         VMSTATE_UINT32(volatile_cfg, Flash),
1291         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1292         VMSTATE_BOOL(quad_enable, Flash),
1293         VMSTATE_UINT8(spansion_cr1nv, Flash),
1294         VMSTATE_UINT8(spansion_cr2nv, Flash),
1295         VMSTATE_UINT8(spansion_cr3nv, Flash),
1296         VMSTATE_UINT8(spansion_cr4nv, Flash),
1297         VMSTATE_END_OF_LIST()
1298     }
1299 };
1300 
1301 static void m25p80_class_init(ObjectClass *klass, void *data)
1302 {
1303     DeviceClass *dc = DEVICE_CLASS(klass);
1304     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1305     M25P80Class *mc = M25P80_CLASS(klass);
1306 
1307     k->realize = m25p80_realize;
1308     k->transfer = m25p80_transfer8;
1309     k->set_cs = m25p80_cs;
1310     k->cs_polarity = SSI_CS_LOW;
1311     dc->vmsd = &vmstate_m25p80;
1312     dc->props = m25p80_properties;
1313     dc->reset = m25p80_reset;
1314     mc->pi = data;
1315 }
1316 
1317 static const TypeInfo m25p80_info = {
1318     .name           = TYPE_M25P80,
1319     .parent         = TYPE_SSI_SLAVE,
1320     .instance_size  = sizeof(Flash),
1321     .class_size     = sizeof(M25P80Class),
1322     .abstract       = true,
1323 };
1324 
1325 static void m25p80_register_types(void)
1326 {
1327     int i;
1328 
1329     type_register_static(&m25p80_info);
1330     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1331         TypeInfo ti = {
1332             .name       = known_devices[i].part_name,
1333             .parent     = TYPE_M25P80,
1334             .class_init = m25p80_class_init,
1335             .class_data = (void *)&known_devices[i],
1336         };
1337         type_register(&ti);
1338     }
1339 }
1340 
1341 type_init(m25p80_register_types)
1342